
Vol.:(0123456789)1 3

Research in Engineering Design (2023) 34:421–442
https://doi.org/10.1007/s00163-023-00417-3

ORIGINAL PAPER

Product representation via networks methodology for exposing
project risks

Shlomi Efrati1 · Yoram Reich1 

Received: 26 January 2022 / Revised: 1 October 2022 / Accepted: 28 February 2023 / Published online: 13 April 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
One of the significant factors in the time to market of a technology-based product development project is effective risk
management. Both the system engineer and the project manager must work together to map and manage the risks in the
project throughout its lifetime. Risks in the project arise from various reasons, which are not necessarily quantifiable, but
all of which must be managed by the project team. We propose a methodology for calculating the risk level origin in each
system element or component, taking into account its role within the system containing these elements and its availability
in the project timeline. This risk level can be used as an additional decision support tool for the project stakeholders. For
this purpose, we present a four-step process for (1) graph network mapping of products, (2) applying network algorithms,
(3) weighting with information from the project management discipline, and (4) calculating risk index for identifying risks.
The resulting level of risk index will enable the project team to map and manage efficiently and effectively the risks arising
from the system components throughout the life of the development project. To demonstrate the methodology, we analyzed
two products from different fields and at different levels of abstraction. We derived from each case the risk index for the use
of the project personnel.

Keywords  Network graph · System engineer · Project manager · Product design · Risk management · Degree centrality ·
Betweenness centrality

1 � Research motivation

A technological product development process includes fun-
damental steps in any design methodology: requirements
analysis, product design, execution, and testing. The Vee
model (Blanchard and Blyler 2016) defines these main life
cycle phases as decomposition and definition, implemen-
tation, integration, and recomposition. This development
process includes two main functions, which are present
throughout the life cycle: project management and system
engineering, which are assigned to a person or a group of
people and allow separation between the administrative
aspect (project management) and the engineering aspect
(system engineering). Even in cases where there is no offi-
cial assignment to one or another position, in practice, the

responsibilities of these positions are spread among the pro-
ject team.

By its very essence, a development project is an attempt
to create something new and therefore includes an element
of risk, an uncertain event that can affect the outcome. The
project risks must be identified and managed during all
stages. Since their range is vast, their sources are spread over
many disciplines, starting with pure engineering, through
psychology, and ending with a force majeure. As a result, the
field of risk management in projects should consider many
areas while ensuring the reduction of threats and increas-
ing opportunities to achieve the ultimate goal—the project's
success.

Scholars divide the risk management process into four
stages: identification, analysis, planning, and execution.
These activities are led by the two functions disciplines
above: project management and system engineering. The
risk assessment is based on the probability (of the existence
of events) and originates from evaluations coming from the

 *	 Yoram Reich
	 yoramr@tauex.tau.ac.il

1	 School of Mechanical Engineering and System Engineering
Research Initiative (TAU‑SERI), Tel Aviv University,
Tel Aviv, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-023-00417-3&domain=pdf
http://orcid.org/0000-0002-0922-8381

422	 Research in Engineering Design (2023) 34:421–442

1 3

engineering and administrative disciplines. Risk assessment
and presentation tools are many and varied; each project
team or organization chooses the appropriate one.

From personal observations, we realized that system engi-
neering and project management have different tools to carry
out their ongoing assignments, which contain, each in its
field, important information regarding the development pro-
ject. If we could manage to examine the information stored
in these tools and analyze it, we will be able to derive from
this fusion an evaluation tool that can be used as decision
support for the project team and the organization's leaders
regarding the project's risk level.

From the architecture structure of the product, which
includes the hardware (HW) and the software (SW), we
produce a network diagram on which we run mathematical
algorithms to find the influence of the central components
of the system. From the time management tool, we use the
availability of those components. These data are analyzed to
produce a quantitative risk index for each system component
according to its location in the system and its readiness.

2 � Literature review

This literature review addresses numerous issues necessary
for developing our proposed approach: the complexity of
products, key disciplines involved in the product develop-
ment process, product architecture, graph networks as a
model of systems, and tools used for risk management.

The complexity of products is increasing rapidly, mainly
due to business aspects, including customer requirements
and competition in the market (Bencherif and Mouss 2020;
Eppinger and Ulrich 2015; Kleinsmann et al. 2010; Yass-
ine and Braha 2003). This complexity is featured in many
forms, including functionality, the level of integration, meet-
ing environmental conditions and regulations, and shape
(Danilovic and Browning 2007; Genta et al. 2014; Pub-
lishing 2011). These constraints significantly increase the
chance of project failures and encourage the development
of new methodologies to effectively manage product devel-
opment with control and risk management (Conchir 2010).

A classic example is smartphone development, which
requires knowledge in engineering disciplines and beyond,
such as psychology (Kleinsmann et al. 2010). Another exam-
ple is the car, which is supposed to meet stringent safety
requirements, and customer desires while maintaining an
attractive price tag and reasonable costs and maintenance
efforts.

To meet product development goals, companies and
organizations operate according to an orderly development
methodology that includes structured development processes
depending on the nature of the product and the market (Pahl

and Beitz 1996; Eppinger and Ulrich 2015; Patil et al. 2017;
Yassine 2004).

Two main disciplines that are intertwined in product
development are system engineering and project manage-
ment (Sage and Rouse 2014). In complex product develop-
ment projects, each domain will be staffed with one person
or more, depending on the project's size and nature. In sim-
ple projects, one person may fulfill both roles in addition
to other tasks (Locatelli et al. 2017). The system engineer
represents the technical engineering aspect, while the pro-
ject manager is in charge of the administrative one (Conchir
2010; Haskins et al. 2006; Kapurch 2010; Locatelli et al.
2017). There is a partial overlap between them (task defini-
tion, risk management, interface with the customer, etc.),
and they must cooperate for the project's success (Kordova
et al. 2019). Even though the system engineer and the pro-
ject manager use different tools and methods to carry out
their mission, both know the structure and features of the
product they are developing collaboratively (Eppinger and
Ulrich 2015).

A system architecture is a conceptual description show-
ing the system's structure, its interaction with the outside
world, and the combination of its various components to
perform system tasks (Rechtin and Maier 2010). The presen-
tation of the architecture can be in many forms, both visual
and textual. Several disciplines, such as system engineer-
ing and enterprise engineering, use architecture description
languages (ADLs) to describe system models or concepts
(Dissaux et al. 2005). Hardware description languages
(HDLs) like VHDL and Verilog are tools used by engineers
to describe firmware systems at different levels of abstrac-
tion (LaMeres 2019).

Presenting a systems architecture visually is common
and includes a wide variety of forms. The best known is a
block diagram, in which a rectangle denotes each system
element or subsystem, and arrows between the rectangles
indicate the connections and flow directions between these
elements (Harman and Dabney 2001; Nilsson and Riedel
2011). Another set of tools developed from software engi-
neering and adopted by system engineering is the Unified
Modeling Language (UML) diagrams of the Object Man-
agement Group (OMG). These diagrams are divided into
groups according to a common characteristic. For example,
structure diagrams (containing class diagrams and compo-
nent diagrams) and behavioral diagrams (containing time
diagrams and situation diagrams) (Booch et al. 1999).

It is also worth noting two common graphical tools for
displaying the flow and structure of systems: the DFD (data
flow diagram) and the IDEF0 (ICAM DEFinition for Func-
tion Modeling, where ICAM is: Integrated Computer Aided
Manufacturing). The DFD graphically shows how the infor-
mation flows within the system and interfaces with infor-
mation sources outside the system. IDEF0, as part of the

423Research in Engineering Design (2023) 34:421–442	

1 3

IDEF family, is a modeling language that allows to analyze,
develop and integrate systems (Dickerson and Mavris 2016).

The design structure matrix (DSM) and N2 chart are
matrix representations of the relationship between system
elements. These representations allow the user to analyze
the flow and dependencies within the system and allow clus-
tering to optimize elements organization (S. D. Eppinger
and Browning 2012; Lano 1977). DSM can also be used to
describe processes as well as the interactions between people
(Eppinger and Salminen 2002). The DSM representation is
compact and intuitive (Engel and Reich 2015; Eppinger and
Browning 2012). On the other hand, the increase in matrix
dimensions when adding more elements is rapid as well as
the decrease in its readability (König et al. 2008).

In the field of software, there are several different archi-
tectures, from which the software architect or system engi-
neer will choose to suit the application (Bass et al. 2003).
The most common in generic applications installed on desk-
tops is the layered architecture. It is suitable for a software
structure that can be divided into groups of tasks, each of
which can be assigned to a certain level of abstraction. Other
notable software patterns are client–server; master–slave;
pipe–filter; and peer-to-peer (Richards 2015).

Another tool, graph network from discrete mathematics,
enables the mapping, presentation, and analysis of relation-
ships between entities (Marcus 2008). Over the past 60
years, graph theory has become one of the fastest-growing
mathematical areas (Gross and Yellen 2004) and is com-
monplace in many fields of research such as psychology,
engineering, zoology, and cyber (Aleta and Moreno 2019;
Newman 2010). Initially, attempts to describe these net-
works were based on probabilistic models designed to distin-
guish between families of networks and their characteristics.
These principles were formulated in the 1960s by Erdos and
Renyi and formed the basis of random graph theory (Erdos
and Rényi 1960; Rényi 1959). At the end of the twentieth
century, with the evolution of computers and the ability to
collect and process big data, it became clear that many real-
world systems were not operating according to the princi-
ples of random networks. Barabási and Albert (1999) laid
the foundations for complex systems, which more reliably
describe real-world systems and allow using an appropri-
ate mathematical infrastructure to describe the features that
characterize them.

The mathematical basis found in network science pro-
vides an additional layer for producing quantitative insights
(Diestel 2000). Applying algorithms to a network allows
information to be obtained on the entire network and dis-
crete nodes. Indices such as density, diameter, scale, etc.,
are spatial ones, while centrality indices give the actual
effect of a particular node in the network (Freeman 1977).
Betweenness centrality measures how much influence a node
has on the flow of the graph. Nodes that serve as bridges

between different parts of a graph are often found in this
method (Chen et al. 2018). The algorithm computes the
shortest unweighted paths between all pairs of nodes. Each
node receives a score based on the number of shortest paths
that pass through it. The higher the betweenness centrality
score for a node, the more frequently it is on the shortest
path between other nodes (Brandes 2001). Degree centrality
is a simple centrality measure that summarizes the number
of edges entering or leaving (or both) a certain node. The
higher the degree centrality index of a node, the more con-
nected that node is considered (Newman 2010).

The essence of a directed network graph is to describe
the flow between two nodes through the edges. A non-
directed graph contains edges without arrows, which indi-
cate an interface/connection between the connected nodes
(Borgatti 2005; Hatala and George Lutta 2009; Wasserman
et al. 1994). Scholars distinguish several types of interac-
tions between two system elements: spatial interaction,
such as mechanical contact between two parts of a system;
Information flow, such as message transmission between a
transmitter and receiver; material flow, such as fluid transfer
between two components; energy transfer, such as between a
voltage source and an electrical load (Engel and Reich 2015;
Eppinger and Browning 2012; Pimmler and Eppinger 1994).

One of the disciplines that have taken advantage of com-
plex network theory is product development or systems
engineering. As one of the key issues in this field, product
development is modeled through complex networks produc-
ing insights from parts of the process and the structure of the
entire process (Braha 2016). Attempts to analyze networks
of tasks in the product development process, both statisti-
cally and from other quantitative perspectives, showed simi-
lar patterns and characteristics to complex networks from
other domains. Features like small-world, centrality metrics,
robustness, performance, and flow improvement parameters
were demonstrated in (Braha and Bar-Yam 2004b). The
mirroring effect, which examines the relationship between
product architecture and the structure of the organization, is
largely also reflected through product development networks
that include the organization's people (Braha and Bar-Yam
2004a). These results were reaffirmed in subsequent stud-
ies, including recently on product family design (Park and
Kremer 2019).

Such studies demonstrate the pervasiveness of networks
for addressing product development issues. More specifi-
cally, the combination of graph networks and reliability
considerations can offer computational tools to product
developers. (Cancela and Petingi 2004)offer an algorithm for
calculating network reliability, assuming that the failure will
be at the edges while the nodes do not fail (k-terminal reli-
ability or classical reliability model). Additional measures
for network reliability are the two-terminal and g-terminal
approaches (Chaturvedi 2016). Given a network mapping

424	 Research in Engineering Design (2023) 34:421–442

1 3

of a product, graphical metrics can be used to calculate the
importance of the system element in addition to its reliabil-
ity (Cadini et al. 2009). Kurtoglu and Tumer (2008) offer a
framework for assessing the risk of failure in systems and
how it will spread within the system. It allows assessing the
robustness of a given system and its behavior during a failure
during the early stages of the system design.

Another engineering area, which is an extension of net-
work theory, is complex networks (also known as multi-
dimensional, multilayer, or multiplex networks) (Kivelä
et al. 2014). This field of science allows the inclusion of
different domains in a single-layer network to generate
insights in multiple disciplines. Similar ideas can be found
in multi-domain matrices (MDM) (König et al. 2008; Mau-
rer and Lindemann 2008) or in the abstract world of sys-
tems description, such as the PSI (Reich and Subrahmanian
2020). A comprehensive review of system complexity can be
found in (Summers and Shah 2010), during which discrimi-
nation was made between the problem, the process, and the
product. In addition, a benchmark is proposed for evaluating
that complexity level in three aspects: size, coupling, and
solution ability (solvability).

On the administrative side of the product development
project, two essential tools that are frequently used by the
project manager can be noted: The Gantt and PERT chars
(Conchir 2010). A PERT (Program Evaluation Review Tech-
nique) chart is a way of creating and displaying a project by
showing tasks as boxes and the dependencies between tasks
as lines between these boxes (Kerzner 2017; Lester 2014).
A Gantt chart is a commonly used graphical depiction of a
project schedule. It is a type of bar chart showing the start
and finish dates of a project's elements, such as resources,
planning, and dependencies (Kerzner 2017).

As part of their duties, the project managers also define
and manage project risks (with the support of the system
engineer). The term “risk” has multiple definitions, with no
universally accepted one (Dorofee et al. 1996). We refer to
project risk as a plausible event that is uncertain and may
occur during the project life and affect its outcome (Hillson
2003; Kerzner 2017). According to (Hillson 2014), there
are four types of risks: event risk, variability risk, ambiguity
risk, and emergent risk. All of them should be monitored and
managed. Project risk management is all the actions that are
taken to ensure the project's outcome by reducing the threats
and increasing the opportunities, which is divided into four
stages: risk identification, risk analysis, risk response, and
monitoring (Conchir 2010). More detailed stages were
defined by the UK Association for Project Management
which contains nine different phases for managing project
risks (Simon 1997). Although risk management is something
that must be done, not everyone performs it at all or cor-
rectly and effectively (Dorofee et al. 1996; Raz et al. 2002).

Practitioners are familiar with a phenomenon in prod-
uct development processes in which development tasks are
repeated over and over again. This phenomenon is cross-
industry and is known as design churn – a lack of conver-
gence in development activities during product development
(Yassine et al. 2003). A project that features design churn
can dramatically increase the risk of completion on time.
Network or matrix representations (e.g., The DSM) of prod-
ucts or processes have been used to model design churn or
development time, rework or change propagation (Clarkson
et al. 2004; Sered and Reich 2003; Yassine et al. 2003), but
they require extensive information. Further, no attempt has
been made to combine product and process models (Brown-
ing et al. 2006).

Researchers make use of the visual and quantitative capa-
bilities of graph networks in risk management. (Van den
Brink et al. 2020)mapped Cobalt's global supply chain and
demonstrated the risk hubs by finding the influential nodes
in the network. At the organization level, mapping tools can
be used to optimize product design processes to streamline
the risk management process (Ahmadi and Wang 1999).

The tools that project managers use for mapping, quan-
tifying, and managing risk in a project are diverse: brain-
storming, interviews, checklist, root-cause analysis, Monte
Carlo analysis, failure mode and effects analysis (FMEA),
and risk matrices (Conchir 2010; Rausand and Hoyland
2003). The latter is a common tool that allows the risks to
be presented across the plane and examined in the face of
the project and other risks (Milosevic 2003). Aggregating
risks and representing them with a single score is not trivial
because the risk components are different: some are quan-
titative, and some are qualitative, in addition to their dif-
ferent impact on decision-making. At the same time, the
decision-makers in the organization want to have one index
that incorporates all the risk components (Li et al. 2015).
Various approaches exist to risk aggregation, from the most
conservative way of a simple summary to a workable frame-
work that includes the use of mathematical and statistical
tools (Bao et al. 2021).

The project risk management tools mentioned above, rely
on past lessons or experience existing in the organization
and deal with all possible risks. The methodology presented
in this study suggests a tool for quantitative risk manage-
ment, which weighs the role of the system element and its
availability in the timeline of the project.

3 � Product layer representation

3.1 � Block diagram anatomy

We chose the block diagram as the primary tool for vis-
ual system architecture description from the methods

425Research in Engineering Design (2023) 34:421–442	

1 3

described above due to its popularity within the engineer-
ing community. In the most basic way, a block diagram
consists of two main elements: a rectangle indicating a
component or system function, and an arrow, indicating
a relationship between two or more rectangles. This type
of block diagram is common in describing systems: the
rectangles indicate the function or system element, and the
arrows describe the relationship and direction of flow (e.g.,
a functional diagram (Pahl and Beitz 1996)).

In multidisciplinary systems with more than one
domain, we can add a layer of notation. Harnessing the
principles from control theory, the distinction between the
different relationships between system elements can be
based on the nature of the relationship (Harman and Dab-
ney 2001). For example, electrical domain versus physi-
cal domain (actuators/transducers); analog signal versus
digital signal; high power signal versus low power signal;
data line versus data bus, and so on. For example, Fig. 1
describes an airflow control system that contains system
elements from different disciplines (sensors, actuators,
processing units, etc.).

The “soft” elements of the system usually are not part
of the block diagram and may have a separate description.
Systems that contain programmable devices such as Field
Programmable Gate Array (FPGA) with firmware (FW)
code; microcontroller unit (MCU) with embedded code,
and Central Processing Unit (CPU) with software (SW),
should also be a part of the product description. For exam-
ple, the SW architecture of the LabVIEW application,
which is a systems engineering software for applications
requiring testing, measurement, and control with rapid
access to hardware and data insights, can be described as
in Fig. 2.

The same layer structure can be found in Matlab/Sim-
ulink SW architecture (according to www.​mathw​orks.​com).
The SW architecture can be adapted according to the subject
application and the consideration of the system engineer.
Combining both the block diagram, which represents the
HW or the physical world, with the SW one is described
in Fig. 3.

The relationships between different SW layers will be
described according to the flow between them and other
layers in other programming components in the system,

Fig. 1   Block diagram of airflow control system with analog/digital
signal type and domain conversion flow indication

Application Layer

Instrument Layer

Driver Layer

Hardware/Physical Layer

Fig. 2   The LabVIEW application system architecture (www.​ni.​com)

Fig. 3   The system from Fig. 1b with SW layers included

1 1 1

2

3

2

Hardware/Physical Layer

SW Layers

Fig. 4   The flow between SW layer inter and intra-programable com-
ponents

http://www.mathworks.com
http://www.ni.com

426	 Research in Engineering Design (2023) 34:421–442

1 3

as shown in Fig. 4. The connections between the software
layers are determined according to the software architec-
ture and the interfaces between the hardware and the soft-
ware. If we adopt the same connection principles between
the different layers of the seven-layer model (Buchanan
2004), we can see that there is an interaction between adja-
cent layers and also between parallel layers between differ-
ent network components. For example, the operating sys-
tem layer is located between the application layer and the
driver layer. It communicates with both and is therefore
connected to them. In most cases, the application layer
does not communicate directly with the driver layer. If so,
they should be connected. If there are several computers
in the system connected, there may also be connections
between parallel layers (the application layer, the operat-
ing system layer, etc.). Note that in different systems, there
may be other connections, which will be defined by the
system engineer or the software architect.

Once we have defined the different representation and
interconnection types for both hardware and software sys-
tems, we can use this notation as a basis for network graph
representation. This representation will enable us to refer
to all the system components at the same representation
platform with all its associated benefits (see next section).

3.2 � Harnessing graph networks to product
representation

As mentioned above, a graph network is a tool whose roots
are rooted in discrete mathematics, and in the last decades,
its use has expanded to other fields. The graph network con-
sists of two main elements: nodes and edges. In one abstract
form, the nodes represent entities, and the edges represent
the connections or interactions between nodes; these roles
could also be reversed. Graph networks can be presented via
an adjacency matrix.

Figure 5 describes the representation of a system archi-
tecture using an adjacency matrix. The physical layer
(HW) described in Fig. 5a is augmented with the SW layer

(Fig. 5b). Based on the above principles, we can formulate
the adjacency matrix (Fig. 5c). A network graph derived
from the adjacency matrix is depicted in Fig. 6a.

This resulting graph network describes the interconnec-
tions between the hardware and software components of the
system. The nodes represent the components of the system,
and the edges represent the connections and flow directions
between them. The edges are unweighted, indicating an
equal significant connection between two system elements.
Since element C contains the software layers, they are linked
to this node only.

Just from a visual impression in Fig. 6a, one can imme-
diately identify the more influential nodes and those that are
at the graph boundaries, and their contribution is marginal.
If the graph contains separated networks as a result of dis-
continuity or error in the mapping, the viewer will be able to
identify this immediately. In the quantitative aspect, we can
take advantage of network algorithms to generate additional
insights. Applying the degree centrality and betweenness
centrality separately and independently on the original net-
work yields the results shown in Fig. 6b, c, respectively. The
outcomes of these centrality algorithms are numbers repre-
senting the weight of each node. The weight of the nodes is
translated to the size of the radius of the node in the network
graph to present this measure visually. The larger the node's
radius, the larger is its centrality index.

Centrality measurements can demonstrate the influence
that a node has according to various parameters. This form
of expression allows the observer to graphically map the
relative weight of a node in the network. The degree of cen-
trality ranks the nodes according to the amount of connectiv-
ity in the network. In Fig. 6b, node C is the most linked node
in the network. The betweenness centrality index indicates
the weight of each node in terms of network or system flow.
The higher the node's weight, the more significant the bridge
flow is. Figure 6c indicates node C as the most significant
node in system flow, while nodes like D, E, and G are less
significant.

(a) (c)

A B C D E

F G

H

A B C D E F G H 1 2 3
A 1
B 1 1
C 1 1 1 1
D 1 1
E
F 1
G
H 1 1
1 1 1
2 1 1
3 1

(b)

Fig. 5   The transformation from product block diagram into adjacency matrix: a the HW block diagram; b adding SW elements to the block dia-
gram; c the adjacency matrix, which reflects the system element connections

427Research in Engineering Design (2023) 34:421–442	

1 3

3.3 � Exploiting graph networks centrality measures
for evaluating product elements influence

Representing systems using a network diagram is the first
step in examining the effect of system elements on the
entire system fabric. The system elements, represented by
nodes, can be evaluated by applying network algorithms of
centrality such as degree and betweenness. As mentioned
above, the degree centrality index indicates the number of
edges entering (in-degree) or outgoing (out-degree), or both
(degree) to a given node. A node with a larger degree of
centrality index has a greater number of connections. In our
case, the degree centrality index indicates the number of
interfaces that characterize a given node. The betweenness
centrality index indicates the magnitude of the effect on the
flow that a given node has in the graph. A larger between-
ness centrality index for a node acts as a bridge connecting
different parts of a graph. This index, which is applied to a
system architecture represented by a network graph, will
indicate the importance of the system element in the media-
tion of system parts. In other words, the extent to which a
given node affects the system flow can be represented by the
flow of information, energy, or matter.

In systems engineering processes, such as in design pro-
cesses (according to the V-model (Blanchard and Blyler
2016)), these metrics can help the system engineer quan-
titatively assess the impact of system components on sys-
tem aspects such as connectivity or impact level in system
flow and compare against requirements or architecture. In
the integration processes, the system engineer will have an
additional point of view to estimate the design and opti-
mization of the verification, validation, and testing (VVT) ​​
processes. For example, consider Fig. 7 depicting a system,
represented by a network graph, that is characterized by
two clusters connected by node B. The graph illustrating

the degree centrality index is shown in Fig. 8, and the graph
representing the betweenness centrality index is shown in
Fig. 9.

Without going into the numbering and from just observ-
ing the graph in Fig. 8, we can see that nodes I and B are the
most linked at the interface level, while nodes like C and
D are the less linked. The same goes for Fig. 9: node B is
the most influential node in terms of system flow or bridge
between the two clusters.

Fig. 6   The graph networks describe the system architecture in Fig. 5a; after applying the degree centrality algorithm (b); after applying the
betweenness centrality algorithm (c)

Fig. 7   System architecture representation via a network graph

Fig. 8   The degree centrality of the network graph shown in Fig. 7

428	 Research in Engineering Design (2023) 34:421–442

1 3

3.4 � Project elements deliverable

The product development process is monitored and con-
trolled by the project manager, who is responsible for man-
aging the project team's tasks. To do this, the project man-
ager uses task management tools such as Gantt or PERT
charts. These charts contain significant information about
the tasks themselves, who is in charge of each task, how

long it takes to complete each task, and the dependencies
between them. In addition, when using these tools, one
can derive the supply time of the various system elements.
Figure 10 depicts a Gantt chart for the system development
shown in Fig. 5. The tasks are populated on the vertical
axis, and the timeline is marked on the horizontal axis.
The chart describes the different types of tasks, the work
packages required to produce the various system elements,

Fig. 9   The betweenness central-
ity of the network graph shown
in Fig. 7

Fig. 10   A Gantt chart describ-
ing the project timeline (incl.
deliverables) of the system
shown in Fig. 5

0 1 2 3 4 5 6 7

WP0
Task 0.1
Task 0.2
Task 0.3
Task 0.4

WP1
Task 1.1
Task 1.2
Task 1.3

WP2
Task 2.1
Task 2.2
Task 2.3

WP3
Task 3.1
Task 3.2

WP4
Task 4.1
Task 4.2
Task 4.3

WP5
Task 5.1
Task 5.2
Task 5.3
Task 5.4
Task 5.5
Task 5.6
Task 5.7

WP6
Task 6.1
Task 6.2
Task 6.3
Task 6.4

3

1

D

A

C

E

B

Workpackage

Task

Deliverable

429Research in Engineering Design (2023) 34:421–442	

1 3

and the expected delivery times of the elements. The time
units that appear on the horizontal axis are generic and can
be adjusted to any desired time scale (months, quarters,
years, etc.).

To link the system components to the project diagram,
we have specified the deliverable of each component in a
circle. For example, the system component, E, will be ready
at time 6.5. Please note that for the sake of convenience and
simplicity of the diagram, not all the deliverable times of all
the system components have been specified.

To distill the information from the Gantt chart and obtain
the system components' availability, we can present the chart
in Fig. 11.

3.5 � Considering both product elements
and product delivery time

To combine the information from the network mapping of
the system in Fig. 6 and the schedules for the supply of its
parts in Fig. 11, we plot them in Fig. 12 with the centrality
index on the vertical axis and the timeline (or elapsed time)
on the horizontal axis.

The charts in Fig. 12 depict different risk levels in the
project. In chart (a), the elements of the system are described
using two coordinates: one, indicates the component avail-
ability time in the project timeline, and the other, its weight
in the degree centrality index. As said before, the degree
centrality index describes the number of interfaces of a net-
work node. In this case, the larger the vertical coordinate,

the greater the number of its connections within the net-
work. This means that as the system element is positioned
to the right and up across the plane, it has a greater number
of interfaces to other system components and will also be
provided at later stages of the project. This poses at least a
risk that if there is a problem with such and we will need to
modify it, it can potentially impact numerous other compo-
nents that were already delivered.

In chart (b), the vertical coordinate indicates the between-
ness centrality index. This measure reflects the extent of
the specific component as a bridge to system flows. In
other words, as long as a system component is placed on
a betweenness centrality–time plane to the right and up, it
means that a significant component for flow (energy, infor-
mation, matter) will be provided at later stages. This poses
at least a risk that integration activities that test flows across
the system will be postponed to late development stages.
For the project management team, any one of these loca-
tions (whether on degree centrality–time or betweenness
centrality planes) reflects risks that must be identified and
managed early.

Note that the chart in Fig. 12 shows two independent indi-
ces: the delivery time of a system component and a centrality
index. Delivery time is derived from the level of readiness of
the subject component at the project level, while the central-
ity index is derived from the design architecture itself and
the location and role of the component in the network. A
component with high centrality metrics may be provided in
the initial stages of the project due to reuse or procurement

Fig. 11   System elements avail-
ability on the project timeline

0 1 2 3 4 5 6 7

312 DAH

F

C EBG

(a) (b)

A

B

C

E

D

G

1

F

H

2

3

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

ytilartneC
eergeD

Project Timeline

A

B

C

E
D

G

1

F H

2

30

5

10

15

20

25

0 1 2 3 4 5 6 7 8

ytilartneCssennee
wteB

Project Timeline

Fig. 12   Degree centrality vs. project timeline (a) and betweenness centrality vs. project timeline (b)

430	 Research in Engineering Design (2023) 34:421–442

1 3

from an external source. Pearson coefficients support the
independence assertion: 0.35 for degree centrality vs. pro-
ject timeline and 0.05 for betweenness centrality vs. project
timeline.

To work with one combined index, we can calculate
the areas that delimit each of the points and sum them
up. The area marks a combined contribution of the two
characteristics of a component. It is common in risk man-
agement tools such as FMEA to multiply characteristics
to obtain their combined contribution. This way, we can
get a normalized index for each of the risks. The first step
is to normalize both centrality and timeline scales (Norm.
BC/DC/Time) for compact visualization over a 1X1 chart
(see Fig. 13). The second step is to calculate the areas
under each coordinate (Norm. BC/DC* Norm. Time), as
shown for element 2 in Fig. 13.

The last step is to sum for each component the area
received from the degree centrality–time chart and the

Fig. 13   Normalized project
timeline, degree, and between-
ness centrality measures on 1X1
chart

A

B

C

E
D

1

2

3

A

B

C

E

D12

3

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Degree Centrality Betweenness Centrality

Betweenness
Centrality Area

Degree
Centrality Area

Table 1   The centrality measures and project deliverable data of the system network elements

Label Betweenness
centrality

Degree
centrality

Time Norn. BC Norn. DC Norn. time Norn.
BC*Norn.
Time

Norn.
DC*Norn.
Time

Combined risk

A 0 1 3.5 0.00 0.17 0.5 0.00 0.08 0.08
B 11.5 4 3.2 0.52 0.67 0.5 0.24 0.30 0.54
C 22 6 5.2 1.00 1.00 0.7 0.74 0.74 1.47
E 0 3 6.5 0.00 0.50 0.9 0.00 0.46 0.46
D 1.5 4 7.0 0.07 0.67 1.0 0.07 0.67 0.73
G 0 3 1.6 0.00 0.50 0.2 0.00 0.11 0.11
1 16 4 2.6 0.73 0.67 0.4 0.27 0.25 0.51
F 0 1 0.1 0.00 0.17 0.0 0.00 0.00 0.00
H 0 2 0.5 0.00 0.33 0.1 0.00 0.03 0.03
2 10 4 2.1 0.45 0.67 0.3 0.14 0.20 0.33
3 0 2 6.0 0.00 0.33 0.9 0.00 0.29 0.29

Table 2   The system elements
sorted by the DB–T factor

Label DB–T factor

C 1.47 High risk
D 0.73
B 0.54
1 0.51
E 0.46
2 0.33
3 0.29
G 0.11
A 0.08
H 0.03
F 0.00 Low risk

431Research in Engineering Design (2023) 34:421–442	

1 3

betweenness centrality–time chart. The system compo-
nent that demonstrates the highest value holds the highest
combined risk, see Table 1. The combined risk can be
referred to as degree betweenness–time (or DB–T) fac-
tor, and the sorted descending list (Table 2) is easy to
monitor and control by the project manager and the other
team members.

To visually present the weighted result of the risk
index to the stakeholders, the same way of presenting the
centrality indices can be used (see Fig. 14), only this time,
the node size reflects the DB–T risk level. In this way,
the viewer can immediately visualize the system element
with the highest risk.

4 � Implementation

To generate a network diagram of the product, accord-
ing to the principles described above, we suggest the pro-
cess in Fig. 15. The system engineer will provide infor-
mation related to the product structure, its parts, and the

connections between them. In addition, they deliver a
block diagram or a similar document. We can convert the
product's design to a network diagram, which consists of
nodes representing the product's components and edges
that show the connections between them according to the
principles discussed above. Once the network mapping is
obtained, it is possible to calculate degree and between-
ness centralities, be impressed by the shape of the net-
work, and produce qualitative insights. From the project
manager, we can obtain data regarding the planned deliv-
ery dates of the system components. This will usually be
achieved using Gantt and PERT charts, from which we can
deduce when the system elements will be provided.

The two types of information, structural and logistical,
can be summarized in a table and presented, as exempli-
fied above, on a normalized 1X1 chart. According to the
main criterion (DB–T factor), the risk levels of the various
components will be compiled in one list that will serve as
part of the set of different risks that have to be managed in
the project.

The stages described in Fig. 15 can be implemented in
a software environment. Since there is no such integrated
software platform, the steps are executed manually. Soft-
ware such as MS-Project (www.​micro​soft.​com), in the field
of project management, can be used to extract the project’s
Gantt chart. Software such as Gephi (www.​gephi.​org) can be
used to build a network graph and calculate graph metrics.

Depending on the level of complexity of the system and
depending on the level of abstraction discussed above, it is
possible to choose whether to perform the analysis on the
system as a whole or parts of it. Since product develop-
ment is a dynamic process in which project and architectural
aspects change, it is necessary to repeat the process each
time to reflect the exact amount of risk.

Sensitivity analyses and “what-if?” scenarios, also char-
acteristic of project execution, can use this methodology sev-
eral times during the project lifetime to gain further insights.
Assuming that the product architecture diagram and project
schedules exist as part of the project required documents, the
resources needed to perform the risk calculation according
to this methodology are minimal, allowing to repeat it as the
development project unfolds.

Fig. 14   The DB–T factor applied to the network graph shown in
Fig. 7

Fig. 15   Implementation process
description

System
Engineer
Interview

Product
Block

Diagram

Product
Graph

Network

Applying
Degree

Centrality

Applying
Betweenness

Centrality

System
Deliverable vs.

Timeline

DB-T Factor

Centrality Measures
vs. Project

Deliverables
Map

Project
Manager
Interview

Gantt/PERT
Chart

http://www.microsoft.com
http://www.gephi.org

432	 Research in Engineering Design (2023) 34:421–442

1 3

5 � Demonstration

This section will analyze two product architectures from dif-
ferent fields and at different levels of abstraction, represent
them using network graphs, and derive risk insights from
them according to the implementation shown in Sect. 4.

The first example shows an analysis of a driver for a med-
ical motor which aims to demonstrate a relatively simple
system, but still, one that includes several multidisciplinary
elements connected to perform a common task. This system
was designed by one of the authors, who accompanied the
development of the project at all stages of its life cycle. The
system's simplicity is intended to allow an understanding
of the system components and their importance in fulfilling
its objective.

The second example shows a more complex system. The
objective of this use case is to demonstrate the analysis of a
system of systems and to present important insights to the
project manager and the system engineer while using the
suggested framework.

5.1 � Medical motor driver

Drivers for motors in medical applications must comply with
some of the strictest standards since their failure may cause
severe damage both to human life and equipment. Safety,
reliability, and redundancy requirements are an integrated
part of the specification documents defining this kind of
instrument. The system engineer should consider all those
requirements when determining the driver architecture
on top of the electrical specifications related to the driver
functionality.

A medical motor driver architecture used in an opera-
tional surgery robot is described in Fig. 16. The driver con-
tains a power stage that interfaces with the motor and is con-
trolled by a microcontroller and FPGA devices. The input
command circuit determines the setpoint. The voltage and
current sensor, as well as the temp. circuits are supporting
mechanisms to monitor the proper operation of the system.
The primary and secondary FPGAs work in parallel and
execute the same tasks while monitoring each other. This
redundant section of the system is part of the safety speci-
fications. If there is a fault in one FPGA, the second one is
responsible for alerting the user about it and shutting down
the motor using a safe predefined procedure.

Input
Command

Circuit

Micro-Controller

Primary FPGA

Secondary FPGA

Temp.
Sensors

Temp.
Controller Fan Driver

Power Stage

Current
Sensors

Voltage
Sensors

Fan

Analog In

Digital In

Clock
Circuitry

Motor Out

Motor Tacho

Tacho

Control

Serial Communicat ion

Clock

Control

DC

AC

High Speed Signal

Analog Signal

System Terminals

Physical Domain Conversion

Power
CircuitryAC

To system
elements

Fig. 16   Medical motor driver product architecture

433Research in Engineering Design (2023) 34:421–442	

1 3

Please note that the output arrows from the power man-
agement block are connected to the relevant system ele-
ments, and for diagram clarity, we leave them unconnected.

The software aspect can be represented as described in
Fig. 17. Modeling the above block diagram of the motor
driver using a graph network and applying the degree cen-
trality and betweenness centrality is shown in Figs. 18 and
19, respectively.

This symmetrical architecture is reflected in the above
graph networks. One insight that can be driven from these
graphs is the influence of the nodes reflected from the
different algorithms. The temp. controller demonstrates

minor influence in the interface connections (degree cen-
trality), while in the system flow aspect, it has a great
influence (betweenness centrality). Table 3 summarizes
the system’s centrality measures along with the system
components' deliverable data. The 1X1 chart and the
DB–T factor list are presented in Fig. 20. The aggregate
risk obtained from both degree and betweenness centrali-
ties indicates that the microcontroller features the higher
risk for the project. The temp. controller is less risky com-
pared to the FPGA components. Key components in the
system, such as controllers and FPGAs, are indeed at the
top of the risk table. In case these components require new

Fig. 17   SW components of the medical motor driver product

Fig. 18   Degree centrality of the system described in Fig. 16 Fig. 19   Betweenness centrality of the system in Fig. 16

434	 Research in Engineering Design (2023) 34:421–442

1 3

design rounds, the impact on system integration will be
significant. A graph network visually indicating the risk
score is presented in Fig. 21.

5.2 � Smart intersection system

Smart intersections, part of smart city infrastructure, ena-
ble optimal traffic management based on information from

local sensors and spatial data sources. The ultimate objective
of the system is to maintain the safety of road users while
reducing the time required to travel from one location to the
other. Many companies and enterprises (such as Swarco and
Yunex Traffic) are harnessing the power of artificial intel-
ligence (AI), fast communication, and high-performance
power processing to smart cities and offering a complete
solution for controlling and managing diverse and dense city

Table 3   Summary table for the system in Fig. 16

Label Between-
ness
centrality

Degree centrality Time Norm. BC Norm. DC Norm. Time Norm.
BC*Norm.
Time

Norm.
DC*Norm.
Time

Combined risk

Power circuitry 0.00 12.00 4.30 0.00 0.75 0.48 0.00 0.36 0.36
Input command

circuit
0.00 7.00 2.12 0.00 0.44 0.24 0.00 0.10 0.10

Microcontroller 103.50 11.00 8.90 1.00 0.69 1.00 1.00 0.69 1.69
Clock circuitry 0.00 3.00 4.06 0.00 0.19 0.46 0.00 0.09 0.09
Temp. Sensors 0.00 3.00 4.50 0.00 0.19 0.51 0.00 0.09 0.09
Primary FPGA 48.50 16.00 6.90 0.47 1.00 0.78 0.36 0.78 1.14
Secondary FPGA 48.50 16.00 6.90 0.47 1.00 0.78 0.36 0.78 1.14
Temp. Controller 93.00 7.00 8.00 0.90 0.44 0.26 0.23 0.11 0.35
Fan driver 28.00 3.00 2.70 0.27 0.19 0.30 0.08 0.06 0.14
Power stage 0.00 7.00 5.60 0.00 0.44 0.63 0.00 0.28 0.28
Current sensors 0.00 6.00 1.20 0.00 0.38 0.13 0.00 0.05 0.05
Voltage sensors 0.00 6.00 1.60 0.00 0.38 0.18 0.00 0.07 0.07
Tachometer 25.00 3.00 0.84 0.24 0.19 0.09 0.02 0.02 0.04
Embedded code 12.00 6.00 7.50 0.12 0.38 0.84 0.10 0.32 0.41
Primary FPGA FW 3.75 6.00 4.14 0.04 0.38 0.46 0.02 0.17 0.19
Secondary FPGA

FW
3.75 6.00 4.10 0.04 0.38 0.46 0.02 0.17 0.19

Fan 26.00 2.00 2.10 0.25 0.13 0.24 0.06 0.03 0.09

(a) (b)

Power Circuitry

Input Command Circuit

Micro-Controller

Clock CircuitryTemp. Sensors

Primary FPGASecondary FPGA

Temp. Controller
Fan Driver

Power Stage

Current SensorsVoltage Sensors
Tachometer

Embedded Code

Primary FPGA FWSecondary FPGA FW

Fan
Power CircuitryInput Command

Circuit

Micro-Controller

Clock CircuitryTemp. Sensors

Primary FPGA

Secondary FPGA

Temp. Controller

Fan Driver

Power StageCurrent SensorsVoltage SensorsTachometer

Embedded Code

Primary FPGA FWSecondary FPGA FW
Fan

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Degree Centrality Betweenness Centrality

Label DB-T Factor
Micro-Controller 1.69
Primary FPGA 1.14
Secondary FPGA 1.14
Embedded Code 0.41
Power Circuitry 0.36
Temp. Controller 0.35
Power Stage 0.28
Primary FPGA FW 0.19
Secondary FPGA FW 0.19
Fan Driver 0.14
Input Command Circuit 0.10
Temp. Sensors 0.09
Fan 0.09
Clock Circuitry 0.09
Voltage Sensors 0.07
Current Sensors 0.05
Tachometer 0.04

Fig. 20   Medical motor driver 1X1 plane (a), and DB–T factor list (b)

435Research in Engineering Design (2023) 34:421–442	

1 3

traffic. These systems are complex and can be referred to
as systems of systems. A typical smart intersection system
component is depicted in Fig. 22.

At the local road intersection and in addition to the famil-
iar traffic light system, there is a layer of sensors including a
proximity sensor, Cameras (optical sensors), and RADAR-
based sensors, whose fusion gives the current traffic situ-
ation. A smart sign which presents relevant and updated
information to the passing drivers is also a part of the smart
intersection system and is used as a feedback channel from
the control center.

The local controller, which manages the system at the
intersection itself, is associated with a regional controller.
Regional controllers run several intersections. The district
controller, which contains an operations center, controls the
district traffic. The system can be expanded to include higher
levels of control hierarchies up to the national level.

Figure 23 describes a high-level block diagram of the
smart infrastructure system with six intersections and hier-
archies from the local intersection to the district level. The
level of abstraction chosen is at the level of subsystems,
which allows describing the system architecture without too
much detail or being too abstract. The block diagram also
contains a hierarchical description. The lower level is the
intersection itself which contains the terminal components;
the intermediate hierarchical level is the regional control
which is a control hub, and at the higher level, there is the
district control center. This architecture is modular and can
be adapted to any size of intersections needed.

The software dimension presented in Fig. 24 includes
different layers depending on the role of the programming
device in the system and its position in the hierarchy. For
example, programming components that interface with
the system's end components include lower software lay-
ers, while computing parts in a higher hierarchy include

working with human operators with higher software lay-
ers. The system architecture of a smart intersection using a
network graph, which includes the hardware and software
dimensions, is shown in Fig. 25.

A qualitative impression from the above graph network
indicates that the terminal nodes include many interfaces,
while in the center of the network, there are a limited
number of central nodes that connect the terminal nodes.
Applying the degree centrality and betweenness centrality
is shown in Figs. 26 and 27, respectively.

The differences between the indices can be seen in the
two illustrations above. Each controller is connected to
many elements at the local level and therefore has a high
degree centrality rank. In terms of system flow, which here
is reduced to information flow only, the regional control-
lers are the ones that serve as bridges for the transfer of
communication between the elements.

The summary table of the system described in Fig. 25,
which contains the centrality measures along with the sys-
tem components' deliverable data, is described in Table 4.
The 1X1 chart and the DB–T factor list appear in Fig. 28.
It can be seen from the DB–T index that two of the three
components of the system that are at high risk are software
elements. The component that is considered to have the
highest risk is the local controller.

While in the previous example, the system was rela-
tively simple, and one could guess the level of importance
of the data nodes at the system level. In this complex case,
the importance of the nodes at the system level is difficult
to guess, and the network algorithms must be used. The
results show that local controllers have less effect on the
system flow level (low betweenness centrality index) but
have many interfaces (high degree centrality index). The
aggregation of these indices with the delivery times of the
system components will make it possible to determine the
level of risk posed to the project during the integration
stages.

6 � Discussion

Combining the centrality indices with project manage-
ment data can produce valuable insights into understand-
ing risks arising from the components of the technologi-
cal product itself. Common risk management methods for
system elements do not quantitatively discern each of the
roles and influences. The above analysis makes it possible
to rate the level of risk of each system element, taking into
account both the level of its system influence and the date
of its delivery or readiness on the project timeline.

From the medical motor driver system, we can learn
that the microcontroller has the highest risk, according to
the indices presented, followed by the FPGAs. Regarding

Fig. 21   The DB–T factor applied to the system described in Fig. 16

436	 Research in Engineering Design (2023) 34:421–442

1 3

the system architecture only, the temp. controller has a
high betweenness centrality index and a medium degree
centrality index. In weighing only the centrality indices,
this component gains a higher place than the index that
includes the time dimension. That is, considering the
level of system importance only, we will get a different
risk index, which may change if we augment the dimen-
sion of its availability in the virtual timeline. Given the
above DB–T index, the project manager will be able to
more optimally manage the risks arising from the system
components by giving most of the attention to this criti-
cal component.

In networks that reflect complex systems or architecture
of systems of systems, such as the smart intersection—find-
ing the significant components will be done by algorithmics

and less by intuition. In this case, the most significant risk
components are the local processor, both at the hardware
level and the software level. The ability to map all compo-
nents of the system, both the hardware and the software, on
the same scale and to execute metrics make it possible to
reach integrative insights and not use superposition methods
for unified insights. Applying the suggested methodology
to this system makes it possible to rate the level of risk of
each system component, even in the tangle of nodes and
edges. In this case, also, the risky components due to the
proposed approach are different from those employing only
the centrality information and both may be different from
those identified by common risk management approaches.
Systems requiring a low level of risk would benefit from any
new perspective on risk that is available.

Fig. 22   Smart intersection
system local and regional main
components

Fig. 23   Smart intersection high-
level block diagram

Intersection #n+5

Intersection #n+4

Regional
Controller #m

Electronic Sign
#n

RADAR #n

Local Controller
#n

Intersection #n

District Control
Center

Intersection #n+3
Regional

Controller #m+1

Video Camera
#n1..4X4

Proximity
Sensor #n1..4X4

Traffic Light
#n1..4X4

Intersection #n+1

Intersection #n+2

437Research in Engineering Design (2023) 34:421–442	

1 3

The model of the system as a network diagram reflects
the hardware block diagram and software architecture. Any
change in one of them (for example, in connectivity or ele-
ments) will be expressed in the network diagram and hence
also on the results. This indicates the sensitivity of the model

to reflect different modalities. Moreover, the project manage-
ment team can update the model and derive results from it
at the various stages of the project and thus further pinpoint
the risk rating in the DB–T index.

Fig. 24   Software dimension architecture of the smart intersection system described in Fig. 23

Fig. 25   Network graph of
the smart intersection system
described in Figs. 23 and 24

438	 Research in Engineering Design (2023) 34:421–442

1 3

The analysis performed on the two test cases included
hardware systems that integrate software. The common
development model for hardware systems is the "Water-
fall", while a common model for software development is
the Agile model. So how, then, can they be combined into
a single model? The reason for this is divided into two: the

network model reflects the architecture of the hardware and
software. In both the waterfall development method and the
agile method, the architecture is usually stable and not sub-
ject to frequent changes. In the project management aspect,
even if a software package is developed in an agile manner,
there are milestones for the delivery of software packages

Fig. 26   Degree centrality of the graph network in Fig. 25

Fig. 27   Betweenness centrality of the graph network in Fig. 25

439Research in Engineering Design (2023) 34:421–442	

1 3

with known specifications. These are the points in time that
the project manager will make sure to reflect in his project
diagram and hence also for the calculation of the aforemen-
tioned risk index.

Considering the risk management process in the project,
the project management team can use the methodology
presented above to identify and analyze the risks arising
from the role of the system elements and their readiness

in the project timeline. The project team can use (as part
of the response stage) its authority to mitigate or reduce
the risks by taking actions related to a specific system ele-
ment. For example, a project manager may decide to expe-
dite production processes, start performing tasks earlier or
allocate more resources to shortening task times to anticipate
the delivery of a component at risk. Please note that it is
not always possible to advance a task by allocating more

Table 4   Summary table for the system in Fig. 25

Label Between-
ness
centrality

Degree
central-
ity

Time Norm. BC Norm. DC Norm. time Norm.
BC*Norm.
Time

Norm.
DC*Norm.
Time

Combined risk

Center—application 4.33 6 4.7 0.00 0.18 0.0 0.00 0.01 0.009
Center—driver 331.67 8 80.9 0.02 0.24 0.8 0.02 0.20 0.218
Center—operation system 259.67 8 6.7 0.02 0.24 0.1 0.00 0.02 0.018
Center—physical 114.33 6 83.4 0.01 0.18 0.9 0.01 0.15 0.161
Electronic sign—firmware

[#n..n + 5]
0.00 2 23.5 0.00 0.06 0.2 0.00 0.01 0.014

Electronic sign—physical
[#n..n + 5]

0.00 2 31.2 0.00 0.06 0.3 0.00 0.02 0.019

Local controller—driver
[#n..n + 5]

6292.00 34 35.8 0.43 1.00 0.4 0.16 0.37 0.536

Local controller—operation
system [#n..n + 5]

178.83 4 5.7 0.01 0.12 0.1 0.00 0.01 0.008

Local controller—physical
[#n..n + 5]

5998.83 32 80.0 0.41 0.94 0.8 0.35 0.79 1.132

Proximity sensor—firmware
[#n[1..4]..n + 5[1..4]]

0.00 2 35.5 0.00 0.06 0.4 0.00 0.02 0.022

Proximity sensor physical
[#n[1..4]..n + 5[1..4]]

0.00 2 42.8 0.00 0.06 0.4 0.00 0.03 0.026

RADAR-firmware [#n..n + 5] 0.00 2 86.8 0.00 0.06 0.9 0.00 0.05 0.053
RADAR—physical [#n..n + 5] 0.00 2 29.8 0.00 0.06 0.3 0.00 0.02 0.018
Regional controller—applica-

tion [#m..m + 1]
142.33 6 2.0 0.01 0.18 0.0 0.00 0.00 0.004

Regional controller—driver
[#m..m + 1]

14502.67 14 66.7 1.00 0.41 0.7 0.70 0.29 0.983

Regional controller—opera-
tion system [#m..m + 1]

1657.17 14 95.8 0.11 0.41 1.0 0.11 0.41 0.526

Regional controller—physical
[#m..m + 1]

13355.83 12 17.4 0.92 0.35 0.2 0.17 0.06 0.232

Traffic light—firmware
[#n[1..4]..n + 5[1..4]]

0.00 2 94.6 0.00 0.06 1.0 0.00 0.06 0.058

Traffic light—physical
[#n[1..4]..n + 5[1..4]]

0.00 2 29.6 0.00 0.06 0.3 0.00 0.02 0.018

Video camera—firmware
[#n[1..4]..n + 5[1..4]]

0.00 2 13.5 0.00 0.06 0.1 0.00 0.01 0.008

Video camera—physical
[#n[1..4]..n + 5[1..4]]

0.00 2 67.6 0.00 0.06 0.7 0.00 0.04 0.042

440	 Research in Engineering Design (2023) 34:421–442

1 3

resources, especially in cases of engineering design that can-
not always linearly shorten its execution time (e.g., a project
that includes the engineering design of a model lasting 40 h
will not be shortened to 10 h if we assign four engineers to
the task). The project manager, together with the system
engineer, can find the sweet spots which allow optimization
both at the architecture and at the project levels.

On the other hand, a system engineer can redesign the
component and reduce the number of interfaces, provide
simulation solutions or replacement modules for system
integration and thus lower the uncertainty in the inter-
face or system function. As an alternative step, the system
engineer can also decide on an architectural change that
will eventually lead to risk reduction. In other words, the
system engineer is responsible for the displacement of the
system elements on the 1X1 chart on the vertical axis,
while the project manager is responsible for the displace-
ment on the horizontal axis. Therefore, the risk manage-
ment team consists of these two key personnel who must
work in complete synchronization.

7 � Conclusions

Risk assessment, taking into account both the system ele-
ment and its readiness at the project level, can stream-
line technological project planning while meeting rapid
time-market targets. The discussed methodology consists
of several analytical tools from a variety of disciplines:
system engineering, project management, and discrete
mathematics. These tools, whose effectiveness has been
proven many times in the past and are common in certain
fields, were combined to enable a quantitative decision
support tool for the project manager or system engineer

in the product development process. We analyze a system
structure according to the principles of abstraction and
connectivity and present a network diagram consisting of
hardware and software elements. This holistic description
of a system using a network graph makes it possible to
examine it according to tools from graph theory.

Applying network algorithms to the product graph
network will enable the production of additional insights
beyond the network topology reflected in the structure of
the relationships between the elements. Centrality meas-
ures are significant for understanding the level of influence
a node—or a system element—has in the overall network.
From the degree centrality index, we can deduce how many
interfaces each system element has. Subsequently, what do
integration with this element involve, or how many system
components affect a modification at the subject node? The
betweenness centrality index makes it possible to determine
the level of contribution of the subject node to the system
flow—a quantity that includes the passage of information,
material, or energy within the system's channels. The higher
the level of influence of the node on the system flows, the
more important it is for the proper operation of the system.

To perform a rating of risks arising from system com-
ponents, we have to consider also some information from
the project management: delivery dates or completion of
development of the system elements. The time dimension
augmented on the importance of the elements themselves
allows, after some simple mathematical processing, to rank
the components of the system according to the level of risk
they pose. The described risk assessment methodology pro-
vides the project manager and the system engineer with a
tool that can be used easily with information that could be
updated according to the progress of the project.

(a) (b)

Center-Applica�on
Center-DriverCenter-Opera�on System

Center-Physical

Electronic Sign -FirmwareElectronic Sign -Physical

Local Controller -Driver

Local Controller-
Opera�on System

Local Controller -Physical

Proximity Sensor -
FirmwareProximity Sensor -Physical RADAR -FirmwareRADAR-Physical

Regional Controller -
Applica�on

Regional Controller -
Driver

Regional Controller -
Opera�on SystemRegional Controller -

Physical

Traffic Light -FirmwareTraffic Light -PhysicalVideo Camera -Firmware Video Camera-Physical
Center-Applica�on Center-DriverCenter-Opera�on System Center-PhysicalElectronic Sign -FirmwareElectronic Sign -Physical

Local Controller -Driver

Local Controller-
Opera�on System

Local Controller -Physical

Proximity Sensor -
FirmwareProximity Sensor -Physical RADAR -FirmwareRADAR-Physical

Regional Controller -
Applica�on

Regional Controller -
Driver

Regional Controller -
Opera�on System

Regional Controller -
Physical

Traffic Light -FirmwareTraffic Light -PhysicalVideo Camera -Firmware Video Camera-Physical0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Degree Centrality Betweenness Centrality

Label DB-T Factor
Local Controller -Physical [#n..n+5] 1.132
Regional Controller -Driver [#m..m+1] 0.983
Local Controller -Driver [#n..n+5] 0.536
Regional Controller -Opera�on System [#m..m+1] 0.526
Regional Controller -Physical [#m..m+1] 0.232
Center-Driver 0.218
Center-Physical 0.161
Traffic Light -Firmware [#n[1..4]..n+5[1..4]] 0.058
RADAR -Firmware [#n..n+5] 0.053
Video Camera-Physical [#n[1..4]..n+5[1..4]] 0.042
Proximity Sensor -Physical [#n[1..4]..n+5[1..4]] 0.026
Proximity Sensor -Firmware [#n[1..4]..n+5[1..4]] 0.022
Electronic Sign -Physical [#n..n+5] 0.019
RADAR-Physical [#n..n+5] 0.018
Traffic Light -Physical [#n[1..4]..n+5[1..4]] 0.018
Center-Opera�on System 0.018
Electronic Sign -Firmware [#n..n+5] 0.014
Center-Applica�on 0.009
Video Camera -Firmware [#n[1..4]..n+5[1..4]] 0.008
Local Controller-Opera�on System [#n..n+5] 0.008
Regional Controller -Applica�on [#m..m+1] 0.004

Fig. 28   Smart traffic intersection 1X1 chart (a), and DB–T factor list (b)

441Research in Engineering Design (2023) 34:421–442	

1 3

We analyzed two systems in different levels of abstraction
and fields to demonstrate the suggested methodology. The
first example was a medical motor driver, and the second
was a system array of smart interactions. For each system
component, a DB–T index was calculated that weighs its
level of risk while considering its function within the system
and the relevant project data.

Please note that risk management in a project is a mul-
tidisciplinary field that contains logistical, engineering,
psychological, probabilistic, and other elements. The tool
proposed above is another mechanism to indicate the weight
of each system element in the risk aspect of project success.
Like a decision table, the DB–T index is also a tool for sup-
porting decision-making and should be considered along
with other risk management methods.

The above framework was demonstrated on two systems
from different areas and levels of complexity. However, as part
of this research, we did not validate it on a large number of
designs and systems of different types, such as systems based
on software/firmware only or firmware systems. To increase
the validity of the suggested methodology, we intend to test it
in additional product development projects of varying types.

Additional relevant research can evaluate other network
measures, such as an analysis of node significance while
considering weighted edges to reflect the importance of
interfaces or flows or other centrality indices such as eigen-
value or closeness centralities. Another potential addition
would be considering environmental influences or system
level influences between system components due to imple-
mentation such as heat or electromagnetic influences. These
may require different network or proximity modeling and
its integration with the proposed approach seems valuable.

One can expand the study by considering the network graph
to include additional layers of information beyond the product—
such as processes and staff. Combining the network graph analy-
sis methodology with other work frameworks, such as PSI, can
yield insights even at levels beyond the product itself. It is worth
suggesting a combined tool that will reflect the DB–T factor and
additional known project risk for a more comprehensive risk
assessment in the project management part.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00163-​023-​00417-3.

Data availability  The data used in this paper is available as supple-
mentary material.

References

Ahmadi R, Wang RH (1999) Managing development risk in product
design processes. Oper Res 47(2):235–246

Aleta A, Moreno Y (2019) Multilayer networks in a nutshell. Annu Rev
Condens Matter Phys 10(1):45–62. https://​doi.​org/​10.​1146/​annur​
ev-​conma​tphys-​031218-​013259

Bao C, Wan J, Wu D, Li J (2021) Aggregating risk matrices under a
normative framework. J Risk Res 24(8):999–1015

Barabási A-L, Albert R (1999) Emergence of scaling in random net-
works. Science 286(5439):509–512

Bass L, Clements P, Kazman R (2003) Software architecture in prac-
tice. Addison-Wesley Professional

Bencherif F, Mouss LH (2020) Complex network to enhance charac-
terization analysis in modelling product development process. Afr
J Sci Technol Innov Dev 12(7):797–811. https://​doi.​org/​10.​1080/​
20421​338.​2020.​17623​55

Blanchard BS, Blyler JE (2016) System engineering management, 1st
edn. Wiley

Booch G, Rumbaugh J, Jacobson I (1999) The unified modeling lan-
guage user guide. Addison-Wesley

Borgatti SP (2005) Centrality and network flow. Social Netw
27(1):55–71

Braha D (2016) The complexity of design networks: structure and
dynamics. Experimental design research. Springer, Cham, pp
129–151

Braha D, Bar-Yam Y (2004a) Information flow structure in large-scale
product development organizational networks. J Inf Technol
19(4):244–253

Braha D, Bar-Yam Y (2004b) Topology of large-scale engineering
problem-solving networks. Phys Rev E 69(1):016113

Brandes U (2001) A faster algorithm for betweenness centrality. J Math
Sociol 25(2):163–177

Browning TR, Fricke E, Negele H (2006) Key concepts in modeling
product development processes. Syst Eng 9(2):104–128

Buchanan WJ (2004) The handbook of data communications and net-
works. Springer. https://​doi.​org/​10.​1007/​978-1-​4020-​7870-5

Cadini F, Zio E, Petrescu C-A (2009) Using centrality measures to rank
the importance of the components of a complex network infra-
structure. In: Setola R, Geretshuber S (eds) Critical information
infrastructure security. Springer, Berlin, pp 155–167. https://​doi.​
org/​10.​1007/​978-3-​642-​03552-4_​14

Cancela H, Petingi L (2004) Reliability of communication networks
with delay constraints: Computational complexity and complete
topologies. Int J Math Math Sci 2004(29):1551–1562. https://​doi.​
org/​10.​1155/​S0161​17120​43062​3X

Chaturvedi SK (2016) Network reliability: measures and evaluation.
John Wiley and Sons, Cham

Chen Z, Dehmer M, Emmert-Streib F, Shi Y (2018). In: Chen Z,
Dehmer M, Emmert-Streib F, Shi Y (eds) Modern and interdis-
ciplinary problems in network science: a translational research
perspective, 1st edn. CRC Press. https://​doi.​org/​10.​1201/​97813​
51237​307

Clarkson PJ, Simons C, Eckert C (2004) Predicting change propaga-
tion in complex design. J Mech Des 126(5):788–797. https://​doi.​
org/​10.​1115/1.​17651​17

Conchir D (2010) Overview of the PMBOK guide: Short cuts for
PMP certification. Springer Publishing Company, Incorporated

Danilovic M, Browning TR (2007) Managing complex product
development projects with design structure matrices and domain
mapping matrices. Int J Project Manag 25(3):300–314

Dickerson C, Mavris DN (2016) Architecture and principles of sys-
tems engineering. CRC Press

Diestel R (2000) Graph theory, 2nd edn. Springer
Dissaux P, Amine MF, Michel P, Vernadat F (2005) Architecture descrip-

tion languages: IFIP TC-2 workshop on architecture description
languages (WADL), world computer congress, aug. 22-27, 2004,
Toulouse, France (Vol. 176). Springer Science and Business Media

https://doi.org/10.1007/s00163-023-00417-3
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1080/20421338.2020.1762355
https://doi.org/10.1080/20421338.2020.1762355
https://doi.org/10.1007/978-1-4020-7870-5
https://doi.org/10.1007/978-3-642-03552-4_14
https://doi.org/10.1007/978-3-642-03552-4_14
https://doi.org/10.1155/S016117120430623X
https://doi.org/10.1155/S016117120430623X
https://doi.org/10.1201/9781351237307
https://doi.org/10.1201/9781351237307
https://doi.org/10.1115/1.1765117
https://doi.org/10.1115/1.1765117

442	 Research in Engineering Design (2023) 34:421–442

1 3

Dorofee AJ, Walker JA, Alberts CJ, Higuera RP, Murphy RL (1996)
Continuous risk management guidebook. Carnegie-Mellon Univ
Pittsburgh, Cham

Engel A, Reich Y (2015) Advancing architecture options theory: Six
industrial case studies. Syst Eng 18(4):396–414

Eppinger SD, Browning TR (2012) Design structure matrix methods
and applications. MIT Press

Eppinger S, Ulrich K (2015) Product design and development.
McGraw-Hill Higher Education

Eppinger SD, Salminen V (2001) Patterns of product development
interactions. Presented at the International Conference on Engi-
neering Design, Glasgow, UK, 21–23 August 2001

Erdos P, Rényi A (1960) On the evolution of random graphs. Publ
Math Inst Hung Acad Sci 5(1):17–60

Freeman LC (1977) A set of measures of centrality based on
betweenness. Sociometry 40(1):35–41. https://​doi.​org/​10.​2307/​
30335​43

Genta G, Morello L, Cavallino F, Filtri L (2014) The motor car:
Past, present and future. Springer Science and Business Media

Gross JL, Yellen J (2004) Handbook of graph theory. CRC Press
Harman T, Dabney J (2001) Mastering simulink 4. Prentice Hall,

Englewood Cliffs, NJ
Haskins C, Forsberg K, Krueger M, Walden D, Hamelin D (2006)

Syst Eng Handb 9:13–16
Hatala J, George Lutta J (2009) Managing information sharing

within an organizational setting: a social network perspective.
Perform Improv Q 21(4):5–33

Hillson D (2003) Effective opportunity management for projects.
CRC Press. https://​doi.​org/​10.​1201/​97802​03913​246

Hillson D (2014) How to manage the risks you didn’t know you were
taking. In: Phoenix AZ (ed) Paper presented at PMI® Global
Congress 2014—North America, Project Management Institute:
Newtown Square, PA, USA

Kapurch SJ (2010) NASA systems engineering handbook. Diane
Publishing

Kerzner H (2017) Project management: A systems approach to plan-
ning, scheduling, and controlling, 20th edn. Wiley

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter
MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

Kleinsmann M, Buijs J, Valkenburg R (2010) Understanding the
complexity of knowledge integration in collaborative new
product development teams: a case study. J Eng Tech Manage
27(1–2):20–32

König C, Kreimeyer M, Braun T (2008) Multiple-domain matrices
as a framework for systematic process analysis. In: DSM 2008:
Proceedings of the 10th International DSM Conference, Stock-
holm, Sweden

Kordova S, Katz E, Frank M (2019) Managing development projects—
the partnership between project managers and systems engineers.
Syst Eng 22(3):227–242

Kurtoglu T, Tumer IY (2008) A graph-based fault identification and
propagation framework for functional design of complex systems.
J Mech Des. https://​doi.​org/​10.​1115/1.​28851​81

LaMeres BJ (2019) Introduction to logic circuits and logic design with
VHDL. Springer

Lano R (1977) The N2 chart. TRW Software Series
Lester A (2014) Project management, planning and control: Manag-

ing engineering, construction and manufacturing projects to PMI,
APM and BSI standards, 6th edn. Elsevier

Li J, Zhu X, Lee C-F, Wu D, Feng J, Shi Y (2015) On the aggregation
of credit, market and operational risks. Rev Quant Financ Acc
44(1):161–189

Locatelli G, Mancini M, Romano E (2017) Project manager and sys-
tems engineer: a literature rich reflection on roles and responsibili-
ties. Int J Project Organ Manag 9(3):195–216

Marcus D (2008) Graph theory: a problem oriented approach. Maa

Maurer M, Lindemann U (2008) The application of the multiple-
domain matrix: considering multiple domains and dependency
types in complex product design. In: IEEE International Confer-
ence on Systems, Man and Cybernetics, pp 2487–2493

Milosevic DZ (2003) Project management toolbox: tools and tech-
niques for the practicing project manager. John Wiley and Sons

Newman M (2010) Networks: an introduction. Oxford University Press
Nilsson J, Riedel S (2011) Electric circuits, 9th edn. Prentice Hall
Pahl G, Beitz W (1996). In: Wallace K (ed) Engineering design–a

systematic approach. Springer-Verlag
Park K, Kremer GEO (2019) An investigation on the network topology

of an evolving product family structure and its robustness and
complexity. Res Eng Des 30(3):381–404

Patil H, Sirsikar S, Gholap N (2017) Product design and development:
phases and approach. Int J Eng Res. https://​doi.​org/​10.​17577/​
IJERT​V6IS0​70136

Pimmler TU, Eppinger SD (1994) Integration analysis of product
decompositions. In: Proceedings of the ASME 6th International
Conference on Design Theory and Methodology, Minneapolis,
MN, 1994

Publishing DK (2011) Car: the definitive visual history of the automo-
bile, 1st edn. Publishing DK

Rausand M, Hoyland A (2003) System reliability theory: Models,
statistical methods, and applications, 396th edn. John Wiley and
Sons, Cham

Raz T, Shenhar AJ, Dvir D (2002) Risk management, project success,
and technological uncertainty. Randd Manag 32(2):101–109

Rechtin E, Maier MW (2010) The art of systems architecting. CRC
Press

Reich Y, Subrahmanian E (2020) The PSI framework and theory of
design. IEEE Trans Eng Manag 69:1037–1049

Renyi E (1959) On random graph. Publ Math 6:290–297
Richards M (2015) Software architecture patterns. O’Reilly Media,

Sebastopol
Sage AP, Rouse WB (2014) Handbook of systems engineering and

management. John Wiley and Sons
Sered Y, Reich Y (2003) Standardization and modularization driven

by minimizing overall process effort. Int Des Eng Techn Conf
37017:449–458

Simon P (ed) (1997). APM Group Ltd
Summers JD, Shah JJ (2010) Mechanical engineering design complex-

ity metrics: Size, coupling, and solvability. J Mech Des. https://​
doi.​org/​10.​1115/1.​40007​59

Van den Brink S, Kleijn R, Sprecher B, Tukker A (2020) Identifying
supply risks by mapping the cobalt supply chain. Resour Conserv
Recycl 156:104743

Wasserman S, Faust K, Urbana-Champaign, S. University of I. W
(1994) Social network analysis: methods and applications. Cam-
bridge University Press

Yassine A (2004) An introduction to modeling and analyzing complex
product development processes using the design structure matrix
(DSM) method. Urbana 51(9):1–17

Yassine A, Braha D (2003) Complex concurrent engineering and the
design structure matrix method. Concurr Eng 11(3):165–176

Yassine A, Joglekar N, Braha D, Eppinger S, Whitney D (2003) Infor-
mation hiding in product development: the design churn effect.
Res Eng Des 14(3):145–161

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1201/9780203913246
https://doi.org/10.1115/1.2885181
https://doi.org/10.17577/IJERTV6IS070136
https://doi.org/10.17577/IJERTV6IS070136
https://doi.org/10.1115/1.4000759
https://doi.org/10.1115/1.4000759

	Product representation via networks methodology for exposing project risks
	Abstract
	1 Research motivation
	2 Literature review
	3 Product layer representation
	3.1 Block diagram anatomy
	3.2 Harnessing graph networks to product representation
	3.3 Exploiting graph networks centrality measures for evaluating product elements influence
	3.4 Project elements deliverable
	3.5 Considering both product elements and product delivery time

	4 Implementation
	5 Demonstration
	5.1 Medical motor driver
	5.2 Smart intersection system

	6 Discussion
	7 Conclusions
	Anchor 17
	References

