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Abstract
Production, assembly or logistic systems exist in widespread domains. It is agreed that more than 50% of life-cycle per-
formance, costs and environmental impacts of such systems are due to those decisions that are made in their early design 
stages (Reich, Res Eng Design 28(4):411–419, https ://doi.org/10.1007/s0016 3-017-0270-7, 2017). However, the large scale 
and multi-disciplinary essence of such systems make their design considerably challenging. Most of the design approaches 
follow a sequential approach such that the design in each lower level is finalized/frozen before proceeding to the next level. 
However, such approaches do not properly address the interaction between different design disciplines which may later lead 
to design inconsistencies. Therefore, this paper aimed to propose a modelling framework that allows having an integrated 
approach in the early design stages of such systems. To this end, first the framework prescribed developing an executable 
meta-architecture that can embody all the design requirements. Second, the framework describes the interconnections between 
the meta-architecture with certain supporting algorithms and optimization models. This allows generating and simulating 
different design alternatives and observing the impact of different design decisions on system integrated performance. 
Therefore, the proposed framework with its providing outcomes can be used to support the decision making in early design 
stages of such systems. The framework is applied in a real case study from the warehousing domain, which serves to show 
the practical application of the proposed framework.

Keywords Complex engineering systems · Object Oriented modelling · Systems engineering · System logical architecture · 
Discrete event simulation · Finite state machine

1 Introduction

1.1  Background

Manufacturing, assembly, and logistics systems are the 
main elements in supply chains of many industries, such 
as agriculture, fabrication, and electronics. The general 

performance characteristics of aforementioned systems 
are dependent on the decisions that are made in their ini-
tial design stages (Gu et al. 2001; Christophe et al. 2010; 
Umeda et al. 1996; Reich 2017). Different references treated 
the targeted systems as complex systems from the design 
perspective (Koo 2005; Bar-Yam 2002; Schuh et al. 2008; 
Wolfram 1985; ElMaraghy et al. 2005; Vrabič and Butala 
2011). Although it is hard to find a globally accepted defini-
tion for complex systems, it is agreed that complex systems 
usually comprise of a large number of interacting elements 
and studying complex systems requires research across mul-
tiple disciplines (Wolfram 1985; Bar-Yam 2002; Schuh et al. 
2008).

The targeted systems operate based on certain engineer-
ing processes. For instance, a warehouse system includes 
several handling, sorting, packaging, and unpacking pro-
cesses. However, internal operations of processes are inde-
pendent and each may perform several operations. Thus, 
being a large scale is one of the main characteristics of the 
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targeted systems. The processes dynamically interact to fulfil 
the overall system functionality, particularly to transit the 
items (e.g. products) through the system. The overall system 
behaviour in terms of item transition can be characterized 
by some events happening at discrete time points (McGinnis 
et al. 2006; Mönch et al. 2011). Therefore, being dynamic is 
another characteristic of the targeted systems. Each process 
may operate using diverse types of resources, including soft 
and physical. These systems accomplish their functional-
ity by proper integration of both soft and hard elements. 
Hence, the design of such systems requires the involvement 
of multiple design disciplines (Zheng et al. 2016; Gause-
meier et al. 2011). Therefore, being multidisciplinary is 
another characteristic of such systems. Emergent behaviour 
is a key aspect of complex systems, which happens due to 
the interactions between system elements. However, it is not 
easy to precisely predict the emergent behaviour prior to 
observing the dynamic interactions (White 2007; Bar-Yam 
2004). The combination of the aforementioned characteris-
tics lends these systems to the complex system class from 
the design perspective (Koo 2005; Bar-Yam 2002; Schuh 
et al. 2008; Wolfram 1985; ElMaraghy et al. 2005; Braha 
et al. 2006; Vrabič and Butala 2011; McGinnis et al. 2006, 
2011). Hence, the targeted systems are called ‘Complex 
Engineering Systems’ (CESs), which is an umbrella term 
referring to the aforementioned systems in this paper.

1.2  Research scope

This paper aims to propose a framework to support the CES 
design, at the early design stages, in three ways as given 
below. The motivations for the following objectives are 
described afterwards.

1. Managing the complexity of the design knowledge by 
providing a prescriptive approach for structuring the 
design knowledge.

2. Enabling integrated design by having a holistic design 
approach in terms of addressing both non-physical 
(operational policies) and physical aspects of the sys-
tem concurrently. The holistic approach should allow 
observing the impact of design decisions on the dynamic 
behaviour of the system.

3. Enabling integrated (multidisciplinary) design to facili-
tate achieving design consistency.

The design knowledge includes a broad range of con-
cepts, including objectives, constraints, and requirements. 
Managing the complexity of the design knowledge is a 
challenging task in CES design (ElMaraghy et al. 2005; 
INCOSE 2015; Chakrabarti and Blessing 2014; Sitton and 
Reich 2018). Particularly, the manner of structuring the 
design knowledge in a proper artefact (model) has a direct 

impact on realizing the design integration (Chakrabarti and 
Blessing 2014). Such complexity usually makes the design-
ers from different disciplines to design in silos (Fishwick 
2007; Baker and Canessa 2009; Rouwenhorst et al. 2000; 
Mönch et al. 2011). Existing design approaches mostly fol-
low a sequential approach, which hardly integrates the vari-
ous design stages (Cochran et al. 2000). Therefore, the con-
nection between low-level design decisions and high-level 
system objectives cannot be captured properly, so it is not 
easy to recognize how design decisions at various stages 
affect the overall system performance. Moreover, it is likely 
that some aspects of the system and its design knowledge are 
being overlooked in such sequential approaches (Tomiyama 
et al. 2007). Hence, having a holistic approach is essential 
to realize integrated-multidisciplinary design (Maropoulos 
and Ceglarek 2010), otherwise inconsistency between dif-
ferent design disciplines and failures may happen. Particu-
larly, operational policies or non-physical aspects of CESs 
are mostly designed when the physical design is finalized 
(frozen). For example in designing a warehouse, the design-
ers may prefer to design narrow aisles for saving on space 
cost. Yet, double-command-storing-picking (storing and 
picking in one aisle simultaneously) is not feasible (con-
sistent) with narrow-aisles. Design failures because of such 
inconsistencies happen quite often when designers from dif-
ferent disciplines make their decisions separately (Komoto 
and Tomiyama 2012). This emphasizes the importance of 
proper structuring of the design knowledge in an artefact that 
allows an integrated design to realize the design consistency. 
The sequential approach may lead to shrinking the solution 
space and losing a better solution (Wang 2012; Pape et al. 
2013). Designing the warehouse with ‘wide aisles’ in con-
junction with double-command mode not only can improve 
the throughput, but may reduce the required numbers of 
pickers, which results in a lower total cost. However, a sys-
tematic integration between different design disciplines is 
rarely addressed in the current literature (Zheng et al. 2016).

Generally, CESs achieve their intended overall func-
tionality through the proper dynamic interaction of their 
processes. Although simulation is a promising approach 
for observing the dynamic behaviour of CESs, it is often 
used relatively late in the design process when the impor-
tant design decisions are already taken and key performance 
criteria are determined. Hence, it is crucial to observe the 
impact of the single design decisions (in different disci-
plines) on the dynamic behaviour of the system, so design-
ers can make more realistic decisions at early design stages.

To the best of the authors’ knowledge, there is a need for 
a modelling framework that can assist in integrated design of 
CESs (McGinnis et al. 2006; Thiers 2014; Wang and Dagli 
2008; Tomiyama et al. 2009; Mönch et al. 2011; Zheng et al. 
2016). The framework should allow integrating the design 
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in different disciplines in a holistic manner, such that the 
design ‘freeze’ happens on a multidisciplinary ground.

2  Literature review

Modelling in early design stages is defined as the transition 
from a problem situation, model requirements to a defini-
tion of what is going to be modelled and how (Robinson 
2006). In the CES design context, system architecture should 
embody the requirements in a model that demonstrates the 
system’s desired function (Dori 2002; Abdoli and Kara 
2017b).

Wagenhals et al. (2003) proposed a modelling approach 
for system architecting of systems that are related to Depart-
ment of Defence missions. Application of object oriented 
(OO) approach using Unified Modelling Language (UML) 
was recommended to model the system architecture. The 
framework suggested transforming the UML model to Col-
oured Petri Net (CPN) formalism to provide an executable 
architecture (model to model: MtM). Ultimately, the execut-
able model was used to simulate/observe the behavioural 
performance aspects of a design alternative.

In another work, a modelling framework was introduced 
by the application of OPM (Object Process Methodology), 
CPN, and ‘feature model’(Wang and Dagli 2013). Feature 
model was used to visualize the system elements and their 
relationships. OPM model was used as a hub between CPN 
and feature model. CPN formalism was used to simulate the 
dynamic behaviour of the alternatives.

Thiers introduced a design methodology to support the 
analysis of logistics systems by automating the process of 
building the analysis models (simulation) from a descrip-
tive model of the system architecture (Thiers 2014). System 
modelling language (SysML) and CPN were used, respec-
tively, to present the descriptive model of the architecture 
and to make the executable model. It was suggested using 
an automated builder program to make a CPN model from 
a SysML model.

Meng introduced an approach to model a reconfigurable 
manufacturing system by application of coloured timed 
object-oriented Petri Nets (PN) (Meng 2010). Material 
flow characteristics and time constraints were modelled as 
tokens attributes. However, the quantitative formulation of 
the problem to achieve a rigorous system configuration was 
not addressed.

These references (Wang 2012; Wagenhals et al. 2003; 
Meng 2010; Thiers 2014) mainly recommended a modelling 
approach and relied on designer’s tacit knowledge for system 
architecting (Alves and Silva 2009). However, a prescriptive 
modelling approach reduces the required effort for model-
ling the design knowledge and supports the design processes 
more effectively (Schotborgh et al. 2012).

Koo developed object-process network (OPN) as a 
modelling language, for system architecting based on OO 
approach and PN formalism (Koo 2005). OPN has flaws in 
providing explicit mechanisms for automatically generating 
alternatives and modelling the constraints that are related 
to the integration of different objects. Moreover, OPN has 
shortcomings regarding representing static relationships 
between system entities.

Dauby and Dagli (2011) proposed a methodology for 
the assessment of the system alternatives (Dauby and Dagli 
2011). The ‘extensible modelling’ was defined as modelling 
the system attributes with a hierarchical structure, which 
each higher level aggregated the lower level parameters. 
‘Canonical Design Primitives’ were defined as basic repre-
sentations for genres of the system’s physical components. 
‘Sensitivity functions’ were defined to predict the impact of 
trading one design primitive with another. It was assumed 
that the system architecture and mathematical relationships 
for sensitivity functions are known. Moreover, the impact 
of each design primitive on the alternative performance was 
assessed in isolation without taking into account the possible 
interactions between system elements.

Ziv-Av and Reich (2005) introduced a hierarchical 
approach for product-concept generation from the given 
customer requirements (Ziv-Av and Reich 2005). The high-
est layer addressed the requirements and the following levels 
can address their possible relationships. This work used a 
quadratic programming approach to formulate a solution 
and assess objectives satisfaction. The presentation of the 
requirements was similar to the house of quality develop-
ment. However, the presented approach addressed the prod-
uct concept development according to its physical compo-
nents and studying the operational procedures of a CES 
received less attention. Moreover, analysing the dynamic 
behaviour of a product or system was not addressed.

Most of the existing frameworks basically describe the 
system architecture with a static language, such as UML or 
SysML, which are powerful in visualizing the architecture 
from a specific point of view. Yet, such languages do not 
provide substantial execution semantics compared to PNs 
for capturing the dynamic behaviour of the system (simu-
lation). Although PN (or CPN) formalism has promising 
features for computational analysis, it has shortcomings in 
visualizing the system architecture meaningfully and sim-
ply (Khan 2010; Jørgensen 2004; Wagenhals et al. 2003; 
Yaroker et al. 2013; Wang 2012). In the current literature, 
it is tried to bridge this gap using a complex chain of MtM 
transformation (Fleck et al. 2013; Bortolini et al. 2016). Yet, 
developing and working with MtM transformation-based 
approaches require a high level of expertise in programming. 
On the other hand, such transformation models do not com-
pletely exist and are still evolving (Matei and Bock 2012; 
Fleck et al. 2013; Alvarez Cabrera et al. 2010; Moses 2002; 
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Mijatov et al. 2015; Mayerhofer et al. 2013; Kapos et al. 
2014; Zhow et al. 2015; Nikolaidou et al. 2012; Huang et al. 
2007). OPM can be located between PN and UML/SysML. 
Although OPM visualizes the system architecture meaning-
fully, it does not include a well-established computational 
and execution semantics compared to PN. For instance, 
this reference (Dori et al. 2016) used MtM transformation 
between OPM and Matlab to enhance the OPM capabilities 
by its integration with Matlab computational capabilities. 
More issues regarding the MtM transformation are discussed 
comprehensively in Kapos (2015).

Sitton and Reich (2018) introduced a framework for 
coordination between the systems in an enterprise (Sitton 
and Reich 2018). The introduced approach mainly focuses 
on improving the core processes that define the enterprise. 
Hence, the paper addresses the architecture development 
when the enterprise systems already exist. Therefore, the 
scope of the paper is different from the design at the early 
stages. Hence, model-based simulation has not received its 
deserved attention.

The papers that used MtM (Wang 2012; Wagenhals et al. 
2003; Meng 2010; Thiers 2014; Schönherr and Rose 2009; 
McGinnis 2006 and Ustun 2009) mostly modelled the opera-
tional policies as an invariant part of the model structure. 
Hence, simulation of different alternatives did not address 
different operational procedures. However, the decisions 
regarding the selection of operational policies can strongly 
affect the dynamic behaviour of a system. For example, 
Thiers (2014) suggested modelling the system procedures 
in behavioural diagrams of SysML, which dictates the opera-
tional procedures to the generated alternatives. Similarly, 
the developed model by reference (Wang 2012) could not 
generate alternatives that vary in their operational policies. 
Therefore, existing frameworks have flaws in their ability 
to capture the design knowledge holistically in terms of 
addressing both structural and behavioural aspects in one 
model (Abdoli and Kara 2017a).

As conclusion, four specific shortcomings are identified 
in the reviewed frameworks, as summarized;

1. Lack of prescriptive guidelines for system architecting.
2. Demonstrating the system architecture and realizing the 

dynamic behaviour in separated modelling formalisms.
3. Modelling operational policies as the model invariants.
4. Lack of an integrated modelling framework with the fol-

lowing characteristics: first, addresses different design 
aspects including; generation of different alternatives 
and their assessments, and second, provides a systematic 
interconnection between different models such that they 
can interchange their results.

3  Modelling framework

3.1  Framework overall structure

A prescriptive modelling framework clarifies the design 
tasks, their logical sequence, and how to perform those 
tasks (Albers and Braun 2011; Tomiyama et al. 2009; Este-
fan 2003; Cloutier and Verma 2007). Systems Engineering 
(SE) is a well-known approach to assist with the design of 
multidisciplinary systems and concentrates on system prop-
erties (Kossiakoff et al. 2011). Hence, this paper uses SE 
principles to define the overall structure of the proposed 
framework in terms of the needed tasks and their logical 
sequence.

From the design perspective, the SE process can be bro-
ken into four fundamental tasks, as shown in the upper sec-
tion of Fig. 1. After the requirement analysis, the system 
engineer designs the system’s logical architecture in terms 
of system decomposition to logical subsystems, developing 
their interaction interface, and allocating the requirements 
to them (Douglass 2016; Osorio et al. 2011). Design at early 
stages is considered equivalent to designing the system’s 
logical architecture (Komoto and Tomiyama 2012). Differ-
ent design alternatives are configured by selecting from pos-
sible key options for design requirements without focusing 
on their detail design. The goodness of the design alterna-
tives can be assessed with respect to certain measures of 
effectiveness (MoEs) and accordingly a preferred alternative 
is nominated for the detail design, this analysis is called 
trade study. Down-stream engineers develop the detailed 
designs of subsystems. A design alternative is needed to 
be validated to assure its conformance to the requirements.

In the V-model of SE, the activities on the left side 
define what is to be designed, building a foundation for 
detail design. The right-side activities focus on integration-
validation, trying to ensure that the development process 
delivers an outcome that conforms to requirements. V-model 
gives great attention to the integration-validation activities 
from the beginning of the development process, so it tries to 
directly interconnect the integration-validation phase with 
system logical architecture design (system architecting). 
This direct interconnection conforms to what was explained 
regarding the importance of observing the dynamic behav-
iour of design alternatives in early design stages.

Generally, business experts perform the requirement 
analysis and provide the design knowledge for the design-
ers. Detail designs are also domain and case dependent. 
Hence, this paper assumes that the design knowledge is 
available and downstream engineers perform the detailed 
design. Indeed, this paper focuses on system design from the 
SE perspective. Nonetheless, design is an iterative process 
of design generation, evaluation, and redesign (Pahl et al. 
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2007). Hence, the trade study can be repeated several times 
during the design process. Thus, this research also addresses 
the trade study in the framework. Therefore, from SE per-
spective, the required tasks in the proposing framework are 
given below and highlighted in Fig. 1.

1. System logical architecture design.
2. System validation (validation of design alternatives in 

system level).
3. Trade study.

From the design perspective, the model of the logical 
architecture should indicate the allocation of the design 
requirements to the subsystems. In the CES design context, 
the simulation-based assessments mainly aim to examine the 
dynamic behaviour of the design alternatives to observe/val-
idate their conformance with the requirements, yet as men-
tioned, simulation-based approaches are mostly used very 
late when the important design decisions are already taken. 
Therefore, in this framework, the trade study takes into 
account the simulation (validation from an SE perspective) 

results for evaluating the design alternatives at the system 
level. This helps to select a better alternative for the detail 
design. The proposed framework is implemented in Matlab-
Simulink. However, the framework can be implemented in 
other similar platforms as well.

3.2  Framework requirements

Table 1 demonstrates how the tasks of the proposed frame-
work (set of How-Means) can satisfy the research objectives. 
This cross-examination helps to define the explicit require-
ments from the framework.

The system architecture is different from the design alter-
natives. In fact, the system architecture model can stand as a 
meta-model such that different alternatives conform to that. 
Yet, it is required to generate different alternatives that their 
specifications differentiate them, while a design alternative 
is feasible if it meets the requirements and satisfies the con-
straints. A meta-logical architecture opens avenues to gener-
ate the design alternatives algorithmically. Accordingly, the 

Fig. 1  Framework structure
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required artefacts in the framework along with their essential 
features are summarized as follow;

1. Architecting guidelines to develop the system’s logical 
architecture.

2. Executable Meta-logical-architecture;

(a) Includes design modules that allow integrated 
(multidisciplinary) design.

(b) Embodies operational and physical design require-
ments that realize the holistic design approach.

(c) Captures the dynamic behaviour of design alterna-
tives.

(d) Design alternatives are its instances.
(e) Formulates MoEs for the purpose of design 

assessment/improvement

3. A mechanism that generates design alternatives con-
forming to the logical architecture.

4. A winnowing mechanism that identifies non-feasible 
alternatives for early identification of design inconsist-
encies.

5. A model that applies the design constraints on a feasible 
alternative.

3.3  Framework overview

Figure 1 demonstrates the overall structure of the proposed 
framework. One of the main artefacts of this framework is 
named System-State-Meta-Model (SSMM). Same authors 
recently published a modelling approach to develop SSMM, 
which is an executable Meta-logical-architecture and allows 
modelling a CES in a holistic manner (explained shortly) 
(Abdoli and Kara 2017a).

‘Design knowledge database’ stores the possible genres 
for each design requirement. The ‘alternative generation’ 
algorithm configures possible design alternatives by the allo-
cation of design options (genres) to the design requirements. 
The ‘feasibility checking’ algorithm crosses off the infeasi-
ble alternatives, when the configuration of selected genres 
does not generate a feasible system alternative.

The framework utilizes certain optimization–quantifica-
tion models, which seek to develop a numerical model for 
a feasible qualitative alternative, as shown in Fig. 2. The 
optimization–quantification models provide the initial but 
not validated values for Key Performance Indicators (KPIs) 
or MoEs. This framework uses linear programming (LP) and 
automated layout design program (ALDeP) as its optimiza-
tion–quantification models, which the later one may only be 
used for those CESs that need a layout design.

Finally, the numerical model of an alternative is coupled 
with the SSMM such that the alternative can be simulated 
with the SSMM to observe its behaviour. The simulation can 

validate the optimization–quantification results, which can 
be utilized in the trade study to evaluate/improve the alterna-
tives and select a better one for detail design.

3.4  Framework artefacts and their interconnection

3.4.1  SSMM

The explained modelling approach in this section (pub-
lished by the same authors) satisfies the first and second 
How-Means (A and B) from the proposed framework. The 
approach is briefly described in the current paper and inter-
ested readers are referred to the published work for more 
details.

OO modelling approach was used for managing the com-
plexity of the design knowledge and accordingly achieving 
architecting guidelines, especially for having a holistic 
approach in modelling the system architecture, as given 
below.

 1. Abstracting the CESs to abstract processes and 
acknowledging them as abstract classes that reflects 
the item state transformation in a CES (from input to 
output).

 2. Acknowledging the sub-process process concept (fac-
tual process) as an abstract class.

 3. Acknowledging the item concept as an abstract class.
 4. Acknowledging process enablers as abstract classes.
 5. Subclasses should be derived from the sub-process 

abstract class equivalent to the factual processes; sub-
process.class

 6. Subclasses should be derived from the related enabler 
abstract classes equivalent to the special types of ena-
blers; enabler.class

 7. Design requirements (DRs) from the enablers are 
addressed as design attributes of the related enabler.
class.

Fig. 2  Evolution of a design alternative in the framework
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 8. Subclasses should be derived from item abstract class 
equivalent to the factual items; item.class

 9. Formulating the system use case as a function of the 
required abstract processes and sub-processes for each 
factual item (process flow).

 10. Addressing interaction attributes; ‘Item Arrival’ and 
‘Item Departure’ attributes for sub-process abstract 
class and also ‘Required processes’ attribute for the 
item abstract class. The latter one is valued by the 
aforementioned use case formulation.

According to the guidelines, a CES logical architecture 
is modelled by developing its class diagram, fulfilling the 
first identified research gap. The first six guidelines make 
an abstraction hierarchy and decompose the CES to develop 
the structure of the logical architecture. The design attributes 
(DRs) are the translation of system requirements that are 
allocated to the enabler.classes based on the given architect-
ing guidelines. Hence, the guidelines satisfy the realization 
of How-Means A in the framework. The explained abstrac-
tion and hierarchical decomposition allow addressing all 
types of DRs in the logical architecture; both operational and 
physical requirements (partial realisation of How-Means-
B). In this approach, a process can have any type of physi-
cal or operational enabler, so the process concept covers a 
broad range and is not limited to the transforming material 
or energy and so on. In the early design stages, the available 
information is limited to knowing the genres of a design 
solution (Dauby and Dagli 2011). The design options (gen-
res) for a DR are called design-objects.

The aforementioned guidelines mainly contribute to visu-
alizing the holistic approach by the joint demonstration of 
the dynamic aspects of a CES and all types of its DRs in its 
logical architecture. Yet, a true realization of the holistic 
approach requires a proper modelling formalism such that 
can capture the dynamic aspects of the system by simulating 
its behaviour. The authors proposed establishing the logi-
cal-architecture as a Finite State Machine (FSM) model to 
achieve an executable Meta-logical-architecture, which was 
called the SSMM. The main idea relied on modelling a CES 
as a machine such that the DRs were considered equiva-
lent to the states (design-requirement-state) of the machine 
with respect to its structure (according to the explained 
hierarchal decomposition). Each design-requirement-state 
encompasses certain sub-states representing its possible 
design-objects (object-states). Each object-state carries its 
own state-function for modelling its dynamic behaviour in 
its discipline. In return, the SSMM could allow the realiza-
tion of integrated (multidisciplinary) design. These state-
functions were called object-state-functions. Hence, the 
architecting guidelines resultant from OO modelling were 
mapped into FSM formalism, as given below:

1. Classes are mapped to states.
2. Associated classes to a higher-level class are mapped as 

sub-states of the corresponding supper state.
3. Item.class, process.class, and enabler.class are mapped 

to, respectively, item.state, process.state, and enabler.
state.

4. Design attributes of an enabler.class are mapped to 
design-requirement-states of the equivalent enabler-
state.

5. Design-objects of a DR are mapped to sub-states (object-
state) of the corresponding design-requirement-state.

6. ‘Item Arrival’ and ‘Item Departure’ attributes are 
mapped to variables of the corresponding process.states.

7. ‘Required-processes’ attribute is mapped to a constant 
of the corresponding item. states.

Accordingly, a design alternative can be configured by 
activating one object-state for each and all of the design-
requirement-states. Thus, SSMM is meta-model such that all 
alternatives conform to that. Alternatives can vary in their 
activated design-objects for their operational policies. As a 
result, the operational policies are not dictated to the SSMM 
(or being its invariant property). This realizes How-Means 
B, which serves to fulfil the third identified research gap.

The previous work of the authors mainly focused on 
explaining the core of the modelling approach. Yet, elabora-
tion on addressing the specification of the design knowledge 
in the SSMM was left as the future research, for instance 
whether a design alternative meets the design constraints 
or how good it is in satisfying the KPIs compared to other 
alternatives. Hence, a design alternative should carry certain 
level of quantification such that allows alternative’s simu-
lation, for instance number of equipment. Therefore, it is 
needed to establish a systematic interconnection between 
design knowledge and SSMM to realize the simulation of the 
alternatives by SSMM. Hence, the new introduced concepts 
in the current paper can be summarized into; developing the 
optimization–quantification models, introducing supporting 
algorithms, explaining a full detail approach for leverag-
ing the SSMM to an executable artefact, developing the 
interconnections between the SSMM, optimization–quan-
tification models, and supporting algorithm as shown in 
Fig. 1. All the figures and tables (including the case study) 
in this paper are newly introduced in this current work of 
the authors.

3.4.2  Design database

Generally, decision making requires certain parameters to 
perform different analysing activities. Hence, it is crucial 
to define a proper set of parameters, including constants 
and variables, such that they provide the required basis 
for data interoperability between the framework artefacts 
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(algorithms, optimization–quantification, SSMM). Figure 3a 
introduces a taxonomy for the involving parameters in the 
design alternatives in this framework. DRs and design-
objects are already explained. Problem constants (PCs) 
refer to those specifications that are fixed irrespective to 
the design decisions, such as required throughput or total 
budget.

The design knowledge database stores certain objects 
equivalent to the process.classes, which are called process-
objects. The database also stores objects equivalent to fac-
tual items, which are called item-object. The known charac-
teristics of a factual item/process are addressed as attributes 
of its equivalent process-object/item-object, such as input 
batch size/available time window. Item-objects require an 
attribute clarifying their process flows. For simplicity, the 
constants of factual processes and items are called PCs. The 
design-objects are also stored as objects in the database and 
their specifications are addressed as their attributes (object 
constants: OCs). For example, defining the type of material 
handling equipment is a DR in a storing process of a ware-
house, while ‘Forklift’ and ‘Turret truck’ are two possible 
design-objects for that DR. Hence, attributes of ‘Forklift’ 
and ‘Turret truck’ are defined as; operation time, required 
space, and fixed cost. The database acts as a hub between the 

framework artefacts, which allows for the exchange of data 
and results between the framework artefacts.

3.4.3  Parameters of design alternatives

In a specific alternative, alternative parameters (APs) are 
dependent on PCs, DRs, and OCs of the employed design-
objects in that alternative, see Fig. 3a. PCs and DRs are fixed 
for all the alternatives. APs include two types of variables; 
static variables (SVs) and dynamic variables (DVs).

Static variables When certain design-objects are allocated 
to DRs, the OCs of the employed design-objects become 
the constants of the design alternative. However, these con-
stants can vary from one alternative to another. For instance, 
the operation time in the aforementioned storing process is 
dependent on the decision regarding the selection of ‘Fork-
lift’ or ‘Turret truck’. Generally, SVs are a function of the 
alternative configuration. In this paper, the alternative con-
figuration refers to the combination of the employed design-
objects that are allocated to the DRs. optimization–quanti-
fication models formulate these SVs as variables for each 
specific alternative, which their values are fixed after opti-
mization–quantification application in one design iteration.

Dynamic variables DVs contribute to capturing the dynamic 
behaviour of an alternative. From the simulation perspective, 
the start and finish times of a process are time events chang-
ing dynamically. Therefore, processes and particularly their 
enablers require DVs to demonstrate the availability status 
of enablers for operation. Likewise, a DV also demonstrates 
when a certain item finishes its required operation in a pro-
cess and is ready for the next process.

3.4.4  Design constraints

This paper divides design constraints into two main groups; 
structural and behavioural, see Fig. 3b. The structural con-
straints are further divided into two groups; feasibility and 
specifications. The feasibility constraints build bounda-
ries such that an alternative configuration is feasible if it 
is located within those boundaries. These boundaries are 
high level or qualitative design constraints (recall warehouse 
example). The specification constraints are mainly depend-
ent on each specific design case. Yet, they should be satis-
fied to meet the specific requirements, such as the required 
throughput. This framework addresses structural constraints 
in the optimization–quantification models.

Incorporation of the architecting guidelines into FSM 
formalism satisfies addressing the behavioural constraints 
into the SSMM. For instance, if certain processes can run 
simultaneously, their relative decomposition is defined as; 
‘Parallel ~ AND’. Interested readers can find more details 

a)

Fig. 3  a Taxonomy of design alternatives parameters. b Constraints 
realization in frameworks artefacts
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regarding addressing the behavioural constraints in the pre-
vious work of the authors.

Figure 3a, b show how APs and constraints encounter 
each other in the framework artefacts.

3.4.5  Alternative generation algorithm

The ‘alternative generation algorithm’ generates a design 
alternative using an array of variables, which are equivalent 
to the DRs. Each DR is represented with a unique variable 
as shown in Fig. 4 and (1). The ID is the associated number 
to a DR; ‘ DRID ’. This array is a reference model that reflects 
the addressed DRs in the logical architecture and as a result, 
the qualitative alternatives are its instances.

The algorithm allocates the design-objects to the related 
DRs. Hence, each design-object carries an attribute clarify-
ing whether it can be employed in each unique DR. This 
attribute is called applicability attribute, which can be valued 
as shown in (2).

Design-objects are differentiated by carrying Uniqueness 
Key (U.Key). In return, an alternative is demonstrated in 
a codified form showing U.Keys of the employed design-
objects for each DR, as shown in (3). The algorithm is writ-
ten as a query such that searches the database and generates 
possible alternatives and stores them in the database, which 
are called Alternative-Configuration in this paper.

(1)CESQualitative−Alternativei =
[

DR1,… , DRID,… , DRz

]

.

(2)
Applicability − design − objectU.Key =

(

Applicability1,… , Applicabilityj,… , Applicabilityz
)

,

Applicabilityj =

{

1; if design − object can be used in the DRj

0; otherwise
∀j ∈ Z.

(3)CESQualitative−Alternativet =
[

(Design.objecti.U.Key)DR1
,… , (Design.objectj.U.Key)DRz

]

.

3.4.6  Feasibility checking algorithm

Sometimes, a combination of individual design-objects may 
not necessarily result in a feasible system design alterna-
tive, recall the warehouse example. Hence, an algorithm is 
proposed such that examines an Alternative-Configuration 
with respect to the feasibility constraints and winnows the 
non-feasible alternatives. As a result, the remaining alter-
natives satisfy certain high-level qualitative (integration) 
constraints, this algorithm is called feasibility checking 
algorithm. The feasibility checking algorithm checks the 
feasibility constraints in the qualitative Alternative-Configu-
rations before the application of optimization–quantification.

‘Consistency attribute’ is defined for each design-object 
that clarifies its consistency (compatibility) with other 
design-objects as shown in (4). K is the number of all stored 
design-objects in the database.

In a specific Alternative-Configuration, the employed 
design-objects are a subset of all stored design-objects in 
the database. The feasibility checking algorithm refines 
the consistency attribute of a design-object with respect 
to the subset of employed design-objects in that specific 

Alternative-Configuration. The refined vector is called 
‘alternative-dependent consistency vector’. Thereupon, 
‘alternative-dependent consistency matrix’ is built, which 
its rows are the ‘alternative-dependent consistency vectors’ 
as shown in (5). Co1o2 represents the consistency of the 
employed design-object for DR1 with the employed design-

object for DR2 . The alternative feasibility is calculated as 
the production of matrix elements. A result of zero means 
that the Alternative-Configuration is not feasible, whereas 
one means feasible.

(4)
Consistency − design − objectU.Key =

(

Consistency1,…Consistencyi,…Consistencyk
)

Consistencyi =

{

1; if the design − object is consistent with the design − object with U.Key of i

0; otherwise
∀i ∈ k

Fig. 4  Representing the DRs as an array of variables
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The feasibility checking algorithm is written as a follow-
up of the alternative generation algorithm. Hence, the query 
first generates all possible Alternative-Configurations and 
then filters them to the feasible Alternative-Configurations. 
Therefore, the feasibility algorithm partially realizes the 
How-means E in the framework.

3.4.7  Quantification models

It is crucial to develop quantitative Alternative-Configura-
tion to assure that it satisfies specific (numerical) constraints 
besides the structural ones. Recall the storing process exam-
ple, in this case the number of ‘Forklifts’ or ‘Turret truck’ 
need to satisfy the required throughput. Although, optimi-
zation–quantification is applied on the qualitative Alterna-
tive-Configuration to obtain a quantitative model for it such 
that can be simulated with the SSMM, yet the optimiza-
tion–quantification models also take the first steps to apply 
constraints on the quantified Alternative-Configuration.

Analytical formulation of the CESs can be fairly compli-
cated (Zheng et al. 2016), so optimization has been mostly 

used for finding a good solution and not necessarily find-
ing the global optimum (Roy et al. 2008). Hence, it is less 
critical to argue regarding the optimality of the formulated 
solution using a specific optimization method in this context. 
Therefore, in this framework, the term optimization–quanti-
fication is used instead of optimization. It is argued that the 
top three optimization approaches are: genetic algorithms, 
linear/quadratic programming, and simulated annealing. 
The application field of LP is so broad, including design 
optimization in engineering and resource allocation (Alfaris 
2009). In CESs from a system level perspective, the vari-
ables are mainly related linearly in the objective function 
and constraints. Hence LP is selected for optimization–quan-
tification in this framework. Yet a designer may use other 
satisfying optimization approaches.

(5)Alternative dependent consistency matrix =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

NA CO1O2 CO1O3 ⋯ CO1Oz

CO2O1 NA CO2O3 ⋯ CO2Oz

CO3O1 CO3O2 NA ⋯ CO3Oz

⋮ ⋮ ⋮ ⋮ ⋮

COzO1 COzO2 COzO3 ⋮ NA

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Linear programming LP is a general technique that tries to 
model a problem with linear inequalities that are related to 
a linear objective function as shown in (6). The inequalities 
are problem constraints and the solution hold to them (if it 
exists).

The decision variables are x1,… , xn . LP calculates 
(instantiates) the required number of the employed design-
objects in an Alternative-Configuration. The quantified 
value of design-objects (x) is called ‘Required number of 
instances. LP’ and is coupled with the corresponding U.Key 
in the qualitative model of an Alternative-Configuration as 
shown in (7).

The objective function can be formulated to return the 
KPIs, such as cost minimization. The specific constraints 
can be modelled as LP constraints. PCs determine the ‘b’ 
and ‘beq’ in the LP formulation, such as a maximum budget. 
However, it is not very easy to find a globally optimal solu-
tion that maximizes multiple conflicting objectives. There 
are different approaches to deal with this issue, such as 
weighting the objectives or finding a set of solutions and the 
decision regarding prioritizing the objectives is made later. 
This research uses the first approach because it is simpler 
and more importantly the optimization results are validated 
later by simulation. In the CES design context, there are usu-
ally two typical competing objectives; cost and throughput. 
If one of them has a limit (e.g. throughput) that can be mod-
elled as a constraint and the other (e.g. cost) as the primary 
objective in the objective function.

(6)

Min f

f =

n
∑

i=1

ci × xi

A × x ≤ b

Aeq × x = beq

lb < x < ub.

(7)

CESQualitative−Alternativet =
[

(design.objecti.U.Key)DR1
,… , (design.objectj.U.Key)DRz

]

↓ LP

CESQuantitative−Alternativet =

[

(desig.objecti.U.Key, required number of instances.LP)DR1
,

… , (desig.objectj.U.Key, required number of instances.LP)DRz

]

.
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Certain constraints can be defined to satisfy the system 
level requirements. From the theory of constraints perspec-
tive, system goal achievement is constrained to its weakest 
sub-system, for instance a system throughput is limited to its 
bottleneck. Therefore, some constraints should be defined to 
realize the system throughput in each process.

Including all DRs (particularly operational policies) may 
result in NP formulation. Although there are approaches that 
allow formulating operational policies in an optimization 
model, such as queue theory, they are considerably com-
plicated (Roy et al. 2008); this makes the simulation as the 
most applied approach for capturing the behaviour of CESs. 
Hence, only the quantifiable DRs are addressed in optimiza-
tion–quantification models (e.g., required number of equip-
ment), while the simulation of quantified Alternative-Con-
figurations allows evaluating their KPI as a function of the 
dynamic interactions between the employed design-objects 
for all the DRs.

The LP model should not include any information about 
the design-objects. Thus, the A, Aeq, and C are needed to 
be formulated as variables, which are OCs of the employed 
design-objects in a specific Alternative-Configuration. In 
return, the LP model can be used for different alternatives.

Automated layout design program (ALDeP) Some CESs may 
require the layout design, such as warehouses, so it may be 
needed to address the layout design in their optimization–
quantification step. Hence, the proposed framework can be 
used for CESs that require/do not require the layout design 
without losing the framework generality. Layout design 
approaches can be divided into two main groups; construc-
tion and improvements algorithms. The former group builds 
a block layout by iteratively adding departments. The latter 
group seeks to improve an initial block layout incremen-
tally. This research uses ALDeP because; it is a constructive 
approach, generates multiple layouts, and also the final lay-
out will not be an odd shape. Explaining the detail of ALDeP 
is out of the scope of this paper, hence interested readers are 
referred to the related literature (Hopp and Spearman 2011). 
ALDeP requires several inputs such as a number of depart-
ments, department areas, and departments’ relationships. 
Certain parts of these inputs are known and belong to PCs, 
such as the number of departments. Yet, some inputs, such 
as department area, are a function of Alternative-Configu-
ration and belong to SVs. ALDeP generates layout(s) for the 
quantified model of an alternative (quantified by LP). The 
ALDeP determines the department shapes for each process 
and their relative position. The developed layout is stored in 
the Alternative-Configuration.

Finally, application of the optimization–quantification 
models jointly with feasibility checking algorithm realize 
both structural and specific constraints on the alternatives 
(realization of How-Means E).

3.4.8  Simulation of the SSMM

The SSMM has nested states, demonstrating a hierarchi-
cal structure. The higher-level states are independent of 
the design solution and model the system structure and its 
design requirements. The lower-level states are solution 
dependent, which demonstrate the decisions for choices of 
the DRs. The explained decomposition hierarchy based on 
OO modelling builds nested stated in SSMM as shown in 
Fig. 5.

The previous work of authors suggested defining func-
tions for each object-state to embody its design specifica-
tions in it. Yet, it was not elaborated on what data should 
be included in the state-functions, how they exchange data 
to realize the simulation of an alternative with SSMM and 
so on. From discrete event simulation (DES) perspective, 
the model components should be informed regarding the 
events to act accordingly to simulate the dynamic behaviour 
of the model. In DES, the variables play a key role in update 
propagation. An Alternative-Configuration is simulated by 
coupling its ‘quantitative model’ with the ‘SSMM’. Thus, it 
is essential to have a proper interconnection between the APs 
and the SSMM. Therefore, three issues are joint-discussed in 
this section; first identification of critical time events, second 
defining certain variables that derive those events, and third 
interconnection of variables for update propagation during 
the simulation.

It is worth drawing attention to some points at the begin-
ning of this section. First, system engineers have a system 
view and can visualize the interactions in the system level. 
Hence, system engineers can define how object-state-func-
tions should interact with each other in terms of exchanging 
data. Second, this section explains those logics that object-
state-functions include to realize the alternatives simulation 
in a system level. However, the detail level of addressed log-
ics in the state-functions depends on the required granularity 
in the simulation.

As shown in Fig. 6, the object-state-functions contain 
two levels of information. The first level is those logics 
that embody the dynamic behaviour of the object-state in 
its discipline from a system level perspective. These logics 
contribute to early modelling of the dynamic behaviour of 
an object-state prior to moving to the detail design. These 
logics can be modelled with state modelling of the design-
object as well, as shown in the bottom section of Fig. 5. 
DVs contribute to capturing the dynamic behaviour of an 
alternative hence they are embodied as inputs-outputs of the 
object-state-functions. Accordingly, DVs can play as inter-
faces between different object-state-functions. However, an 
object-state-function can also get certain inputs from the 
PCs, OCs or SVs as well. The explained concepts in this 
paper belong to the first information level. The second is 
those logics that address the detail design of a design-object. 
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The down-stream engineers can establish the detail design 
of an object-state in its object-state-function, yet they are 
aware that the encapsulated detail design should update the 
pre-defined ‘outputs’. Hence, the detail design can solidify 
the simulation results after certain design iterations. The 
object-state-functions can belong to any discipline, such as 
mathematical expressions or algorithmic procedures. Thus, 
the object-state-functions can stand as design modules for 
different disciplines; this realizes the essence of integrated 
(multi-disciplinary) design in the SSMM and satisfies the 
How-Means-D.

Fig. 5  SSMM realizes system architecture, design state, and dynamic state

Fig. 6  Embodied concepts in the objects-state-functions
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Figure 7 shows the interconnection between the frame-
work artefacts (SSMM, ALDeP, LP, databases) and APs 
from a DES perspective by demonstrating how the simula-
tion happens using APs.

As shown in Fig. 7a, each process has two main events; 
Start and Finish. Availability of the process enablers is a 
key factor in the process operation. Hence, enabler-states 
require a variable clarifying their dynamic state in terms of 
their availability status. Recall the given model in (7). The 
enabler variable should clarify the dynamic state of each of 
the instances of an employed design-object. This research 
suggests defining the DVs as a structure with variable size 
as shown in Fig. 8.

SSMM should be able to simulate different Alternative-
Configurations that employ different design-objects for one 
specific enabler; therefore, the enablers’ DVs should be 
independent of the design-objects (e.g., Forklift and turret 
truck). Hence, the DVs are defined in the process.state or 
design-requirement-state and not at the object-state level as 
shown in Fig. 5.

A design-object can be employed for different DRs, 
see Fig. 9. Hence, the required number of instances of the 
same design-object can vary in different DRs. For instance, 
according to optimization–quantification, the required num-
ber of instances of ‘Forklift’ in stacking and storing pro-
cesses are, respectively, 2 and 4. The required number of 
instances is an SV, which its interconnection with object-
state-function is shown in Fig. 7b. For simplicity, the pro-
cess of generating the required number of instances of a 
design-object is called instantiation. However, it is preferred 
that one object-state-function can be used for embodying the 
behaviour of similar object-states when they are employed in 
different design-requirements-states. Moreover, the object-
state-function should be able to instantiate the design-object 
according to its employed DR (e.g. Forklift in stacking or 

Fig. 7  a Process dynamic events. b interconnection of APs and framework artefacts from DES perspective. c an example of APs interconnection 
for simulation

Fig. 8  Example of enabler dynamic variable
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storing process). The procedure of instantiation is shown 
with a pseudo code in Fig. 10. Each design-requirement-
state expresses the equivalent ‘DR-ID’ as an input to the 
object-state-function (DR-ID is shown as ‘DesignReqiremn-
tID’ in Fig. 9). Hence, the object-state-function identifies 
the specific DR that employed the design-object. Then, the 

object-state-function instantiates the design-object accord-
ing to the given value in ‘Required number of Instances.LP’.

Likewise, if the CES required layout modelling, the 
object-state-functions retrieve the layout information from 
the quantitative model of an Alternative-Configuration. For 
instance, layout information can be used to calculate the 
travel time in material handling of storing process as shown 
in Fig. 7c.

From the system perspective, items hinge the processes 
together by leaving from one and entering into the next 
processes. Hence, the item concept also requires a variable 
clarifying the dynamic state of the items. Each real item is 
an instance of a specific item-object. Thus, the item variable 
also has a structure type with variable size and a similar 
instantiation procedure generates the same item-instances 
from one specific item-object.

If a process has a DR related to the operational policies, 
then an Alternative-Configuration should have an activated 
object-state for its design-requirement-state related to that 
operational policy. For instance, in the warehousing con-
text, Class-Based-Storage (CBS) and Random storage are 
two operational policies for allocating Stock Keeping Units 
(SKUs) to storage modules. As shown in Fig. 9, the design-
requirement-state related to the SKU allocation policy 

Fig. 9  Example of the design-requirement-states, their object-states and state-functions

Fig. 10  Structuring a dynamic variable with variable size
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has two object-states; Random and CBS. Generally, each 
object-state-function takes the item-instances that require 
that specific process and manage them for different opera-
tional purposes. Each object-state-function may have its own 
operational logic. Hence, there are not dictated to the SSMM 
and their impacts on KPIs can be observed by simulation. 
As a result, SSMM allows having a holistic design in terms 
of making design decisions regarding the operational policy 
and physical aspects concurrently; this realizes the How-
Means C.

The system engineer defines the dynamic interaction 
between enablers in terms of their chronological involve-
ments in the process operation, see Fig.  7. Hence, the 
object-state-function of a posterior enabler.state gets certain 
required inputs from the prior enabler.states. As shown in 
Fig. 7c, the CBS-state-function defines the SKUs location 
by indicating that in SKU variable and communicates the 
results with the posterior enabler, which is pallet-rack as 
storage modules in this example.

Updating the dynamic state of enabler.state can be 
developed by simple functions following DES princi-
ples, as shown in the bottom section of Fig. 5. Indeed, 
the common updating principles can be written as 
general functions, which can be called in different 
object-state-functions.

The system architect defines those DVs that determine 
the start and finish time of the process. For example, 
the start and finish time of an equipment instance (e.g. 
Forklift) can be considered as start and finish time of the 
storing process for SKUs as shown in Fig. 7c. When the 
process finish time is elapsed, the item variable is updated 
showing that the item-instance has finished this process 
and is available for the next process. This procedure con-
tinues until the item-instance finishes its required process 
flow.

Certain variables can be defined in the SSMM to pro-
duce/formulate KPIs. Object-state-functions can contribute 
to dynamically update these KPIs and return their values 

Fig. 11  High-level snapshot of the SSMM developed for the warehouse
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at the end of the simulation. For instance in a warehouse, 
shipping is the last process and ‘Door’ is the last enabler that 
is involved in the shipping process. Therefore, the object-
state-function of the employed design-object for the ‘Door’ 
can return the total number of shipped orders during the 
simulation time.

The SSMM provided building blocks in different levels 
such as process-state, design–requirement-states, object-
states, and object-state-functions. These building blocks 
can facilitate modelling those large-scale systems that have 
several similar subsystems such that the building blocks can 
be designed once and then be dragged and dropped in similar 
relevant levels multiple times.

Ultimately following the explained approach, the 
SSMM embodies three aspects of a CES; first: system 
architecture, second: decisions regarding the allocation 
of design options (genres) to the DRs for configuring a 
design alternative, and third: dynamic behaviour of the 
design alternative, see Fig. 5. The embodiment of such 
comprehensive concepts in the SSMM is the fruit of 
proper application of OO modelling, using proper model-
ling formalism (FSM), and their proper interconnection 
with optimization–quantification models and the sup-
porting algorithms. Since all the defined How-Means are 
satisfied, hence the framework can satisfy the research 
objectives.

4  Case study

As proof of concept, the introduced framework is applied 
to a real industrial case. An international healthcare com-
pany looks to construct a new warehouse since the lease of 
the existing warehouse is about to end. The new warehouse 
receives three families of SKUs from two sources; namely a 
replenishment centre of a factory and the pharmacy depart-
ment of the same company that is a separate business unit. 
The first SKU family is mainly ordered by hospitals with 
high daily demand (SKU-A). The second and third families 
are ordered by home patients in lower volumes (SKU-B and 
SKU-C). The SKUs come in different batch sizes in differ-
ent weekdays. Likewise, the average order size for different 
SKU family is different. The details are shown in Appendi-
ces A1 and A2 in ESM.

4.1  Design meta‑model and developing design 
alternatives

There is no need that the designers first make the class 
diagram of the CES and then map it to the FSM formal-
ism; in fact, they can start making the SSMM following the 
explained guidelines. In this case study, the class diagram 
was developed on paper and model development was com-
menced in Matlab State flow library. A high-level snapshot 
of warehouse SSMM is illustrated in Fig. 11, according to 
the explained approach in Sect. 3.4.8.

In the warehouse, item-state of all SKU families change 
four times; from ‘Inputs’ to ‘received SKU’, then to ‘stored 
SKU’, then to ‘picked ordered SKU’ and finally to ‘shipped 
ordered SKUs’. The receiving process includes two sub-pro-
cesses; unloading and stacking; P11, P12 . Storing, picking, 
and shipping are, respectively, shown as P2,P3 and P4 . The 
warehouse use case scenario is formulated as a function of 
SKUs’ process flows as follows:

Since P2, P3 and P4 do not have more than one sub-
process, hence, �i,k was not shown for them. Therefore, the 
warehouse function was formulated as shown below.

Wf =
{

fSKU1
, fSKU2

, fSKU3

}

fSKUj
=
{(

�j,i,Pi

)}

; i ∈ {1,… , 4}, j ∈ {1, 2, 3},

�j,i =

{

1; if Pi is needed for SKUj

0; otherwise,

fSKU2
=
{(

�1,1,P1

)

,
(

�1,2,P2

)

,
(

�1,3,P3

)

,
(

�1,4,P4

)}

,

fSKU3
=
{(

�1,1,P1

)

,
(

�1,2,P2

)

,
(

�1,3,P3

)

,
(

�1,4,P4

)}

,

�1,i = {(1)} ∀i ∈ (1,… 4) → �1 = {(1), (1), (1), (1)},

�2,i = {(1)} ∀i ∈ (1,… 4) → �2 = {(1), (1), (1), (1)},

�3,i = {(1)} ∀i ∈ (1,… , 4) → �3 = {(1), (1), (1), (1)},

�4,i = {(1)} ∀i ∈ (1,… 4) → �4 = {(1), (1), (1), (1)},

Pi =
{(

�i,k, SPk
)}

k ∈ (1,…K), SPk ∶ sub-processk

�i,k =

{

1; if sub-process k is needed for Pi

0; otherwise

P1 =
{(

�1,1,P11

)

,
(

�1,2,P12

)}

�1,k = {(1)} ∀i ∈ (1, 2) → �1 = {(1), (1)}.

wf =

{((

1,P11

)

,
(

1,P12
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,
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1,P2
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,
(
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)

,
(
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))

1
,
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(
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(
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(
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.



42 Research in Engineering Design (2020) 31:25–52

1 3

The relation between the warehouse function and the ref-
erence model is that the DRs are defined for the enablers 
of the processes according to the explained decomposition 
hierarchy. The process enablers were defined as equipment, 
infrastructure, and operational policy. Using (1) the ware-
house qualitative reference model was developed that repre-
sents the DRs and their ID-numbers as given below. Several 
design-objects are defined and stored in the database, as 
given in Appendix A3 in ESM.

4.2  Application of alternative generation 
and feasibility checking algorithms

A query (Matlab Script) is written to automatically perform 
the alternative generation and feasibility checking algo-
rithms by taking into account the applicability and consist-
ency attributes of the defined design-objects. The feasibility 
checking algorithm crossed more than 50% of the config-
ured alternatives due to the inconsistency of their employed 
design-objects (10,500 generated alternatives were reduced 
to 4800 feasible alternatives). In fact, the risk of design fail-
ures was more than 50% if the decisions regarding employ-
ing the design-objects for different DRs were performed 
individually in different disciplines. This shows one of the 
benefits of the framework in terms of recognition of those 
alternatives that may lead to failures in later design stages. 
Due to space limitation, only two alternatives are shown in 
a coded form as examples.

WarehouseQualitative−Model ∶

[Unloading − Equipment − type1, Unloading − Infrastructure − door − position2,

Unloading − Infrastructure − door − type3, Unloading − SKU −management − policy − timing4,

Staking − SKU −management − policy − timing5, Stacking − Infrastructure − type6,

Stacking − equipment − type7, Storing − SKU −management − policy − storage − allocation8,

Storing − SKU −management − policy − timing9, Storing − Equipment −management − policy − combination −mode10,

Storing − Equipment − type11, Storing − Infrastructure − storage −module − type12,

Storing − Infrastructure − aisles − configuration13, Picking − Order management − policy − pick listing14,

Picking − Equipment −management − policy − combination −mode15, Picking − Equipment − type16,

Shipping − Infrastructure − door − type17, Shipping Infrastructure − door − position18,

Shipping − Order management − policy − timing19, Shipping − Equipment − type20].

Recall CBS and random operational policies, likewise 
double command and single command are two possible 
operational options for storing/picking of the SKUs in and 
from the storage modules. In this warehouse, a maximum 
of five levels-heights for the storage modules is allowed and 
storing and picking from fifth level of storage aisles required 
more time. Due to high space cost, the project managers 

decided to have the five levels heights of the storage modules 
(similar to the existing warehouse). Two contributions of this 
framework are; addressing the operational policies in the 
SSMM and second; simulating the SSMM to observe the 
impact of the design decisions on the dynamic behaviour of 
the system. Hence, this section continues with the two above 
Alternative-Configurations to demonstrate the usefulness of 
these contributions.

4.3  Application of optimization–quantification 
on the design alternatives

4.3.1  LP application

The project managers preferred to minimize the cost while 
meeting the required throughput in terms of fulfilling cus-
tomer orders. Thus, the LP is formulated such that the objec-
tive function returns the total cost. The cost includes; fixed 

WarehouseQualitative−Alternative
A

= [11, 32, 53, 74, 75, 106, 117, 138, 79, 1610, 1111,

1812, 2013, 2214, 1615, 1116, 617, 318, 819, 220]

WarehouseQualitative−Alternative
B

= [11, 32, 53, 74, 75, 106, 117, 148, 79, 1510, 1111,

1812, 2013, 2214, 1515, 1116, 617, 318, 819, 220].
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cost and operational cost of the design-objects, and space 
cost.

Picking and shipping processes are triggered by cus-
tomer orders. The company has an agreement with its cus-
tomers to accept the orders in 5 h time window. Hence, 
the customer order specifications (See Appendix A1 in 
ESM) determine the bounds for LP constraints related to 
these two processes. However, unloading, stacking, and 
storing processes do not deal with customer orders. In 
fact, these three processes should keep up the pace with 
supply input rate, which is used to make bounds for LP 
constraints related to these three processes. The warehouse 
will be constructed close to a residential area and will 
only have 3 h in the early morning to receive the suppli-
ers’ inputs. The time horizon for each process is given in 
Appendix A2 in ESM. 130 working days is considered to 
include the operational cost in the LP formulation. The 
formulated LP model is shown below;

Time interval (number of working days) = 130

Order time window = OTW

Supply time window = STW

SC = Space Cost

SKUj = SKU type j; j = 1 ∶ 3

SKUj,STW = Time window for accepting SKUj from suppliers

SKUj,Input batch size = Input batch size of SKUj

SKUj,Input rate = Average time interval to get a supply of SKUj

SKUj,OTW = Time window for accepting orders of SKUj from customers

SKUj,Order size = Average order size of SKUj

SKUj,Order rate = Average time interval to get an order of SKUj

PTH = process time horizon

Total number of quantifiable DRs = NQ

Total Number of Quantifiable DRs in unloading and stacking and storing = NQ1

Total Number of Quantifiable DRs in picking and shipping = NQ2

NQ1 + NQ2 = NQ

xi = Variable i in the LP

Drxi = The ‘DR − ID’ for the xi in the qualitative model

DrxFC
i
= Fix cost(FC) of the employed design − object for the Drxi

DrxRS
i
= Required space(RS) for the employed design − object for the Drxi

DrxOC
i

= Operational cost(OC) of the employed design − object for the Drxi

DrxOT
i

= Operational time(OT) for the employed design − object for the Drxi

Dr
x
capacity

i

= Working capacity of the employed design − object for the Drxi ,

xi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
.

xNQI

.

xNQ1

.

xNQ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; i = 1 ∶ NQ,

Table 2  ALDeP results

Process Net required space  (m2) Department 
shape (m × m)

P
11

32 8 × 4
P
12

252 28 × 9
P
2

320 32 × 10
P
3

20 5 × 4
P
4

60 4×115
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cT
i
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

DrVFC
1
+

�

DrVRS
1
× SC

�

+

�

DrVOC
1

× TIM × PTH
��

�

DrVFC
i
+

�

DrVRS
i
× SC

�

+

�

DrVOC
i

× TIM × PTH
��

�

DrVFC
NQ1

+

�

DrVRS
NQ1

× SC
�

+

�

DrVOC
NQ1

× TIM × PTH
��

�

DrVFC
NQ

+

�

DrVRS
NQ

× SC
�

+

�

DrVOC
NQ

× TIM × PTH
��

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

lower bound = lb, upper bound = ub,

lb < x < ub, ub = [Infinite]NQ×1, lb =
[

lbi
]

NQ×1
,

lbi =

�

∑3

j=1

��

SKUj,Input rate×SKUj,STW

SKUj,Input rate

��

× DrxOT
i

�

�

Dr
x
capacity

i

× PTH
� ∀i ∈ 1 ∶ NQ1,

lbi =

�

∑3

j=1

��

SKUj,Order size×SKUj,OTW

SKUj,order rate

��

× DrxOT
i

�

�

Dr
x
capacity

i

× PTH
� ∀i ∈ NQ1 + 1 ∶ NQ,

Fig. 12  Storing-process-state

Fig. 13  Defined DVs for SKU, order, infrastructure and equipment
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The LP model retrieves each feasible qualitative Alterna-
tive-Configuration from the database automatically. Accord-
ingly, the coefficients are automatically updated with respect 

f =

NQ
∑

i=1

ci × xi, objective ∶ minimize f .

to the employed design-objects in each Alternative-Config-
uration and LP results are written in it automatically. As 
mentioned, the optimization–quantification models quantify 
the quantifiable design-objects, so the design-objects related 
to the operational policies are not addressed in the LP for-
mulation in this case. Hence, the LP results of the two given 
alternatives are similar because they only differ in their oper-
ational policies. In fact, the analytical formulation of the 
order picking belongs to NP-hard problem class when the 
operational policy is addressed in the formulation (de Koster 
et al. 2007). In this design case, the operator can only entre 
to the aisles from the right side and exit from the left side 
due to safety reasons. Moreover, the operators cannot have 
backward movement in the aisle. If the double command 
mode is selected for the order picking and storing processes, 
then the operator can pick an order from the pick list, if the 
allocated SKUs to the pick list is located in the same aisle 
that operator stored SKUs recently. Moreover, the SKUs 
should be on the left side of the operator in the aisle, so the 
operator does not need a backward movement. Many stud-
ies tried to model such policies with different approaches, 
such as queue theory. Yet, such complicated formulations 
include so many simplifications. Moreover, designing the 
entire warehouse requires modelling of operational policies 
for different processes, which can make the optimization for-
mulation even more complicated, while there is no guarantee 
for finding the global optimal solution that also captures the 
dynamic interactions in the system as good as the simulation 
does. However, the proposed framework allows observing 
the impact of different operational policies in the dynamic 
behaviour of the system by means of simulation.

Fig. 14  Updating SKU-dynamic variable

Fig. 15  Updating equipment and infrastructure dynamic variables

Fig. 16  Updating order dynamic variable

WarehouseQuantitative−AlternativeA = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90), (117, 3), (138, NA),

(79, NA), (1610, NA), (1111, 4), (1812, 258), (2013, NA), (2214, NA),

(1615, NA), (1116, 4), (617, 1), (318, NA), (819, NA), (220, 3)]

WarehouseQuantitative−AlternativeB = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90),

(117, 3), (148, NA), (79, NA), (1510, NA), (1111, 4), (1812, 258), (2013, NA),

(2214, NA), (1515, NA), (1116, 4), (617, 1), (318, NA), (819, NA), (220, 3)].



46 Research in Engineering Design (2020) 31:25–52

1 3

4.3.2  ALDeP application

The ALDeP model was applied to generated alternatives 
to produce feasible layouts. The initial safety requirements 
are also applied in ALDeP such as allocating certain space 
between departments. Table 2 gives the calculated space for 
each process based on the employed design-objects in the 
two given alternatives. The ALDeP results are written in the 
quantitative model of the alternatives.

4.4  Embodiment of the design specifications 
to simulate a design alternative

Figure 12 shows the storing process state that embodies its 
required enablers and their DRs with a hierarchal structure. 
Such structure applied for other processes according to 
their defined enablers, DRs and design-objects. Although 
the available time windows for the processes were differ-
ent in this warehouse, they technically could work together. 
Hence, the decomposition of the SSMM in the highest level 
was defined ‘Parallel ~AND’ (dashed lines). In return, the 
process.states can be active simultaneously. The process 
enablers can work simultaneously in each process. Hence, 
the decomposition of the process-states with respect to their 
enabler.states is defined as ‘Parallel ~AND’. In all five pro-
cesses, the operational policy enablers determine the way 
that the process should operate. Hence, those design-require-
ment-states that are related to the operational policy enablers 
have the first activation sequences, as shown in green cir-
cles in Fig. 12. The relative decomposition of the design-
requirement-states with respect to their object-States are 
defined ‘Exclusive ~ OR’ (solid lines) because each design-
requirement can only employ one design-object in a specific 
Alternative-Configuration. Certain DVs are defined for the 
SKUs, orders and enablers, which their structures are shown 
in Figs. 13, 14, 15 and 16.

In warehousing domain, the process flow starts with 
receiving the inputs from the suppliers and continues by 
converting them into SKUs. They move forward to being 
stored. The picking process is triggered by customer orders 
and the process flow finishes by shipping the orders. Hence, 
the simulated process flow in this case study is explained in 
two sections; ‘supplier inputs into stored SKUs’ and ‘stored 
SKUs into shipped orders’.

4.4.1  Supplier SKUs into stored SKUs

It was described in the previous work of the authors how to 
address the CES interactions with its environment. Three 
main attributes of an SKU are addressed in each supplier 
sub-state as its constants (PCs); the SKU type, its supply 
rate, and the input batch size, see Fig. 11. Likewise, three 
main attributes of an order are addressed in each customer 

sub-state; SKU type, order rate, and average order size. 
Supplier-A sends SKU-A in input batches of 330. Accord-
ingly, SKU-instantiation assigns a unique instance number 
to each of 330 instances of SKU-A. Likewise, ‘SKU-type’ 
and ‘Entering time to warehouse’ are written in the ‘SKU-
variable’ as shown in Fig. 13. In this case study, all state-
functions use the Matlab-Simulink clock as the time input.

All input SKU-batches require the unloading process. 
The activation sequence of unloading enablers is; (1) oper-
ational policy, (2) door (as infrastructure), (3) equipment. 
AlternativeA employed ‘FIFO-object’ in the unloading pro-
cess configuration. Therefore, the ‘FIFO-state-function’ 
gets the ‘SKU-variable’ as its input to sort available SKU-
instances of the coming input batch for the unloading pro-
cess. The sorting result is written in ‘Priority to being pro-
cessed’ as shown in Fig. 14.

Afterwards, ‘Door-type-state’ is activated. ‘Door-type-
state’ is a design-requirement-state with two object-states; 
‘Sunken-object’ and ‘Level-object’. The employed design-
object for ‘Door-type’ is ‘Sunken-object’. The ‘Sunken-
state-function’ has several inputs including ‘SKU-variable’, 
‘Door-variable’, and time. The ‘Door-variable’ follows the 
structure of ‘Infrastructure-variable’ that is given in Fig. 13. 
These variables are independent of the design-objects. In 
fact, ‘Door-variable’ serves both ‘Sunken-object’ and 
‘Level-object’, because, ‘Level-state-function’ and ‘Sunken-
state-function’ uses similar input/output variables.

The quantitative model of AlternativeA shows that it 
requires one ‘Sunken’ door to fulfil the required through-
put. Therefore, one instance of ‘Sunken-object’ is gener-
ated according to the explained instantiation procedure, see 
Fig. 10. The ‘Sunken-state-function’ gets ‘SKU-variable’ car-
rying ‘Priority to being processed’. Accordingly, the ‘Sunken-
state-function’ determines which SKU-instances can possibly 
enter into the warehouse. Yet, the unloading process cannot 
start until an instance of the unloading equipment is available. 
The ‘Sunken-state-function’ only changes the state of a Door-
instance from ‘available’ to ‘assign’, because door availability 
is a priory condition for the unloading process.

The unloading equipment as a DR has two options ‘Car-
gomatic’ and ‘Carne’. AlternativeA is formulated based on 
using ‘Cargomatic-object’. Therefore, the ‘Cargomatic-state’ 
is activated as the last activated state in the unloading pro-
cess. The following explanations regarding ‘Cargomatic-
stat-function’ also apply to the ‘Carne-state-function’.

The ‘Equipment-variable’ is a variable with a variable 
size as shown in Fig. 15. The ‘Cargomatic-state-function’ 
has several inputs including; ‘SKU-variable’, ‘Equipment-
variable’, ‘Door-variable’, and time. From the system level, 
the start and finish time of the ‘Cargomatic’ determine the 
start and finish time of the unloading process on input SKU-
batches. Therefore, the ‘Cargomatic-state-function’ updates 
the operation start and finish time in following variables; 
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‘SKU-variable’ and ‘Equipment-variable’. The ‘Cargomatic-
state-function’ also changes the value of the ‘Availability’ 
in the following variables; ‘Equipment-variable’ and ‘Door-
variable’. However, the ‘Cargomatic’ can perform unloading 
activity as long as it has enough capacity. The ‘Cargomatic-
state-function’ also updates ‘capacity’ in ‘Equipment-vari-
able’ as shown in Fig. 15.

‘Cargomatic-state-function’ observes the ‘Finish’ in 
‘Equipment- variable’. As soon as the ‘Finish’ was smaller 
than the simulation time, then the ‘availability’ of ‘Equip-
ment-variable’ changes to ‘Available’ again. Thereafter, the 
‘Cargomatic-state-function’ updates the ‘current process’ 
in ‘SKU-variable’ to P12 . This shows the availability of 
instances of SKU-A for the stacking process.

Stacking and storing process has similar procedures 
regarding updating the following variables; ‘Equipment-

variable’, ‘Infrastructure-variable’ and ‘SKU-Variable’.

4.4.2  Stored SKUs into shipped orders

When a customer sends an order, a unique instance number 
is assigned to the coming order according to the instantiation 
procedure. As a result, order specifications, such as SKU-
type, is written in the order dynamic variable as shown in 
Fig. 16.

The orders require picking and shipping processes. In 
these two processes, the object-state-functions take into 
account two main variables; ‘order-variable’ and ‘SKU-
variable’. The object-state-functions of operational poli-
cies cross-study the registered orders and available SKUs. 
Accordingly, a pick list is formulated indicating that which 
SKUs should be picked to satisfy the pick list. AlternativeA 
employs the ‘FIFO-object’ to cross-sort SKU and orders 
instances. First, the orders are sorted by FIFO logic to make 
the pick-list. Then, the available SKUs are sorted based on 
the FIFO logic. Subsequently, the ‘FIFO-object’ writes the 
sorting results in ‘Picking Priority’ and ‘Priority to being 
processed’, respectively, in ‘order-variable’ and ‘SKU-var-
iable’. The ‘FIFO-object’ also updates the ‘current process’ 
to P3.

‘Forklift-object’ is employed as the picking equipment. 
The ‘Forklift-state-function’ updates the following values 
in the order variable; ‘Start’, ‘Finish’, and ‘Picked status’. 
The ‘Forklift-state-function’ also updates the following val-
ues in the SKU-variable; Entering-time-to-current process’, 
and ‘Finishing-the-process’. ‘Forklift-state-function’ also 

changes the ‘current process’ in SKU-variable to P4 as soon 
as the ‘Finish’ time was elapsed.

The execution principles of the shipping process are simi-
lar to the unloading process. The only difference is using 
‘Forklift-object’ instead of ‘Cargomatic-object’. However, 
the ‘Sunken-object’ updates two values in, respectively, 
‘SKU-variable and ‘order-variable’ as soon as orders (picked 
SKUs) left the warehouse; ‘Done with the process flow’ and 
‘order status’. The updates show that the SKUs left the ware-
house and the order is dispatched.

4.5  Simulation results

The below given Alternative-Configuration had a lower cost 
after the application of LP-ALDeP (before simulation) com-
pared to AlternativeA and AlternativeB.

After simulation of AlternativeA and AlternativeB , the for-
mer demonstrated a lower total cost basically due to lower 
operational cost.

These three alternatives have the same configurations 
in unloading, stacking, and shipping processes and they 
were only different in storing and picking process con-
figurations (employed Design-objects and their quan-
tifications accordingly). AlternativeA and AlternativeB 
are different in the employed design-objects for the 
two DRs related to the following operational policies; 
Storing − SKU −management − policy − storage − allocation8 
and Storing − Equipment −management − policy − combination

−mode10 . For the given DRs, respectively, AlternativeA 
employed ‘CBS’ and ‘Double Command’, while 
AlternativeB employed ‘Random-object’ and ‘Sin-
gle-command-mode-object’. The difference between 
AlternativeA and AlternativeC is that the latter employed 
‘Pallet rack’ and ‘Turret truck’, respectively, for these DRs; 
Storing − Infrastructure − storage −module − type12  and 
Picking − Equipment − type16 , while AlternativeA employs 
‘Shelve rack’ and ‘Forklift’.

The defined KPIs in the SSMM were; fix cost, operational 
cost, and equipment utilization. The last two KPIs were 
studied carefully because they are affected by the dynamic 
behaviour of the design alternatives.

Comparing AlternativeA and AlternativeC from optimiza-
tion–quantification perspective ‘Pallet rack’ is more expen-
sive than the ‘Shelve rack’, however storing or picking from 
‘Pallet racks’ takes less time, see Appendix A1 in ESM. On 
the other hand, although ‘Turret truck’ has shorter operation 

WarehouseQuantitative−AlternativeC = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90), (117, 3),

(138, NA), (79, NA), (1610, NA), (1111, 3), (1712, 270), (2013, NA),

(2114, NA), (1515, NA), (1216, 3), (617, 1), (318, NA), (819, NA), (220, 3)].
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time (compared to ‘Forklift’) in both storing and picking 
processes, it is more expensive (fix cost and the required 
space). LP-ALDeP calculated that in AlternativeC three 
‘Forklifts’ is required to perform storing on ‘Pallet rack’ 
to satisfy the throughput, while in AlternativeA four ‘Fork-
lifts’ are required (since ‘Shelve rack’ is employed). On the 
other hand, in AlternativeC three ‘Turret truck’ could satisfy 
the throughput in picking process because ‘Pallet rack’ is 
employed, while in AlternativeA four ‘Turret truck’ is needed 
(since ‘Shelve rack’ is employed). Although, ‘Turret truck’ 
is more expensive, three ‘Turret truck’ cost less than four 
‘Forklift’ in the picking process. As a result, the AlternativeC 
that employs ‘Pallet rack’ and three ‘Forklift’ in storing pro-
cess and three ‘Turret truck’ in picking process demonstrated 
less total cost calculated by LP-ALDeP.

Comparing AlternativeA and AlternativeB from the simu-
lation perspective AlternativeA and AlternativeB employ 
‘Shelve rack’ and ‘Forklift’ in storing and picking process. 
As mentioned, LP-ALDeP calculated that four ‘Forklifts’ 
were required in each storing and picking processes of these 

alternatives. Yet, AlternativeA employs ‘CBS’ and ‘Dou-
ble Command’ as its design-objects for the DRs related to 
operational policies in storing and picking processes. These 
two policies contribute to reducing the operational time in 
storing and picking processes. In particular, CBS allocates 

SKU-A (as a high demand SKU) to the first four levels of 
storage modules, while SKU-B and SKU-C are allocated to 
the fifth levels. As a result, the operation time for SKU-A 
is reduced, while that is increased for SKU-B and SKU-
C. On the other hand, ‘Double command’ policy suggested 
that after storing the SKUs on storage modules, the equip-
ment can pick the ordered SKUs (from the pick list) and 
place them in the shipping area. However, this is applicable 
only if the ordered SKUs are in the same aisle that the SKU 
storing happened. As a result, in some cases the equipment 
can cut one empty travelling activity in both storing and 
picking (without the double command storing equipment 
could have travelled back empty to the stacking area and the 
picking could have travelled empty forward to the storing 
area). Therefore, such a combination of different policies 
contributes to the reduction in the total operational time in 
AlternativeA . The simulation results of AlternativeA showed 
that the ‘Forklift’ utilization in the storing process was 59% 
and 67% in the picking process. In other words, the total 
working hours of the four ‘Forklift’s in AlternativeA was 
between the total working hours for two and three ‘Forklift’ 
in the available time window, as shown below:

The simulation results of AlternativeB (in terms of ‘Fork-
lift’ utilization) show that it needs all the four Forklifts in 
both storing and picking processes.

Comparing AlternativeA and AlternativeC from the simu-
lation perspective:

In AlternativeA the number of ‘Forklift’ in both picking 
and storing processes was reduced to three and it was simu-
lated again. Simulation of the updated AlternativeA revealed 
that with the new quantification (three Forklifts for each of 
the storing and picking processes) the throughput was satis-
fied with a lower total cost compared to AlternativeC.

This is an important benefit of applying the proposed 
framework in this design case. In fact, without addressing 
the operational policies and simulation, the evaluation of 
different alternatives (from cost minimization perspective) 
could lead to losing a better alternative for the detail design. 
However, the studying warehouse can be considered as small 
to medium scale size warehouse. Therefore, the aforemen-
tioned potential savings can be more significant for a lar-
gescale warehouse. Nonetheless, this example is a simple 
demonstration regarding having an integrated-holistic design 
approach and the advantageous of early validation (simula-
tion) at early design stages.

50%

(

2(possible number of forklifts) × 5(available time window) × 100

4(existing number of forklifts) × 5((available time window))

)

< utilization < 75%
(

3 × 5 × 100

4 × 5

)

.

Fig. 17  Multi-dimensional solution space by adding the design 
requirements related to the operational policy
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5  Discussion

The contributions of the introduced modelling approach in 
this paper can be summarised as follow:

• The paper introduced a full detail approach to develop a 
system architecture (SSMM) with the following charac-
teristics:

– Embodies the design knowledge holistically: embod-
ies all types of design requirements from different 
disciplines, allows the multi-disciplinary and inte-
grated design of CESs.

– All design alternatives conform to that.
– Is executable and all design alternatives can be simu-

lated with it.
– Is interconnected with the optimization models A full 

detail approach was introduced to use optimization 
models such that leverage the feasible alternatives to 
a level that can be simulated with the SSMM.

– Stands as a design platform In the early design 
stages, the system engineer develops the SSMM and 
simulates a simple behaviour of alternatives to get 
some insights about the system behaviour. However, 
by moving forward to the design process (evolution) 
the detail designers can add (encapsulate) more 
detail to the SSMM (in particular the object-state-
functions). Therefore, the system engineer and detail 
designers can communicate with the single SSMM, 
which helps to track the changes and have the same 
understating about the design process.

• Reducing the design failure risk Application of feasibility 
checking algorithm ensures that the introducing alter-
natives satisfy the constraints that address the possible 
inconsistencies between different disciplines.

• Ensuring data integrity in the framework All models are 
systematically interconnected with a set of parameters 
such that minimises the risk of data mismatch between 
models that are developed with different participants. 
This integrity can considerably facilitate the collabora-
tive design of such systems where the design knowledge 
is complex, massive and multidisciplinary.

Application of the framework in the case study demon-
strated certain benefits of that. First, having an integrated 
design approach opens avenues to find a better design 
alternative. In the case study, the optimization–quantifi-
cation models found an optimum solution with regards to 
the quantifiable DRs without including the DRs related to 
operational policies. Simulation of alternatives revealed 
that there is an alternative that can have a lower total cost, 
which was not identified as the optimum alternative by the 

optimization–quantification models. In fact, addressing dif-
ferent design disciplines with a holistic approach allows 
capturing more dimensions of the solution space, which is 
not limited to the dimensions of the quantifiable DRs. As 
shown in Fig. 17, an optimization model seeks to find an 
optimum or near optimum solution in a solution space that 
its dimension is defined by quantifiable DRs. Nonetheless, 
when the solution space is searched by adding the dimen-
sion of the operational policies, a better solution might be 
identified. Although some limited aspects of operational 
policies might be modelled with complicated optimization 
formulation, the possibility of trapping in local optima might 
increase by adding more variables to the optimization mod-
els. Therefore, this framework could guarantee that its best-
identified alternative is at least as good as the best solution 
that is formulated by optimization–quantification models 
in the existing literature. On the other hand, it is possible 
that an optimum result from the optimization–quantifica-
tion cannot satisfy the initial constraints through simulation. 
This reference (Wang and Dagli 2013) simulated an optimal 
solution found by genetic algorithm and showed that the 
solution could not meet the throughput (that was addressed 
as optimization constraint). This deviation happened due to 
the interactions in the system, which the optimization model 
could not capture it properly, while simulation does.

6  Limitations and future research

Simulation of all the alternatives takes considerable time, 
and this is a limitation of the framework. Hence, to reduce 
the computational complexity, application of a supervi-
sory approach can be useful to select a limited number of 
alternatives for simulation while such selection would not 
necessarily lead to losing an optimum alternative. However, 
simulation-based optimization can be used instead of apply-
ing them in tandem. However, simulation-based optimisa-
tion problems face several challenges, which the computa-
tional cost is one of them (Figueira and Almada-Lobo 2014; 
Steponavičė et al. 2014). In fact, the simulation takes longer 
time when the number of design variables is large, while 
the number of decision variables is considerably large in 
the early design stages. Although, simulation-based opti-
mizations also do not guarantee to find the global optimum, 
investigation on their application can be future work for this 
research.

The SSMM simulates the behaviour of an alternative 
under certain sets of case-specific assumptions regarding 
the design knowledge, such as deterministic time of machin-
ing operations or fixed supply rate of the suppliers. However, 
the alternative might express a different performance if the 
assumptions are changed. Therefore, it is useful to address 
such uncertainties (e.g. stochastic data) in the SSMM to 
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know the magnitude of such a deviation from the initial 
modelled performance.

7  Conclusion

This paper introduced a framework by application of differ-
ent modelling methods and formalisms to develop intercon-
nected artefacts, which play certain roles in the framework 
for the purpose of having integrated and holistic design of 
complex engineering systems in the early design stages. 
Accordingly, the framework allows evaluating the impact 
of each design decisions from different disciplines on sys-
tem behaviour/performance. With the achieved results it is 
expectable that this framework may receive attention from 
designers for real design applications as well as academics 
for extension and further elaboration.
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