
Vol.:(0123456789)1 3

Research in Engineering Design (2021) 32:3–30
https://doi.org/10.1007/s00163-020-00347-4

ORIGINAL PAPER

Principles for coping with the modelling activity of engineered
systems

F. Kamdem Simo3 · D. Ernadote2 · D. Lenne1 · M. Sallak1

Received: 22 August 2017 / Revised: 4 October 2020 / Accepted: 7 October 2020 / Published online: 2 November 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The systems engineering of some systems often involves challenging modelling activity (MA). MA presents challenges,
which include understanding the context in which it takes place, understanding and managing its impacts on the life cycles
of the models it produces. In this paper, we propose a methodology and its underpinning framework for addressing these
challenges and for coping with the operation of MA. The first step in our methodology is to characterize MA as a federation
of systems. It then consists in iteratively building a system architecture by modelling the models produced by MA and their
expected life cycles, modelling the various tasks that constitute MA, and modelling the effects of MA on these life cycles. It
then makes it possible to specify expectations over these life cycles and to analyse models of MA in relation to expectations,
to check how far expectations are achievable and to synthesize the acceptable behaviours of the system. Finally, a use of
the results of this analysis may provide insightful data on how the system is end-to-end operated and how it might behave.
On the basis of this information, informed decisions may be made to act on the logistics of MA. The hypotheses, theoreti-
cal foundations, the models, the algorithms and perspectives relating to the proposed methodology and its underpinning
framework are all presented and discussed.

Keywords Systems engineering · Modelling activity dynamic

Abbreviations
A/G Assume/Guarantee
A/P Assume/Preference
AM Structure models
C Constraints on processes
CPM Critical Path Method
DSM Design Structure Matrix
EVM Earned Value Method

HFSM Hierarchical Finite State Model
M Models produced by the Modelling Activity
MA Modelling Activity
MBSE Model-Based Systems Engineering
MG Mappings (effects of PM on SM of AM)
MODEF MODEl-based Federation of systems of

modelling
OPM Object-Process methodology
PA Programmatic activity
PERT Program Evaluation and Reviewing Technique
PM Process models
R Expectations
SD System dynamics
SE Systems engineering
SEMP SE Management Plan
SEMS SE Master Schedule
SM State models
SOI System-of-Interest
SoM System of Modelling
SoS System of Systems
SoSoM System of Systems of Modelling
SS State Space
SSG State Space Graph

 * F. Kamdem Simo
 frks@protonmail.ch

 D. Ernadote
 dominique.ernadote@airbus.com

 D. Lenne
 dlenne@hds.utc.fr

 M. Sallak
 sallakmo@hds.utc.fr

1 Alliance Sorbonne Université, Université de Technologie de
Compiègne (UTC), Heudiasyc, CNRS Centre de recherche
Royallieu CS 60319, 60203 Compiègne, France

2 Airbus Defence and Space (ADS), Elancourt, France
3 UTC and ADS, Compiègne and Elancourt, France

http://orcid.org/0000-0003-1656-9077
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-020-00347-4&domain=pdf

4 Research in Engineering Design (2021) 32:3–30

1 3

TA Technical activity
TP Technical processes
TMP Technical Management Processes

1 Introduction

The engineering of systems will often involve some mod-
elling activity MA. Models generally provide a partial,
sometimes incomplete view of the actual modelled thing,
and this kind of simplified view is essential when it comes
to understand tricky systems. Models also give us a way
of preserving and reusing knowledge about the things that
they relate to. However, because of the sheer diversity of
engineered or studied systems, models are often specific to
a particular domain (mechanical, electrical, chemical, hard-
ware, software and systems engineering, purchasing, etc.),
and different types of models provide different perspectives
on the modelled systems. Combining different models in
pursuit of a single objective (such as verification) is not a
new challenge, but it remains highly topical.

The dynamic of MA influences and determines the evo-
lution of models. Models arising from modelling activity
in industry are often spread over different locations. At the
same time, (large engineering) companies will have a num-
ber of separate projects and programs running concurrently
with different instances of modelling activity that sometimes
interact. Models can have useful lifespans ranging from a
few days to several months. Thus, the modelling activity
itself can be seen as a challenging entity to operate.

We are, therefore, dealing with two distinct levels of com-
plexity, one relating to the engineered systems and the other
to the entities and practices that contribute to the modelling
of those systems.

As a result, understanding, mastering and engineering
systems can be made difficult by the environment of their
life-cycle or their tricky nature.

On one hand, the people and other components within
these environments are heterogeneous and mature, offering
potential opportunities and benefits. On the other hand, these
very characteristics can have adverse side effects.

In this context, Systems Engineering aims to create har-
mony and added value between well-established domains/
components (for the resolution of a sub-goal) while targeting
the overall system goal.

There is no obvious single approach that can be applied
to all types of systems.

If an overview and trend of the dynamics of the MA
become difficult to grasp, the following questions may arise.

(1) Existing models: what models are present in a particu-
lar location and what do they represent?

(2) Direction of travel: what is the current state of models
and how and where are they likely to end up?

(3) Moving towards desired direction and states: what is
required for models to reach desired states?

2 Motivation, hypotheses, problem
formulation and contributions

Motivation: In seeking to address the three questions above,
our immediate concern was the study of MA development
and operation. Therefore, the system under study in this
paper is MA. By mentioning the system, we refer, unless
otherwise specified, to the studied system. MA involves
human operators who are called upon to perform tasks that
are evolutive and even creative. MA cannot be specified once
and for all, but rather, expected behaviour and results need
to be continuously reworked and re-specified. This raises the
question of whether it is possible to master, in a disciplined
way, the dynamics of MA, to contribute to their logistics in
an informed manner.

In Kamdem Simo et al. (2015), we reported an attempt to
organise some types of modelling activity for system archi-
tecture. Modelling activitiy was tailored using a modelling
management plan, fed by a Modelling Planning Process
(MPP) (Ernadote 2013), itself automated to ease modelling
operations. The MPP aligns the MA to the requirements of
the projects, ensuring that modelling objectives are defined
and prioritized, that they correspond to the various model-
ling artefacts (project concepts, standards and deliverables),
and that the progress of modelling activity can be assessed.
The authors concluded that this modelling activity needed
to be federated, since the approach proposed did not take
account of the autonomous and co-evolving nature of MA.
Models have targets and can play a role in different model-
ling projects in engineering environments.

Consequently, in a subsequent work (Kamdem Simo et al.
2016), we argued that MA can be considered locally as a
system and globally as a federation of systems that need
to be engineered. Following on from that, in the present
paper, we introduce a methodology and its underpinning
framework for coping with the operation of MA in systems
engineering.

Hypotheses and modelling choices: We consider the envi-
ronment of the system to be (Ackoff 1971):

“A set of elements and their relevant properties, which
elements are not part of the system but a change in any of
which can produce a change in the state of the system. Thus,
a system’s environment consists of all variables which can
affect its state. External elements which affect irrelevant
properties of a system are not part of its environment.”

5Research in Engineering Design (2021) 32:3–30

1 3

It is also argued in Ackoff (1971) that a system and its
environment are relative to an observer, consequently they
can be conceptualized in different ways.

We are, therefore, concerned with the system proper and
with its environment. The system proper and its environ-
ment form the closed system. In this paper, we often use
the term system to refer to either the system proper or the
closed system, what is meant will be clear from the context.
We assume that the environment is autonomous and to all
intents and purposes not controllable, but that it may always
be represented by a model. This assumption reflects the fact
that while models can be expected to reach certain prede-
termined states, those states may be reached via different
modelling tasks and different sequences of modelling tasks.

The system proper is structurally represented by struc-
tural models (AM). AM are especially useful in abstract-
ing away the main content of models (M) produced by
MA. State models (SM) are used to model the life cycles
of M and the expected transitions between the states over
these life cycles. Process models (PM) are used to model
the behaviour of the environment and sometimes the behav-
iour of components of the system. In particular, PM capture
the modelling tasks which cause changes in the state of M.
We model the effects of PM on the system proper by the
mapping (MG) of events (from the exploration of PM) onto
transitions of SM associated with AM. PM might be also
subject to some constraints (C) (e.g., time, cost, etc.) related
to modelling tasks. The Expectations (R) that specify prefer-
ences on the expected states of the system might be defined
something like this: given a set of pairs (component of AM,
state in SM)—called context—some pairs complementing
this context will be more preferable than others. This paper
will formalize these different models (AM, PM, SM, MG
and R) and discuss their suitability in abstracting, represent-
ing, and understanding MA.

General problem to solve: Given the MA, understood and
modelled with the data corresponding to AM, SM, PM,
MG and R, what are the possible future points (foreseeable
evolutions) starting from an initial point (InitialPoint) and
evolving until a stop criterion (StopCriterion) becomes true?
Which points are with respect to R and C, more acceptable /
less acceptable? Let us call these questions Q1.

A point is a possible configuration of the state of the
closed system. InitialPoint is a given point from which the
closed system might need to be initialized. StopCriterion is
a means for selecting acceptable points among the reachable
points. Therefore, the general problem is given by Pb (AM,
SM, PM, MG, R, C, InitialPoint, StopCriterion).

We propose addressing the questions Q1 via a six-step
methodology that we call MODEF. MODEF is intended
to (1) provide an understanding of the current global state
of MA, (2) check whether MA is moving in a satisfactory

direction (state path), and (3) help stakeholders build pro-
cesses to ensure that the models (M) that it produces con-
tinue to evolve in appropriate ways.

Here, we are not explicitly dealing with the internal prac-
tices of MA. The design techniques, methods and tools used
in the modelling activity are not explicit, i.e. they are not mod-
elled. The internal practices are black boxes for the proposed
methodology. These internal practices of MA are of course
relevant and essential for producing M, but we shall argue in
this paper why we consider the black-box perspective.

Contributions and organisation:

• From a general systems engineering perspective, the
main contribution of this paper is the introduction of
MODEF–the procedural structure of which is depicted on
Fig. 1, summarized by Act/Identify-Model-Specify-Ver-
ify-Inform-Identify—and with its supporting framework
with principles, theoretical and practical arguments for
understanding, modelling and analysing MA to inform
MA’s logistics.

On Fig 1, a box depicts a step; the starting and entry step
is Step 1 (Identify a System X); an arrow from a step (s) to
the next one (t) denotes: the outcome (data) of s is necessary
for carrying out t; finally, at a given step, it is possible to go
back—for instance when new data is available or when a
problem is found at the current step—to any previous step,
whence the counter clockwise arrows.

The novelties introduced in this work in relation to other
work are presented in Sect. 3.

From a narrower perspective, focusing on the different
steps of MODEF, the main contributions are the following:

Fig. 1 The procedural structure of MODEF

6 Research in Engineering Design (2021) 32:3–30

1 3

• To our knowledge, it is the first time a modelling of the
architecture of MA and expectations relating to MA is
based on the models that we have detailed above, that is
to say AM, SM, PM, and MG. MA is considered in terms
of a System of Modelling (SoM) and a System of Systems
of Modelling (SoSoM) (Kamdem Simo et al. 2016). We
explain the meaning of these terms in Sect. 4 below.

• We introduce an Assume (A)/Preference (P) formalism to
support the specification of expectations (or, more gener-
ally, expected behaviour) of MA. The stimulus here came
from Assume/Guarantee (A/G) contracts (Benveniste
et al. 2012). An expectation consists in expressing pref-
erences with respect to the life cycle of the studied ele-
ments, given some context or assumption. In particular,
these preferences are defined with respect to the states
of the studied elements given an assumption (A). In the
style of A/G contracts, the G of a contract is replaced by
a preference (P) in an expectation. P has a pre-order (a
binary relation that is reflexive and transitive) structure.
A pre-order structure is generally sufficient to describe
preferences among the elements of a given set. Another
reason for why we chose to adapt the A/G paradigm is
that the verification of consistency and compatibility may
be formally defined (like with A/G contracts).

• We introduce a modular analysis procedure that makes
it possible to compute the answer to questions Q1. This
procedure applies the uniform-cost search (UCS) algo-
rithm (Russell and Norvig 1995) on the state space
described by the co-exploration of SM and PM, both
being constrained by MG. The novelty of this procedure
is that it makes use of R (and potentially C) in UCS to
guide the co-exploration throughout the discovered state
space and in some cases to prune regions within this
space.

• Finally, to make the results of analysis understandable
by a human, we provide some operating algorithms for
building synthetic data. We want, for example, to be able
to determine (1) whether, starting from a given point, no
further improvements will be possible (in terms of expec-
tations and process constraints) given the input models;
(2) the sequence of points or configurations necessary
to reach a target point; (3) critical paths, etc. This kind
of synthetic data may help stakeholders to operate the
system, to prevent issues and to take corrective actions.

The principles, models and algorithms underlying the six
steps of MODEF are illustrated on a running example—
introduced in Sect. 4.2.1—used as a synthetic case study.
Where necessary, we shall give additional examples.

The remainder of this paper is organised as follows. In
Sect. 3, we discuss the relevant related work and position
MODEF in relation to it. In Sect. 4, we briefly recall what
we mean by SoM and SoSoM then present some application

examples that illustrate them. In Sect. 5, we present the prin-
ciples and semantics of three kinds of models (AM, SM and
PM) and their mappings (MG). We also present the formal-
ism of Expectations that underpins the specification of R. In
Sect. 6, we present the analysis procedure for exploring and
analysing models against the expectations (and potentially
constraints of modelling tasks). Then we present an appli-
cation of the analysis procedure. In Sect. 7, we give a brief
answer, with related assumptions, to the three questions put
forward in the introduction, then we present some limitations
and perspectives of this work.

3 Related work

Here, we discuss various approaches that have sought to
manage modelling activity or technical-and-programmatic
activity and we try to position MODEF in relation to them.

3.1 Systems engineering and modelling activity

Systems Engineering (SE) has been considered for nearly
eighty years (see e.g., (INCOSE 2015; AAAS 2016) for the
evolution and definitions of SE) to manage the complexity of
the engineered systems and the processes to which they give
rise. SE has continued to grow out of two significant dis-
ciplines (Leonard 1999), namely “the technical knowledge
domain in which the systems engineer operates, and systems
engineering management.” The former is generally related
to technical activity (requirement engineering, design, etc.),
whereas the latter is concerned with the planning and man-
agement of the former. It should be noted that SE manage-
ment is different yet complementary to general project man-
agement (and to a large extent business processes), since it
focuses on technical and engineering aspects (SEBoK 2016;
Sage and Rouse 2009; Blanchard 2004).

It can also be said that SE is concerned with two distinct
systems: on one hand there is the system that is being engi-
neered, developed, or studied, and on the other hand there
is the system that enables the engineering of the studied
system. These two systems are also called the system to be
made (also referred to as the System-Of-Interest (SOI)) and
the system for making respectively (Fiorèse and Meinadier
2012). Consequently, SE comprises activity of a technical
nature and activity of a programmatic nature. Technical
activity (TA) seeks to answer the question, “Are we engi-
neering the right SOI and in the right way?” Programmatic
activity (PA) seeks to answer the question, “Are we operat-
ing the right system for making, and are we doing so in the
right way?” It is this programmatic activity that corresponds
to SE management. Finally, it should be remarked that PA
and TA influence each other mutually.

7Research in Engineering Design (2021) 32:3–30

1 3

Depending on the difficulties originating from the SOI
itself and the engineering environment, different efforts are
made on the two kinds of activity. However, within a con-
text characterized by the two levels of complexity described
in Sect. 1, both domains (technical and programmatic) are
inexorable and critical: obstacles brought about by the engi-
neering environment that then contributes to additional com-
plexity that must be managed (Bar-Yam 2003) in conjunction
with the basic complexity of the SOI.

One approach for dealing efficiently with SE has been the
use of (formal) models and modelling as the main support
of SE. Such an approach refers to Model-Based SE (MBSE)
(INCOSE 2015) and to a large extent model-driven engi-
neeering (MDE) (Whittle et al. 2014; Kent 2002). MBSE
is not a new discipline different from SE, since (mathemati-
cal) models were used many years ago within various fields,
including SE. Today’s MBSE seems to focus on diagrams
with the risk of multiplying less formal and less explanatory
models. The efficiency with MBSE comes from the ability of
models and modelling to improve communications among
the stakeholders; to give rise to better representations and a
better understanding of systems, and to facilitate the pres-
ervation and reusing of knowledge relating to SE processes.
Models and modelling are central in an MBSE approach.

SE is well documented in terms of standards and hand-
books (INCOSE 2015; Sage and Rouse 2009; Fiorèse and
Meinadier 2012). Some standards that provide an overarch-
ing view on SE processes are succinctly described in the
following.

ISO/IEC/IEEE 15288 provides a description of processes
involved in a SE process. The SE Management Plan encap-
sulates the artefacts (SE Master Schedule, Work Break-
down Structure) necessary for planning and controlling
these processes. Other standards (ANSI/EIA-632, ISO/IEC
15504:2004, IEEE Std 1220-2005, etc.) provide guidance
for describing, improving, and assessing these processes.
Systems Engineering actors can (and in fact do) therefore
leverage those materials, mainly built from past experiences,
for new SE developments. It follows from the foregoing that
the SE body of knowledge does contribute to the manage-
ment of SE processes regardless of how they are actually
implemented.

Although the materials and standards mentioned above
are clearly useful, they often remain document-based, even
if some cover formal content. They are generally descrip-
tive in addressing the question What To Make but they fail
to be prescriptive and to deal with the question How to. As
a consequence, they are unsatisfactory from the perspective
of a model-based management of MA. Indeed, the follow-
ing problems may arise: reuse, analysis, consistency, trace-
ability. Moreover, the diversity and autonomy of different
stakeholders of the MA might prevent an effective use of
such documents. Besides, in this latter situation, even with

formal artefacts (models or documents), one may encounter
the same problems as those encountered with informal arte-
facts. Nonetheless, formal artefacts offer several advantages
(reuse, share, analysis etc.) provided that they are adequately
operated. Thereby, if we consider PA interrelated to TA, as
a system, SE (or generally design principles) is (are) appli-
cable for its understanding. From this perspective, and pro-
vided that research project as understood in Reich (2017),
is replaced by (or compared with) that system, the expected
benefits as the corollary of the Principle of Reflexive Prac-
tice (Reich 2017) and challenges would apply.

SE has been successfully applied many times over the
years, particularly in defence and aerospace, and yet today it
is still based on heuristics and informal practices as argued
in INCOSE (2014). On the other side, many large engineer-
ing projects have failed. For a list of past projects see for
example (Bar-Yam 2003), whose conclusion is that the vari-
ous failures may be attributed to the complexity of the pro-
jects themselves; see also the story in Friend (2017) of some
recent failed projects. Meanwhile, it is expected that SE will
continue to be applied more widely across other industries
(INCOSE 2014). For SE to spread successfully, formal and
unifying models to support SE processes will need to be
created using SE’s current body of knowledge.

3.2 Product‑and‑project approaches in systems
engineering

In this section, we start by presenting some relevant model-
based product-and-project oriented approaches in systems
engineering, and then we attempt to situate MODEF in rela-
tion to these various approaches.

The OPM approach In Sharon et al. (2011), the focus is
first placed the tandem (project-product dimension) com-
prising the project (the programmatic aspect) and the prod-
uct (the technical aspect). The authors compare the methods
of project management that are common in SE management
together with the Object-Process methodology OPM (Dori
2002) used for project planning and product modelling and
design. Among others, these methods include: Earned Value
Method (EVM) for project control, Critical Path Method
(CPM), Program Evaluation and Reviewing Technique
(PERT) and Gantt Chart for project planning and scheduling,
System Dynamics (SD) for project planning and dynamic
modelling, and Design Structure Matrix (DSM) for project
planning and product design.

Using a simplified unmanned aerial vehicle (UAV) as
a system use case, their empirical comparison shows that
some methods are relevant with respect to particular prod-
uct and project factors. Factors include Budget/Schedule
measurement/tracking, Stakeholder/Agent tracking, Perfor-
mance quality, and Product measurement/tracking. Only SD,

8 Research in Engineering Design (2021) 32:3–30

1 3

DSM and OPM methods were found to be able to handle the
project-product dimension. SD is a way of correlating fac-
tors (schedule, budget) relating to project planning in way
that may be plotted. DSM represents the interactions among
elements (components, tasks, teams) of both the project and
product. The authors finally conclude that OPM is the only
suitable for the function-structure-behaviour modelling (i.e.
Project-Product Model-Based (Sharon et al. 2008)) of both
the project and the product inside an integrated conceptual
model.

Apart from OPM, all the methods compared are best
derived from models that represent the product and project,
since they address a particular, specific concern. The OPM
method is required for both TA and PA. The authors claim
that OPM is especially well adapted to combining PA and
TA within a single model. It follows that the structure, func-
tion and behaviour OPM models, respectively, describe the
structure the function and behaviour of both the product and
the project. The structure models together with their states
are the possible inputs and outputs of the processes in the
project. Another approach that builds on OPM models to
support planning and communicating of process and product
development is the PROVE-Dev framework (Shaked and
Reich 2018).

Coupling of TA and PA In Vareilles et al. (2015), a model
and rules are discussed for managing the multi-level inter-
action between system design processes (typically TA) and
project planning processes (typically PA). The rules were
integrated into the ATLAS IT platform. In the light of the
failures of the A380 Program and Olkiluoto Nuclear Power
Plant projects, which were executed within a concurrent
engineering environment and based on empirical surveys,
the authors argue that there is a vital need to formalize the
interactions between the design of a system and its design
project. They also highlight the absence of any work for-
mally addressing this need from the perspective of planning
and controlling design activity. These interactions have been
made explicit in only very few works.

Then, they establish a bijective link at a structural level
between a System S and a project P, system requirements SR
and the requirement task definition PR, and system alterna-
tive SA and alternative development task PA. At the behav-
ioural level, the two processes (TA and PA) are interrelated
via their so-called feasibility and verification attributes of
elements at the structural level. A meta-model supports the
realization of links.

The feasibility attributes have 3 states, namely undeter-
mined (UD), feasible (OK), and unfeasible (KO). The state
of an attribute is computed by a design manager and a plan-
ning manager based on requirements, constraints, risks and
schedule, and resources. Based on those states, precedence
rules are established between structural elements and their

states. As an example: it is not possible to start working on
a solution SA if SR are KO.

The verification attributes likewise have 3 states: unde-
termined (UD), verified (OK), unverified (KO). Like for
feasibility, precedence rules are established. An example: it
is not possible to verify PA before PR.

Based on the two kinds of attributes and their states, nine
synchronisation rules (for S and P) are finally defined to
guarantee the consistent evolution of system design and pro-
ject design. This yields a 27-state state diagram that sup-
ports the synchronisation of S and P. In this diagram, a state
corresponds to a seven-tuple (SR.Fa, SA.Fa, SA.Ve, PR.Fa,
PR.Ve, PA.Fa, PA.Ve) where Ve and Fa are related to verifi-
cation and feasibility attributes, respectively. The initial state
is given by (UD, UD, UD, UD, UD, UD, UD). The transi-
tions between states are logically determined from rules.

Finally, as a use case, a landing gear system comprising
a wheel and brake subsystem and associated projects is con-
sidered. This system has 1 SR related to the weight of the
system and 1 PR related to the duration of the project. Other
works in the same spirit are (Abeille 2011; Coudert 2014).

Other works in product (and process) design development
(see e.g., Braha and Maimon 2013; Cho and Eppinger 2001;
Melo 2002; Browning and Eppinger 2002; O’Donovan 2004;
Wynn 2007; Bonjour 2008; Abeille 2011; Karniel and Reich
2011; Gausemeier et al. 2013) have addressed the associa-
tion, integration or coupling (explicitly or not) of the two
systems, i.e. the product and the project (or the develop-
ment system) using a variety of means and with a variety
of aims. Regarding software development projects, see also
(Steward and Tate 2000). Here, the functional requirements
and design parameters of the product are mapped onto tasks
in a Gantt chart project plan following an Axiomatic Design
paradigm (Steward and Tate 2000). The authors claim that
such an association between tasks and design enables the
rapid delivery of product.

A survey on process models and modelling approaches
for design and development process (DDP) appears in Wynn
and Clarkson (2017). The authors first focus on three fea-
tures (novelty, complexity and iteration) of DDPs. DDPs
are different from business (typically production and manu-
facturing) processes insofar as they call for creativity; they
are iterative by nature. They occur in large-scale concur-
rent evolving engineering environments. These features
also apply to MA. The authors then discuss the different
approaches (see (Wynn and Clarkson 2017, Fig. 1)), from
model scope (micro, meso and macro levels) and type (pro-
cedural, analytic, abstract and management science/opera-
tions research models) axes (again see Wynn and Clarkson
2017 for more details). Their conclusion is that different
models provide different insights depending on how they
are used, and models should be used according to specific
objectives (i.e. requirements and constraints). Orthogonally

9Research in Engineering Design (2021) 32:3–30

1 3

to these concerns, tooling issues such as modelling nota-
tions and tools should be addressed (Abeille 2011) (Eckert
et al. 2017).

A summary of a handful of approaches that associ-
ate design and planning appears in Abeille (2011) and the
author concludes that these approaches are little used in
the industrial world, because their tooling is quite limited.
Furthermore, they do not take into account the dynamic
of design process. Some approaches to the integration of
product and process models in engineering design with
respect to their purposes (Visualisation, Planning, Execu-
tion, Synthesis, Analysis, etc.), their modelling formalisms
(Design Structure Matrices, IDEF (Integrated Definition),
etc.) and their level of integration (isolated, coupled, inte-
grated) appear in Eckert et al. (2017). The authors remark
that few works address the integration of product and pro-
cess domains. They also remark that approaches appearing
theoretically closer to the industrial context would require
certain challenges regarding the scope, focus, development
and visualisation of models to be overcome.

3.3 Position of MODEF

In this section we position MODEF in relation to the relate
work presented above.

3.3.1 Abstracting modelling activity

Not all of the above approaches explicitly deal with the con-
current nature of the engineering environments (comprising
autonomous and even independent stakeholders). Although
(Vareilles et al. 2015) clearly recognizes the influence of
this concurrent nature, the multi-level approach that is pre-
sented does not explicitly consider it. Note also that inte-
grated approaches may not be effective in a concurrent con-
text with regard to the capability and autonomy of different
stakeholders. This is even more true with engineering activi-
ties of Systems of Systems–SoS (Jamshidi 2008). Generally
speaking, any traditional approach for SE and management
should be reviewed with regard to its ability to meet the
requirements of SoS engineering. (Sage and Cuppan 2001)
discusses evolutionary principles and implications of the
federalism concept for SE and management of SoS. This
federalism is important, because engineering development
alliances have clearly been taking the form of virtual organi-
zations (Sage and Cuppan 2001; Handy 1995). This encour-
ages autonomy and loosely coupled systems but requires
well-defined interfaces between autonomous systems. The
authors argue that the components of those system may be:
“locally managed and optimized independently.” They also
argue this kinds of federations of engineering development
projects should be considered as Complex Adaptive Sys-
tems, and they discuss the need for federated organisations

to be thoroughly understood. They point out the importance
of modelling, simulations and analyses.

Unlike the approaches developed in Vareilles et al. (2015)
and Sharon et al. (2011), we do not focus on a particular
methodology within the TA. We make no stipulations
regarding the content (paradigms, methods, languages, tools,
etc.) necessary for TA to function, because we consider that
such stipulations do not take into account the diversity ,
heterogeneity of domain-specific approaches in MBSE. For
instance, if we were to stipulate that the System-of-Interest
should be also modelled with a function structure behaviour
approach (Sharon et al. 2008, 2011), this might be restric-
tive, since TA is generally characterized by several model-
based domain-specific practices. Instead, we abstract away
details and concentrate on the relevant content of models
(M) produced by MA.

The approach in Vareilles et al. (2015) (and even (Sha-
ron et al. 2008, 2011)) imposes a structure for TA and PA.
In doing so, it also creates what would appear to be an
interesting dynamic for TA and PA. However, this dimin-
ishes the flexibility of the approach. We believe a bijective
link between the system S and the project P is too strong
an assumption and might not always be relevant given the
structure of S and its granularity. On the PA side, we only
consider the sequencing of MA and its impacts on the state
of M. The link between PA and TA is therefore modelled
via the mappings.

On the other hand, the verification and validation attrib-
utes (Vareilles et al. 2015) are interesting, since they ema-
nate from quantitative data that provide insights into the
states of the elements that they relate to. In our proposed
methodology, we believe such insights could be considered
either as constraints for processes or as a useful addition for
corroborating the states of M in practice. In the approach
(Vareilles et al. 2015), these attributes are used for both TA
and PA.

3.3.2 Modelling modelling activity

One similarity that our methodology has with (Sharon et al.
2011) is that we use structure and behaviour (process) mod-
els. But in our methodology, as argued before, the structure
models are not used for the same purpose as OPM structure
models are used. Likewise, in the OPM-based approach, the
structure models and their states are the possible mandatory
inputs and outputs of process models, while in our proposed
methodology, the processes bring about changes of states
of M.

The methodology developed in this paper is rather gen-
eral in the sense that it is not tailored for particular tech-
niques (Critical Path Method—CPM, Program Evaluation
and Reviewing Technique—PERT, etc.) and factors (Budget
measurement, Schedule tracking etc.) that are studied and

10 Research in Engineering Design (2021) 32:3–30

1 3

compared in Sharon et al. (2011). Those techniques and fac-
tors should either be derived from the models and their anal-
ysis or considered as constraints for models. On the other
hand, specific approaches focusing on quantitative insights
could help in determining the constraints of MA, insofar
as particular insights need to be considered in an analysis
procedure. Indicators are generally quantitative insights. We
believe they should be used in conjunction with the mod-
els that describe the processes. Processes give procedural
insights that may be useful in anticipating bad states or the
deviation of thresholds. More interestingly, it may be pos-
sible to specify the required actions for applying remedies
and adjustments afterwards.

3.3.3 Analysis with models

Looking at the above approaches, with two exceptions, to
a lesser extent, we were unable to find any explicit formal
analysis of the models concerned with respect to certain
formalized expected properties. The first exception is (Var-
eilles et al. 2015), where the analysis derives from the syn-
chronisation rules, and the second exception is in the OPM
approach (Sharon et al. 2008) (Sharon et al. 2011), where the
simulations of OPM models are intended to detect various
problems (product and project parameters feasibility, devia-
tions and impacts) and take appropriate actions.

The UCS algorithm that we use (see Sect. 6) to guide the
exploration of models could possibly be replaced by another
OR (Operations Research) or AI (Artificial Intelligence)
algorithm, and the exploration algorithm (see Sect. 6) could
even be customized.

3.3.4 Implementing methods

The methodology and its underpinning framework presented
in this paper are not intended for use with a specific model-
ling tool or modelling language. Instead, we detail concepts
and algorithms needed to facilitate implementation. The
modelling tool provides a way of building models that illus-
trate the methodology and that may be of great practical use.

Referring to the classification of process models pro-
posed by Wynn and Clarkson (2017) in the wider con-
text of design and development, some models involved in
MODEF belong to the following model scope dimension
and model type dimension respectively: in between the
meso and macro levels and a mix of abstract, procedural,
analytic, (and possibly MS/OR models), respectively.
Thus, after the analysis carried out within MODEF, it
might feed approaches with other model scope dimen-
sion and model type dimension. These latter approaches
might in turn influence the specification of input models
of MODEF. For instance, the detailed information relative
to MA may be useful to understand how it quantitatively

affects the state—in SM—of models (M). The following
pattern summarizes the position of MODEF in that classi-
fication: Macro-level model-based approaches ↔ MODEF
↔ Micro-level model-based approaches”, where a → b or
b ← a reads: the output of a might contribute to the input
of b.

4 Abstractions of modelling activity

4.1 System of modelling (SoM) and system
and systems of modelling (SoSoM)

The SoM whose some components and their relations are
depicted on Fig. 2, is to a large extent a set of stakeholders
and their practices. Broadly speaking it is a system of peo-
ple, methods, tools, processes, standards and models (M)
in interaction, and it may be seen as a system that reflects
the engineering/modelling of a System-Of-Interest (SOI).
On Fig. 2, we have three main blocks, a blue arrow and two
orange arrows.

– At the top of Fig. 2, we have people and a sequencing
of tasks (Step A, then Step B, etc.) they carry out. This
green block (B1) represents the sequencing of MA.

– The purple block B2 contains three boxes correspond-
ing to conceptual models that represent the conceptual
contents of M.

– The blue block B3 contains the actual models (M) that
represent the SOI that is being modelled.

– The left-side and right-side orange arrows indicate that
the tasks in B1 generate models in B3 and act on con-
ceptual models with different tools respectively.

Fig. 2 Some components (and their relations) of the SoM

11Research in Engineering Design (2021) 32:3–30

1 3

– The blue arrow labelled “are linked to” on Fig. 2 indi-
cates the connection between M and the conceptual
models. Such a connection, its definition and imple-
mentation, applications are partly reported in Ernadote
(2013, 2015, 2016); Kamdem Simo et al. (2015). Those
conceptual models are useful as a means of involving
different stakeholders in the modelling process (Ernad-
ote 2015). For instance, stakeholders who are unfamil-
iar with specific metamodel concepts are involved via
domain-specific concepts related to their viewpoints.
The two kinds of concepts are therefore related via the
combination of metamodels and ontologies.

In investigating the SoM, we focus on the sequencing of
modelling tasks, the conceptual models that encapsu-
lates the main content of M. To understand the impacts
of modelling tasks on M, we link the conceptual models
to state models that characterise the expected (or lifecyle)
states of M, and we map events relating to the execution of
tasks onto transitions of state models, so as to indicate the
effects that these tasks have on states. We therefore exam-
ine the SoM from three different architectural perspectives.

Actually, several modelling projects are run in paral-
lel. Indeed, many engineering programs involve several
organisations located on different sites. Regardless of the
geographical distribution, the engineering projects often
address concerns that overlap. At the same time, the SoMs
are generally autonomous.The question is how best to
understand these SoMs and how they change over time.

The answer to this question is to be found in the SoSoM,
which is constituted by different SoMs that encompass
different projects and programs. The SoSoM is a way of
understanding the evolving relationships between SoMs.
It addresses the interactions or commonalities between
SoMs. The added-value of the SoSoM emerges from
these interactions. With the autonomy and the proper
operational capabilities of individual SoMs, it is difficult
to impose an integrated approach. Instead, as we argue in
Kamdem Simo et al. (2016), following (Sage and Cuppan
2001; Handy 1995; Charles 1992), the SoSoM may be
characterized as a federation. We recall that a Federation
has in the past been considered as a type of System of
Systems (Krygiel 1999; Sage and Cuppan 2001).

The views that we look at when analyzing the SoSoM
are the same as when analyzing the SoM: that is to say
the structure, state and MA processes linking the differ-
ent SoMs that are its components. The actual content of
these views will depend on the problem at hand at the
SoSoM level. But the relations between the different mod-
els remain the same: the states of some elements of the
structure view change under the effects of processes.

This means that the SoM and SoSoM are abstracted from
the same perspectives but have different concerns.

4.2 Examples of application

We start by presenting elements that may in practice con-
stitute a SoM, and we then discuss the problems that may
need to be addressed at the level of the SoSoM comprising
more than one SoM.

4.2.1 Running example: an SoM—modelling the functional
coverage of a SOI

Different aspects of the SOI are generally modelled by dif-
ferent stakeholders. And it might be required that at some
stage in the development process models satisfy some crite-
ria for purposes such as verification, testing, or integration.
Suppose we are only interested in the functional architecture
designed to ensure that the modelled SOI covers the func-
tional needs. What characteristics does a modelling project
need to possess for it to be defined as a SoM, say SoM0?

The following elements need to be identified:

– the sequencing of modelling tasks required to achieve
some objectives

– the conceptual models that abstract away the main con-
tents of models (M)

– the expected states of M and transitions between them
corresponding to elements of the conceptual models

– the effects (mappings) of modelling tasks on these states.

Fig. 3 is an illustration of these elements. This figure con-
tains 5 boxes (PM, AM, SM, MG and R), with dashed bor-
ders, interpreted as follows. Note here that the formal speci-
fications of the data related to these boxes are given in the
following sections.

The box (PM)—corresponding to B1 according to
Fig. 2—represents a high level view of the tasks carried out
in SoM0. This process model contains six tasks beginning
with the the task named “Model high level functions” and
ending with the task named “Validate RefinedFunctions”.

The box (AM)—corresponding to B2 according to
Fig. 2—represents the components or entities (named “Sys-
tem Component” and “System Function”) and their relation
taken into account in SoM0.

The box (SM)—not depicted in Fig. 2—that has 3 states.
The initial state is named “ Maturity < 30 ”. Typically, a state
here describes the maturity level of something that should
be known after a mapping.

The box (MG) is a mapping. In Fig 3, there is actually
5 mappings. A mapping is an element of a function TRIG-
GER defined in Sect. 5.2. A mapping is a triplet (a, l, e) ∈
TRIGGER. a is an element of AM, l is a transition in SM
and e is a set of sequences flow. For convenience, in Fig 3,
the symbols ti , i = 1..5 are used to carry the 5 mappings and
replace l and e when associated in a mapping. a is “System

12 Research in Engineering Design (2021) 32:3–30

1 3

Function” for all the five mappings. Therefore, the box MG
roughly means: the sequence flow labelled “t3” in PM, trig-
gers (dashed green arrow) the transition labelled “t3” in SM,
which is associated (dashed blue line) to the component or
entity “System Function” in AM. In practice, that implies the
state of a model’s component abstracted away by the entity
“System Function” remains “ 30 < Maturity < 60 ” if it was
already in that state and if the sequence flow labelled “t3”
in PM is taken in the process. As a result, the task “Model
detailed functions” should be carried out again. Addition-
ally, the mapping “t3” does not allow to evolve from the state
“ 30 < Maturity < 60 ” to the state “ 60 < Maturity < 100 ”,
while the mapping carried by “t4” does.

The box (R) corresponding to an A/P expectation will be
discussed later (Sect. 5.3). We may say here that a preference
(Satisfactory, Operational and Critical) is defined on the pos-
sible states associated with the entity “System Function”.

Other SoMs, which could for example be a modelling
project regarding a different viewpoint of the SOI, might be
defined in the same way.

4.2.2 Examples of problems addressed at a SoSoM level

A SoSoM exists to encapsulate the relationships between
at least two SoMs. The local view of the SoSoM is

characterized by the different SoMs, whereas the global view
will depend on the objectives at the SoSoM level. Suppose
that these objectives are as follows:

Objective 1: We want to harmonize the models (M) pro-
duced by several SoMs. By harmonization we mean to cor-
relate and explicitly identify the relationships among differ-
ent entities (of the conceptual models) within several SoMs.

Objective 2: Suppose now, we are interested in the co-evolu-
tion of the modelling within the SoMs in order to achieve some
higher goal. For this reason, although the SoMs are autono-
mous, there might be a need for agreements between them at
some points in their respective life cycles. These agreements
may ensure that different SoMs are together able to reach some
expected states at some desired time in the future.

For each of these two objectives, we now present a
SoSoM and the three main kinds of models that represent it.

Modelling harmonization—SoSoM1 Process models
(PM) will abstract the tasks carried out at the SoSoM level.
Conceptual models (AM) will correspond to the conceptual
models that are relevant at the SoSoM level. State models
(SM) will abstract the possible states at the SoSoM level
(e.g., Unknown, Ok, Ko) of M within SoM.

Suppose now that the SoSoM1 comprises n > 1 SoM
working on different modelling projects. The fact that con-
ceptual models are explicitly given by the various SoMs

Fig. 3 Running example: The input models for the problem associated to the SoM0

13Research in Engineering Design (2021) 32:3–30

1 3

represents a first step in reducing the number of redundant
models and enabling model reuse where possible. Using
processes (PM), and the expected states (SM) at the SoSoM
level, it is possible to compute the attainable points (see
modelling choices in Sect. 2) at the SoSoM level. This may
have benefits including managing model replication and rec-
onciliation procedures.

It is worth emphasising here that the process model at the
SoSoM level (and even at the SoM level) does not indicate
by what technical means tasks are executed, but it is instead
concerned with how tasks are sequenced and, using the map-
pings, the effects that different tasks have on the states of
elements.

SoSoM1 is not concerned with the state and process
models of its constituent SoMs, but only with their con-
ceptual models. However, depending on the objectives of
the SoSoM, it might be interesting to consider the state and
process models. The following SoSoM SoSoM2 provides
an illustration of this.

Modelling evolution—SoSoM2 In this case, where Objec-
tive 2 is relevant to the SoSoM, the structure, state and pro-
cess models of the SoSoM will combine the relevant subsets
of the SoM models.

So far in this section, we have characterized the SoM and
the SoSoM and we have given some application examples.
We now need to discuss how we can make use of the models
in these systems in practice.

5 Modelling modelling activity
and expectations

This section elaborates the second step (Represent struc-
ture, state and process models) (Sect. 5.1), third step (Spec-
ify structure-state-process mappings) (Sect. 5.2) and the
fourth step (Specify expectations) of MODEF (see Fig. 1)
(Sect. 5.3). We start by introducing the principles and
semantics underlying these kinds of models, and then we
present the expectation-specification formalism.

5.1 Structure, process and state models

When seeking to automate the analysis of models using
MODEF it is especially important to define the principles
underlying the models. This enables us to decouple the
implementation of step 5 (Analysis of models) of MODEF
from the logic of a particular modelling tool used to design
models. These models are mainly descriptive models.

Let the structure (abstract syntax) of a model of the sys-
tem correspond to a non-empty finite set of disjoint compo-
nents. A component is either basic (i.e. without constituent

components) or composite (i.e. with a non-empty finite set
of constituent components). Since all models are composite
structures, we may suppose for the purposes of this section
that a component c is given by

where V ∶= {c1,… cn} is the set of internal components of c,
and E ∶= {l1,… lm} is the set of directed links/connections
between elements of V and c itself (when connection ports
are considered). n and m are positive integers.

Given the structure of a model, our aim is to obtain an
interpretation of the structure in a domain of interest. The
interpretation is derived from the structure of a component.
When modelling the physical aspect of the system, a com-
ponent (an element of V) might be interpreted as a physical
element and the corresponding E a set of physical or logical
connections. However, when modelling the states (and the
transitions between them) of the system, a component might
be interpreted as a state and the corresponding E the set of
transitions between its states.

Note that although the concrete syntax (graphical sym-
bols used to render the models) is important for the end
user, it has no importance in MODEF, because our aim is
to decouple MODEF from the logic of a particular tool. It
is useful only for the user designing and/or visualizing the
models.

We now discuss the formal definitions of the semantics
of the three kinds of models considered.

5.1.1 Structure model

The semantics of structure models will depend on the system
at hand. For example, for the SoM, the structure models
are interpreted as conceptual models, while for a physical
system, they might be interpreted as computing, physical
or human components. Generally speaking, the structure
of structure models will be sufficient for the purposes of
MODEF.

Running example See the box AM in Fig. 3.

5.1.2 Process model

The semantics of process models may be seen as generators in
the sense given to the term by Ramadge and Wonham (1987).
Roughly speaking, the exploration or execution of a process
model should generate a language where the alphabet (�) is
the finite set of events and the words are the event-traces or the
sequences of events. This yields a non-deterministic automa-
ton where accepting states correspond to possible termina-
tions when the process is run. The set of words that bring the

(1)G = ⟨V,E⟩

14 Research in Engineering Design (2021) 32:3–30

1 3

automaton from its initial state to an accepting state is referred
to as the language recognized (or “marked”) by the automaton.

The reasoning behind this is that modelling tasks may
be considered as discrete-event processes. Also, the class
(principal features: discrete, asynchronous and possibly non
deterministic) of processes considered in Ramadge and Won-
ham (1987) is particularly well-suited to our needs, because
our main focus is the sequencing of tasks rather than data
processing.

We are interested in words of finite length, corresponding
to executions of processes that terminate.

Adapting (Ramadge and Wonham 1987), we formally
define our automaton as follows. A generator is a 5-tuple

where Q is the set of states q, � is the alphabet or finite set
of output symbols � , � ∶ � × Q → Q the transition function;
a partial function, q0 ∈ Q the initial state and Qm a subset
of Q called marker states or final states. G is equivalent to a
directed graph with node set Q and an edge q → q′ labelled
� for each triple (�, q, q�) such that q� = �(�, q) . This edge
or state transition is called an event. Events are considered
to occur spontaneously, asynchronously and instantane-
ously. Furthermore, an event may be recognized by an out-
side observer via its label � by an outside observer. Distinct
events at a given node always have distinct labels.

Running example In the box PM in Fig. 3, the sequence
flows (the arrows labelled ti in that process) and tasks (the
green boxes) will typically correspond to events (i.e. �) and
states (i.e. Q) respectively. See also Sect. 6.

If �∗ denote the set of all finite strings s of elements of �
including the empty or identity string 1. The extended transi-
tion function is given by � ∶ �∗ × Q → Q , �(1, q) = q, q ∈ Q
and �(s�, q) = �(�, �(s, q)) whenever q� = �(s, q) and �(�, q�)
are both defined.

The language generated by G is

It is also the set of all possible finite sequences of events
that may occur.

The language marked or recognized by G is

5.1.3 State model

The semantics of state models is characterized as an Hier-
archical Finite State Model (HFSM). By building on (1),
the definition of an HFSM is as follows.

If a component c is such that V and E are both empty
sets, c is called a basic state, otherwise, c is a composite

(2)G = (Q,�, �, q0,Qm),

(3)L(G) = {w ∶ w ∈ �∗ and �(�, q0) is defined}.

(4)Lm(G) = {w ∶ w ∈ L(G) and �(w, q0) ∈ Qm)}.

state. If c is composite, every element of V is a constituent
component of c and interpreted either as a basic state or a
composite state. An HFSM is structurally (syntactically)
a composite component. At the semantics level, this com-
posite component is equipped with an initial state and a
state-transition-relation defined in the following:

Current state–The current state of an HFSM c0 , is
given by the stack [c0, c1,… ck] , where ci is a constituent
component of ci−1 , i = 1...k , ck is a basic state.

Base state-transition relation–Let �p ∶ E × V × V , the
base state-transition relation associated to every compos-
ite component cp . (l1, c1, c2) ∈ �p means that there is a link
l1 from c1 to c2 . The actual label or event that will fire the
link or semantically the transition, is obtained via a binary
relation EVENT ⊆ 𝛴 × E that associates to a link the trig-
ger event.

Base initial state–Let c0 , c0 ∈ V the base initial state,
a particular state which indicates from which constitu-
ent component of c, c is locally initialised. “locally” here
means that the notion of hierarchy is not considered.

HFSM–Let c0 an HFSM and s([c0, c1,… ck]) a given
state of c0

• s is the initial state of c0 if and only if ci+1 is the base
initial state of ci for all i = 0...k − 1.

• the state-transition relation of c0 consists, given a cur-
rent state s([c0, c1,… ck]) , in determining a next state s′.

 s′ is given by

– s�([c0, cy1 … , cyj , cm1 … , cmx]) if cyj is an HFSM and
s��([cyj , cm1 … , cmx]) is the initial state of cyj , j > 0;

– s�([c0, cy1 … , cyj]) if cyj is a basic state;

 where cy0 ∶= c0 , cy1 ∶= c1 , ..., cyj−1 ∶= cj−1 such that
whenever (ljyj , c

j, cyj) ∈ �j−1 , j ∈ 1..k , we do not have
(liyi , c

i, cyi) ∈ �i−1 , i ≠ 0 and i ∈ 1..j − 1.
 This means that given a current state s([c0, c1,… ck]) ,

the firing of a transition corresponds to the application
of one and only one base state-transition relation of a
component ci , i ∈ 0..k − 1 provided that the base state-
transition relation of cj , for all j = 0..i − 1 , i ≠ 0 are
not defined. In other words, upper components in the
constituent hierarchy have priority when a transition
needs to be triggered.

An HFSM is deterministic if and only if given any base
state-transition relation �p it exists ��

p
∶ � × V → E × V ,

a partial function such that (e, s1, l, s2) ∈ ��
p
 if and only if

(l, s1, s2) ∈ �p and (e, l) ∈ EVENT .
Example Consider the HFSM c0 whose structure is

depicted on Fig. 4. c0 is a composite component with con-
stituents: c1 , c2 and c3 . c1 is a composite state whose struc-
ture is depicted on Fig. 4 by the rectangle with dotted

15Research in Engineering Design (2021) 32:3–30

1 3

border. c1 is equally an HFSM. c2 and c3 are basic states.
For convenience, the HFSM c0 will be deterministic. Let
EVENT, given by couples (ei, ti) , i = 1..5 , ei ∈ � . � is the
set of events that may cause transitions in c0 . The base ini-
tial states of c0 and c1 are c2 and c5 , respectively. The initial
states of c0 and c1 are [c0, c2] and [c1, c5] respectively. The
(base) state-transition relation of c1 is given by (s, t, s�) ∈
{ ([c1, c5], t6, [c1, c6]), ([c1, c6], t7, [c1, c5])}.

The state-transition relation of c0 is given by (s, t, s�) ∈
 {([c0, c2], t2, [c0, c3]), ([c0, c3], t3, [c0, c2]), ([c0, c3], t4, [c0, c1, c5]),
 ([c0, c1, c5], t5, [c

0, c1, c5]), ([c0, c1, c5], t
6
, [c0, c1, c6]),

([c0, c1, c5], t
1
, [c0, c2]), ([c0, c1, c6], t

7
, [c0, c1, c5]), ([c0, c1, c6], t

5
,

[c0, c1, c5]), ([c0, c1, c6], t1, [c0, c2])}.
The values of elements of E are fully determined after

the events from processes have been mapped or linked to
transitions of the state models via EVENT (see the following
Sect. 5.2). In virtue of this, linking an HFSM may be con-
sidered as a named/labelled transition system (Keller 1976).
That is, the transitions of an HFSM are labelled or named
with actions or events belonging to the set of the events
within processes.

HFSM have similarities with (hierarchical) finite-state
machines such as Harel statecharts (Harel 1987). In Harel
(1987) we read the following:

“statecharts=state-diagrams+depth+orthogonality+bro
adcast-communication.”

Just like with statecharts, we are dealing with the depth
of states via the composite structure of states. However, in
an HFSM, unlike in statecharts, orthogonality and broad-
cast-communication are not considered. In an HFSM, the
transitions are allowed only inside a composite component
c and between its constituent components (deeper constitu-
ent components i.e. constituent components of constituent
components etc. are not considered as constituent compo-
nents of c). Orthogonality may be managed with the parallel
composition of HFSM as described in Sect. 6. In contrast
to statecharts, which are a visual modelling techniques for
which several semantics exist (Eshuis 2009), there is only

one semantics for an HFSM, where history is not considered
by the state-transition relation. Therefore, an HFSM must be
specified accordingly. An HFSM only defines an initial state
and a state-transition relation.

Running example Consider the HFSM c� whose structure
(the box SM) is depicted on Fig. 3. c� is a composite compo-
nent with constituents: c1 , c3 and c2 labelled “ Maturity < 30 ”,
“ 60 < Maturity < 100 ” a n d “ 30 < Maturity < 60 ” ,
respectively.

Let EVENT, given by couples (ei, ti) , i = 1..5 , ei ∈ � .
� is the set of events that may cause transitions in c� .
The base initial states of c� is c1 . The initial state of c�
is [c� , c1] . The state-transition relation of c� is given
by (s, t, s�) ∈ {([c� , c1], t1, [c

� , c1]), ([c� , c1], t2, [c
� , c2]),

([c� , c2], t3, [c
� , c2]), ([c� , c2], t4, [c

� , c3]), ([c� , c3], t5, [c� , c3])}

5.2 Relations between process and state models

Having described the three kinds of models and their explo-
ration semantics, our aim is now to map the events from pro-
cesses P onto the transitions of state models of components
of structure models. In other words, these mappings (or rela-
tions) between models encapsulate the expected effects of
process models on state models.

We assume that the events generated by P—or, more pre-
cisely, their labels or values (�P)—are available to an outside
observer (see Sect. 5.1.2). Let Ga = ⟨Va,Ea⟩ , Gp =

⟨
Vp,Ep

⟩

and Gs = ⟨Vs,Es⟩ be structures (defined by (1)) correspond-
ing to the structure, process and state models, respectively.

Let PHY, TRANS and EVT be the union of all structure
components, the union of all sets of Es and the union of all
sets of Ep , respectively.

TRIGGER is the set of associations of events on the
transitions of state models of structure components. The
elements of this set are introduced in the running exam-
ple (Sect. 4.2.1). Indeed, the information of the box MG in
Fig. 3, corresponds to an element of the set. TRIGGER is
formally defined by

where (a, t, e) ∈ TRIGGER is to be interpreted as follows:
the transition t of (the state model associated to) the struc-
ture component a is possibly triggered by consuming the set
e of the events, and conversely, since e is explicitly involved
in TRIGGER, it has to be consumed. This latter requirement
is a semantics one and directly influences the exploration
semantics of models.

Running example See the box MG in Fig. 3 and the expla-
nation in Sect. 4.2.1.

(5)TRIGGER ∶ PHY × TRANS → 2EVT

Fig. 4 The structural part of an HFSM c0

16 Research in Engineering Design (2021) 32:3–30

1 3

The mappings mean that the autonomy and specificity
of the different kinds of model are preserved. Autonomy is
preserved because each kind of model may be developed
separately, while specificity emanates from the fact that
the meaning of each kind model is not altered once the
model or a part of the model is involved in an interconnec-
tion specified via (5). The interconnection has strictly no
influence on the development of these models, but rather,
a change in the models will result in the necessary changes
in TRIGGER and the re-execution of the other following
steps of MODEF.

Every element of the triplet (e, a, t) must actually be
defined as a stack (see the definition of a state of an HFSM
in Sect. 5.1.3) in order that TRIGGER is well-defined as
a function. Composite structures also avoid the need for
all the models to be systematically flattened before (and
while) an exploration is run.

The problem addressed in this paper is not the same
as the one addressed in Ramadge and Wonham (1987).
Ramadge and Wonham (1987) is concerned with the
control of the generator (object to be controlled) by a
supervisor (the controller) via a control pattern (the set
of all binary assignments to the elements of a subset of
� (these elements are referred to as controlled events or
specifications). Ramadge and Wonham were addressing a
problem that the literature sometimes refers to as supervi-
sory control, in other words, the synthesis of a model of a
supervisor from the model of the object to be controlled
or the plant and the requirements. See for example (Baeten
et al. 2016) on the integration of supervisory control in
MBSE. However, even though the approach we present in
this paper is different from supervisory control, there are
nevertheless similarities.

In our approach, the process and state models are seen
as models of the master (linked to a generator), rather
than a controller and an object to be managed or mastered
separately.

The master is a reactive autonomous process for which
a complete specification is required. A partial (i.e., without
all the labels of transitions) specification of the object to
be managed is also required. To obtain a full specification
of the object to be managed, TRIGGER must be defined.
TRIGGER specifies the expected effects of the master on
the object to be managed (which in turn will place con-
straints on how the master may evolve).

5.3 Expectation‑specification

The expectation-specification is the formal modelling of the
expected behaviours of the system. It encapsulates expecta-
tions over the MA life cycle.

5.3.1 A/P expectations derived from A/G contracts
with a pre‑order structure on G

There are two good reasons for looking at the problem
through the lens of contracts. First, contracts provide a suit-
able basis for modelling expectations within a system. Sec-
ond, contracts are easy to describe as rules, yet they are sup-
ported by formal conceptual frameworks such as (Benveniste
et al. 2012). We are seeking a means for easily involving
stakeholders while at the same time allowing expectations
to be formally dealt with in the analysis.

Expectations are grounded on Assume/Guarantee (A/G)
contracts. We are following in the footsteps of Benveniste
et al. (2012) in regard to a meta-theory of contracts.

A contract con for a system or a model is defined by
con(A, G) where

• A corresponds to the assumptions or the “valid environ-
ments” for the system or a part of the system.

• G corresponds to the guarantees or “the commitments of
the component (the system or part of it) itself, when put
in interaction with a valid environment.”.

• A and G are built on the set of behaviours related to the
system over a domain D not explicit in con.

Example: A system that realises a real division of x by y and
assigns the result to z might conform to a contract con_div
((x, y ∈ ℝ and y ≠ 0),(z ∶= x∕y)). Meaning: if the system
receives as inputs two real numbers x and y such that y ≠ 0 ,
it guarantees that z will be equal to x/y.

According to the meta-theory of contracts (Benveniste
et al. 2012), con is consistent, if there exists a model that
effectively implements con (satisfies G) for the assumptions
A of con. con is compatible if there exists a non empty envi-
ronment for con. See (Benveniste et al. 2012, Section VII)
for more details on A/G contracts definitions and operations.

Continuing with the example of the real division, con_div
is consistent because there exists a system that effectively
takes 2 real inputs x and y, y ≠ 0 and computes z ∶= x∕y .
con_div is compatible because there exists 2 real numbers x
and y, and y ≠ 0.

Note that a contract con(A, G) for a system (respectively,
system models here) does not provide any information
on how the system is implemented (respectively, is mod-
elled). Rather, it provides information on how the system is
expected to behave.

An expectation consists in expressing preferences on the
states of the system given an assumption (A). Preferences
are modelled by equipping a guarantee (G) with a pre-order
(i.e. a binary relation that is reflexive and transitive) struc-
ture. Since A/G contracts (Benveniste et al. 2012) are not
defined with a particular structure for G, we are no longer

17Research in Engineering Design (2021) 32:3–30

1 3

formally dealing with an A/G contract. For this reason, the
term preferences (P) is more suitable here.

Formally, an A/P expectation consists of a couple

where both A and P are defined from a domain D. A is theo-
retically a formula of propositional logic (or zeroth-order
logic) where atomic propositions are elements of D. When-
ever A is not given for an expectation, we suppose that it is
a tautology or that it corresponds to all possible assumptions
with regard to the behaviour of the system. P is a pre-order.
An element of D is a couple: (object, state) meaning the
component object is in state state. Given m = (o1, s1) , we
call s1 the underlying state of m.

Running example The box R in Fig 3 is actually an expecta-
tion. It specifies the following.

There is no explicit assumption i.e., A is not
given. The preferences are as follows. P:= (“Sys-
tem Function”, “ Maturity < 30 ”) ≼ (“System Func-
tion”, “ 30 < Maturity < 60 ”) ≼ (“System Function”,
“ 30 < Maturity < 60 ”) Such a pre-order (≼) is derived from
the column title MBSELab State Evaluation in Fig 3 where
“Critical” is less preferred that “Unsatisfactory” itself less
preferred than “Operational”.

Another Example Suppose m1 , m2 , m3 , m4 , m5 , m6 and m7
are elements of D. The table below gives two expectations.

Expectations

Id A P

1 m
1

m
2
≼ m

3
,m

2
≼ m

4

2 m
5
∧ m

6
m

7

… … …

In practice, the expectations with Ids 1 and 2 stand for
the following. When m1 occurs or is true, occurrences of the
situations (or the propositions) m4 and m3 , are more preferred
than m2 . And when m5 ∧ m6 is true, occurrences of m7 are
preferred (m7 should be true). It is clear that, the truth value
of elements of D is obtained from the behaviour of the sys-
tem they relate to. For the sake of simplicity, we will assume
below that A only consists of atomic propositions.

A basic question that arises is whether operations on con-
tracts also apply to expectations. The answer is certainly
no, given the structure of P. Indeed, the interpretation of
the operations on a set (G) are not directly translatable on
a relation (P). We rather consider properties (compatibility
and consistency from contracts) which, defined for expecta-
tions, shall determine whether an expectation is well defined
and feasible.

(6)exp(A,P)

Compatibility A basic way of checking the compatibility
of an expectation, just like a contract, is to verify that its
assumption is valid according to the definitions of the state
models that it is related to. Statically, A needs to be well-
defined as a proposition. However, checking the consist-
ency of some expectations would mean exploring the state
space (of the behaviour of the system) to check whether
certain states may all be reached together. If two situations
(or propositions) are not defined from the same state model,
the validity of an assumption that involves these situations
might yield a reachability problem. For example, for the
expectation with Id=2, A = m5 ∧ m6 , compatibility means
the possibility of the system being simultaneously in the
state(s) underlined by m5 and m6.

As a result, an expectation exp(A,P) is compatible if there
exists a valid environment (i.e. an environment that makes
A true) for exp.

Consistency Thinking in terms of contracts, we might won-
der what is meant by “a model that effectively implements
exp(A,P) (satisfies P)” mean, that is to say what satisfying
the preferences might entail. Before addressing this question
it is important to check that P is well defined.

Statically, we need to ensure that P is a pre-order and that
P is not contradictory. P is contradictory if, given m2,m4 ∈ D
and m2 ≠ m4 , whenever m2 ≼ m4 is defined for an expecta-
tion exp1 we also have m4 ≼ m2 defined for exp1 (or another
expectation exp2 such that the assumptions related to both
exp1 and exp2 might be simultaneously true for the system
they relate to).

Using the underlined directed graph of P, it will suffice to
check that it is an acyclic graph. Formally, P “is not contra-
dictory” syntactically means that the pre-order P is antisym-
metric i.e a partial order.

However, even if P is syntactically well defined, it might
be the case that it is not possible, according to the behaviour
of the system, to move from situation m4 to m2 . This is rather
a problem of feasibility of the expectations.

If P is well defined, checking that it is satisfied is clearly
not a Boolean question, unless there were a requirement that
all preferences are satisfied, which would be an excessively
heavy requirement. Regarding a utility function for quanti-
tatively evaluating the preferences, it would be possible to
compute how far preferences are satisfied. This concern is
addressed in Sect. 6.

Consequently, an expectation exp(A,P) is consistent if P is
not contradictory and there exists a model for the assumption
A, that effectively implements or achieves P at a given level
of satisfaction with respect to a quantitative understanding
of P.

The fact that a contract (respectively an expectation)
does not provide any information on how the system is

18 Research in Engineering Design (2021) 32:3–30

1 3

implemented, but rather on how it is expected to behave,
has significant consequences.

As a first consequence, feasibility (that is to say, whether
system models exist that satisfy expectations) is not easy to
determine. Where multiple models are mapped, given the
autonomy of different models and the fact that some models
may be subject to constraints, realizability (whether there are
models and mappings that satisfy expectations) might also
be an issue. This in turn raises the question of the complete-
ness of expectations.

It turns out that feasibility is a trade-off problem which
could imply either modifying the expectations or changing
the system models and their mappings. Furthermore, on the
assumption that we have autonomous processes, trade-offs
are not always possible. In this situation, feasibility would
be mainly defined in relation to process models and their
effects on state models. Since satisfiability is sufficient but
not necessary to deduce feasibility, all (less or more) accept-
able behaviours might help in dealing with such trade-offs
once they are allowed.

5.4 Conclusion and discussion

This section looked at the principles and exploration seman-
tics of models, described how models are related via a map-
ping, and finally we presented a formalism for specifying
the expectations on models. We now need to analyse these
models against the expectations. More importantly, the
results of the analysis have to be utilized in providing stake-
holders with relevant data: we address this concern in the
next section.

Contracts theories have been used for component-based
design, layered design and platform design (Benveniste et al.
2012). In particular, they have been identified as suitable
for open systems for which the context of operation is not
fully known in advance. In this paper, we replace guarantees
by preferences and we define and consider the notion of
Expectation instead of Contract. Additionally, this pre-order
structure of preferences is utilized by the analysis procedure,
by introducing a utility function that makes the qualitative
preferences quantitative (see Section 6.1).

The way that expectations are used in MODEF is differ-
ent from the traditional use of contracts in system design.
In system design, contracts are generally used to specify the
interactions between (heterogeneous) components or differ-
ent viewpoints (Benveniste et al. 2007; Nuzzo et al. 2014;
Damm et al. 2011), mainly in software and cyber-physical
systems. In MODEF expectations are used to specify the
expected behaviour of the system in relation to the system
models. This use of contracts is close to how they were first
used in programming, where preconditions (in our case
assumptions) and postconditions (in our case preferences)

are defined for programs (in our case system models)—see
e.g., (Hoare 1969; Meyer 1992).

In the area of model checking (Clarke et al. 2000; Baier
et al. 2008), property specifications are generally expressed
as temporal properties. One advantage of temporal proper-
ties is that they are both formally and informally understand-
able in the sense that natural language (informal properties)
may be translated into temporal logic (Tripakis 2016). A/G
contracts (and consequently expectations) are also formally
and intuitively understandable. Their consistency and com-
patibility may be verified.

6 What is achievable and what may happen
with the modelled system?

This section elaborates the fifth (Analysis of models) and
sixth (Providing useful feedbacks to the stakeholders) steps
of MODEF (see Fig. 1). We present the analysis algorithms
(Sect. 6.1) for analyzing system models in regard to expec-
tations. We then discuss possible uses of outputs from the
analysis (Sect. 6.2) and present an application on our run-
ning example (Sect. 6.3).

6.1 Analysis of system models against expectations

The fifth step of the MODEF is intended to provide the
means to effectively improve the way the system is oper-
ated. Given the models of the system and expectations and
any changes that occur therein, the stakeholders of the sys-
tem should be able to permanently identify better ways of
operating the system. What do we mean by better ways of
operating the system? To answer this question, we will first
formulate the problem clearly, and we will then look at the
procedure for solving it and the expected benefits.

6.1.1 General problem

A system (S) and its environment (E) are modelled by struc-
ture models (AM) and deterministic state models (SM) for S,
and process models (PM) for the behaviours of S and E. S is
subject to some expectations (R). A mapping (MG) encap-
sulates the actions (or the effects) of PM on SM of AM. The
different types of models AM, SM, PM, R and MG are char-
acterised and defined in Sects. 5.1; 5.3 and 5.2 respectively.
Additionally PM might be subject to some constraints (C)
for example the cost of the tasks within processes.

The global state of the closed system or its state space
is basically given by pt(cst, cev). cst is an array of states
of concurrent structure components of S. cev is an array
of events of concurrent process components of E (and pos-
sibly S). Each event in cev is additionally annotated with a
chronological ordering and a status.

19Research in Engineering Design (2021) 32:3–30

1 3

We recall from Sect. 2 that the general problem is given
by Pb(AM, SM, PM, MG, R, C, InitialPoint, StopCriterion)
relating to our question Q1: How to generate the possible
future points starting at InitialPoint up to StopCriterion?
Which points are, with respect to R and C, more acceptable
and less acceptable ones?

6.1.2 General principles for a solution

The answer to the question Q1 basically requires synthesis-
ing the possible behaviours (starting from InitialPoint) of the
closed system. Furthermore, by speaking of the acceptability
of the behaviours, we basically need to compute the “dis-
tance” between behaviours in the state space of the system.
This raises a second question Q2: How may this distance be
defined and computed?

We wish to synthesize the future possible points from Ini-
tialPoint up to StopCriterion. The general synthesis proce-
dure for solving question Q1 is summarized in Fig. 5. Before
we present this procedure, let us discuss question Q2, since
the answer to Q2 is necessary for addressing Q1.

The answer to question Q2 will consist of a means of
evaluating behaviours in order to identify their degree of
acceptability. Behaviours that more match expectations (R)
and respect constraints (C) are to be more acceptable than
those that do less or not. If expectations (R) are to be utilized
in the exploration procedure, qualitative preferences need to
be translated into quantitative values. Preferences are rela-
tive to the pre-ordering of atomic propositions.

Let us suppose that we have an appreciation (or util-
ity) function u for mapping qualitative preferences onto
a domain with numerical values. u is such that, when-
ever m4 ≤ m5 and m5 ≤ m6 for a given assumption A, then

u(m4) ≤ u(m5) and u(m5) ≤ u(m6) and u(m4) ≤ u(m6) i.e., u
preserves the pre-order structure of preferences. We will,
therefore, use an appreciation function of this kind in the
synthesis procedure as the basis for computing an aggre-
gated appreciation of a given point in the state space. Since
we require the (HFSM of the) system to be deterministic, a
transition from a source point to a target point in the state
space is evaluated with the aggregated appreciation of the
target point. This target point must be uniquely determined
by the source point and the outgoing arrow corresponding
to the transition.

Similarly, using the constraints (C) related on PM, a cost
may be represented by an arrow from a point Pt1 to a point
Pt2 in the state space of the system.

The synthesis procedure basically involves parallel explo-
rations of the PM and the SM of AM. These explorations
impact each other via the mapping MG (see Sect. 5.2).
Although there is an interplay between PM and SM, as indi-
cated in Sect. 5.2, a PM process will generally function as
a “master”, and an HFSM relating to the SM of AM as an
“object to be managed” (see Sect. 5.2).

On the other hand, an answer to the question Q2 will
be used to compute the distance between behaviours and
determine acceptable behaviours among the reachable ones.
The acceptable behaviours are the ones that do not violate
StopCriterion.

The general synthesis procedure structure is depicted on
Fig. 5. The structural explanation of Fig. 5 is a follows. The
(4) rectangles with a blue background are (sub-)procedures.
The (10) rectangles with a white background are inputs and
outputs of the 4 (sub-)procedures. The (3) rectangles with a
dashed border are outputs generated by the (sub-)procedures.
Two of those outputs, namely the rectangles entitled ’Next
Points’ and ’Possibles behaviours’, respectively, are also
inputs of 2 (sub-)procedures—the two rectangles entitled:

3 Co-exploration and 4 Search Algorithm respectively.
The source of an arrow in Fig. 5 is required for (utilizing or
obtaining) the target of the same arrow.

The meanings of rectangles from the top to the bottom of
the Fig. 5 are as follows.

• The first 3 rectangles are the basic inputs: structure mod-
els (AM) and state models (SM), mappings of models
(MG) and process models (PM).

• The models need to be explored in order to compute the
behaviours of the system they represent, whence the upper
two blue rectangles (numbered 1 and 2). The first at left
represents the primitives for exploring the SM (of AM)
under a deterministic hierarchical finite state model—
HFSM (see Section 5.1.3). The second at right represents

Fig. 5 General synthesis procedure structure

20 Research in Engineering Design (2021) 32:3–30

1 3

the primitives for exploring the generator (a non-determin-
istic state automaton) associated to PM (see Section 5.1.2).

• With the primitives mentioned above, and given SM and
PM and the mappings (MG), the possible behaviours of
the system may be generated from an initial state (either
at the first iteration using InitialPoint or at other iterations
via NextPoints), whence the blue rectangle (entitled 3 Co-
exploration) and its dependencies.

• Among the reachable or possible behaviours, those that
do not make StopCriterion true are acceptable. The blue
rectangle (entitled 4 Search Algorithm) takes as input the
possible behaviours, a stop criterion, R and C.

 Note that the answer (e.g., the appreciation function u)
to the question Q2 is intended to be problem-dependent
and will be used in the Search algorithm to differentiate
and compare the research directions in state space of the
behaviours. StopCriterion allows some possible behaviours
to be to pruned.

 Search Algorithm produces an output (NextPoints) cor-
responding to the next possible starting points of the pro-
cedure Co-exploration. Co-exploration may therefore be
resumed if the set NextPoints is not empty.

Now we need to instantiate the main sub-procedures: Search
Algorithm and Co-exploration. Other primitives for the explo-
ration of SM and PM, are discussed in Sect. 5 (their principles
and exploration semantics).

6.1.3 Main sub‑procedures: coexploration and a search
algorithm

We will suppose that the primitives for exploring SM (of AM)
and PM are available through the interfaces smInt and pmInt
respectively. Below, smInt and pmInt refer to the boxes labelled
“1 Exploration → Deterministic HFSM” and “2 Exploration →
Non-Deterministic FSA” respectively in Fig. 5.

As described above (Sect. 6.1.2), the two main sub-proce-
dures interact in a closed loop in the general synthesis proce-
dure. We have named the Search Algorithm MinBest to Min-
Worst (MBMW). MBMW selects the behaviours, whatever
their appreciation, that are closest to InitialPoint (in regard to
R and C, using an answer to question Q2). We now present
the algorithms CoExploration (Algorithm 1) and MBMW
(Algorithm 2) corresponding to the Co-exploration and Search
Algorithm sub-procedures respectively in Fig. 5.

CoExploration We have already introduced the inputs
MG, smInt, and pmInt used by the CoExploration algo-
rithm. CurPoint is either the InitialPoint or one of the
points in NextPoints, both of which feature in Fig. 5.

We recall that smInt and pmInt are the interfaces for
exploring, respectively, a set of concurrent independ-
ent process models and a set of concurrent independent
state models. The exploration semantics of these models
(or components) are presented in Section 5; but only for
one component and not for a set of components. For each
component the exploration yields an automaton that is
equivalent to a directed graph. In the case of the process
model the automaton is equivalent to the corresponding
generator. In the case of the state model the automaton
is equivalent to the corresponding flattened part of the
HFSM generated by the exploration. We can remark that
although an HFSM is translated to a flattened finite state
machine, it is convenient to deal with the composite struc-
ture in the exploration, since not all states are necessarily
enumerated.

The directed graph (that we will from now on call
the exploration graph) corresponding to the explora-
tion of a set of concurrent independent components is
given by the asynchronous composition of automatons
underlying the exploration of each component. Formally,
given n (n ∈ ℕ+ , let n = 2 for convenience) automatons
G1(Q1,�1, �1, q01 ,Qm1

) and G2(Q2,�2, �2, q02 ,Qm2
) as

defined by (2), the result G(Q,�, �, q0,Qm) of the asynchro-
nous composition of G1 and G2 is such that Q = Q1 × Q2 ,
� = (�1 × �2) + �1 + �2 , Qm = Qm1

× Qm2
 , q0 = (q01 , q02) ,

21Research in Engineering Design (2021) 32:3–30

1 3

if (q1, q2) , (q1 ∈ Q1, q2 ∈ Q2) is a node or state in Q then �
is given by:

– (q�
1
, q�

2
) = �((q1, q2)) if q�1 = �1(q1) and q�

2
= �2(q2) are

both defined
– (q1, q

�
2
) = �((q1, q2)) if �1(q1) is not defined and

q�
2
= �2(q2) is defined

– (q�
1
, q2) = �((q1, q2)) if �2(q2) is not defined and

q�
1
= �1(q1) is defined

The composition may easily be extended with n > 2 . We
now present the principles of the co-exploration semantics,
before detailing the lines of the CoExploration algorithm.

Given an initial point pt(cst, cev), cev is generated by
pmInt, and corresponds to the current state of SM of AM
available from smInt. pt is passed through the co-explora-
tion module (the grey box in Fig. 6). This module works
as follows.

The generated events (arrow (1) in Fig. 6) are given the
status proposed. The status proposed means that the event
might occur in the process.

Events that have the status proposed and that are
involved in MG are presented as inputs to smInt (arrow
(2) in Fig. 6) to trigger any fireable transitions.

After the (possible) firing of transitions, the events not
used or rejected by smInt are reconsidered (arrow (3) in
Fig. 6), while the events that were used are given the status
accepted. Whenever an event is not involved in MG it gets
the status accepted.

The status accepted means that an event does occur in
the process.

The events that have the status accepted are the only
valid events considered (arrow (4) in Fig. 6) in seeking to
refine the processes in pmInt.

The events that are not used by smInt (arrows (2) and
(3) in Fig. 6) and pmInt (arrows (1) and (4)) retain their
status.

We now are ready to comment the co-exploration algo-
rithm (Algorithm 1).

Line 1: Given the active states and events in CurPoint,
MG and smInt are used to compute the fireable transitions
from the state cst. These fireable transitions are involved in

mappings such that mapped events belong to the set of cur-
rent events in cev with the status proposed.

Lines 2, 3: If no transition is fireable, CurPoint, pmInt
and M are used for possibly evolving the processes. evolve-
Processes uses the accepted events in cev to try to generate
(using pmInt) new alternative ones i.e. some adjacent nodes
to cev in the exploration graph generated by PM.

Lines 4, 5: If some transitions (Fireable_Trans) are fire-
able, they are used in fireTrans to evolve (via smInt) the
active states i.e. by moving on the exploration graph gen-
erated by SM of AM.

Lines 6, 7, 8, 9: Whenever new transitions are fired,
they should lead the system to a single state otherwise the
system is not deterministic. Following a non-determinis-
tic nature of the system computed by isDeterministic, an
empty set is returned.

Lines 12, 13: If it is not possible to generate new points,
CurPoint is either a final point (process end) or deadlock
point (process blocked or sink state).

A Search algorithm: MBMW We assume the general
synthesis procedure may be replaced by MBMW (Algo-
rithm 2) by including among MBMW’s parameters the
CoExploration algorithm and its input parameters. The
additional input parameters of MBMW are:

– nodeScore is a function that has as its input a point in
the state space and R (the expectations), and then com-
putes an aggregated score corresponding to that point.
It will be recalled from the answer to Q2 in Sect. 6.1.2
that this score may apply to all incoming arrows at that
point, in view of the deterministic nature of HFSM.

– edgeCost is a function that has as its input an edge in
the state space and C (the constraints on processes),
and computes a cost process to go from the source
point to the target point of the edge.

The cost or costs of an edge in the state space are therefore
obtained by applying nodeScore and edgeCost, resulting
in a cost vector of ℝn

+
, n ∈ ℕ, n > 0 . The value of the first

component of this vector is given by nodeScore, and the
value or values of its other component(s) are given by
edgeCost. From an algorithmic point of view, the value

Fig. 6 The principles of the co-
exploration

22 Research in Engineering Design (2021) 32:3–30

1 3

obtained from nodeScore may be understood as a cost.
On the other hand, the cost obtained from edgeCost might
be composed of values (time, money, etc.) with different
units.

The interest of this vector is that it may be used to com-
pute a path cost in the state space that may potentially pro-
vide the distance that Q2 seeks to identify.

The outputs of MBMW are:

– SSG is the directed state space graph of acceptable
behaviours.

– ScoreAndCost is the map of the scores of the different
points and the costs of edges starting at InitialPoint.

MBMW implements a Uniform-Cost Search (UCS) algo-
rithm (Russell and Norvig 1995). It is an algorithm similar
to Dijkstra’s shortest path algorithm (Dijkstra 1959), and is
a special case of the A ∗ algorithm introduced in Hart et al.
(1968), itself a special case of a branch-and-bound algorithm
(Nau et al. 1984). The effect of the UCS algorithm here
is to always select (based on the value of scores and pos-
sibly on the costs of processes) the best (minimal) point(s)
at the next iteration in exploring SSG. We discuss UCS in
Section 6.1.3.

We now are ready to discuss the lines of the MBMW
(Algorithm 2) that are additional with respect to a basic UCS
algorithm.

Line 2, 3: These lines are about the initialisation of the
map ScoreAndCost which associates to each explored point,
the smallest path cost necessary to reach it. This cost is �⃗0 at
the initial point and at the initialisation. Since at initialisa-
tion InitialPoint has no incoming arrows, the value of nodeS-
core on InitialPoint does not matter at initialisation.

Lines 9, 10, 11: Whenever at a given point, the stopCrite-
rion is true, the point is not expanded further in the explora-
tion of SSG. At this line, the consistency and compatibility
of R are also computed (see Sect. 5.3).

Lines 12: Calling CoExploration is the means by
which CurPoint’s neighbors i.e. its successors in SSG, are
generated.

Line 24: A test to check if Cur (see Line 23 of Algo-
rithm 2) dominates Alt (see Line 17 of Algorithm 2). Such
a dominance relation must be defined.

Line 30: SSG is updated every time a new point or a new
edge is discovered. An update involves adding a node in
SSG, creating a edge or, both.

Now we need to show that at the end of MBMW, i.e.
the end of the general procedure regarding: the problem
P(AM, SM, BM, MG, R, C, InitialPoint, StopCriterion),
the following statement holds:

SSG stores all the minimal paths from InitialPoint to
all acceptable points i.e. the points that are reachable and
whose predecessors do not make StopCriterion true.

Before we go through the proof which is straightfor-
ward, note that a judicious choice of the termination cri-
terion StopCriterion (max-depth, max-score, max-cost,
computing time, etc.) should ensure that MBMW will
eventually stop.

Proof and complexity of MBMW The state space gener-
ated by the co-exploration is a directed graph (SS) possibly
infinite but gradually discovered. In SSG, nodes are points
and edges are characterized by the sequencing (or the paths
of execution) of events from PM with associated states of
SM of AM.

23Research in Engineering Design (2021) 32:3–30

1 3

The procedure MBMW applies the UCS algorithm on-
the-fly while SS is discovered. It allows to select a subgraph
(SSG) of SS based on R and C and StopCriterion.

The UCS algorihtm is an optimal, uninformed (or blind)
search algorithm (Russell and Norvig 1995). This concludes
the proof.

The complexity (time and space) of MBMW is the com-
plexity of UCS with the input parameter SS. This complexity
is given by O(bf 1+⌊C∗∕�⌋) (Russell and Norvig 1995). The
branching factor (bf) is the (average) out-degree of each node
in SSG. � is the minimum value of an edge cost to avoid
the algorithm deadlocks in an infinite loop which implies
lack of completeness. The map ScoreAndCost (built on the
input functions edgeCost and nodeScore of MBMW) has as
codomain positive real vectors that should guarantee that
minimum. C∗ is the maximum total path-cost reached for a
path in SSG.

This complexity might be seen to corroborate some the-
oretical results from the literature. It has previously been
shown that the design process problem (the design process
being a non-deterministic, evolutionary process that seeks
to go from an initial set of presumed specifications and an
empty product to the realized product in the ideal case,1 with
all specifications satisfied) is NP2-hard (Braha and Maimon
2013, Chapter 6). This informally means the problem is at
least as hard as NP-Complete problems. Subsequently, the
system design problem (system design being a process that
translates customers’ needs into a buildable system design)
was shown to be a NP-complete problem (Chapman et al.
2001). This informally implies that currently there is no
known fast procedure for providing a solution to the sys-
tem design problem. See e.g., (Michael and David 1979) for
details on NP-completeness.

As argued earlier this paper, the SoSoM comprises
autonomous and possibly partly independent stakeholders.
This makes changes in behaviours within E unpredictable
although they are continuously specified via PM. In turn,
the system’s behaviour is never definitely fixed.

If we are dealing with a critical system that typically
evolves over periods of between several days and several
months (see Sections 1) and includes creative, iterative
behaviours that it is difficult to automate, we will probably
find it better to seek to guarantee optimality only over short
periods. This will involve repeatedly executing MBMW
throughout the life cycle of the system. Although the SoM
and SoSoM are complex, the state space of their behaviours
should typically be smaller than that of other kinds of sys-
tems, e.g., cyber-physical systems.

6.2 Using MBMW

In this section, we discuss some input parameters and how
SSG may be used to obtain useful results from MBMW in
practice. These parameters are: u, edgeCost, nodeScore,
StopCriterion. Some of them will be used in the running
example in Sect. 6.3.

6.2.1 Setting up input parameters

Input parameters are as follows.
∙ StopCriterion: This corresponds to a maximum path

cost and/or a maximum depth in SSG and/or a maximum
number of cycles authorized during the co-exploration.

∙ edgeCost: This gives the total process cost related to
the resources consumed by an arrow in SSG. In this paper
this cost is assumed to be a single business value. But it is
not considered in the operation of MBMW because we did
not specifically define the resources allocated to the tasks
inside processes. We have assumed that this business value
is the same for all tasks, thus making this cost irrelevant
in the operation of MBMW. For such a cost to be relevant,
aggregation and addition operators related to it would need
to be defined. Nonetheless, we discuss the expected impacts
of edgeCost on MBMW in Section 7.

∙ u: This appreciation function maps preferences P for
expectations onto a numerical domain. In this paper, u maps
each proposition of P to the set {0, 1, 2, 3, 4, 5} (or gener-
ally j...j + 5 , j ∈ ℤ). The elements in this set indicate, in
ascending order, the worst (0) to the best (5). This choice
of u reduces the diameter of an underlined directed graph
of a preference to a maximum of 5. Such a reduction also
translates via u, the preorder structure of P into a structure
of total order.

∙ nodeScore: It defines the magnitude of each rank and the
aggregation of corresponding values using u. We therefore
define nodeScore as follows. Assume for a given R, and a
point pt in SSG, there are atomic propositions linked to A
(Assumption) that are possibly true (with respect to pt). And
let N0 , N1 , N2 , N3 , N4 and N5 the corresponding numbers of
atomic propositions in P (related to A via an expectation)
mapped to 0...5 respectively. Let POINTS be the set of nodes
in the graph SSG. Then nodeScore is defined as follows.

given by (pt, req) ↦ NS(N0,N1,N2,N3,N4,N5) ↦ s , where
aggr ∶ ℕ

5
→ ℝ is an aggregation function.

s and NS are scores. s is an aggregated score and the NS a
per rank score, where Nj corresponds to the rank j. We recall
from Sect. 6.1.3 that, s must be such that s ≥ 𝜖 > 0 for all
function aggr.

(7)nodeScore ∶ POINTS × 2R → ℕ
5

aggr
����������������→ ℝ

1 See (Braha and Maimon 2013, Chapter 6) for the other terminal
states.
2 Non-deterministic Polynomial-time.

24 Research in Engineering Design (2021) 32:3–30

1 3

The importance of aggr and s is as follows. We want
every path in SSG to be given a cumulative score enabling us
to obtain a priority for each node so as to define a total order-
ing (≤) among the candidate nodes to explore. The lower
the cumulative score of the nodes along a path in SSG, the
higher the priority of the nodes on that path (see line 7 in
the Algorithm 2). Any nodes where the cumulative score
exceeds a given maximum score may be pruned.

Arguably, the question of how aggr is defined is impor-
tant, and definitions need to be tailored for particular appli-
cations. For example, there are a number of ways of sca-
larizing the vector NS (max, min, min-max, a mean, etc.).
Another possibility would be to avoid scalarization and to
deal directly with vectors. Different strategies may also be
combined. The way that Nj are obtained (by counting) might
also be questioned, since different components of a system
may not all be of equal importance. However, this is not rele-
vant with respect to the input models considered in MODEF,
where no importance factor is defined for the components.

6.2.2 Utilization of SSG

SSG is a rooted directed graph that is utilized by extracting
data from it that are relevant to the behaviour of the closed
system.

We first define what is meant by the color of a node in
this graph. Given the aggregated score (N0 , N1 , N2 , N3 , N4 ,
N5) of a node pt in SSG, the color of pt is an integer a whose
value is as follows: if N0 ≠ 0 a ∶= 0 else if ... else if N5 ≠ 0
a ∶= 5.

In addition, each node pt in SSG is linked to a second
color b, whose value is the highest color among the succes-
sors of pt in SSG. Each node in SSG thus has a correspond-
ing couple (a, b), that may be used as follows to refine SSG.
Whenever, at a given node pt, b does not exceed a given
value, say x, we may not consider it useful to investigate the
sub-graph that has pt as its root, and so SSG is pruned to
yield a usable graph.

Example. Take the graph in Fig. 7. The nodes in this
graph are labelled with a|b. The rooted sub-graphs repre-
sented by the four triangles in Fig. 7 are such that, at their
root node, we have a ≤ b.

From InitialPoint up to the leaf nodes it is straightforward
to determine whether or not a node with a given color will
be investigated.

For instance, in Fig. 7 there is a node with the color b
equal to 1. Normally, any node requires investigation if
the modelling tasks take a path that leads to it. Since an
execution simply follows a path in SSG, the nodes pro-
vide an understanding of what will happen if some tasks
are executed. As a result, knowing which nodes may be
considered problematic and the path(s) leading to them is
useful, enabling us either to redesign the processes or to

review the expectations on the system. It will be remarked
that MBMW may be resumed from a given point in SSG.

There might be other data analogous to the information
conveyed by (a, b) for each node in SSG, computable using
graph algorithms, and providing further relevant informa-
tion from SSG. An example might be the smallest value
among the colors of nodes in a path.

During the operation of the system modelled with the
input models, stakeholders can be provided with two kinds
of information: either (R1) everything is ok, or (R2) some-
thing might not be ok. For instance, using the data a of the
leaf nodes in SSG or the refined SSG, it might be decided
to signal (R1) if every a is greater than a given value x,
otherwise to signal (R2). Returning to Fig 7, let x = 2 . In
this case the information is R2 because of the two leaf
nodes (a = 2 , a = 1).

It follows from the foregoing that MODEF is insightful
in providing an understanding of the impacts of processes
before they are executed. However, MODEF is more
interesting when the processes and expectations might be
subject to continuous changes, i.e., when it is difficult to
compute the definitive behaviour of the system over a long
period. Where there is definitive behaviour, state space
explosion might become a serious issue.

In addition to the utilization of SSG described above,
the flattened automatons generated by the exploration
of the process and state models are available separately.
These might be useful for diagnostic purposes.

Fig. 7 Tailoring of SSG

25Research in Engineering Design (2021) 32:3–30

1 3

6.3 Running example

We shall summarize the general problem Pb(AM, SM, PM,
MG, R, C, InitialPoint, StopCriterion) (see Sect. 6.1.1)
related to SoM0 and show how the analysis may be utilized.

For this case study, we define aggr(N0, ...,N5) to be equal
to �5

i=0
Ni ∗ 105−i∕�5

i=0
Ni . The idea is to give a high priority

to the points with good preferences while at the same time
being able to control the maximum score authorized along
a path.

As mentioned earlier, C is not taken into account. We
also associate (see Fig. 8) the usual colors to the color of the
nodes in SSG: green to 5, yellow to 4, orange to 3, red to 2,
black to 1 and grey to 0.

6.3.1 Problem, analysis and information

We continue with the SoM (SoM0) presented in Sect. 4.2.1
and for which the corresponding models are depicted in
Fig. 3. The SoM0 focuses on the modelling of the functional
coverage of a SOI whose objective is to ensure that the SOI
meets functional requirements.

The box (R) in Fig. 3 is the representation of the specifi-
cation of expectations (R) as in a modelling tool. This expec-
tation means: regardless of the assumption (A) (therefore
considered as a tautology, see Sect. 5.3), a System Func-
tion in state Maturity < 30 is less preferred than in state
30 < Maturity < 60 , which in turn is less preferred than
in state 60 < Maturity < 100 . The rank of preferences is
materialized with colors and some qualitative words (Opera-
tional, Unsatisfactory, etc.) in the tool. For the readability of
the figure, the mappings (MG) are indicated with tk, k = 1..5
((tk, SystemFunction) ↦ {{tk}}) , and that corresponding to t3
is illustrated with the dashed blue and green arrows.

Therefore, apart from the data InitialPoint and StopCri-
terion, all the other data of the problem Pb(AM, SM, PM,
MG, R, C, InitialPoint, StopCriterion) are depicted in Fig. 3.

Let InitialPoint be (state ∶= Maturity<30 , event:=Start).
Although the PM on the right of Fig. 3 is not complex,

its state space is possibly infinite since there are cycles in
the sequencing of its sub-processes or tasks. Therefore we
set StopCriterion as: max-process-depth∶= 7 . It will be
remarked from the PM at right of Fig. 3 that at least 7 events
or six tasks are necessary to reach the end of a possible
execution of SoM0. Since PM is not complex, we do not set
a value for max-score. For the execution we also set b > 4.

SSG is depicted in Fig. 9. In this figure the color of each
node is given by the value of b, which is given by the execu-
tion algorithm. The value of a is given by R (in Fig. 3). For
instance, the state “ Maturity < 30 ” is evaluated as “Criti-
cal”, and therefore for the InitialPoint we have a = 2.

Again the data corresponding to the nodes are not dis-
played, for the readability of the graph. The states and events
associated to the leftmost (the root), the red, the orange, and
the rightmost nodes in Fig. 9 are:

(Event = [Start–>Model high level functions], State =
[Maturity < 30]),

(Event = [Validate HighLevelFunctions–>Model high
level functions], State = [Maturity < 30]),

(Event = [Validate DetailledFunctions–>Model detailed
functions], State = [30 < Maturity < 60]),

(Event = [Refine functions–>Validate RefinedFunctions],
State = [60 < Maturity < 100]) respectively.

The red and orange nodes come from the fact that
MBMW computes the shortest path to reach each of them.
In Fig. 9 we can see that after the end of the task “Vali-
date HighLevelFunctions” two transitions are possible with
respect to MG: t1 or t2 . If t1 (resp. t2) occurs, the system will
stay at the state “ Maturity < 30 ” (resp. “ 30 < Maturity < 60

”). This is why after the node successor of the root node, two
paths are possible. The path leading to the red node (resp.
the other green node) is related to the case where t1 (resp. t2)
occurs. Similar logic applies to the orange node.

The first piece of information that can be signalled to the
stakeholders is (R2) i.e. something might not be ok during
the operation of the SoM0. There are red and orange nodes
that correspond to the cases where, after the tasks “Validate
HigLevelFunctions” and “ValidateDetailedFunctions”, the
tasks that directly precede them need to be executed again.
In practice, such scenarios could typically require the allo-
cation of additional resources if those allocated previously

Fig. 8 The colors associated to nodes in SSG

Fig. 9 The SSG graph for
the SoM0 with max-process-
depth=7 and b > 4

26 Research in Engineering Design (2021) 32:3–30

1 3

have been used up. Thus, by having the process models of
modelling activity that is to be carried out and its impacts
(expectations and mappings) on the states of produced mod-
els (M), MODEF makes it possible to anticipate problems
that might arise.

6.4 Conclusion and discussion

6.4.1 On the analysis

The problem formulated in Sect. 6.1.1 and the subsequent
proposed solution in Sect. 6.1.2 have similarities with model
checking (Clarke et al. 2000; Baier et al. 2008) and systems
synthesis (Ramadge and Wonham 1987; Pnueli and Rosner
1989).

Model checking—State space analysis is generally car-
ried out to verify finite-state concurrent systems. The tech-
niques generally used for verification are simulation, testing,
deductive reasoning, and model checking. Model checking is
one technique for automatic verification of finite-state con-
current systems. A model-checking process could comprise
three main steps (Baier et al. 2008). (1) Model the system
(S) with a description language and express the properties
or specifications (R) of the system using a property specifi-
cation language. (2) Check the validity of P systematically
in S. (3) Analyse a violated property or an out of computer
memory.

The basic description of S is a state-transition model
whereas that of R is a temporal logic formula. Although
model checking is automatic, it usually faces the state explo-
sion problem and the problems of computation cost and
computer memory. Advanced techniques such as abstraction,
binary decision diagrams, partial order reduction, compo-
sitional reasoning, and probabilistic exploration have been
developed for addressing such problems, even though the
memory problem remains (Baier et al. 2008). However,
model checking is well-suited when analytical methods are
difficult or impossible to apply in practice (Tripakis 2016).
Model checking has several advantages, namely, it is fast,
executable with partial specifications, it provides counter-
examples and does not require proof. Nonetheless, the more
data variables there are, the more challenging model check-
ing becomes.

Systems synthesis—The standard synthesis (“Be Correct”
(Bloem et al. 2014)) consists in restricting the actions of
the system so that when the environment of the system is
known (making the system closed), the system will always
satisfy a given property. Depending on the hypothesis on the
environment (controllable or not controllable) and on the
system (complete or incomplete specification), the synthesis
may be reduced to verification or model checking (Tripakis
1998, Chapter 9). When the specification of the system is
fixed independently of its environment the synthesis may

be reduced to verification of the closed system. When, on
the other hand, the specification of the system is fully deter-
mined only up to the definition of its environment, the syn-
thesis may be reduced to model checking. However, in cases
where the environment is not fully determined and the speci-
fication of the system is incomplete, it is rather a question of
seeking strategies to ensure that the closed system satisfies
a given property (Tripakis 1998, Chapter 9).

With respect to the assumptions we made for S and E,
which are close to the assumptions made in Bloem et al.
(2014), especially when the system features human opera-
tors, the operation of the system is not likely always to be
optimal. We believe that “Be correct” (i.e. “everything must
be ok”) in this latter situation is too strong a requirement.

Since some pioneering works (Ramadge and Wonham
1987; Pnueli and Rosner 1989) on system synthesis, there
has been active research on the synthesis of reactive systems
(systems that react as the result of the actions of their envi-
ronment on them). Reactive Synthesis Competition (Jacobs
and Bloem 2016) is an example of work to emerge from
this trend.

Two invariants of synthesis algorithms are, first, the use
of temporal logics as the property specification language
and, second, the search for a wining strategy or a counter
strategy. This is also the case in model checking (Clarke
et al. 2000; Baier et al. 2008). Synthesis algorithms are more
usually applied to software and cyber-physical systems,
while we are mainly concerned with systems where the role
of human operators is important. In this paper, expectations
are specified via Assume/Preference formalism.

Recently, quantitative objectives, i.e. the adoption of a
non-binary satisfaction of a specification were introduced in
Bloem et al. (2009). There, the authors’ approach involved
synthesizing a system with respect to a boolean specification
complemented with quantitative aspects given by weighted
automata. As argued in Bloem et al. (2009), the satisfaction
of a specification could be evaluated on a scale of varying
degree rather than via a binary indicator.

In MBMW, the measure of “goodness”, i.e., how good
an implementation (behaviours of the system here) is with
respect to a given specification corresponds to the cost
(determined by R and C) of a path here. MBMW computes
points (from bad to good) that are reachable at a mini-
mal distance from the initial point until the stop criterion
becomes true. In the present paper, unlike (Bloem et al.
2009) and almost all the approaches that emerged subse-
quently on the basis of their work, a specification is defined
using A/P expectations instead of a temporal property or
automata. The quantitative nature of objectives (preferences
here) is derived from qualitative objectives and the apprecia-
tion function, and possibly also from constraints (cost, time,
etc.) on processes. This quantitative aspect is taken into
account via MBMW (which could be replaced by another

27Research in Engineering Design (2021) 32:3–30

1 3

search algorithm from operations research) applied on the
discoverable state space of the closed system.

We do not deal with quantitative languages (Chatterjee
et al. 2009), weighted automata (Droste and Gastin 2007), or
simulation distances (Fahrenberg and Legay 2014; Romero-
Hernández and de Frutos Escrig 2014). Neither do we con-
sider games (in the sense of Game theory) where the envi-
ronment and the system are adversarial, as in most popular
synthesis approaches (Bloem et al. 2014). We believe that
our reasoning is justified by the fact that we are not deal-
ing with “a controller” and “an object to be controlled” in
the sense of controller synthesis, but rather with “a master”
and “an object to be managed or mastered”; see Sect. 5.2
for the explanation. Finally, the general synthesis procedure
synthesises the behaviours of the closed system. We could
also argue that the closed system is verified with respect to
expectations and possibly constraints on processes.

6.4.2 Utilizing the results of analysis

An essential part of MODEF is the way feedback is provided
to stakeholders.

Assuming that stakeholders are already capable of build-
ing the models necessary to run the analysis and to generate
results, the feedback step formalizes what it is the models
relate to and helps stakeholders to understand, preserve,
and share and reuse knowledge about the modelled entities.
From an operational point of view we show in Sects. 6.2.2
and 6.3.1 how MODEF may be insightful in providing syn-
thetic and intuitive graph-based data relating to the behav-
iours of the system. These data may help stakeholders to
optimize how the system functions, know the “path” to fol-
low, take preventive and corrective actions, or simply model
new actions. These new actions may in turn be processed via
MODEF and generate further feedback.

If models are accompanied by an appropriate analysis
and appropriate tools for utilizing them, they can greatly
support the formal end-to-end operation of the system they
represent. They can be considered as inputs or references to
a further optimization.

7 Concluding remarks

In this work, we addressed the modelling activity carried out
in a context of model-based systems engineering framework
and environment characterized in Section 1. The challenges
identified and enumerated were:

(1) How to better understand and use models in this con-
text: what models are present in a particular location
and what do they represent?

(2) How to analyse and identify the impact of changes
in models: what is the current state of models and in
which states are they likely to end up?

(3) How best to manage the way that models evolve: what
is required for models to reach desired states?

To tackle those challenges, we have proposed MODEF and
its underpinning framework. We have then considered with
rationale some hypotheses and assumptions and the derived
principles and models on which the proposed framework
and MODEF stand. Thus, the modelling activity is first
characterized as a system (and a federation of systems) in
its own right. At the level of the architecture of this system,
we described a class of discrete-event processes models for
modelling the tasks carried out in a modelling activity; a
class of conceptual models for modelling the conceptual
content of models (M) generated and operated by modelling
activity; and a class of finite state models for modelling the
expected life cycles of the same models (M). The effects of
the tasks on life cycles are also modelled via some triggers (a
function). We introduced the assumption/preference expecta-
tions formalism (a pre-order structure based on propositions
in propositional logic) to formalise the expectations related
to the life cycles. In order to check how far expectations (and
possibly process constraints) are achievable and to synthe-
size the expected behaviours of the system, we defined an
analysis procedure based on a co-exploration of process and
state models and constrained by triggers. Results generated
by the analysis procedure provide information about what
might occur in the modelling tasks, and about their poten-
tial impact on the whole state of M. We showed how these
results can be utilized in a way that provides insightful data
on how the system is operated and how it can behave. Based
on this information, it is possible to take informed actions
impacting the way that modelling activity proceeds.

AM and SM i.e. models of models (M) produced by mod-
elling activity (MA) answer the challenge (1). The analysis
algorithm answers the challenge (2). The processing and
use of results (data) produced by the analysis algorithm
partly answer the challenge (3). The other part to answer
(3) being a decision-making issue, although analysis and its
use underpin decisions, they cannot necessarily trigger or
prevent decisions!

Some limitations and perspectives are as follows.

Constraints and analysis In our use of the analysis algo-
rithm, described in Sect. 6, we currently consider a single
cost (related to node score) and a total ordering of the cumu-
lated costs. Another use that deals with constraints (time,
etc.) on processes and a partial ordering of cumulated costs
will be suitable. Indeed, a total ordering is not always easy
to set up and becomes impossible to set up when objec-
tives are conflicting. In this perspective, other aggregation

28 Research in Engineering Design (2021) 32:3–30

1 3

techniques (bipolar evaluation, stochastic ordering, etc.), the
Pareto dominance and other comparison criteria that induce
a partial order could be helpful. Besides, as argued in the
paper, the UCS algorithm may be replaced by another one—
e.g. an algorithm from AI or OR.

A/P Expectations Independently of MODEF and just like
the operations (see (Benveniste et al. 2012, Section VII)) on
A/G contracts, it could be interesting to study operations that
could be applied on A/P expectations. Since preferences (P)
are based on relations (in a mathematical sense), operations
on relations could be helpful in this regard.

Modelling choices We made some modelling choices that
allow us to understand certain relevant aspects of Model-
ling Activity. One might argue that those modelling choices
do not represent some aspects of Modelling Activity, what
would probably be true, but we argued in Section 1 that
“Models generally provide a partial, sometimes incomplete
view of the actual modelled thing ...”. Nevertheless, these
modelling choices have allowed us to further build ways to
address the 3 identified challenges. Just like the UCS algo-
rithm which may be replaced, equivalent modelling choices
could be considered. A goal is to get new insights—not
obtainable by a human within reasonable amount of time—
from models by running the analysis routine.

A class of systems We said in Section 2 that MA is evolu-
tive and even creative, and furthermore, MA may not be
specified once for all. These features (evolutive, creative and
iterative) are not specific to MA. They may characterize a
class of systems. Systems that do not belong to such a class3
include for instance working cyber-physical systems such as
aircraft and autonomous vehicles, because neither does the
pilot or the human operator exhibit creative and evolutive
behaviour that alters the system design, nor is the system
continuously reworked, re-specified. Even recurring main-
tenance operations are not intended to change the design of
a car or an aircraft. Note: a system aircraft is different from
a system engineering-of-an-aircraft.

Thus, the principles of MODEF and its underpinning
framework could be applicable for other systems included
in such a class.

Models reuse for analysis Although the practical reuse of
models (AM, SM, and PM) for analysis concerns is out of
the scope of this paper, a Federated Architecture (FA) and
means (data structures and base algorithms) for its imple-
mentation are specified in Kamdem Simo (2017). Those

means are useful for projecting a class of models coming
from a modelling tool to data structures independent of it.
This may foster the implementation of methods.

Experimentation Several experiments of MODEF are nec-
essary to make new observations in situ and examine its
overall validity. In particular, such experiments will provide
data on MODEF’s components efficiency and accuracy, and
thus feedbacks for improvements and for considering new
hypotheses.

Acknowledgements This work was carried out and funded in the
framework of the Labex MS2T. It is supported by the French Govern-
ment, through the program “Investments for the future” managed by
the National Agency for Research (Reference ANR-11-IDEX-0004-02).
This work is co-funded by the Airbus Defence and Space company.
The first author would like to thank all those who contributed to the
quality of this paper.

References

Abeille J (2011) Vers un couplage des processus de conception de
systèmes et de planification de projets: formalisation de connais-
sances méthodologiques et de connaissances métier. PhD thesis

Ackoff RL (1971) Towards a system of systems concepts. Manag Sci
17(11):661–671

American Association for the Advancement of Science (2016) The Rise
of Systems Engineering in China (Science/AAAS, Washington,
DC, 2016). Science/AAAS Custom Publishing Office, https ://
www.scien cemag .org/sites /defau lt/files /custo m-publi shing /docum
ents/ALSSE suppl ement _Final onlin e.pdf. Accessed June 2018

Baeten JC, van de Mortel-Fronczak JM, Rooda JE (2016) Integration
of supervisory control synthesis in model-based systems engineer-
ing. Complex systems. Springer, Berlin, pp 39–58

Baier C, Katoen JP, Larsen KG (2008) Principles of model checking.
MIT Press, London

Bar-Yam Y (2003) When systems engineering fails-toward complex
systems engineering. In: Systems, Man and Cybernetics, 2003.
IEEE International Conference on, IEEE, vol 2, pp 2021–2028

Benveniste A, Caillaud B, Ferrari A, Mangeruca L, Passerone R,
Sofronis C (2007) Multiple viewpoint contract-based specifica-
tion and design. International symposium on formal methods for
components and objects. Springer, Berlin, pp 200–225

Benveniste A, Caillaud B, Nickovic D, Passerone R, Raclet JB, Reinke-
meier P, Sangiovanni-Vincentelli A, Damm W, Henzinger T,
Larsen KG (2012) Contracts for system design. Research Report,
INRIA. https ://hal.inria .fr/hal-00757 488/docum ent. Accessed Apr
2015

Blanchard BS (2004) System engineering management. John Wiley
and Sons, New Jersey

Bloem R, Chatterjee K, Henzinger TA, Jobstmann B (2009) Better
quality in synthesis through quantitative objectives. International
Conference on Computer Aided Verification. Springer, Berlin,
pp 140–156

Bloem R, Ehlers R, Jacobs S, Könighofer R (2014) How to han-
dle assumptions in synthesis. https ://arxiv .org/pdf/1407.5395.
Accessed July 2015

Bonjour E (2008) Contributions à l’instrumentation du métier
d’architecte système: de l’architecture modulaire du produit à
l’organisation du système de conception. https ://tel.archi ves-ouver
tes.fr/tel-00348 034/docum ent. Accessed Dec 2014

3 except if they may be modelled under the classes of finite state
machine and discrete event processes. See Hypotheses in Section 2.

https://www.sciencemag.org/sites/default/files/custom-publishing/documents/ALSSEsupplement_Finalonline.pdf
https://www.sciencemag.org/sites/default/files/custom-publishing/documents/ALSSEsupplement_Finalonline.pdf
https://www.sciencemag.org/sites/default/files/custom-publishing/documents/ALSSEsupplement_Finalonline.pdf
https://hal.inria.fr/hal-00757488/document
https://arxiv.org/pdf/1407.5395
https://tel.archives-ouvertes.fr/tel-00348034/document
https://tel.archives-ouvertes.fr/tel-00348034/document

29Research in Engineering Design (2021) 32:3–30

1 3

Braha D, Maimon O (2013) A mathematical theory of design: founda-
tions, algorithms and applications, vol 17. Springer Science and
Business Media, Berlin

Browning TR, Eppinger SD (2002) Modeling impacts of process archi-
tecture on cost and schedule risk in product development. IEEE
Trans Eng Manag 49(4):428–442

Chapman WL, Rozenblit J, Bahill AT (2001) System design is an np-
complete problem. Syst Eng 4(3):222–229

Charles H (1992) Balancing corporate power: a new federalist paper.
Harvard Bus Rev 70:6

Chatterjee K, Doyen L, Henzinger TA (2009) Expressiveness and clo-
sure properties for quantitative languages. In: Logic In Computer
Science, 2009. LICS’09. 24th Annual IEEE Symposium on, IEEE,
pp 199–208

Cho SH, Eppinger S (2001) Product development process modeling
using advanced simulation. http://web.mit.edu/eppin ger/www/pdf/
Cho_DTM20 01.pdf. Accessed Apr 2015

Clarke EM, Grumberg O, Peled D (2000) Model checking. The MIT
Press

Coudert T (2014) Formalisation et exploitation de connaissances
et d’expériences pour l’aide à la décision dans les processus
d’ingénierie système. https ://oatao .univ-toulo use.fr/12182 /1/
Coude rt_12182 .pdf. Accessed Dec 2014

Damm W, Hungar H, Josko B, Peikenkamp T, Stierand I (2011) Using
contract-based component specifications for virtual integration
testing and architecture design. In: Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2011, IEEE, pp
1–6

Dijkstra EW (1959) A note on two problems in connexion with graphs.
Numerische Mathematik 1(1):269–271

Dori D (2002) Object-process methodology: a holistic systems para-
digm. Springer-Verlag, Berlin

Droste M, Gastin P (2007) Weighted automata and weighted logics.
Theor Comput Sci 380(1–2):69–86

Eckert CM, Wynn DC, Maier JF, Albers A, Bursac N, Chen HLX,
Clarkson PJ, Gericke K, Gladysz B, Shapiro D (2017) On the
integration of product and process models in engineering design.
Des Sci 3:E3. https ://doi.org/10.1017/dsj.2017.2

Ernadote D (2013) An automated objective-driven approach to drive
the usage of the naf framework. Information Systems Technology
Panel (IST) Symposium Accessed October 2013

Ernadote D (2015) An ontology mindset for system engineering. In:
Systems Engineering (ISSE), 2015 IEEE International Sympo-
sium on, IEEE, pp 454–460

Ernadote D (2016) Ontology reconciliation for system engineering.
In: Systems Engineering (ISSE), 2016 IEEE International Sym-
posium on, IEEE, pp 1–8

Eshuis R (2009) Reconciling statechart semantics. Sci Comput Pro-
gramm 74(3):65–99

Fahrenberg U, Legay A (2014) The quantitative linear-time-branching-
time spectrum. Theor Comput Sci 538:54–69

Fiorèse S, Meinadier JP (2012) Découvrir et comprendre l’ingénierie
système. CEPADUES Editions. ISBN 978.2.36493.005.6

Friend T (2017) Agile Project Success and Failure (The Story of the
FBI Sentinel Program). https ://resou rces.sei.cmu.edu/asset _files
/Prese ntati on/2017_017_001_49573 3.pdf Accessed May 2017

Gausemeier J, Gaukstern T, Tschirner C (2013) Systems engineering
management based on a discipline-spanning system model. Pro-
ced Comput Sci 16:303–312

Handy C (1995) Trust and the virtual organization. Harvard Bus Rev
73(3):40

Harel D (1987) Statecharts: a visual formalism for complex systems.
Sci Comput Programm 8(3):231–274

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Trans Syst Sci
Cybern 4(2):100–107

Hoare CAR (1969) An axiomatic basis for computer programming.
Commun ACM 12(10):576–580

INCOSE (2014) Systems engineering vision 2025, http://www.incos
e.org/docs/defau lt-sourc e/about se/se-visio n-2025.pdf. Accessed
Aug 2015

INCOSE (2015) Systems engineering handbook: a guide for system
life cycle process and activities, 4th edn. John Wiley and Sons,
Inc, New Jersey

Jacobs S, Bloem R (2016) The reactive synthesis competition: Synt-
comp 2016 and beyond. https ://arxiv .org/pdf/1611.07626 .
Accessed Dec 2016

Jamshidi M (2008) System of systems engineering-new challenges for
the 21st century. Aerosp Electron Syst Magaz IEEE 23(5):4–19

Kamdem Simo F, Lenne D, Ernadote D, (2016) Towards modelling of
modelling in SE. In: (2016) IEEE International Symposium on
Systems Engineering (ISSE). Edinburgh, United Kingdom

Kamdem Simo F (2017) Model-based federation of systems of mod-
elling. Systems and Control [cs.SY]. Université de Technologie
Compiègne (UTC), 2017. English. NNT : 2017COMP2374. https
://tel.archi ves-ouver tes.fr/tel-01948 889/

Kamdem Simo F, Lenne D, Ernadote D (2015) Mastering SoS com-
plexity through a methodical tailoring of modeling: Benefits and
new issues. In: Systems Conference (SysCon), 2015 9th Annual
IEEE International, IEEE, pp 516–520

Karniel A, Reich Y (2011) Managing the dynamics of new product
development processes: a new product lifecycle management para-
digm. Springer Science and Business Media, Berlin

Keller RM (1976) Formal verification of parallel programs. Commun
ACM 19(7):371–384

Kent S (2002) Model driven engineering. Integrated formal methods.
Springer, Berlin, pp 286–298

Krygiel AJ (1999) Behind the wizard’s curtain. an integration environ-
ment for a system of systems. Technical report, DTIC Document

Leonard J (1999) Systems engineering fundamentals. Technical report,
DTIC Document

Melo AF (2002) A state-action model for design process planning.
PhD thesis, Department of Engineering, University of Cambridge

Meyer B (1992) Applying ’design by contract’. Computer 25(10):40–51
Michael RG, David SJ (1979) Computers and intractability: a guide

to the theory of np-completeness. WH Free Co, San Fransico,
pp 90–91

Nau DS, Kumar V, Kanal L (1984) General branch and bound, and its
relation to a* and ao*. Artif Intell 23(1):29–58

Nuzzo P, Xu H, Ozay N, Finn JB, Sangiovanni-Vincentelli AL, Murray
RM, Donzé A, Seshia SA (2014) A contract-based methodology
for aircraft electric power system design. IEEE Access 2:1–25

O’Donovan BD (2004) Modelling and simulation of engineering
design processes. PhD thesis, University of Cambridge

Pnueli A, Rosner R (1989) On the synthesis of a reactive module. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ACM, pp 179–190

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of
discrete event processes. SIAM J Control Optim 25(1):206–230

Reich Y (2017) The principle of reflexive practice. Des Sci 3:E4. https
://doi.org/10.1017/dsj.2017.3

Romero-Hernández D, de Frutos Escrig D (2014) Coinductive defi-
nition of distances between processes: beyond bisimulation dis-
tances. International Conference on formal techniques for dis-
tributed objects, components, and systems. Springer, Berlin, pp
249–265

Russell S, Norvig P (1995) Artificial intelligence. Prentice-Hall, Egn-
lewood Cliffs, p 27

http://web.mit.edu/eppinger/www/pdf/Cho_DTM2001.pdf
http://web.mit.edu/eppinger/www/pdf/Cho_DTM2001.pdf
https://oatao.univ-toulouse.fr/12182/1/Coudert_12182.pdf
https://oatao.univ-toulouse.fr/12182/1/Coudert_12182.pdf
https://doi.org/10.1017/dsj.2017.2
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_495733.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_495733.pdf
http://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf
http://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf
https://arxiv.org/pdf/1611.07626
https://tel.archives-ouvertes.fr/tel-01948889/
https://tel.archives-ouvertes.fr/tel-01948889/
https://doi.org/10.1017/dsj.2017.3
https://doi.org/10.1017/dsj.2017.3

30 Research in Engineering Design (2021) 32:3–30

1 3

Sage AP, Cuppan CD (2001) On the systems engineering and manage-
ment of systems of systems and federations of systems. Informa
Knowl Syst Manag 2(4):325–345

Sage AP, Rouse WB (2009) Handbook of systems engineering and
management. John Wiley and Sons, New Jersey

SEBoK (2016) SEBok Guide to the Systems Engineering Body of
Knowledge, http://sebok wiki.org. Accessed June 2017

Shaked F, Reich Y (2018) A Framework for Development Process
Design and its use for Establishing Intellectual Property Govern-
ance: Introduction of the PROVE framework using a case study.
In: IEEE 13th Annual Conference on System of Systems Engi-
neering (SoSE), pp 22–28

Sharon A, Perelman V, Dori D (2008) A project-product lifecycle man-
agement approach for improved systems engineering practices.
INCOSE Int Sympos 18:942–957

Sharon A, de Weck OL, Dori D (2011) Project management vs. systems
engineering management: a practitioners’ view on integrating the
project and product domains. Syst Eng 14(4):427–440

Steward D, Tate D (2000) Integration of axiomatic design and project
planning. In: Proceedings of ICAD2000, First International Con-
ference on Axiomatic Design, MA-June, pp 21–23

Tripakis S (1998) L’analyse formelle des systèmes temporisés en pra-
tique. PhD thesis, Université Joseph-Fourier-Grenoble I

Tripakis S (2016) Compositionality in the science of system design.
Proceed IEEE 104(5):960–972

Vareilles E, Coudert T, Aldanondo M, Geneste L, Abeille J (2015)
System design and project planning: model and rules to manage
their interactions. Integr Comput-Aided Eng 22(4):327–342

Whittle J, Hutchinson J, Rouncefield M (2014) The state of practice in
model-driven engineering. IEEE Softw 31(3):79–85

Wynn DC (2007) Model-based approaches to support process improve-
ment in complex product development. PhD thesis, University of
Cambridge

Wynn DC, Clarkson PJ (2017) Process models in design and develop-
ment. Res Eng Des. https ://doi.org/10.1007/s0016 3-017-0262-7

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://sebokwiki.org
https://doi.org/10.1007/s00163-017-0262-7

	Principles for coping with the modelling activity of engineered systems
	Abstract
	1 Introduction
	2 Motivation, hypotheses, problem formulation and contributions
	3 Related work
	3.1 Systems engineering and modelling activity
	3.2 Product-and-project approaches in systems engineering
	3.3 Position of MODEF
	3.3.1 Abstracting modelling activity
	3.3.2 Modelling modelling activity
	3.3.3 Analysis with models
	3.3.4 Implementing methods

	4 Abstractions of modelling activity
	4.1 System of modelling (SoM) and system and systems of modelling (SoSoM)
	4.2 Examples of application
	4.2.1 Running example: an SoM—modelling the functional coverage of a SOI
	4.2.2 Examples of problems addressed at a SoSoM level

	5 Modelling modelling activity and expectations
	5.1 Structure, process and state models
	5.1.1 Structure model
	5.1.2 Process model
	5.1.3 State model

	5.2 Relations between process and state models
	5.3 Expectation-specification
	5.3.1 AP expectations derived from AG contracts with a pre-order structure on G

	5.4 Conclusion and discussion

	6 What is achievable and what may happen with the modelled system?
	6.1 Analysis of system models against expectations
	6.1.1 General problem
	6.1.2 General principles for a solution
	6.1.3 Main sub-procedures: coexploration and a search algorithm

	6.2 Using MBMW
	6.2.1 Setting up input parameters
	6.2.2 Utilization of SSG

	6.3 Running example
	6.3.1 Problem, analysis and information

	6.4 Conclusion and discussion
	6.4.1 On the analysis
	6.4.2 Utilizing the results of analysis

	7 Concluding remarks
	Acknowledgements
	References

