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Abstract. This paper presents an approach for solving

design problems in existing designs. A design analysis with

Axiomatic Design, called Design Object Analysis, describes a

product or a system in terms of Customer Needs (CNs),

Functional Requirements (FRs), Design Parameters (DPs) and

Process Variables (PVs), as well as their associated Design

Matrices (DMs). In this paper, the design analysis is combined

with a thorough investigation of possible problems within the

design, utilizing the seven quality tools, noise factor analysis,

and designed experiments to form an approach for quality

improvements and problem solving. The Design Object

Analysis helps secure valid input-factors to the designed

experiments, and the designed experiments correct or improve

the assumptions made in the Design Object Analysis. Thus, a

combination of product modeling by Axiomatic Design and

designed experiments overcomes shortcomings of the two

methods. The benefits of performing a Design Object Analysis,

as compared to other methods, become clear when it comes to

evaluating the results from the designed experiment, and

preventing the problem. Once the critical parameters are

confirmed, and the design matrices are updated, suggested

design improvements can then be checked against the design

matrices, and the system effect of a design-change-order can

be estimated. The approach described in this paper was

successfully applied and verified in a case study at a large

automotive company.
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1. Large and Complex Design Solutions
Yield Complex Quality Problems

Numerous design problems are difficult to solve due
to the fact that today’s systems are getting more

complex, and many inter-related parameters, and

subsystems, may contribute to the problems (Rechtin

and Maier 1997). These systems consist of more

heterogeneous technologies than before, making it

harder to gain in-depth understanding of a product.

Design problems related to such complex and

heterogenous systems could, for instance, be pro-

blems regarding car suspension and its manufactur-

ing, offset screen printing, or aircraft control systems.

The internal relationships among the parameters and

subsystems of complex systems are seldom fully

understood (Eppinger et al. 1994). Engineers have

difficulties finding out which parameters to focus on,

and how changes in certain parameters affect the

system performance, when dealing with quality

improvements and problem solving in complex

systems. A comprehensive understanding of the

system is necessary to solve the design problems

described above.

Methods for modeling complicated systems and

their internal interactions, as well as methods on how

to perform design changes in systems where a small

engineering-change-order affects many other parts of

the system, are therefore important issues that have to

be addressed (see, for instance, Kusiak and Larson

1995, Nordlund 1996 and Tate 1999).

Engineering design schools provide means for

analyzing, modeling and understanding the product’s

design. However, they often rely on subjective

engineering judgements when modeling product

structure and behavior. When quality problems

occur in large and complex products, common sense

and engineering knowledge might not be sufficient to

deal with such matters. There is a need for getting

new knowledge about what parameters contribute to

the functional performance of the product, and how

they inter-relate, in order to improve quality during

product and process development (Bergman and

Klefsjö 1994).
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The seven quality control tools and designed
experiments can provide such new knowledge

regarding product behavior, and the effects of various
components on performance (see Sections 2.2 and
2.3). However, a designed experiment is dependent on

the quality of the experimental input (i.e. the factors
in the experiments) to yield good results (Coleman
and Montgomery, 1993).

A combination of product modeling by engineering
design tools and designed experiments overcome

weaknesses of the methods. Engineering design
modeling of the product provides good input to the
designed experiment, and the designed experiment

can correct or improve the assumptions made in the
product description phase. The benefit of combining

engineering design and designed experiments be-
comes even clearer when it comes to evaluating the
results from the designed experiment, and preventing

the problem.

It is the author’s belief, based on the presented

research, that an approach that has problem solving in
focus and combines product modeling by engineering
design tools, designed experiments and the seven

quality control tools will allow a faster solution of
large and complex quality issues in industry.

This paper begins with a short introduction to
engineering design, designed experiments, and quality

control tools in Section 2. Section 3 presents the
combined approach discussed above, and Section 4
illustrates this with a case study. A comparison with

some related methods is presented in Section 5. Some
limitations are discussed in Section 6, and further
research is pointed out in Section 7. Finally, the

conclusions are summarized in Section 8.

2. Related Work

2.1. Engineering Design

Engineering design schools could provide part of the
knowledge needed for quality improvements by
providing engineers with tools necessary for setting
up a model of the product. It is important to
understand the product during the development
phase (Andreasen and Stören 1993), as well as to
understand the completed product, before trying to fix
any problems. Engineering design schools stress the
importance of a systematic approach to design, as
well as some kind of documentation of the product’s
design parameters and the underlying choices for their
selection (see for instance Clausing 1994, Hubka and
Eder 1988, Pahl and Beitz 1996, Pugh 1991 and Suh
1990).

One way of creating a model of the product is by
setting up a function-means tree (Andreasen1980; for
a similar version, see Marples 1961). The function-
means tree is a top-down description of the product,
starting with an overall Functional Requirement
(FR; for instance ‘need of transportation’) and a
corresponding solution in terms of a Design Para-
meter (DP; for instance, ‘truck’). This high-level
concept (i.e. need for transportation – truck) is then
decomposed into a tree of more detailed functions and
design parameters. Figure 1 provides an example of
the special kind of function-means tree built up by a
Design Object Analysis. The Design Object Analysis
is further explained in Section 3.2.

The function-means tree organizes information and
provides an overview of the product, but does not

Fig. 1. Part of a function-means tree from a Design Object Analysis (Engelhardt and Meiling 1997).
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facilitate an investigation of how different design
parameters and their corresponding functional re-
quirements interact.

2.1.1. Axiomatic Design

Using the concept of domains from Axiomatic Design
(Suh 1990) as a framework for developing a function-
means tree in combination with design matrices is
suitable for design problem solving, since Axiomatic
Design specifically addresses the internal relation-
ships between a product’s components. Axiomatic
Design is a principle-based design method. It is based
around the concept of four design domains and the
mapping between them, as depicted in Fig. 2.

The mapping is often performed between FRs in
the functional domain and DPs in the physical
domain, but could also be done between DPs and
Process Variables (PVs). This mapping process can
be described as in Fig. 1, and is represented by the
design equation with its associated Design Matrices
(DMs):

fFRg ¼ ½DM�fDPg ð1Þ

where

DMij ¼
@FRi

@DPj
ð2Þ

There are guidelines provided by axiomatic design
theory (consisting of axioms, theorems and corol-
laries) about the relations that should exist between
the different domains. These guidelines answer the
question: will a set of DPs satisfy the FRs in an
acceptable manner? This reasoning should also hold
between DPs and Process Variables (PVs). The
relationships between customer needs and FRs,
however, are more loosely structured. Axiomatic
design can be combined with creative tools, such as
TRIZ (Altshuller 1988) and Brainstorming (Osborn
1957).

Analyzing an existing product with Axiomatic
Design is called Design Object Analysis (see
Engelhardt and Meiling 1997, Nordlund 1996 and
Tate and Nordlund 1998). One major concern with
Design Object Analysis and Axiomatic Design, is
how to specify the design equations displayed in the

DMs. Often, engineering knowledge is used to define
the inter-relationships in the DMs, and a simple ‘X’ in
the DM indicates an effect, while a ‘0’ indicates no
effect.

Since the design equations are crucial steps that
guide further design efforts it is important that the
DMs are set up correctly. Often there are different
opinions among engineers on how certain parameters
are affecting other DPs and FRs. This phase of a
design object analysis can be vastly improved with
designed experiments.

2.2. The Designed Experiment

One frequently used way of getting information about
how different parameters (i.e. DPs) in a product, or
process, are related to one another, and to the
performance measure of interest, is to use designed
experiments. Designed experiments can be carried out
in many different ways. For instance, Design of
Experiments (DoE; see Box et al. 1978), Taguchi
methods (Phadke 1989) or Response Surface Methods
(RSM; see Myers and Montgomery 1995) can be
used. These methods all assume a set of given factors
that may affect the performance measure of interest.
Once the possibly important factors are selected, the
designed experiment finds the active factors, optimum
factor values for product performance, or factor
settings for variance minimization, etc.

Statistical researchers in the field of designed
experiments have put much effort into how best to
identify factors that are actively affecting the
performance measure, once the test is carried out

(for instance, Bergman et al. 1997, Box and Meyer
1986).

Introducing domain knowledge when evaluating
the experimental results has been found effective in
selecting factors that are active (Ekdahl et al. 1999,
Hamada and Wu 1992). However, even though the
selection of active factors from those incorporated in
the designed experiment can be quite accurate, a
poorly defined input to a designed experiment
nevertheless yields a weak result! Thus, it is crucial
to incorporate as much domain specific knowledge
(i.e. engineering knowledge) as possible when
selecting the parameters for the designed experiment.

In order to incorporate the right parameters one
should carefully analyze the product.

2.2.1. Planning for a Designed Experiment

A 13-step approach for planning for a designed
experiment that focuses on pre-design guide sheets is
presented in Coleman and Montgomery (1993), basedFig. 2. Design domains in Axiomatic Design.
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on Montgomery (1991). Coleman et al. acknowledge
the importance of relevant background information,
such as expert knowledge and physical laws, etc., but
very little is said about how to gather these relevant
details. A drawback of both Montgomery’s and
Coleman’s approaches is that the designed experi-
ment is not put in a problem-solving context. (See
also Sections 3 and 3.5.)

The designed experiment is put in a problem-
solving context by Bergman (1992). Nevertheless,
how to select factors for a designed experiment, and
how to implement design changes based upon the
result from the designed experiment, are rather
neglected in the literature.

2.3. The Seven Quality Control Tools

Another way of gathering knowledge in order to solve
quality issues in products is to use the seven quality
control tools (seven QC-tools; see Ishikawa 1982).
The seven QC-tools are: (1) Data collection, (2)
Histogram, (3) Pareto diagram, (4) Ishikawa diagram,
(5) Stratification, (6) Graphs, and (7) Control charts.

The QC-tools are a set of simple, effective,
statistical and graphical tools for analyzing data.
The seven QC-tools are complementary to designed
experiments and can be used as a screening step, in
between the Design Object Analysis and the designed
experiment, in order to verify the statements from the
Design Object Analysis. The root cause of the
product’s problem can often be found by using the
QC-tools, making the designed experiment unneces-
sary. The seven QC-tools form an effective toolbox,
and they should be used when appropriate.

3. An Integrated Design Problem Solving
Approach

A combined nine-step approach for overcoming the
weaknesses of the aforementioned methods is
presented in Fig. 3. This approach is similar to
Bergman’s problem solving approach (Bergman
1992), but focuses more on problem solving and the
design activities in steps 1 through 4, as well as step 7.

The approach presented in Fig. 3 can be summar-
ized as follows: Once a product’s problem is
thoroughly understood, then Design Object Analysis,
with help of Axiomatic Design, is combined with the
seven QC-tools, Noise factor analysis, as well as
designed experiments. Information gathered is then
transferred back to the Design Object Analysis.

Design matrices are updated, and redesign and
optimization are performed according to the con-
straints given by the Design Object Analysis.

The approach enables continuous improvements by
providing some of the means for organizational
learning. Parts of a learning organization are systems
thinking (Deming 1994, Senge 1990), increased
corporate memory, and means provided for improved
knowledge. Systems’ thinking in product develop-
ment is enhanced by the use of Axiomatic Design. A
good way of increasing corporate memory is to use
Design Object Analysis, and the ideas in Axiomatic
Design, to record DPs, FRs and constraints at
component part level. Also, the designed experiment
and the seven QC-tools increase corporate memory,
and enable continuous learning. Improved knowledge
demands good communications that are based upon
theory (Deming 1994). Without a theory it is hard to
use the transferred information. Axiomatic Design
defines such a theoretical basis for communication
about the system in product development, which
improves organizational knowledge.

Below is a description of the 9 steps in Fig. 3.

3.1. Problem Definition

Defining the problem correctly is an important and
seldom trivial task. If the problem description is
vague, then internal and external customer interviews,
and Quality Function Deployment, could be used to
get a more precise problem description (see, for
instance, Clausing 1994). The results of the problem
definition should be a set of clearly stated objectives

Fig. 3. Approach in solving design problems by combining
Axiomatic Design, Quality Control tools and designed experi-
ments.
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for use in the following improvement project. A

thorough understanding of the problem is essential for

finding a way to solve the problem.

3.2. The Design Object Analysis

For the design object analysis, it is necessary to

describe the product from the problem’s perspective,

and set up a function-means tree. ‘From the problem’s

perspective’ means that in the case of a car suspension

problem, for example, the function-means tree will

not describe FRs and DPs related to the cars’ rear

light (e.g. elements that obviously not are part of the

problem).

The main FR is the one that is not satisfied, thereby

indicating the problem of interest. The main FR is one

of the FRs in the tree.

Design matrices are set up for all the FR-DP

relations at the different levels in each branch of the

tree. Special focus is placed on how DPs are affecting

the main FR. Typical questions that arise during the

Design Object Analysis include the following: What

are the FRs of this design? Does the design meet all

its constraints? Are there any couplings in the design?

What FRs do the different DPs (components or parts)

satisfy? Does the manufacturing process match the

optimal sequence from the design matrices?

Gathering expert knowledge about the various

components in the product, and how they affect one

another, is of utmost importance if the Design Object

Analysis is to be successful. This can be done by

interviews with experts, or expert panel groups, etc.

The use of cross-functional teams (see, for instance,

Fleischer and Liker 1997) is a good way of obtaining

knowledge about the product from many different

perspectives.

One interesting feature of a Design Object Analysis

occurs when DPs affect a FR in another branch (see

Fig. 4).

In Fig. 4 the cross-branch effect is displayed in the

design matrix by an indexed X (X1), indicating the

indirect effect of DP1.3.1 on FR1.1. This is done at

the level where the branches merge in a common

design matrix (level 2). Indexed effects can then be

described in more detail (origin, reasoning, physical

laws, etc.).

To find the factors most likely to have caused the

product’s problem from the design tree, the design

matrices should be examined, with particular attention

paid to:

1. ‘0’ elements on the diagonal. These are DPs that
affect the main FR, or affect sub-FRs in the same
branch as the main FR, and are believed not to
satisfy their corresponding FRs.

2. Off-diagonal elements. Coupling effects that come
from DPs which affect the main FR without having
the main FR as their corresponding FR (i.e. a
component in the system that is supposed to have
nothing to do with the main FR, but still somehow
affects the main FR. For example, truck frame
configuration might unintentionally affect truck
suspension characteristics). The main FR can be
affected directly or indirectly.

3. Sequencing of the DPs. Is the manufacturing
system manufacturing the product according to
the preferred sequence described by the design
matrices and the independence axiom? If not, DPs
that relate to such manufacturing processes are
sensitive to disturbances, which may yield quality
problems. In other words, they are less robust. In
this case, one should try to find a new sequence of
manufacturing operations that better satisfies the
independence axiom in axiomatic design, and is
more robust to process disturbances.

The first kind of factors above are related to
Axiomatic Design’s information axiom (i.e. increase
the probability of success), and the second and third
kinds of factors relate to the independence axiom (i.e.
maintain the independence of FRs).

The function-means tree provides a good overview
of the product’s structure, which simplifies learning
and understanding. This overview is especially
important when dealing with large and complex
design problems. It helps the team analyze the
problem, and manages and displays many possible
roots of the problem and their relationships.

Results achieved from the Design Object Analysis
are: (1) a long list of potential factors that might cause
the design problem; (2) capture and storage of

Fig. 4. Design matrix displaying cross-branches relationships.
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engineering knowledge in a systematic way; and (3)
internal relationships and couplings within the
product and the manufacturing system are investi-
gated.

3.3. Noise Factor Analysis

The quality of the product is increased when the
product is insensitive (i.e. robust) to disturbances (i.e.
noise factors). Robustness is an important aspect of
quality, and it can only be addressed once the noise
factors are known. In problem solving it is important
to analyze how noise factors might be part of the
problem. Three major classes of noise factors can be
described (Phadke 1989):

1. External/Environmental: noise due to conditions
in which the product is used.

2. Unit-to-unit variation/Manufacturing variance:

each unit of a product has unique settings of
specific part parameters, and there are always
small deviations from written specifications due to
manufacturing variance.

3. Deterioration/Wear: as time passes, individual
components may change, leading to deterioration
in product performance from specified targets.

The noise factor analysis broadens the long list of
possible reasons for the product problem that was
found in the Design Object Analysis.

Gathering the noise factors, according to the three
classes mentioned above, often requires different
kinds of expert knowledge. Knowledge about how the
product is used could be acquired through interviews
with customers and sales personnel. Unit-to-unit
variation is often well understood by manufacturing
engineers and other workers in manufacturing.
Understanding how parts wear might be achieved in
cooperation with reliability engineers. Talking to
customers and checking warranty claims also in-
creases the understanding of factors related to wear.

A result that might be achieved from noise factor
analysis is, for instance, that noise factors which
affect the problem are incorporated in the long list of
potential factors that might affect the problem.

3.4. Gathering and Analyzing Information:
7 QC-tools

This step of the investigation aims at analyzing the
long list of factors that might affect the problem. The
data analysis and data gathering described in this
section should be part of a continuous interplay with
the Design Object Analysis. The Design Object

Analysis is not a static solution. New information
updates the design matrices in the Design Object
Analysis. Data analysis is done by utilizing the seven
simple but effective statistical quality control tools
(QC-tools). The data is often company data related to
production, product performance, warranty claims,
etc.

Some results achieved from the use of the QC-tools
are: (1) the analysis of data concerned with the long
list of parameters described in Sections 3.2 and 3.3
excludes the unimportant factors from the list, and
creates a shorter list of factors that might affect the
problem; (2) it might be possible to identify the root
cause of the problem by solely using the seven QC
tools, together with the Design Object Analysis. If
this is the case, then one may try to solve the problem
directly by using Axiomatic Design combined with
the already performed Design Object Analysis (see
Section 3.7). In this case, the designed experiment
would be ignored; (3) the Design Object Analysis is
updated and/or verified by the new information
provided by the use of the QC-tools.

3.5. The Designed Experiment

The root cause of the problem is now narrowed down
to a short list of potential factors, and designed
experiments can be used to find which factor(s) most
affect(s) the quality problem.

In quality improvement work, the focus should be
on improving the performance robustness, as well as
setting the performance value to the target. For these
purposes, a series of designed experiments are carried
out. A sequential approach enables knowledge gained
from one experiment to influence the design of the
following experiment.

When planning the details for the designed
experiments, the design matrices can also be used to
indicate potentially important design parameters,
which are extra sensitive to disturbances, where
severe coupling in a design matrix exist. There are
several different approaches for how to design the
experiment (see Section 2.2). Simpson et al. (1997)
provide a comprehensive overview of the different
ways of using statistics in design, and also present
special circumstances that arise when using statistical
experiments in computer simulations.

The specific planning steps 5.1 to 5.4 in Fig. 3 are
described in more detail in the basic statistical and
quality literature (see, for instance, Bergman 1992,
and Coleman and Montgomery1993), and will not be
discussed in detail here.
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It is important not to forget the goal of the
experiments and simulations. No matter which
method is chosen, one wants to achieve robust
products that perform well. Or, in other words,
products that perform well under many different
conditions. Sometimes, specially designed computer
simulations can replace physical experimentation.

Some results that can be achieved in the designed
experiment phase are: (1) a list of the most important
factors; (2) an accurate understanding of the physical
relationships within the product. This new informa-
tion facilitates an updated version of the design
matrices in the Design Object Analysis.

3.6. Optimization of Current Product

The result from the designed experiment is used not
only to identify the most important factors regarding
the quality problem, but also suggests the settings of
parameter values for the most important factors,
which will increase performance and robustness.
Thus, it may be possible to optimize product
performance and quality by implementing suggestions
from the designed experiment. Sometimes such an
optimization is enough to solve the product’s quality
problem and no major redesign efforts are necessary.
All suggested design changes (redesign or optimiza-
tion) have to pass the constraints or other trade-offs
that prohibit a design change (see also Section 3.7).

The result achieved from factor optimization is new
parameter values that optimize the product (if changes
are allowed by constraints).

3.7. Design Changes

Once the engineering team knows which parameters
are most important, they can focus on these
parameters and redesign them to solve the problem.
The axioms, corollaries and theorems from Axiomatic
Design provide guidance in this effort.

It is important to evaluate how design changes

affect related parts of the product, since trade-offs
and limitations are often present. The design matrices
express relationships between the product’s parts, and
enable easy tracking of effects resulting from
suggested design changes. Limitations in the design
often make both optimization and redesign necessary.

The result achieved from this step is planned design
changes to solve the product’s problem.

3.8. Implementation Plan

To realize the planned improvements, an implementa-
tion plan has to be constructed. Some important
questions to address are: Responsibilities? Time
frame? Budget? Team members? etc.

An implementation plan results in a higher
probability of success for the planned improvement
efforts.

3.9. Is the Problem Solved?

Following up and confirming that the problem is
really solved is important. This might consist of
months of measurements and recording of customer
feedback. Unless this step indicates that the problem
is solved, uncertainty remains about whether or not
the problem is still present.

4. Automotive Case Study

The approach presented in this paper was used to deal
with an ongoing and complex problem at a large
automotive company (Engelhardt and Meiling 1997).
How the problem was tackled using the steps
presented in Fig. 3 is described below.

Step 1: Problem definition
The problem in the study was called ‘Drift/Pull’. A
Drift/Pull problem is said to exist if a driver takes his
hands off the steering wheel at 85 km/h and the
vehicle changes lane in less than 10 seconds.
Warranty claims due to Drift/Pull in the automotive
company’s light truck had incurred significant costs.
In this case, the problem was very precisely defined at
the start of the project.

Step 2: The Design Object Analysis
The truck was modeled in terms of Axiomatic Design
from the Drift/Pull point of view. It means that parts
of the truck that were believed to be unimportant for
Drift/Pull were either not included in the model,
or not further decomposed in the function-means
tree.

The truck was modeled from above and the system
concept was laid out as shown in Fig. 1. In parallel, the
various design parameters in the assembly drawing
were analyzed, and their corresponding functional
requirements were identified. This ‘bottom up’-
analysis of the assembly drawings was then combined
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with the ‘top down’ description of the truck concept,

and the parts that are interesting from a Drift/Pull

perspective build up the function-means tree.

Figure 5 sketches the entire function-means tree,

and highlights a close-up of the Drift/Pull branch.

Drift/Pull is related to not satisfying the main

FR1.1.2 (straight movement when no force is applied

to wheel). In the design, the FRs and DPs of the

FR1.1.2-branch are meant to satisfy FR1.1.2. In

reality, many other DPs of the design affect FR1.1.2

too. Various factors affecting FR1.1.2 were identified

through a careful investigation of all branches of the

Fig. 5. Drift/Pull branch of FR-DP tree.

Improving Systems with Axiomatic Design, Quality Control Tools and DOE 211



function-means tree, and their effects on FR1.1.2. The

leaves of the branches in the function-means tree are

often physical parts, or parameter values, that can be

found in the design drawings or assembly drawings.

Knowledge used for this design analysis came from

engineering experts, physical laws, theoretical studies

of car suspension, warranty statistics, and product

data, etc. Teamwork, and cooperation with experts,

were two important aspects in getting an accurate

understanding of the truck and the Drift/Pull issue, as

well as for correctly defining the function-means tree

and the design matrices. The researchers in this study

had support from a quality-conscious manager at a

high company level. Results achieved in the case

study would not have been possible in the relatively

short project time-frame (three months) without this

managerial support.

Design matrices were set up for the different levels of
the function-means tree. A simple example of a
design matrix is given in eq. (3), which shows the
design matrix 1.1.2.2.x (front and rear axles parallel)
from Fig. 5.

In design matrices where non-diagonal elements

exist, these elements were indexed (i.e. X1, X2 . . . Xn)

and explained separately. DPs believed to have some

problem fulfilling their corresponding FRs were also

discussed separately. Constraints were added for

clarity and for making future design changes and

trade-off decisions easier.

Factors providing couplings (directly or indirectly),

or believed not to fulfil their corresponding FRs, were

added to the list of potential factors affecting Drift/

Pull.

Transformation of factors into a set of more

experiment-friendly factors: thirty-three factors were

first identified from the design matrices as being of

interest for further investigation. Many of these

parameters are related and yield the same kind of

affect when changed from their original value. For

instance, the DPs that build up (or affect) the axle

parallelism are: (1) DP11221 spring horizontal

distance X, ‘wrap’ holes to steer knuckle bolts, (2)

DP11222 Frame distance X, bracket holes front to

rear, (3) DP11223 placement of spring holes on
bracket. Together these factors form the compound
factor ‘axles not parallel’. See Fig. 6 for the setup of
the DPs above. By combining factors, the long list
could be reduced to 16 factors that described the
result from the design matrices.

A major result from the Design Object Analysis
was a long list of factors that might be the
fundamental reason for the Drift/Pull problem (see
Table 1). Many of the terms in Table 1 are automotive
suspension terms, explained in Bastow and Howard
(1993) and Engelhardt and Meiling (1997).

Table 1. Parameters important to analyze

1. Caster angle, front wheels
2. Caster split angle, front wheels
3. Camber angle, front wheels
4. Camber split angle, front wheels
5. Wheel base
6. Front and rear axles not parallel
7. Toe angle, front wheels
8. SAI angle, front wheels
9. SAI split angle, front wheels

10. Different loads on front and rear wheel-pair
11. Different loads on left and right wheel in the wheel-pairs
12. Tire RSAT
13. Tire RSAT split
14. Tire CRF
15. Tire CRF split
16. Different brake force applied to individual wheels

without driver braking

Step 3: Noise Factor Analysis

The analysis of how noise factors affect Drift/Pull is
presented in Fig. 7. To understand how the
environment is influencing Drift/Pull, through custo-
mer usage of the truck, it is very important to know
the behavior of the customers. In this case, the
subsequent analysis of company data excluded wear
and most of the environmental noise factors from
affecting Drift/Pull problem (see Step 4). The noise
factor analysis further extends the long list of factors
from the Design Object Analysis (see Fig. 7).

Fig. 6. Design Parameters (DPs) building up the front to rear axle
distance.
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Step 4: Analyzing Recorded Truck Data and
Warranty Claims with the 7 QC-tools

Existing data about trucks that were reported as

incurring Drift/Pull warranty costs were examined to

determine which parameters of these trucks might

have caused the problem. In doing so, the company’s

database for warranty claims, and the corresponding

data from the manufacturing process, were utilized. A

summary of the conclusions achieved is given below.

When QC-tools were used, it will be indicated by

writing the QC-tool in italics.

It was found that the Drift/Pull problem was

manufacturing plant related. Data collection and

construction of graphs similar to Fig. 8 yielded the

conclusion that a very large proportion of the trucks

causing Drift/Pull problems exhibited them after low

mileage.

Often, the problems were apparent at the plant,

after leaving the manufacturing line, or after low

mileage incurred by either the truck dealer or when

the vehicle was first driven by the customer.

This conclusion eliminated the noise factors related

to wear of parts, as well as most of the noise factors

related to the truck’s usage environment (see Fig. 7).

Suspension parameters were recorded for some of

the trucks that caused Drift/Pull. Graphs and histo-

grams revealed that the settings of classical suspension

parameters were not the sole explanation for the Drift/

Pull problem. Caster split, for instance, was regarded

as the single most important factor to control Drift/

Pull, and the only truck that had excessive caster split,

out of the ones that caused Drift/Pull, drifted the wrong

way according to suspension theory. The conclusion

from this part of the study was that none of the

classical suspension parameters (i.e. caster, caster

split, camber, camber split, toe, and toe split) alone

cause the Drift/Pull problem.

Fig. 7. Different noise factors: Manufacturing, environment and wear.

Fig. 8. Drift/Pull warranty claims as a function of truck mileage.
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To evaluate what other factors might be part of the
problem, different versions of the truck were
investigated. Stratification of the warranty data
regarding truck model (i.e. different cabs, different
wheelbase, different tires, etc.) was performed.
Different versions of the trucks turned out to cause
different amounts of Drift/Pull warranty claims. To
understand why this could be, the fundamental
differences between the models were examined.
These fundamental differences were then related
back to the Design Object Analysis and specific
factors in the design matrices. For instance, trucks
equipped with one brand of tires caused more Drift/
Pull problems than trucks equipped with the other tire
brand, suggesting that tire characteristics could be an
important parameter in the Drift/Pull issue.

Control charts were also made in order to view the
impact of previous design changes on the Drift/Pull
statistics. It was confirmed that a change in caster split
affects the ratio of drift-right and drift-lefts, according
to the suspension theory.

Results achieved from using the QC-tools were: (1)
drift/pull was, to a large extent, manufacturing-plant
related, thus eliminating many possible factors from
the noise factors analysis; (2) the long list of potential
factors from Step 3 was shortened; and (3) the design
matrices from the Design Object Analysis were
updated.

Step 5: The Designed Experiment; Improving Model
Accuracy
To find out more about the factors that cause the
variation in truck Drift/Pull, it was decided to perform
a designed experiment. A computer model of the
truck’s dynamic behavior was available at the
automotive company’s Vehicle Dynamics depart-
ment. This computer model had been verified and
constructed with real-life trucks. No simulation
regarding Drift/Pull had previously been done. The

choice of experimental design was the Response
Surface Method. The objective was to find out how
deviations of the factors in the short list of factors (see
Step 4 and Fig. 7) affected Drift/Pull distance and
Drift/Pull variance. Since the degrees of freedom for
the simulation were limited, all factors could not be
included. The factors included in the initial simulation
are displayed in Table 2.

A second simulation was performed to evaluate the
effect of non-parallel axles. The result from the
designed computer simulation was a short list of the

most important factors:

1. Caster split.

2. Tires, in terms of:
a) Residual Self-Aligning Torque (RSAT), at zero

degree slip angle;
b) Residual Conicity Lateral Force (CRF), at zero

degree slip angle

3. Axle parallelism.

4. Front weight (center of gravity) bias.

The most important factors can also be found in the
function-means tree (see Fig. 9).

Further results achieved from the computer
simulation include the following: the improved
truck model provided by the computer simulation
also enabled a Pareto diagram (see Section 2.3) to
indicate the relative importance of the four factors to
Drift/Pull. A spin-off of the computer simulation was
a software package, delivered to the manufacturing
plant, that allows one to change the settings of the
factors included in the test, and get the response in
terms of new drifting distance and drifting variance.
This software can be used as an indicator of the
impact of future design changes on Drift/Pull. The
designed experiment provided updating and valida-
tion of the design matrices from the Design Object
Analysis.

Table 2. Factors taken in consideration in computer simulation (Response Surface Method)

Factors Level Testing Range

1. Average Caster 48 O18
2. Caster split –0.58 O18
3. Average Camber 08 +0.68
4. Camber split 08 O0.38
5. Total toe 0.068 O0.28
6. SAI Left 0 mm O15 mm
7. SAI Right 0 mm O15 mm
8. RSAT, at zero 8 slip angle –18 mm max.=–5 Nm; min. = –NM
9. Conicity (lateral force tire), at zero 8 slip angle 445 N O111 N for each tire at 08 slip angle

10. Wheel Base 3,98m –0,508 m
11. Road Crown 08 O38
12. Front weight bias 18.1 kg O22.7 kg
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Step 6: Optimization of Current Product

Some optima were found from analyzing the designed

experiments, but they were outside limitations set by

other design constraints. The computer model of truck

behavior suggested, for instance, the use of increased

caster angle for robust straight-ahead movement. This

suggested optimization would, however, lead to a

large trade-off with other steering features, such as

force needed to turn the wheels, etc. Optimization and

design changes were closely interrelated and had to be

jointly evaluated (see Step 7 below).

Step 7: Design and Process Changes of Most
Important Factors

The pareto-rule was used to focus design improve-

ments on the four most important factors (see Step 5).

The multiple constraints and trade-offs that were

present in the truck’s design made investigating

design changes before implementing them even

more important. By utilizing the previously com-

pleted Design Object Analysis, it was possible to see

how the four most important factors were built up of

other factors. For an example, see Fig. 6. The design

matrices were also used to trace the effects of

suggested design changes. Time could then be spent
on minimizing variance in these factors. Redesign
was simplified by using the design support in
Axiomatic Design theory.

Examples of some suggested design changes
resulting from the redesign phase were:

1. Design changes such as: (1) switching the loose
end of the leaf spring (shackle) from the front end
of the leaf spring to the rear end of the spring,
making it harder for road shocks to transfer to the
vehicle body; (2) A longer stabilizer bar for the
front axle will decrease the chance of vibrations
(shimmy). (1) and (2) will together ease the
constraints on caster angle value, and allow a
larger positive caster angle, which increases
directional stability. Directional stability decreases
Drift/Pull.

2. The forces and torque of the tires at zero degrees
slip angle was not considered by tire suppliers. The
analysis of the tire values indicates that this has to
be done, thus changing the manufacturing process
at the supplier and/or at the automotive company.

3. Spring rate of the leaf springs was found to be part
of the front weight bias. One suggested way of

Fig. 9. The four most important factors affecting Drift/Pull, displayed in the function-means tree.
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minimizing front weight bias was to group the leaf
springs according to their spring rate. Springs with
approximately the same spring rate are then
mounted on one wheel pair, thereby removing
the side-to-side difference in spring rate.

4. A method to maintain the manufacturing process
mean centered around a target value of zero trucks
with Drift/Pull was designed by using Drift/Pull
warranty data, in combination with caster slug
changes. Necessary online manufacturing mea-
surements were not possible with the equipment
available at the manufacturing plant. This made it
necessary to rely on warranty data.

Step 8: Implementation Plan
A formal implementation plan was not set up, since
the duration of the author’s stay at the automotive
company was limited. It was only possible for the
author to indirectly affect the implementation plan
through suggestions. However, the findings from the
case study were used by the automotive company to
improve statistical process control at the manufactur-
ing plant. This decreased the Drift/Pull problems.
Some of the design changes suggested were also
implemented in the following model of the truck.

Step 9: Is the Problem Solved?
The automotive company was pleased with the new
knowledge gained through the case study, as well as
with the suggestions made. The problem with Drift/
Pull was an ongoing problem that had occurred for 18
years (!), and a drop in Drift/Pull warranty claims has
been noticed since the time of the case study. A
project follow up in 1999 showed that the case study
has also successfully been used as a model for Drift/
Pull improvements in other car and truck models with
similar suspension made by the company. Results
from the case study’s designed experiments have also
served as a basis for other experiments regarding
Drift/Pull issues, and the findings from the case study
have been verified. Yet another result from the case
study is that it is one of the reasons for the automotive
company’s decision to completely redesign the front
suspension of future trucks.

5. Some Comparisons with Other Methods

Design Structure Matrix (DSM; Steward 1981) is a
method that tries to evaluate information flows in the
design process by investigating the interdependencies
between development tasks, in terms of functional
requirements (i.e. ‘passenger capacity specification’,
or ‘[definition of] total weight’). It also tries to find

the sequence of development tasks that minimizes

iterations in product development. Steward’s DSM

approach defines the interrelations in a matrix format,

and then applies various techniques to rearrange the

matrix in order to find the optimal development

sequence. The DSM approach has been subject to

intense research during the last 10 years (see, for

instance, Eppinger et al. 1990, Carrascosa 1998, or

Cronemyr 1999). The DSM approach has also been

used to model systems in terms of their elements, or

design parameters (Eppinger et al. 1994; Kusiak and

Larson 1995; Pimmler and Eppinger 1994). Pimm-

ler’s and Eppinger’s version of the DSM approach

identifies interrelations between functional and

physical elements, and constructs a DSM based on

the system’s design parameters. Their DSM approach

is similar to the Design Object Analysis, and the

approach presented in Fig. 3 of this paper. However,

some fundamental differences exist.

Axiomatic design minimizes the couplings, or

interrelations, within the physical design at the

designing phase, or redesigning phase, by stressing

the designer to follow the first axiom (i.e. maintain the

independence of functional requirements). Pimmler’s

and Eppinger’s product analysis, on the other hand,

focus on defining and evaluating different alternatives

of system decompositions (i.e. representations), or

architectures, after the conceptual design phase. The

goal is to improve quality and speed of the following

design process by helping the development teams to

better understand the interrelations within the system.

Pimmler’s and Eppinger’s DSM approach does not

guide redesign of the system towards an uncoupled

system in the same sense as axiomatic design does.

Axiomatic Design is a designing tool, and can be

used as a design analysis tool, whereas DSM is

primarily an information flow and process/task

analysis tool. DSM-based approaches to system

modeling have the advantage of displaying the

design relationships in a single matrix. This improves

the matrix overview, compared to many design

matrices at different levels that are created using the

axiomatic design method. DSM is descriptive

whereas Axiomatic Design is prescriptive. Pimmler’s

and Eppinger’s DSM-based approach to system

modeling is complementary to the Design Object

Analysis part of the approach presented in Fig. 3.

The Ishikawa diagram is another frequently used

tool to structure causes and effects related to quality

characteristics (see Section 2.3). One major drawback

with the Ishikawa diagram, compared with the Design

Object Analysis presented in this paper, is that it does

not investigate how the causes in the diagram are
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inter-related. The strength of the Ishikawa diagram is
its simplicity. One should not see the Design Object
Analysis and the Ishikawa diagrams as opponents.

If the Design Object Analysis is set up to include
only the technical and physical aspects of the product,
then the Ishikawa diagram might provide a means for
analyzing the human factors of the problem. It would
still be important to incorporate inter-relationship
analysis in the Ishikawa diagram, though.

Axiomatic Design has been used to integrate
reliability analysis in terms of Fault-Tree Analysis

(FTA; see for instance, Barlow 1998) with the overall
product design process (Teng and Ho 1995). The
fault-tree analysis itself does not analyze how design
changes of certain DPs affects other FRs and DPs of
the product, other than that the fault-tree analysis
investigates the impact on the fault-probabilities in
the fault tree. Fault-tree analysis provides the
Design Object Analysis with a tool for measuring
performance over time (i.e. reliability). Teng et al. use
the Military standards for estimating failure prob-
abilities for the various components in the fault tree
(MIL-HDBK-217E 1984). The nine-step approach
described by the author of this paper could be
complemented with a fault-tree analysis in the case
when reliability is of special interest. The ‘top-down’
construction of a fault-tree could be complemented
with the related ‘bottom-up’ construction of a Failure
Mode and Effect Analysis (see, for instance,
O’Connor 1995).

6. Limitations of the Proposed Approach

The approach to quality improvements suggested in
this paper is developed only for single performance
criteria. Another limiting aspect is that the approach is
developed for quality issues only in existing products
or processes.

7. Further Research

One interesting topic might be to investigate how the
framework of TRIZ (Altshuller 1988) could be used
to improve step 7 of the suggested approach (redesign
and decoupling of the most important factors).
Another interesting question to address is the case
when multiple quality characteristics are present.
How do multiple quality characteristics affect the
Design Object Analysis, the use of the QC-tools, and
the noise factor analysis?

The approach presented is mainly developed for
hardware analysis. It would be interesting to further

explore the man-machine interactions in problem
solving related to design, especially when including
human factors in the Design Object Analysis, and
thereby mixing man- and machine-parameters in the
approach presented. In this case, implications regard-
ing the use of the axioms, corollaries and theorems
from the Axiomatic Design theory are interesting.
Applying and adopting the proposed approach to new
product development would be exciting. Of course,
more case studies have to be performed to further
secure the findings presented in this paper.

8. Conclusions

This paper suggests an approach for combining
engineering design theory and designed experiments
in order to improve product quality. The approach
presented consists of nine steps: (1) Problem
definition, (2) Design Object Analysis with Axiomatic
Design, (3) Noise factor analysis, (4) Gathering and
analyzing data with the seven Quality Control tools,
(5) Designed experiments or computer simulations,
(6) Optimization of current design, (7) Redesign and
decoupling of the most important factors, (8)
Implementation plan, and (9) Verification of problem
solution.

The product analysis, in terms of Design Object
Analysis (step 2), is strengthened by knowledge
gained from the designed experiment or computer
simulation (step 5). The designed experiment, on the
other hand, is strengthened by the domain-specific
product knowledge gathered in the Design Object
Analysis, which increases the probability of selecting
active factors for the experiment. The two major
components of the approach complement each other.

Compared with other approaches to quality
improvements, which also promote the use of
designed experiments, the approach presented in this
paper focuses more on utilizing engineering knowl-
edge to select active factors for the experiment. This
approach also puts more emphasis on, and provides a
means for, problem solving once the root causes of
the problem are identified. This is done by utilizing
the axioms, corollaries and theorems in Axiomatic
Design, in combination with the completed Design
Object Analysis, when redesigning the product’s
factors or process steps that most affect the quality
problem.

This approach should not be followed blindly. It is
a suggested workflow. The circumstances present in
the specific study must be carefully analyzed.

The presented approach was successfully tested on
a non-trivial problem, in a case study at an automotive
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company. The findings from the case study helped to
resolve the problem and were verified by subsequent
investigations.
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Bergman B, Klefsjö, B (1994) Quality from Customer Needs
to Customer Satisfaction. McGraw-Hill, New York

Bergman B, Ekdahl F, Sandvik Wiklund P (1997) A
comparison of selection procedures for finding active
contrasts in unreplicated fractional factorial designs.
Computing Science and Statistics 29(2):573–582

Box GEP, Hunter WE, Hunter JS (1978) Statistics for
Experimenters. Wiley, New York

Box GEP, Meyer RD (1986) An analysis for unreplicated
fractional factorials. Technometrics 28:11–18

Carrascosa M, Eppinger SD, Whitney DE (1998) Using the
design structure matrix to estimate product development
time. ASME Design Engineering Technical Conference,
September 13–16, Atlanta, Georgia

Clausing DP (1994) Total Quality Development. ASME Press,
New York

Coleman DE, Montgomery DC (1993) A systematic approach
to planning for a designed industrial experiment. Techno-
metrics 35(1):1–14
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