
Vol.:(0123456789)1 3

Research in Engineering Design (2020) 31:25–52
https://doi.org/10.1007/s00163-019-00321-9

ORIGINAL PAPER

A modelling framework to support design of complex engineering
systems in early design stages

Shiva Abdoli1 · Sami Kara1

Received: 4 October 2017 / Revised: 26 June 2019 / Accepted: 26 August 2019 / Published online: 12 September 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Production, assembly or logistic systems exist in widespread domains. It is agreed that more than 50% of life-cycle per-
formance, costs and environmental impacts of such systems are due to those decisions that are made in their early design
stages (Reich, Res Eng Design 28(4):411–419, https ://doi.org/10.1007/s0016 3-017-0270-7, 2017). However, the large scale
and multi-disciplinary essence of such systems make their design considerably challenging. Most of the design approaches
follow a sequential approach such that the design in each lower level is finalized/frozen before proceeding to the next level.
However, such approaches do not properly address the interaction between different design disciplines which may later lead
to design inconsistencies. Therefore, this paper aimed to propose a modelling framework that allows having an integrated
approach in the early design stages of such systems. To this end, first the framework prescribed developing an executable
meta-architecture that can embody all the design requirements. Second, the framework describes the interconnections between
the meta-architecture with certain supporting algorithms and optimization models. This allows generating and simulating
different design alternatives and observing the impact of different design decisions on system integrated performance.
Therefore, the proposed framework with its providing outcomes can be used to support the decision making in early design
stages of such systems. The framework is applied in a real case study from the warehousing domain, which serves to show
the practical application of the proposed framework.

Keywords Complex engineering systems · Object Oriented modelling · Systems engineering · System logical architecture ·
Discrete event simulation · Finite state machine

1 Introduction

1.1 Background

Manufacturing, assembly, and logistics systems are the
main elements in supply chains of many industries, such
as agriculture, fabrication, and electronics. The general

performance characteristics of aforementioned systems
are dependent on the decisions that are made in their ini-
tial design stages (Gu et al. 2001; Christophe et al. 2010;
Umeda et al. 1996; Reich 2017). Different references treated
the targeted systems as complex systems from the design
perspective (Koo 2005; Bar-Yam 2002; Schuh et al. 2008;
Wolfram 1985; ElMaraghy et al. 2005; Vrabič and Butala
2011). Although it is hard to find a globally accepted defini-
tion for complex systems, it is agreed that complex systems
usually comprise of a large number of interacting elements
and studying complex systems requires research across mul-
tiple disciplines (Wolfram 1985; Bar-Yam 2002; Schuh et al.
2008).

The targeted systems operate based on certain engineer-
ing processes. For instance, a warehouse system includes
several handling, sorting, packaging, and unpacking pro-
cesses. However, internal operations of processes are inde-
pendent and each may perform several operations. Thus,
being a large scale is one of the main characteristics of the

Electronic supplementary material The online version of this
article (https ://doi.org/10.1007/s0016 3-019-00321 -9) contains
supplementary material, which is available to authorized users.

 * Shiva Abdoli
 s.abdoli@student.unsw.edu.au

 Sami Kara
 S.kara@unsw.edu.au

1 Sustainability in Manufacturing and Life Cycle Engineering
Research Group, School of Mechanical and Manufacturing
Engineering, University of New South Wales, Sydney,
Australia

http://orcid.org/0000-0002-4262-3965
https://doi.org/10.1007/s00163-017-0270-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-019-00321-9&domain=pdf
https://doi.org/10.1007/s00163-019-00321-9

26 Research in Engineering Design (2020) 31:25–52

1 3

targeted systems. The processes dynamically interact to fulfil
the overall system functionality, particularly to transit the
items (e.g. products) through the system. The overall system
behaviour in terms of item transition can be characterized
by some events happening at discrete time points (McGinnis
et al. 2006; Mönch et al. 2011). Therefore, being dynamic is
another characteristic of the targeted systems. Each process
may operate using diverse types of resources, including soft
and physical. These systems accomplish their functional-
ity by proper integration of both soft and hard elements.
Hence, the design of such systems requires the involvement
of multiple design disciplines (Zheng et al. 2016; Gause-
meier et al. 2011). Therefore, being multidisciplinary is
another characteristic of such systems. Emergent behaviour
is a key aspect of complex systems, which happens due to
the interactions between system elements. However, it is not
easy to precisely predict the emergent behaviour prior to
observing the dynamic interactions (White 2007; Bar-Yam
2004). The combination of the aforementioned characteris-
tics lends these systems to the complex system class from
the design perspective (Koo 2005; Bar-Yam 2002; Schuh
et al. 2008; Wolfram 1985; ElMaraghy et al. 2005; Braha
et al. 2006; Vrabič and Butala 2011; McGinnis et al. 2006,
2011). Hence, the targeted systems are called ‘Complex
Engineering Systems’ (CESs), which is an umbrella term
referring to the aforementioned systems in this paper.

1.2 Research scope

This paper aims to propose a framework to support the CES
design, at the early design stages, in three ways as given
below. The motivations for the following objectives are
described afterwards.

1. Managing the complexity of the design knowledge by
providing a prescriptive approach for structuring the
design knowledge.

2. Enabling integrated design by having a holistic design
approach in terms of addressing both non-physical
(operational policies) and physical aspects of the sys-
tem concurrently. The holistic approach should allow
observing the impact of design decisions on the dynamic
behaviour of the system.

3. Enabling integrated (multidisciplinary) design to facili-
tate achieving design consistency.

The design knowledge includes a broad range of con-
cepts, including objectives, constraints, and requirements.
Managing the complexity of the design knowledge is a
challenging task in CES design (ElMaraghy et al. 2005;
INCOSE 2015; Chakrabarti and Blessing 2014; Sitton and
Reich 2018). Particularly, the manner of structuring the
design knowledge in a proper artefact (model) has a direct

impact on realizing the design integration (Chakrabarti and
Blessing 2014). Such complexity usually makes the design-
ers from different disciplines to design in silos (Fishwick
2007; Baker and Canessa 2009; Rouwenhorst et al. 2000;
Mönch et al. 2011). Existing design approaches mostly fol-
low a sequential approach, which hardly integrates the vari-
ous design stages (Cochran et al. 2000). Therefore, the con-
nection between low-level design decisions and high-level
system objectives cannot be captured properly, so it is not
easy to recognize how design decisions at various stages
affect the overall system performance. Moreover, it is likely
that some aspects of the system and its design knowledge are
being overlooked in such sequential approaches (Tomiyama
et al. 2007). Hence, having a holistic approach is essential
to realize integrated-multidisciplinary design (Maropoulos
and Ceglarek 2010), otherwise inconsistency between dif-
ferent design disciplines and failures may happen. Particu-
larly, operational policies or non-physical aspects of CESs
are mostly designed when the physical design is finalized
(frozen). For example in designing a warehouse, the design-
ers may prefer to design narrow aisles for saving on space
cost. Yet, double-command-storing-picking (storing and
picking in one aisle simultaneously) is not feasible (con-
sistent) with narrow-aisles. Design failures because of such
inconsistencies happen quite often when designers from dif-
ferent disciplines make their decisions separately (Komoto
and Tomiyama 2012). This emphasizes the importance of
proper structuring of the design knowledge in an artefact that
allows an integrated design to realize the design consistency.
The sequential approach may lead to shrinking the solution
space and losing a better solution (Wang 2012; Pape et al.
2013). Designing the warehouse with ‘wide aisles’ in con-
junction with double-command mode not only can improve
the throughput, but may reduce the required numbers of
pickers, which results in a lower total cost. However, a sys-
tematic integration between different design disciplines is
rarely addressed in the current literature (Zheng et al. 2016).

Generally, CESs achieve their intended overall func-
tionality through the proper dynamic interaction of their
processes. Although simulation is a promising approach
for observing the dynamic behaviour of CESs, it is often
used relatively late in the design process when the impor-
tant design decisions are already taken and key performance
criteria are determined. Hence, it is crucial to observe the
impact of the single design decisions (in different disci-
plines) on the dynamic behaviour of the system, so design-
ers can make more realistic decisions at early design stages.

To the best of the authors’ knowledge, there is a need for
a modelling framework that can assist in integrated design of
CESs (McGinnis et al. 2006; Thiers 2014; Wang and Dagli
2008; Tomiyama et al. 2009; Mönch et al. 2011; Zheng et al.
2016). The framework should allow integrating the design

27Research in Engineering Design (2020) 31:25–52

1 3

in different disciplines in a holistic manner, such that the
design ‘freeze’ happens on a multidisciplinary ground.

2 Literature review

Modelling in early design stages is defined as the transition
from a problem situation, model requirements to a defini-
tion of what is going to be modelled and how (Robinson
2006). In the CES design context, system architecture should
embody the requirements in a model that demonstrates the
system’s desired function (Dori 2002; Abdoli and Kara
2017b).

Wagenhals et al. (2003) proposed a modelling approach
for system architecting of systems that are related to Depart-
ment of Defence missions. Application of object oriented
(OO) approach using Unified Modelling Language (UML)
was recommended to model the system architecture. The
framework suggested transforming the UML model to Col-
oured Petri Net (CPN) formalism to provide an executable
architecture (model to model: MtM). Ultimately, the execut-
able model was used to simulate/observe the behavioural
performance aspects of a design alternative.

In another work, a modelling framework was introduced
by the application of OPM (Object Process Methodology),
CPN, and ‘feature model’(Wang and Dagli 2013). Feature
model was used to visualize the system elements and their
relationships. OPM model was used as a hub between CPN
and feature model. CPN formalism was used to simulate the
dynamic behaviour of the alternatives.

Thiers introduced a design methodology to support the
analysis of logistics systems by automating the process of
building the analysis models (simulation) from a descrip-
tive model of the system architecture (Thiers 2014). System
modelling language (SysML) and CPN were used, respec-
tively, to present the descriptive model of the architecture
and to make the executable model. It was suggested using
an automated builder program to make a CPN model from
a SysML model.

Meng introduced an approach to model a reconfigurable
manufacturing system by application of coloured timed
object-oriented Petri Nets (PN) (Meng 2010). Material
flow characteristics and time constraints were modelled as
tokens attributes. However, the quantitative formulation of
the problem to achieve a rigorous system configuration was
not addressed.

These references (Wang 2012; Wagenhals et al. 2003;
Meng 2010; Thiers 2014) mainly recommended a modelling
approach and relied on designer’s tacit knowledge for system
architecting (Alves and Silva 2009). However, a prescriptive
modelling approach reduces the required effort for model-
ling the design knowledge and supports the design processes
more effectively (Schotborgh et al. 2012).

Koo developed object-process network (OPN) as a
modelling language, for system architecting based on OO
approach and PN formalism (Koo 2005). OPN has flaws in
providing explicit mechanisms for automatically generating
alternatives and modelling the constraints that are related
to the integration of different objects. Moreover, OPN has
shortcomings regarding representing static relationships
between system entities.

Dauby and Dagli (2011) proposed a methodology for
the assessment of the system alternatives (Dauby and Dagli
2011). The ‘extensible modelling’ was defined as modelling
the system attributes with a hierarchical structure, which
each higher level aggregated the lower level parameters.
‘Canonical Design Primitives’ were defined as basic repre-
sentations for genres of the system’s physical components.
‘Sensitivity functions’ were defined to predict the impact of
trading one design primitive with another. It was assumed
that the system architecture and mathematical relationships
for sensitivity functions are known. Moreover, the impact
of each design primitive on the alternative performance was
assessed in isolation without taking into account the possible
interactions between system elements.

Ziv-Av and Reich (2005) introduced a hierarchical
approach for product-concept generation from the given
customer requirements (Ziv-Av and Reich 2005). The high-
est layer addressed the requirements and the following levels
can address their possible relationships. This work used a
quadratic programming approach to formulate a solution
and assess objectives satisfaction. The presentation of the
requirements was similar to the house of quality develop-
ment. However, the presented approach addressed the prod-
uct concept development according to its physical compo-
nents and studying the operational procedures of a CES
received less attention. Moreover, analysing the dynamic
behaviour of a product or system was not addressed.

Most of the existing frameworks basically describe the
system architecture with a static language, such as UML or
SysML, which are powerful in visualizing the architecture
from a specific point of view. Yet, such languages do not
provide substantial execution semantics compared to PNs
for capturing the dynamic behaviour of the system (simu-
lation). Although PN (or CPN) formalism has promising
features for computational analysis, it has shortcomings in
visualizing the system architecture meaningfully and sim-
ply (Khan 2010; Jørgensen 2004; Wagenhals et al. 2003;
Yaroker et al. 2013; Wang 2012). In the current literature,
it is tried to bridge this gap using a complex chain of MtM
transformation (Fleck et al. 2013; Bortolini et al. 2016). Yet,
developing and working with MtM transformation-based
approaches require a high level of expertise in programming.
On the other hand, such transformation models do not com-
pletely exist and are still evolving (Matei and Bock 2012;
Fleck et al. 2013; Alvarez Cabrera et al. 2010; Moses 2002;

28 Research in Engineering Design (2020) 31:25–52

1 3

Mijatov et al. 2015; Mayerhofer et al. 2013; Kapos et al.
2014; Zhow et al. 2015; Nikolaidou et al. 2012; Huang et al.
2007). OPM can be located between PN and UML/SysML.
Although OPM visualizes the system architecture meaning-
fully, it does not include a well-established computational
and execution semantics compared to PN. For instance,
this reference (Dori et al. 2016) used MtM transformation
between OPM and Matlab to enhance the OPM capabilities
by its integration with Matlab computational capabilities.
More issues regarding the MtM transformation are discussed
comprehensively in Kapos (2015).

Sitton and Reich (2018) introduced a framework for
coordination between the systems in an enterprise (Sitton
and Reich 2018). The introduced approach mainly focuses
on improving the core processes that define the enterprise.
Hence, the paper addresses the architecture development
when the enterprise systems already exist. Therefore, the
scope of the paper is different from the design at the early
stages. Hence, model-based simulation has not received its
deserved attention.

The papers that used MtM (Wang 2012; Wagenhals et al.
2003; Meng 2010; Thiers 2014; Schönherr and Rose 2009;
McGinnis 2006 and Ustun 2009) mostly modelled the opera-
tional policies as an invariant part of the model structure.
Hence, simulation of different alternatives did not address
different operational procedures. However, the decisions
regarding the selection of operational policies can strongly
affect the dynamic behaviour of a system. For example,
Thiers (2014) suggested modelling the system procedures
in behavioural diagrams of SysML, which dictates the opera-
tional procedures to the generated alternatives. Similarly,
the developed model by reference (Wang 2012) could not
generate alternatives that vary in their operational policies.
Therefore, existing frameworks have flaws in their ability
to capture the design knowledge holistically in terms of
addressing both structural and behavioural aspects in one
model (Abdoli and Kara 2017a).

As conclusion, four specific shortcomings are identified
in the reviewed frameworks, as summarized;

1. Lack of prescriptive guidelines for system architecting.
2. Demonstrating the system architecture and realizing the

dynamic behaviour in separated modelling formalisms.
3. Modelling operational policies as the model invariants.
4. Lack of an integrated modelling framework with the fol-

lowing characteristics: first, addresses different design
aspects including; generation of different alternatives
and their assessments, and second, provides a systematic
interconnection between different models such that they
can interchange their results.

3 Modelling framework

3.1 Framework overall structure

A prescriptive modelling framework clarifies the design
tasks, their logical sequence, and how to perform those
tasks (Albers and Braun 2011; Tomiyama et al. 2009; Este-
fan 2003; Cloutier and Verma 2007). Systems Engineering
(SE) is a well-known approach to assist with the design of
multidisciplinary systems and concentrates on system prop-
erties (Kossiakoff et al. 2011). Hence, this paper uses SE
principles to define the overall structure of the proposed
framework in terms of the needed tasks and their logical
sequence.

From the design perspective, the SE process can be bro-
ken into four fundamental tasks, as shown in the upper sec-
tion of Fig. 1. After the requirement analysis, the system
engineer designs the system’s logical architecture in terms
of system decomposition to logical subsystems, developing
their interaction interface, and allocating the requirements
to them (Douglass 2016; Osorio et al. 2011). Design at early
stages is considered equivalent to designing the system’s
logical architecture (Komoto and Tomiyama 2012). Differ-
ent design alternatives are configured by selecting from pos-
sible key options for design requirements without focusing
on their detail design. The goodness of the design alterna-
tives can be assessed with respect to certain measures of
effectiveness (MoEs) and accordingly a preferred alternative
is nominated for the detail design, this analysis is called
trade study. Down-stream engineers develop the detailed
designs of subsystems. A design alternative is needed to
be validated to assure its conformance to the requirements.

In the V-model of SE, the activities on the left side
define what is to be designed, building a foundation for
detail design. The right-side activities focus on integration-
validation, trying to ensure that the development process
delivers an outcome that conforms to requirements. V-model
gives great attention to the integration-validation activities
from the beginning of the development process, so it tries to
directly interconnect the integration-validation phase with
system logical architecture design (system architecting).
This direct interconnection conforms to what was explained
regarding the importance of observing the dynamic behav-
iour of design alternatives in early design stages.

Generally, business experts perform the requirement
analysis and provide the design knowledge for the design-
ers. Detail designs are also domain and case dependent.
Hence, this paper assumes that the design knowledge is
available and downstream engineers perform the detailed
design. Indeed, this paper focuses on system design from the
SE perspective. Nonetheless, design is an iterative process
of design generation, evaluation, and redesign (Pahl et al.

29Research in Engineering Design (2020) 31:25–52

1 3

2007). Hence, the trade study can be repeated several times
during the design process. Thus, this research also addresses
the trade study in the framework. Therefore, from SE per-
spective, the required tasks in the proposing framework are
given below and highlighted in Fig. 1.

1. System logical architecture design.
2. System validation (validation of design alternatives in

system level).
3. Trade study.

From the design perspective, the model of the logical
architecture should indicate the allocation of the design
requirements to the subsystems. In the CES design context,
the simulation-based assessments mainly aim to examine the
dynamic behaviour of the design alternatives to observe/val-
idate their conformance with the requirements, yet as men-
tioned, simulation-based approaches are mostly used very
late when the important design decisions are already taken.
Therefore, in this framework, the trade study takes into
account the simulation (validation from an SE perspective)

results for evaluating the design alternatives at the system
level. This helps to select a better alternative for the detail
design. The proposed framework is implemented in Matlab-
Simulink. However, the framework can be implemented in
other similar platforms as well.

3.2 Framework requirements

Table 1 demonstrates how the tasks of the proposed frame-
work (set of How-Means) can satisfy the research objectives.
This cross-examination helps to define the explicit require-
ments from the framework.

The system architecture is different from the design alter-
natives. In fact, the system architecture model can stand as a
meta-model such that different alternatives conform to that.
Yet, it is required to generate different alternatives that their
specifications differentiate them, while a design alternative
is feasible if it meets the requirements and satisfies the con-
straints. A meta-logical architecture opens avenues to gener-
ate the design alternatives algorithmically. Accordingly, the

Fig. 1 Framework structure

30 Research in Engineering Design (2020) 31:25–52

1 3

Ta
bl

e
1

 C
or

re
sp

on
de

nc
e

of
 th

e
fr

am
ew

or
k

ta
sk

s a
nd

 th
e

re
se

ar
ch

 o
bj

ec
tiv

es

O
bj

ec
tiv

es
Fr

am
ew

or
k

ta
sk

s
H

ow
-m

ea
ns

1.
 M

an
ag

in
g

th
e

co
m

pl
ex

ity
 o

f t
he

 d
es

ig
n

kn
ow

le
dg

e
by

 p
ro

vi
di

ng
 a

 p
re

-
sc

rip
tiv

e
ap

pr
oa

ch
 fo

r s
tru

ct
ur

in
g

th
e

de
si

gn
 k

no
w

le
dg

e
1.

 S
ys

te
m

 lo
gi

ca
l a

rc
hi

te
ct

ur
e

de
si

gn
(a

) T
he

 fr
am

ew
or

k
sh

ou
ld

 p
ro

po
se

 c
er

ta
in

 a
rc

hi
te

ct
in

g
gu

id
el

in
es

 to
 d

ev
el

op

sy
ste

m
 lo

gi
ca

l a
rc

hi
te

ct
ur

e
in

 te
rm

s o
f i

ts
 d

ec
om

po
si

tio
n

to
 su

bs
ys

te
m

s,
al

lo
ca

tin
g

th
e

de
si

gn
 re

qu
ire

m
en

ts
 to

 th
em

, a
nd

 d
es

ig
ni

ng
 su

bs
ys

te
m

s
in

te
rfa

ce
2.

 E
na

bl
in

g
in

te
gr

at
ed

 d
es

ig
n

by
 h

av
in

g
a

ho
lis

tic
 a

pp
ro

ac
h

in
 te

rm
s o

f
de

si
gn

in
g

bo
th

 n
on

-p
hy

si
ca

l (
op

er
at

io
na

l p
ol

ic
ie

s)
 a

nd
 p

hy
si

ca
l a

sp
ec

ts

of
 th

e
sy

ste
m

 c
on

cu
rr

en
tly

. T
he

 h
ol

ist
ic

 a
pp

ro
ac

h
sh

ou
ld

 a
llo

w
 o

bs
er

va
-

tio
n

of
 th

e
im

pa
ct

 o
f t

he
 d

es
ig

n
de

ci
si

on
s o

n
th

e
dy

na
m

ic
 b

eh
av

io
ur

 o
f

th
e

sy
ste

m

1.
 S

ys
te

m
 lo

gi
ca

l a
rc

hi
te

ct
ur

e
de

si
gn

2.
 S

ys
te

m
 v

al
id

at
io

n
(b

) T
he

 lo
gi

ca
l a

rc
hi

te
ct

ur
e

sh
ou

ld
 c

om
pr

is
e

of
 th

e
dy

na
m

ic
 e

ss
en

ce
 o

f a

C
ES

. H
en

ce
, t

he
 a

rc
hi

te
ct

in
g

gu
id

el
in

es
 sh

ou
ld

 a
llo

w
 a

dd
re

ss
in

g
al

l t
yp

es

of
 d

es
ig

n
re

qu
ire

m
en

ts
 in

 th
e

lo
gi

ca
l a

rc
hi

te
ct

ur
e,

 b
ot

h
th

e
op

er
at

io
na

l
po

lic
ie

s a
nd

 th
e

ph
ys

ic
al

 a
sp

ec
ts

 o
f t

he
 sy

ste
m

(c
) V

al
id

at
io

n
sh

ou
ld

 a
llo

w
 o

bs
er

vi
ng

/c
ap

tu
rin

g
th

e
dy

na
m

ic
 b

eh
av

io
ur

of

 th
e

de
si

gn
 a

lte
rn

at
iv

e
by

 it
s s

im
ul

at
io

n.
 T

hu
s,

th
e

lo
gi

ca
l a

rc
hi

te
ct

ur
e

ar
te

fa
ct

 sh
ou

ld
 b

e
ex

ec
ut

ab
le

 fo
r t

he
 p

ur
po

se
 o

f o
bs

er
vi

ng
 th

e
im

pa
ct

 o
f

‘o
pe

ra
tio

na
l p

ol
ic

y
de

si
gn

’ o
n

sy
ste

m
 b

eh
av

io
ur

3.
 E

na
bl

in
g

in
te

gr
at

ed
 (m

ul
tid

is
ci

pl
in

ar
y)

 d
es

ig
n

to
 fa

ci
lit

at
e

ac
hi

ev
in

g
th

e
de

si
gn

 c
on

si
ste

nc
y

ea
si

er
1.

 S
ys

te
m

 lo
gi

ca
l a

rc
hi

te
ct

ur
e

de
si

gn
2.

 S
ys

te
m

 v
al

id
at

io
n

3.
 T

ra
de

 st
ud

y

(d
) T

he
 lo

gi
ca

l a
rc

hi
te

ct
ur

e
sh

ou
ld

 p
ro

vi
de

 m
od

ul
es

 fo
r d

iff
er

en
t d

is
ci

pl
in

e
de

si
gn

 in
 o

ne
 m

od
el

(e
) P

ro
po

se
d

m
ec

ha
ni

sm
 fo

r t
he

 tr
ad

e
stu

dy
 sh

ou
ld

 a
pp

ly
 th

e
de

si
gn

 c
on

-
str

ai
nt

s i
n

th
e

al
te

rn
at

iv
es

(f
) T

he
 lo

gi
ca

l a
rc

hi
te

ct
ur

e
ar

te
fa

ct
 sh

ou
ld

 b
e

ex
ec

ut
ab

le
 su

ch
 th

at
 it

 a
llo

w
s

ob
se

rv
in

g
th

e
im

pa
ct

 o
f d

iff
er

en
t d

is
ci

pl
in

e
de

si
gn

s o
n

sy
ste

m
 b

eh
av

io
ur

/
pe

rfo
rm

an
ce

Th
es

e
fe

at
ur

es
 jo

in
tly

 a
llo

w
 id

en
tif

yi
ng

 p
os

si
bl

e
in

co
ns

ist
en

ci
es

 b
et

w
ee

n
di

f-
fe

re
nt

 d
is

ci
pl

in
es

 in
 e

ar
ly

 d
es

ig
n

st
ag

es

31Research in Engineering Design (2020) 31:25–52

1 3

required artefacts in the framework along with their essential
features are summarized as follow;

1. Architecting guidelines to develop the system’s logical
architecture.

2. Executable Meta-logical-architecture;

(a) Includes design modules that allow integrated
(multidisciplinary) design.

(b) Embodies operational and physical design require-
ments that realize the holistic design approach.

(c) Captures the dynamic behaviour of design alterna-
tives.

(d) Design alternatives are its instances.
(e) Formulates MoEs for the purpose of design

assessment/improvement

3. A mechanism that generates design alternatives con-
forming to the logical architecture.

4. A winnowing mechanism that identifies non-feasible
alternatives for early identification of design inconsist-
encies.

5. A model that applies the design constraints on a feasible
alternative.

3.3 Framework overview

Figure 1 demonstrates the overall structure of the proposed
framework. One of the main artefacts of this framework is
named System-State-Meta-Model (SSMM). Same authors
recently published a modelling approach to develop SSMM,
which is an executable Meta-logical-architecture and allows
modelling a CES in a holistic manner (explained shortly)
(Abdoli and Kara 2017a).

‘Design knowledge database’ stores the possible genres
for each design requirement. The ‘alternative generation’
algorithm configures possible design alternatives by the allo-
cation of design options (genres) to the design requirements.
The ‘feasibility checking’ algorithm crosses off the infeasi-
ble alternatives, when the configuration of selected genres
does not generate a feasible system alternative.

The framework utilizes certain optimization–quantifica-
tion models, which seek to develop a numerical model for
a feasible qualitative alternative, as shown in Fig. 2. The
optimization–quantification models provide the initial but
not validated values for Key Performance Indicators (KPIs)
or MoEs. This framework uses linear programming (LP) and
automated layout design program (ALDeP) as its optimiza-
tion–quantification models, which the later one may only be
used for those CESs that need a layout design.

Finally, the numerical model of an alternative is coupled
with the SSMM such that the alternative can be simulated
with the SSMM to observe its behaviour. The simulation can

validate the optimization–quantification results, which can
be utilized in the trade study to evaluate/improve the alterna-
tives and select a better one for detail design.

3.4 Framework artefacts and their interconnection

3.4.1 SSMM

The explained modelling approach in this section (pub-
lished by the same authors) satisfies the first and second
How-Means (A and B) from the proposed framework. The
approach is briefly described in the current paper and inter-
ested readers are referred to the published work for more
details.

OO modelling approach was used for managing the com-
plexity of the design knowledge and accordingly achieving
architecting guidelines, especially for having a holistic
approach in modelling the system architecture, as given
below.

 1. Abstracting the CESs to abstract processes and
acknowledging them as abstract classes that reflects
the item state transformation in a CES (from input to
output).

 2. Acknowledging the sub-process process concept (fac-
tual process) as an abstract class.

 3. Acknowledging the item concept as an abstract class.
 4. Acknowledging process enablers as abstract classes.
 5. Subclasses should be derived from the sub-process

abstract class equivalent to the factual processes; sub-
process.class

 6. Subclasses should be derived from the related enabler
abstract classes equivalent to the special types of ena-
blers; enabler.class

 7. Design requirements (DRs) from the enablers are
addressed as design attributes of the related enabler.
class.

Fig. 2 Evolution of a design alternative in the framework

32 Research in Engineering Design (2020) 31:25–52

1 3

 8. Subclasses should be derived from item abstract class
equivalent to the factual items; item.class

 9. Formulating the system use case as a function of the
required abstract processes and sub-processes for each
factual item (process flow).

 10. Addressing interaction attributes; ‘Item Arrival’ and
‘Item Departure’ attributes for sub-process abstract
class and also ‘Required processes’ attribute for the
item abstract class. The latter one is valued by the
aforementioned use case formulation.

According to the guidelines, a CES logical architecture
is modelled by developing its class diagram, fulfilling the
first identified research gap. The first six guidelines make
an abstraction hierarchy and decompose the CES to develop
the structure of the logical architecture. The design attributes
(DRs) are the translation of system requirements that are
allocated to the enabler.classes based on the given architect-
ing guidelines. Hence, the guidelines satisfy the realization
of How-Means A in the framework. The explained abstrac-
tion and hierarchical decomposition allow addressing all
types of DRs in the logical architecture; both operational and
physical requirements (partial realisation of How-Means-
B). In this approach, a process can have any type of physi-
cal or operational enabler, so the process concept covers a
broad range and is not limited to the transforming material
or energy and so on. In the early design stages, the available
information is limited to knowing the genres of a design
solution (Dauby and Dagli 2011). The design options (gen-
res) for a DR are called design-objects.

The aforementioned guidelines mainly contribute to visu-
alizing the holistic approach by the joint demonstration of
the dynamic aspects of a CES and all types of its DRs in its
logical architecture. Yet, a true realization of the holistic
approach requires a proper modelling formalism such that
can capture the dynamic aspects of the system by simulating
its behaviour. The authors proposed establishing the logi-
cal-architecture as a Finite State Machine (FSM) model to
achieve an executable Meta-logical-architecture, which was
called the SSMM. The main idea relied on modelling a CES
as a machine such that the DRs were considered equiva-
lent to the states (design-requirement-state) of the machine
with respect to its structure (according to the explained
hierarchal decomposition). Each design-requirement-state
encompasses certain sub-states representing its possible
design-objects (object-states). Each object-state carries its
own state-function for modelling its dynamic behaviour in
its discipline. In return, the SSMM could allow the realiza-
tion of integrated (multidisciplinary) design. These state-
functions were called object-state-functions. Hence, the
architecting guidelines resultant from OO modelling were
mapped into FSM formalism, as given below:

1. Classes are mapped to states.
2. Associated classes to a higher-level class are mapped as

sub-states of the corresponding supper state.
3. Item.class, process.class, and enabler.class are mapped

to, respectively, item.state, process.state, and enabler.
state.

4. Design attributes of an enabler.class are mapped to
design-requirement-states of the equivalent enabler-
state.

5. Design-objects of a DR are mapped to sub-states (object-
state) of the corresponding design-requirement-state.

6. ‘Item Arrival’ and ‘Item Departure’ attributes are
mapped to variables of the corresponding process.states.

7. ‘Required-processes’ attribute is mapped to a constant
of the corresponding item. states.

Accordingly, a design alternative can be configured by
activating one object-state for each and all of the design-
requirement-states. Thus, SSMM is meta-model such that all
alternatives conform to that. Alternatives can vary in their
activated design-objects for their operational policies. As a
result, the operational policies are not dictated to the SSMM
(or being its invariant property). This realizes How-Means
B, which serves to fulfil the third identified research gap.

The previous work of the authors mainly focused on
explaining the core of the modelling approach. Yet, elabora-
tion on addressing the specification of the design knowledge
in the SSMM was left as the future research, for instance
whether a design alternative meets the design constraints
or how good it is in satisfying the KPIs compared to other
alternatives. Hence, a design alternative should carry certain
level of quantification such that allows alternative’s simu-
lation, for instance number of equipment. Therefore, it is
needed to establish a systematic interconnection between
design knowledge and SSMM to realize the simulation of the
alternatives by SSMM. Hence, the new introduced concepts
in the current paper can be summarized into; developing the
optimization–quantification models, introducing supporting
algorithms, explaining a full detail approach for leverag-
ing the SSMM to an executable artefact, developing the
interconnections between the SSMM, optimization–quan-
tification models, and supporting algorithm as shown in
Fig. 1. All the figures and tables (including the case study)
in this paper are newly introduced in this current work of
the authors.

3.4.2 Design database

Generally, decision making requires certain parameters to
perform different analysing activities. Hence, it is crucial
to define a proper set of parameters, including constants
and variables, such that they provide the required basis
for data interoperability between the framework artefacts

33Research in Engineering Design (2020) 31:25–52

1 3

(algorithms, optimization–quantification, SSMM). Figure 3a
introduces a taxonomy for the involving parameters in the
design alternatives in this framework. DRs and design-
objects are already explained. Problem constants (PCs)
refer to those specifications that are fixed irrespective to
the design decisions, such as required throughput or total
budget.

The design knowledge database stores certain objects
equivalent to the process.classes, which are called process-
objects. The database also stores objects equivalent to fac-
tual items, which are called item-object. The known charac-
teristics of a factual item/process are addressed as attributes
of its equivalent process-object/item-object, such as input
batch size/available time window. Item-objects require an
attribute clarifying their process flows. For simplicity, the
constants of factual processes and items are called PCs. The
design-objects are also stored as objects in the database and
their specifications are addressed as their attributes (object
constants: OCs). For example, defining the type of material
handling equipment is a DR in a storing process of a ware-
house, while ‘Forklift’ and ‘Turret truck’ are two possible
design-objects for that DR. Hence, attributes of ‘Forklift’
and ‘Turret truck’ are defined as; operation time, required
space, and fixed cost. The database acts as a hub between the

framework artefacts, which allows for the exchange of data
and results between the framework artefacts.

3.4.3 Parameters of design alternatives

In a specific alternative, alternative parameters (APs) are
dependent on PCs, DRs, and OCs of the employed design-
objects in that alternative, see Fig. 3a. PCs and DRs are fixed
for all the alternatives. APs include two types of variables;
static variables (SVs) and dynamic variables (DVs).

Static variables When certain design-objects are allocated
to DRs, the OCs of the employed design-objects become
the constants of the design alternative. However, these con-
stants can vary from one alternative to another. For instance,
the operation time in the aforementioned storing process is
dependent on the decision regarding the selection of ‘Fork-
lift’ or ‘Turret truck’. Generally, SVs are a function of the
alternative configuration. In this paper, the alternative con-
figuration refers to the combination of the employed design-
objects that are allocated to the DRs. optimization–quanti-
fication models formulate these SVs as variables for each
specific alternative, which their values are fixed after opti-
mization–quantification application in one design iteration.

Dynamic variables DVs contribute to capturing the dynamic
behaviour of an alternative. From the simulation perspective,
the start and finish times of a process are time events chang-
ing dynamically. Therefore, processes and particularly their
enablers require DVs to demonstrate the availability status
of enablers for operation. Likewise, a DV also demonstrates
when a certain item finishes its required operation in a pro-
cess and is ready for the next process.

3.4.4 Design constraints

This paper divides design constraints into two main groups;
structural and behavioural, see Fig. 3b. The structural con-
straints are further divided into two groups; feasibility and
specifications. The feasibility constraints build bounda-
ries such that an alternative configuration is feasible if it
is located within those boundaries. These boundaries are
high level or qualitative design constraints (recall warehouse
example). The specification constraints are mainly depend-
ent on each specific design case. Yet, they should be satis-
fied to meet the specific requirements, such as the required
throughput. This framework addresses structural constraints
in the optimization–quantification models.

Incorporation of the architecting guidelines into FSM
formalism satisfies addressing the behavioural constraints
into the SSMM. For instance, if certain processes can run
simultaneously, their relative decomposition is defined as;
‘Parallel ~ AND’. Interested readers can find more details

a)

Fig. 3 a Taxonomy of design alternatives parameters. b Constraints
realization in frameworks artefacts

34 Research in Engineering Design (2020) 31:25–52

1 3

regarding addressing the behavioural constraints in the pre-
vious work of the authors.

Figure 3a, b show how APs and constraints encounter
each other in the framework artefacts.

3.4.5 Alternative generation algorithm

The ‘alternative generation algorithm’ generates a design
alternative using an array of variables, which are equivalent
to the DRs. Each DR is represented with a unique variable
as shown in Fig. 4 and (1). The ID is the associated number
to a DR; ‘ DRID ’. This array is a reference model that reflects
the addressed DRs in the logical architecture and as a result,
the qualitative alternatives are its instances.

The algorithm allocates the design-objects to the related
DRs. Hence, each design-object carries an attribute clarify-
ing whether it can be employed in each unique DR. This
attribute is called applicability attribute, which can be valued
as shown in (2).

Design-objects are differentiated by carrying Uniqueness
Key (U.Key). In return, an alternative is demonstrated in
a codified form showing U.Keys of the employed design-
objects for each DR, as shown in (3). The algorithm is writ-
ten as a query such that searches the database and generates
possible alternatives and stores them in the database, which
are called Alternative-Configuration in this paper.

(1)CESQualitative−Alternativei =
[

DR1,… , DRID,… , DRz

]

.

(2)
Applicability − design − objectU.Key =

(

Applicability1,… , Applicabilityj,… , Applicabilityz
)

,

Applicabilityj =

{

1; if design − object can be used in the DRj

0; otherwise
∀j ∈ Z.

(3)CESQualitative−Alternativet =
[

(Design.objecti.U.Key)DR1
,… , (Design.objectj.U.Key)DRz

]

.

3.4.6 Feasibility checking algorithm

Sometimes, a combination of individual design-objects may
not necessarily result in a feasible system design alterna-
tive, recall the warehouse example. Hence, an algorithm is
proposed such that examines an Alternative-Configuration
with respect to the feasibility constraints and winnows the
non-feasible alternatives. As a result, the remaining alter-
natives satisfy certain high-level qualitative (integration)
constraints, this algorithm is called feasibility checking
algorithm. The feasibility checking algorithm checks the
feasibility constraints in the qualitative Alternative-Configu-
rations before the application of optimization–quantification.

‘Consistency attribute’ is defined for each design-object
that clarifies its consistency (compatibility) with other
design-objects as shown in (4). K is the number of all stored
design-objects in the database.

In a specific Alternative-Configuration, the employed
design-objects are a subset of all stored design-objects in
the database. The feasibility checking algorithm refines
the consistency attribute of a design-object with respect
to the subset of employed design-objects in that specific

Alternative-Configuration. The refined vector is called
‘alternative-dependent consistency vector’. Thereupon,
‘alternative-dependent consistency matrix’ is built, which
its rows are the ‘alternative-dependent consistency vectors’
as shown in (5). Co1o2 represents the consistency of the
employed design-object for DR1 with the employed design-

object for DR2 . The alternative feasibility is calculated as
the production of matrix elements. A result of zero means
that the Alternative-Configuration is not feasible, whereas
one means feasible.

(4)
Consistency − design − objectU.Key =

(

Consistency1,…Consistencyi,…Consistencyk
)

Consistencyi =

{

1; if the design − object is consistent with the design − object with U.Key of i

0; otherwise
∀i ∈ k

Fig. 4 Representing the DRs as an array of variables

35Research in Engineering Design (2020) 31:25–52

1 3

The feasibility checking algorithm is written as a follow-
up of the alternative generation algorithm. Hence, the query
first generates all possible Alternative-Configurations and
then filters them to the feasible Alternative-Configurations.
Therefore, the feasibility algorithm partially realizes the
How-means E in the framework.

3.4.7 Quantification models

It is crucial to develop quantitative Alternative-Configura-
tion to assure that it satisfies specific (numerical) constraints
besides the structural ones. Recall the storing process exam-
ple, in this case the number of ‘Forklifts’ or ‘Turret truck’
need to satisfy the required throughput. Although, optimi-
zation–quantification is applied on the qualitative Alterna-
tive-Configuration to obtain a quantitative model for it such
that can be simulated with the SSMM, yet the optimiza-
tion–quantification models also take the first steps to apply
constraints on the quantified Alternative-Configuration.

Analytical formulation of the CESs can be fairly compli-
cated (Zheng et al. 2016), so optimization has been mostly

used for finding a good solution and not necessarily find-
ing the global optimum (Roy et al. 2008). Hence, it is less
critical to argue regarding the optimality of the formulated
solution using a specific optimization method in this context.
Therefore, in this framework, the term optimization–quanti-
fication is used instead of optimization. It is argued that the
top three optimization approaches are: genetic algorithms,
linear/quadratic programming, and simulated annealing.
The application field of LP is so broad, including design
optimization in engineering and resource allocation (Alfaris
2009). In CESs from a system level perspective, the vari-
ables are mainly related linearly in the objective function
and constraints. Hence LP is selected for optimization–quan-
tification in this framework. Yet a designer may use other
satisfying optimization approaches.

(5)Alternative dependent consistency matrix =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

NA CO1O2 CO1O3 ⋯ CO1Oz

CO2O1 NA CO2O3 ⋯ CO2Oz

CO3O1 CO3O2 NA ⋯ CO3Oz

⋮ ⋮ ⋮ ⋮ ⋮

COzO1 COzO2 COzO3 ⋮ NA

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Linear programming LP is a general technique that tries to
model a problem with linear inequalities that are related to
a linear objective function as shown in (6). The inequalities
are problem constraints and the solution hold to them (if it
exists).

The decision variables are x1,… , xn . LP calculates
(instantiates) the required number of the employed design-
objects in an Alternative-Configuration. The quantified
value of design-objects (x) is called ‘Required number of
instances. LP’ and is coupled with the corresponding U.Key
in the qualitative model of an Alternative-Configuration as
shown in (7).

The objective function can be formulated to return the
KPIs, such as cost minimization. The specific constraints
can be modelled as LP constraints. PCs determine the ‘b’
and ‘beq’ in the LP formulation, such as a maximum budget.
However, it is not very easy to find a globally optimal solu-
tion that maximizes multiple conflicting objectives. There
are different approaches to deal with this issue, such as
weighting the objectives or finding a set of solutions and the
decision regarding prioritizing the objectives is made later.
This research uses the first approach because it is simpler
and more importantly the optimization results are validated
later by simulation. In the CES design context, there are usu-
ally two typical competing objectives; cost and throughput.
If one of them has a limit (e.g. throughput) that can be mod-
elled as a constraint and the other (e.g. cost) as the primary
objective in the objective function.

(6)

Min f

f =

n
∑

i=1

ci × xi

A × x ≤ b

Aeq × x = beq

lb < x < ub.

(7)

CESQualitative−Alternativet =
[

(design.objecti.U.Key)DR1
,… , (design.objectj.U.Key)DRz

]

↓ LP

CESQuantitative−Alternativet =

[

(desig.objecti.U.Key, required number of instances.LP)DR1
,

… , (desig.objectj.U.Key, required number of instances.LP)DRz

]

.

36 Research in Engineering Design (2020) 31:25–52

1 3

Certain constraints can be defined to satisfy the system
level requirements. From the theory of constraints perspec-
tive, system goal achievement is constrained to its weakest
sub-system, for instance a system throughput is limited to its
bottleneck. Therefore, some constraints should be defined to
realize the system throughput in each process.

Including all DRs (particularly operational policies) may
result in NP formulation. Although there are approaches that
allow formulating operational policies in an optimization
model, such as queue theory, they are considerably com-
plicated (Roy et al. 2008); this makes the simulation as the
most applied approach for capturing the behaviour of CESs.
Hence, only the quantifiable DRs are addressed in optimiza-
tion–quantification models (e.g., required number of equip-
ment), while the simulation of quantified Alternative-Con-
figurations allows evaluating their KPI as a function of the
dynamic interactions between the employed design-objects
for all the DRs.

The LP model should not include any information about
the design-objects. Thus, the A, Aeq, and C are needed to
be formulated as variables, which are OCs of the employed
design-objects in a specific Alternative-Configuration. In
return, the LP model can be used for different alternatives.

Automated layout design program (ALDeP) Some CESs may
require the layout design, such as warehouses, so it may be
needed to address the layout design in their optimization–
quantification step. Hence, the proposed framework can be
used for CESs that require/do not require the layout design
without losing the framework generality. Layout design
approaches can be divided into two main groups; construc-
tion and improvements algorithms. The former group builds
a block layout by iteratively adding departments. The latter
group seeks to improve an initial block layout incremen-
tally. This research uses ALDeP because; it is a constructive
approach, generates multiple layouts, and also the final lay-
out will not be an odd shape. Explaining the detail of ALDeP
is out of the scope of this paper, hence interested readers are
referred to the related literature (Hopp and Spearman 2011).
ALDeP requires several inputs such as a number of depart-
ments, department areas, and departments’ relationships.
Certain parts of these inputs are known and belong to PCs,
such as the number of departments. Yet, some inputs, such
as department area, are a function of Alternative-Configu-
ration and belong to SVs. ALDeP generates layout(s) for the
quantified model of an alternative (quantified by LP). The
ALDeP determines the department shapes for each process
and their relative position. The developed layout is stored in
the Alternative-Configuration.

Finally, application of the optimization–quantification
models jointly with feasibility checking algorithm realize
both structural and specific constraints on the alternatives
(realization of How-Means E).

3.4.8 Simulation of the SSMM

The SSMM has nested states, demonstrating a hierarchi-
cal structure. The higher-level states are independent of
the design solution and model the system structure and its
design requirements. The lower-level states are solution
dependent, which demonstrate the decisions for choices of
the DRs. The explained decomposition hierarchy based on
OO modelling builds nested stated in SSMM as shown in
Fig. 5.

The previous work of authors suggested defining func-
tions for each object-state to embody its design specifica-
tions in it. Yet, it was not elaborated on what data should
be included in the state-functions, how they exchange data
to realize the simulation of an alternative with SSMM and
so on. From discrete event simulation (DES) perspective,
the model components should be informed regarding the
events to act accordingly to simulate the dynamic behaviour
of the model. In DES, the variables play a key role in update
propagation. An Alternative-Configuration is simulated by
coupling its ‘quantitative model’ with the ‘SSMM’. Thus, it
is essential to have a proper interconnection between the APs
and the SSMM. Therefore, three issues are joint-discussed in
this section; first identification of critical time events, second
defining certain variables that derive those events, and third
interconnection of variables for update propagation during
the simulation.

It is worth drawing attention to some points at the begin-
ning of this section. First, system engineers have a system
view and can visualize the interactions in the system level.
Hence, system engineers can define how object-state-func-
tions should interact with each other in terms of exchanging
data. Second, this section explains those logics that object-
state-functions include to realize the alternatives simulation
in a system level. However, the detail level of addressed log-
ics in the state-functions depends on the required granularity
in the simulation.

As shown in Fig. 6, the object-state-functions contain
two levels of information. The first level is those logics
that embody the dynamic behaviour of the object-state in
its discipline from a system level perspective. These logics
contribute to early modelling of the dynamic behaviour of
an object-state prior to moving to the detail design. These
logics can be modelled with state modelling of the design-
object as well, as shown in the bottom section of Fig. 5.
DVs contribute to capturing the dynamic behaviour of an
alternative hence they are embodied as inputs-outputs of the
object-state-functions. Accordingly, DVs can play as inter-
faces between different object-state-functions. However, an
object-state-function can also get certain inputs from the
PCs, OCs or SVs as well. The explained concepts in this
paper belong to the first information level. The second is
those logics that address the detail design of a design-object.

37Research in Engineering Design (2020) 31:25–52

1 3

The down-stream engineers can establish the detail design
of an object-state in its object-state-function, yet they are
aware that the encapsulated detail design should update the
pre-defined ‘outputs’. Hence, the detail design can solidify
the simulation results after certain design iterations. The
object-state-functions can belong to any discipline, such as
mathematical expressions or algorithmic procedures. Thus,
the object-state-functions can stand as design modules for
different disciplines; this realizes the essence of integrated
(multi-disciplinary) design in the SSMM and satisfies the
How-Means-D.

Fig. 5 SSMM realizes system architecture, design state, and dynamic state

Fig. 6 Embodied concepts in the objects-state-functions

38 Research in Engineering Design (2020) 31:25–52

1 3

Figure 7 shows the interconnection between the frame-
work artefacts (SSMM, ALDeP, LP, databases) and APs
from a DES perspective by demonstrating how the simula-
tion happens using APs.

As shown in Fig. 7a, each process has two main events;
Start and Finish. Availability of the process enablers is a
key factor in the process operation. Hence, enabler-states
require a variable clarifying their dynamic state in terms of
their availability status. Recall the given model in (7). The
enabler variable should clarify the dynamic state of each of
the instances of an employed design-object. This research
suggests defining the DVs as a structure with variable size
as shown in Fig. 8.

SSMM should be able to simulate different Alternative-
Configurations that employ different design-objects for one
specific enabler; therefore, the enablers’ DVs should be
independent of the design-objects (e.g., Forklift and turret
truck). Hence, the DVs are defined in the process.state or
design-requirement-state and not at the object-state level as
shown in Fig. 5.

A design-object can be employed for different DRs,
see Fig. 9. Hence, the required number of instances of the
same design-object can vary in different DRs. For instance,
according to optimization–quantification, the required num-
ber of instances of ‘Forklift’ in stacking and storing pro-
cesses are, respectively, 2 and 4. The required number of
instances is an SV, which its interconnection with object-
state-function is shown in Fig. 7b. For simplicity, the pro-
cess of generating the required number of instances of a
design-object is called instantiation. However, it is preferred
that one object-state-function can be used for embodying the
behaviour of similar object-states when they are employed in
different design-requirements-states. Moreover, the object-
state-function should be able to instantiate the design-object
according to its employed DR (e.g. Forklift in stacking or

Fig. 7 a Process dynamic events. b interconnection of APs and framework artefacts from DES perspective. c an example of APs interconnection
for simulation

Fig. 8 Example of enabler dynamic variable

39Research in Engineering Design (2020) 31:25–52

1 3

storing process). The procedure of instantiation is shown
with a pseudo code in Fig. 10. Each design-requirement-
state expresses the equivalent ‘DR-ID’ as an input to the
object-state-function (DR-ID is shown as ‘DesignReqiremn-
tID’ in Fig. 9). Hence, the object-state-function identifies
the specific DR that employed the design-object. Then, the

object-state-function instantiates the design-object accord-
ing to the given value in ‘Required number of Instances.LP’.

Likewise, if the CES required layout modelling, the
object-state-functions retrieve the layout information from
the quantitative model of an Alternative-Configuration. For
instance, layout information can be used to calculate the
travel time in material handling of storing process as shown
in Fig. 7c.

From the system perspective, items hinge the processes
together by leaving from one and entering into the next
processes. Hence, the item concept also requires a variable
clarifying the dynamic state of the items. Each real item is
an instance of a specific item-object. Thus, the item variable
also has a structure type with variable size and a similar
instantiation procedure generates the same item-instances
from one specific item-object.

If a process has a DR related to the operational policies,
then an Alternative-Configuration should have an activated
object-state for its design-requirement-state related to that
operational policy. For instance, in the warehousing con-
text, Class-Based-Storage (CBS) and Random storage are
two operational policies for allocating Stock Keeping Units
(SKUs) to storage modules. As shown in Fig. 9, the design-
requirement-state related to the SKU allocation policy

Fig. 9 Example of the design-requirement-states, their object-states and state-functions

Fig. 10 Structuring a dynamic variable with variable size

40 Research in Engineering Design (2020) 31:25–52

1 3

has two object-states; Random and CBS. Generally, each
object-state-function takes the item-instances that require
that specific process and manage them for different opera-
tional purposes. Each object-state-function may have its own
operational logic. Hence, there are not dictated to the SSMM
and their impacts on KPIs can be observed by simulation.
As a result, SSMM allows having a holistic design in terms
of making design decisions regarding the operational policy
and physical aspects concurrently; this realizes the How-
Means C.

The system engineer defines the dynamic interaction
between enablers in terms of their chronological involve-
ments in the process operation, see Fig. 7. Hence, the
object-state-function of a posterior enabler.state gets certain
required inputs from the prior enabler.states. As shown in
Fig. 7c, the CBS-state-function defines the SKUs location
by indicating that in SKU variable and communicates the
results with the posterior enabler, which is pallet-rack as
storage modules in this example.

Updating the dynamic state of enabler.state can be
developed by simple functions following DES princi-
ples, as shown in the bottom section of Fig. 5. Indeed,
the common updating principles can be written as
general functions, which can be called in different
object-state-functions.

The system architect defines those DVs that determine
the start and finish time of the process. For example,
the start and finish time of an equipment instance (e.g.
Forklift) can be considered as start and finish time of the
storing process for SKUs as shown in Fig. 7c. When the
process finish time is elapsed, the item variable is updated
showing that the item-instance has finished this process
and is available for the next process. This procedure con-
tinues until the item-instance finishes its required process
flow.

Certain variables can be defined in the SSMM to pro-
duce/formulate KPIs. Object-state-functions can contribute
to dynamically update these KPIs and return their values

Fig. 11 High-level snapshot of the SSMM developed for the warehouse

41Research in Engineering Design (2020) 31:25–52

1 3

at the end of the simulation. For instance in a warehouse,
shipping is the last process and ‘Door’ is the last enabler that
is involved in the shipping process. Therefore, the object-
state-function of the employed design-object for the ‘Door’
can return the total number of shipped orders during the
simulation time.

The SSMM provided building blocks in different levels
such as process-state, design–requirement-states, object-
states, and object-state-functions. These building blocks
can facilitate modelling those large-scale systems that have
several similar subsystems such that the building blocks can
be designed once and then be dragged and dropped in similar
relevant levels multiple times.

Ultimately following the explained approach, the
SSMM embodies three aspects of a CES; first: system
architecture, second: decisions regarding the allocation
of design options (genres) to the DRs for configuring a
design alternative, and third: dynamic behaviour of the
design alternative, see Fig. 5. The embodiment of such
comprehensive concepts in the SSMM is the fruit of
proper application of OO modelling, using proper model-
ling formalism (FSM), and their proper interconnection
with optimization–quantification models and the sup-
porting algorithms. Since all the defined How-Means are
satisfied, hence the framework can satisfy the research
objectives.

4 Case study

As proof of concept, the introduced framework is applied
to a real industrial case. An international healthcare com-
pany looks to construct a new warehouse since the lease of
the existing warehouse is about to end. The new warehouse
receives three families of SKUs from two sources; namely a
replenishment centre of a factory and the pharmacy depart-
ment of the same company that is a separate business unit.
The first SKU family is mainly ordered by hospitals with
high daily demand (SKU-A). The second and third families
are ordered by home patients in lower volumes (SKU-B and
SKU-C). The SKUs come in different batch sizes in differ-
ent weekdays. Likewise, the average order size for different
SKU family is different. The details are shown in Appendi-
ces A1 and A2 in ESM.

4.1 Design meta‑model and developing design
alternatives

There is no need that the designers first make the class
diagram of the CES and then map it to the FSM formal-
ism; in fact, they can start making the SSMM following the
explained guidelines. In this case study, the class diagram
was developed on paper and model development was com-
menced in Matlab State flow library. A high-level snapshot
of warehouse SSMM is illustrated in Fig. 11, according to
the explained approach in Sect. 3.4.8.

In the warehouse, item-state of all SKU families change
four times; from ‘Inputs’ to ‘received SKU’, then to ‘stored
SKU’, then to ‘picked ordered SKU’ and finally to ‘shipped
ordered SKUs’. The receiving process includes two sub-pro-
cesses; unloading and stacking; P11, P12 . Storing, picking,
and shipping are, respectively, shown as P2,P3 and P4 . The
warehouse use case scenario is formulated as a function of
SKUs’ process flows as follows:

Since P2, P3 and P4 do not have more than one sub-
process, hence, �i,k was not shown for them. Therefore, the
warehouse function was formulated as shown below.

Wf =
{

fSKU1
, fSKU2

, fSKU3

}

fSKUj
=
{(

�j,i,Pi

)}

; i ∈ {1,… , 4}, j ∈ {1, 2, 3},

�j,i =

{

1; if Pi is needed for SKUj

0; otherwise,

fSKU2
=
{(

�1,1,P1

)

,
(

�1,2,P2

)

,
(

�1,3,P3

)

,
(

�1,4,P4

)}

,

fSKU3
=
{(

�1,1,P1

)

,
(

�1,2,P2

)

,
(

�1,3,P3

)

,
(

�1,4,P4

)}

,

�1,i = {(1)} ∀i ∈ (1,… 4) → �1 = {(1), (1), (1), (1)},

�2,i = {(1)} ∀i ∈ (1,… 4) → �2 = {(1), (1), (1), (1)},

�3,i = {(1)} ∀i ∈ (1,… , 4) → �3 = {(1), (1), (1), (1)},

�4,i = {(1)} ∀i ∈ (1,… 4) → �4 = {(1), (1), (1), (1)},

Pi =
{(

�i,k, SPk
)}

k ∈ (1,…K), SPk ∶ sub-processk

�i,k =

{

1; if sub-process k is needed for Pi

0; otherwise

P1 =
{(

�1,1,P11

)

,
(

�1,2,P12

)}

�1,k = {(1)} ∀i ∈ (1, 2) → �1 = {(1), (1)}.

wf =

{((

1,P11

)

,
(

1,P12

)

,
(

1,P2

)

,
(

1,P3

)

,
(

1,P4

))

1
,
((

1,P11

)

,
(

1,P12

)

,
(

1,P2

)

,
(

1,P3

)

,
(

1,P4

))

2
,

((

1,P11

)

,
(

1,P12

)

,
(

1,P2

)

,
(

1,P3

)

,
(

1,P4

))

3

}

.

42 Research in Engineering Design (2020) 31:25–52

1 3

The relation between the warehouse function and the ref-
erence model is that the DRs are defined for the enablers
of the processes according to the explained decomposition
hierarchy. The process enablers were defined as equipment,
infrastructure, and operational policy. Using (1) the ware-
house qualitative reference model was developed that repre-
sents the DRs and their ID-numbers as given below. Several
design-objects are defined and stored in the database, as
given in Appendix A3 in ESM.

4.2 Application of alternative generation
and feasibility checking algorithms

A query (Matlab Script) is written to automatically perform
the alternative generation and feasibility checking algo-
rithms by taking into account the applicability and consist-
ency attributes of the defined design-objects. The feasibility
checking algorithm crossed more than 50% of the config-
ured alternatives due to the inconsistency of their employed
design-objects (10,500 generated alternatives were reduced
to 4800 feasible alternatives). In fact, the risk of design fail-
ures was more than 50% if the decisions regarding employ-
ing the design-objects for different DRs were performed
individually in different disciplines. This shows one of the
benefits of the framework in terms of recognition of those
alternatives that may lead to failures in later design stages.
Due to space limitation, only two alternatives are shown in
a coded form as examples.

WarehouseQualitative−Model ∶

[Unloading − Equipment − type1, Unloading − Infrastructure − door − position2,

Unloading − Infrastructure − door − type3, Unloading − SKU −management − policy − timing4,

Staking − SKU −management − policy − timing5, Stacking − Infrastructure − type6,

Stacking − equipment − type7, Storing − SKU −management − policy − storage − allocation8,

Storing − SKU −management − policy − timing9, Storing − Equipment −management − policy − combination −mode10,

Storing − Equipment − type11, Storing − Infrastructure − storage −module − type12,

Storing − Infrastructure − aisles − configuration13, Picking − Order management − policy − pick listing14,

Picking − Equipment −management − policy − combination −mode15, Picking − Equipment − type16,

Shipping − Infrastructure − door − type17, Shipping Infrastructure − door − position18,

Shipping − Order management − policy − timing19, Shipping − Equipment − type20].

Recall CBS and random operational policies, likewise
double command and single command are two possible
operational options for storing/picking of the SKUs in and
from the storage modules. In this warehouse, a maximum
of five levels-heights for the storage modules is allowed and
storing and picking from fifth level of storage aisles required
more time. Due to high space cost, the project managers

decided to have the five levels heights of the storage modules
(similar to the existing warehouse). Two contributions of this
framework are; addressing the operational policies in the
SSMM and second; simulating the SSMM to observe the
impact of the design decisions on the dynamic behaviour of
the system. Hence, this section continues with the two above
Alternative-Configurations to demonstrate the usefulness of
these contributions.

4.3 Application of optimization–quantification
on the design alternatives

4.3.1 LP application

The project managers preferred to minimize the cost while
meeting the required throughput in terms of fulfilling cus-
tomer orders. Thus, the LP is formulated such that the objec-
tive function returns the total cost. The cost includes; fixed

WarehouseQualitative−Alternative
A

= [11, 32, 53, 74, 75, 106, 117, 138, 79, 1610, 1111,

1812, 2013, 2214, 1615, 1116, 617, 318, 819, 220]

WarehouseQualitative−Alternative
B

= [11, 32, 53, 74, 75, 106, 117, 148, 79, 1510, 1111,

1812, 2013, 2214, 1515, 1116, 617, 318, 819, 220].

43Research in Engineering Design (2020) 31:25–52

1 3

cost and operational cost of the design-objects, and space
cost.

Picking and shipping processes are triggered by cus-
tomer orders. The company has an agreement with its cus-
tomers to accept the orders in 5 h time window. Hence,
the customer order specifications (See Appendix A1 in
ESM) determine the bounds for LP constraints related to
these two processes. However, unloading, stacking, and
storing processes do not deal with customer orders. In
fact, these three processes should keep up the pace with
supply input rate, which is used to make bounds for LP
constraints related to these three processes. The warehouse
will be constructed close to a residential area and will
only have 3 h in the early morning to receive the suppli-
ers’ inputs. The time horizon for each process is given in
Appendix A2 in ESM. 130 working days is considered to
include the operational cost in the LP formulation. The
formulated LP model is shown below;

Time interval (number of working days) = 130

Order time window = OTW

Supply time window = STW

SC = Space Cost

SKUj = SKU type j; j = 1 ∶ 3

SKUj,STW = Time window for accepting SKUj from suppliers

SKUj,Input batch size = Input batch size of SKUj

SKUj,Input rate = Average time interval to get a supply of SKUj

SKUj,OTW = Time window for accepting orders of SKUj from customers

SKUj,Order size = Average order size of SKUj

SKUj,Order rate = Average time interval to get an order of SKUj

PTH = process time horizon

Total number of quantifiable DRs = NQ

Total Number of Quantifiable DRs in unloading and stacking and storing = NQ1

Total Number of Quantifiable DRs in picking and shipping = NQ2

NQ1 + NQ2 = NQ

xi = Variable i in the LP

Drxi = The ‘DR − ID’ for the xi in the qualitative model

DrxFC
i
= Fix cost(FC) of the employed design − object for the Drxi

DrxRS
i
= Required space(RS) for the employed design − object for the Drxi

DrxOC
i

= Operational cost(OC) of the employed design − object for the Drxi

DrxOT
i

= Operational time(OT) for the employed design − object for the Drxi

Dr
x
capacity

i

= Working capacity of the employed design − object for the Drxi ,

xi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
.

xNQI

.

xNQ1

.

xNQ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; i = 1 ∶ NQ,

Table 2 ALDeP results

Process Net required space (m2) Department
shape (m × m)

P
11

32 8 × 4
P
12

252 28 × 9
P
2

320 32 × 10
P
3

20 5 × 4
P
4

60 4×115

44 Research in Engineering Design (2020) 31:25–52

1 3

cT
i
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

DrVFC
1
+

�

DrVRS
1
× SC

�

+

�

DrVOC
1

× TIM × PTH
��

�

DrVFC
i
+

�

DrVRS
i
× SC

�

+

�

DrVOC
i

× TIM × PTH
��

�

DrVFC
NQ1

+

�

DrVRS
NQ1

× SC
�

+

�

DrVOC
NQ1

× TIM × PTH
��

�

DrVFC
NQ

+

�

DrVRS
NQ

× SC
�

+

�

DrVOC
NQ

× TIM × PTH
��

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

lower bound = lb, upper bound = ub,

lb < x < ub, ub = [Infinite]NQ×1, lb =
[

lbi
]

NQ×1
,

lbi =

�

∑3

j=1

��

SKUj,Input rate×SKUj,STW

SKUj,Input rate

��

× DrxOT
i

�

�

Dr
x
capacity

i

× PTH
� ∀i ∈ 1 ∶ NQ1,

lbi =

�

∑3

j=1

��

SKUj,Order size×SKUj,OTW

SKUj,order rate

��

× DrxOT
i

�

�

Dr
x
capacity

i

× PTH
� ∀i ∈ NQ1 + 1 ∶ NQ,

Fig. 12 Storing-process-state

Fig. 13 Defined DVs for SKU, order, infrastructure and equipment

45Research in Engineering Design (2020) 31:25–52

1 3

The LP model retrieves each feasible qualitative Alterna-
tive-Configuration from the database automatically. Accord-
ingly, the coefficients are automatically updated with respect

f =

NQ
∑

i=1

ci × xi, objective ∶ minimize f .

to the employed design-objects in each Alternative-Config-
uration and LP results are written in it automatically. As
mentioned, the optimization–quantification models quantify
the quantifiable design-objects, so the design-objects related
to the operational policies are not addressed in the LP for-
mulation in this case. Hence, the LP results of the two given
alternatives are similar because they only differ in their oper-
ational policies. In fact, the analytical formulation of the
order picking belongs to NP-hard problem class when the
operational policy is addressed in the formulation (de Koster
et al. 2007). In this design case, the operator can only entre
to the aisles from the right side and exit from the left side
due to safety reasons. Moreover, the operators cannot have
backward movement in the aisle. If the double command
mode is selected for the order picking and storing processes,
then the operator can pick an order from the pick list, if the
allocated SKUs to the pick list is located in the same aisle
that operator stored SKUs recently. Moreover, the SKUs
should be on the left side of the operator in the aisle, so the
operator does not need a backward movement. Many stud-
ies tried to model such policies with different approaches,
such as queue theory. Yet, such complicated formulations
include so many simplifications. Moreover, designing the
entire warehouse requires modelling of operational policies
for different processes, which can make the optimization for-
mulation even more complicated, while there is no guarantee
for finding the global optimal solution that also captures the
dynamic interactions in the system as good as the simulation
does. However, the proposed framework allows observing
the impact of different operational policies in the dynamic
behaviour of the system by means of simulation.

Fig. 14 Updating SKU-dynamic variable

Fig. 15 Updating equipment and infrastructure dynamic variables

Fig. 16 Updating order dynamic variable

WarehouseQuantitative−AlternativeA = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90), (117, 3), (138, NA),

(79, NA), (1610, NA), (1111, 4), (1812, 258), (2013, NA), (2214, NA),

(1615, NA), (1116, 4), (617, 1), (318, NA), (819, NA), (220, 3)]

WarehouseQuantitative−AlternativeB = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90),

(117, 3), (148, NA), (79, NA), (1510, NA), (1111, 4), (1812, 258), (2013, NA),

(2214, NA), (1515, NA), (1116, 4), (617, 1), (318, NA), (819, NA), (220, 3)].

46 Research in Engineering Design (2020) 31:25–52

1 3

4.3.2 ALDeP application

The ALDeP model was applied to generated alternatives
to produce feasible layouts. The initial safety requirements
are also applied in ALDeP such as allocating certain space
between departments. Table 2 gives the calculated space for
each process based on the employed design-objects in the
two given alternatives. The ALDeP results are written in the
quantitative model of the alternatives.

4.4 Embodiment of the design specifications
to simulate a design alternative

Figure 12 shows the storing process state that embodies its
required enablers and their DRs with a hierarchal structure.
Such structure applied for other processes according to
their defined enablers, DRs and design-objects. Although
the available time windows for the processes were differ-
ent in this warehouse, they technically could work together.
Hence, the decomposition of the SSMM in the highest level
was defined ‘Parallel ~AND’ (dashed lines). In return, the
process.states can be active simultaneously. The process
enablers can work simultaneously in each process. Hence,
the decomposition of the process-states with respect to their
enabler.states is defined as ‘Parallel ~AND’. In all five pro-
cesses, the operational policy enablers determine the way
that the process should operate. Hence, those design-require-
ment-states that are related to the operational policy enablers
have the first activation sequences, as shown in green cir-
cles in Fig. 12. The relative decomposition of the design-
requirement-states with respect to their object-States are
defined ‘Exclusive ~ OR’ (solid lines) because each design-
requirement can only employ one design-object in a specific
Alternative-Configuration. Certain DVs are defined for the
SKUs, orders and enablers, which their structures are shown
in Figs. 13, 14, 15 and 16.

In warehousing domain, the process flow starts with
receiving the inputs from the suppliers and continues by
converting them into SKUs. They move forward to being
stored. The picking process is triggered by customer orders
and the process flow finishes by shipping the orders. Hence,
the simulated process flow in this case study is explained in
two sections; ‘supplier inputs into stored SKUs’ and ‘stored
SKUs into shipped orders’.

4.4.1 Supplier SKUs into stored SKUs

It was described in the previous work of the authors how to
address the CES interactions with its environment. Three
main attributes of an SKU are addressed in each supplier
sub-state as its constants (PCs); the SKU type, its supply
rate, and the input batch size, see Fig. 11. Likewise, three
main attributes of an order are addressed in each customer

sub-state; SKU type, order rate, and average order size.
Supplier-A sends SKU-A in input batches of 330. Accord-
ingly, SKU-instantiation assigns a unique instance number
to each of 330 instances of SKU-A. Likewise, ‘SKU-type’
and ‘Entering time to warehouse’ are written in the ‘SKU-
variable’ as shown in Fig. 13. In this case study, all state-
functions use the Matlab-Simulink clock as the time input.

All input SKU-batches require the unloading process.
The activation sequence of unloading enablers is; (1) oper-
ational policy, (2) door (as infrastructure), (3) equipment.
AlternativeA employed ‘FIFO-object’ in the unloading pro-
cess configuration. Therefore, the ‘FIFO-state-function’
gets the ‘SKU-variable’ as its input to sort available SKU-
instances of the coming input batch for the unloading pro-
cess. The sorting result is written in ‘Priority to being pro-
cessed’ as shown in Fig. 14.

Afterwards, ‘Door-type-state’ is activated. ‘Door-type-
state’ is a design-requirement-state with two object-states;
‘Sunken-object’ and ‘Level-object’. The employed design-
object for ‘Door-type’ is ‘Sunken-object’. The ‘Sunken-
state-function’ has several inputs including ‘SKU-variable’,
‘Door-variable’, and time. The ‘Door-variable’ follows the
structure of ‘Infrastructure-variable’ that is given in Fig. 13.
These variables are independent of the design-objects. In
fact, ‘Door-variable’ serves both ‘Sunken-object’ and
‘Level-object’, because, ‘Level-state-function’ and ‘Sunken-
state-function’ uses similar input/output variables.

The quantitative model of AlternativeA shows that it
requires one ‘Sunken’ door to fulfil the required through-
put. Therefore, one instance of ‘Sunken-object’ is gener-
ated according to the explained instantiation procedure, see
Fig. 10. The ‘Sunken-state-function’ gets ‘SKU-variable’ car-
rying ‘Priority to being processed’. Accordingly, the ‘Sunken-
state-function’ determines which SKU-instances can possibly
enter into the warehouse. Yet, the unloading process cannot
start until an instance of the unloading equipment is available.
The ‘Sunken-state-function’ only changes the state of a Door-
instance from ‘available’ to ‘assign’, because door availability
is a priory condition for the unloading process.

The unloading equipment as a DR has two options ‘Car-
gomatic’ and ‘Carne’. AlternativeA is formulated based on
using ‘Cargomatic-object’. Therefore, the ‘Cargomatic-state’
is activated as the last activated state in the unloading pro-
cess. The following explanations regarding ‘Cargomatic-
stat-function’ also apply to the ‘Carne-state-function’.

The ‘Equipment-variable’ is a variable with a variable
size as shown in Fig. 15. The ‘Cargomatic-state-function’
has several inputs including; ‘SKU-variable’, ‘Equipment-
variable’, ‘Door-variable’, and time. From the system level,
the start and finish time of the ‘Cargomatic’ determine the
start and finish time of the unloading process on input SKU-
batches. Therefore, the ‘Cargomatic-state-function’ updates
the operation start and finish time in following variables;

47Research in Engineering Design (2020) 31:25–52

1 3

‘SKU-variable’ and ‘Equipment-variable’. The ‘Cargomatic-
state-function’ also changes the value of the ‘Availability’
in the following variables; ‘Equipment-variable’ and ‘Door-
variable’. However, the ‘Cargomatic’ can perform unloading
activity as long as it has enough capacity. The ‘Cargomatic-
state-function’ also updates ‘capacity’ in ‘Equipment-vari-
able’ as shown in Fig. 15.

‘Cargomatic-state-function’ observes the ‘Finish’ in
‘Equipment- variable’. As soon as the ‘Finish’ was smaller
than the simulation time, then the ‘availability’ of ‘Equip-
ment-variable’ changes to ‘Available’ again. Thereafter, the
‘Cargomatic-state-function’ updates the ‘current process’
in ‘SKU-variable’ to P12 . This shows the availability of
instances of SKU-A for the stacking process.

Stacking and storing process has similar procedures
regarding updating the following variables; ‘Equipment-

variable’, ‘Infrastructure-variable’ and ‘SKU-Variable’.

4.4.2 Stored SKUs into shipped orders

When a customer sends an order, a unique instance number
is assigned to the coming order according to the instantiation
procedure. As a result, order specifications, such as SKU-
type, is written in the order dynamic variable as shown in
Fig. 16.

The orders require picking and shipping processes. In
these two processes, the object-state-functions take into
account two main variables; ‘order-variable’ and ‘SKU-
variable’. The object-state-functions of operational poli-
cies cross-study the registered orders and available SKUs.
Accordingly, a pick list is formulated indicating that which
SKUs should be picked to satisfy the pick list. AlternativeA
employs the ‘FIFO-object’ to cross-sort SKU and orders
instances. First, the orders are sorted by FIFO logic to make
the pick-list. Then, the available SKUs are sorted based on
the FIFO logic. Subsequently, the ‘FIFO-object’ writes the
sorting results in ‘Picking Priority’ and ‘Priority to being
processed’, respectively, in ‘order-variable’ and ‘SKU-var-
iable’. The ‘FIFO-object’ also updates the ‘current process’
to P3.

‘Forklift-object’ is employed as the picking equipment.
The ‘Forklift-state-function’ updates the following values
in the order variable; ‘Start’, ‘Finish’, and ‘Picked status’.
The ‘Forklift-state-function’ also updates the following val-
ues in the SKU-variable; Entering-time-to-current process’,
and ‘Finishing-the-process’. ‘Forklift-state-function’ also

changes the ‘current process’ in SKU-variable to P4 as soon
as the ‘Finish’ time was elapsed.

The execution principles of the shipping process are simi-
lar to the unloading process. The only difference is using
‘Forklift-object’ instead of ‘Cargomatic-object’. However,
the ‘Sunken-object’ updates two values in, respectively,
‘SKU-variable and ‘order-variable’ as soon as orders (picked
SKUs) left the warehouse; ‘Done with the process flow’ and
‘order status’. The updates show that the SKUs left the ware-
house and the order is dispatched.

4.5 Simulation results

The below given Alternative-Configuration had a lower cost
after the application of LP-ALDeP (before simulation) com-
pared to AlternativeA and AlternativeB.

After simulation of AlternativeA and AlternativeB , the for-
mer demonstrated a lower total cost basically due to lower
operational cost.

These three alternatives have the same configurations
in unloading, stacking, and shipping processes and they
were only different in storing and picking process con-
figurations (employed Design-objects and their quan-
tifications accordingly). AlternativeA and AlternativeB
are different in the employed design-objects for the
two DRs related to the following operational policies;
Storing − SKU −management − policy − storage − allocation8
and Storing − Equipment −management − policy − combination

−mode10 . For the given DRs, respectively, AlternativeA
employed ‘CBS’ and ‘Double Command’, while
AlternativeB employed ‘Random-object’ and ‘Sin-
gle-command-mode-object’. The difference between
AlternativeA and AlternativeC is that the latter employed
‘Pallet rack’ and ‘Turret truck’, respectively, for these DRs;
Storing − Infrastructure − storage −module − type12 and
Picking − Equipment − type16 , while AlternativeA employs
‘Shelve rack’ and ‘Forklift’.

The defined KPIs in the SSMM were; fix cost, operational
cost, and equipment utilization. The last two KPIs were
studied carefully because they are affected by the dynamic
behaviour of the design alternatives.

Comparing AlternativeA and AlternativeC from optimiza-
tion–quantification perspective ‘Pallet rack’ is more expen-
sive than the ‘Shelve rack’, however storing or picking from
‘Pallet racks’ takes less time, see Appendix A1 in ESM. On
the other hand, although ‘Turret truck’ has shorter operation

WarehouseQuantitative−AlternativeC = [(11, 1), (32, NA), (53, 1), (74, NA), (75, NA), (106, 90), (117, 3),

(138, NA), (79, NA), (1610, NA), (1111, 3), (1712, 270), (2013, NA),

(2114, NA), (1515, NA), (1216, 3), (617, 1), (318, NA), (819, NA), (220, 3)].

48 Research in Engineering Design (2020) 31:25–52

1 3

time (compared to ‘Forklift’) in both storing and picking
processes, it is more expensive (fix cost and the required
space). LP-ALDeP calculated that in AlternativeC three
‘Forklifts’ is required to perform storing on ‘Pallet rack’
to satisfy the throughput, while in AlternativeA four ‘Fork-
lifts’ are required (since ‘Shelve rack’ is employed). On the
other hand, in AlternativeC three ‘Turret truck’ could satisfy
the throughput in picking process because ‘Pallet rack’ is
employed, while in AlternativeA four ‘Turret truck’ is needed
(since ‘Shelve rack’ is employed). Although, ‘Turret truck’
is more expensive, three ‘Turret truck’ cost less than four
‘Forklift’ in the picking process. As a result, the AlternativeC
that employs ‘Pallet rack’ and three ‘Forklift’ in storing pro-
cess and three ‘Turret truck’ in picking process demonstrated
less total cost calculated by LP-ALDeP.

Comparing AlternativeA and AlternativeB from the simu-
lation perspective AlternativeA and AlternativeB employ
‘Shelve rack’ and ‘Forklift’ in storing and picking process.
As mentioned, LP-ALDeP calculated that four ‘Forklifts’
were required in each storing and picking processes of these

alternatives. Yet, AlternativeA employs ‘CBS’ and ‘Dou-
ble Command’ as its design-objects for the DRs related to
operational policies in storing and picking processes. These
two policies contribute to reducing the operational time in
storing and picking processes. In particular, CBS allocates

SKU-A (as a high demand SKU) to the first four levels of
storage modules, while SKU-B and SKU-C are allocated to
the fifth levels. As a result, the operation time for SKU-A
is reduced, while that is increased for SKU-B and SKU-
C. On the other hand, ‘Double command’ policy suggested
that after storing the SKUs on storage modules, the equip-
ment can pick the ordered SKUs (from the pick list) and
place them in the shipping area. However, this is applicable
only if the ordered SKUs are in the same aisle that the SKU
storing happened. As a result, in some cases the equipment
can cut one empty travelling activity in both storing and
picking (without the double command storing equipment
could have travelled back empty to the stacking area and the
picking could have travelled empty forward to the storing
area). Therefore, such a combination of different policies
contributes to the reduction in the total operational time in
AlternativeA . The simulation results of AlternativeA showed
that the ‘Forklift’ utilization in the storing process was 59%
and 67% in the picking process. In other words, the total
working hours of the four ‘Forklift’s in AlternativeA was
between the total working hours for two and three ‘Forklift’
in the available time window, as shown below:

The simulation results of AlternativeB (in terms of ‘Fork-
lift’ utilization) show that it needs all the four Forklifts in
both storing and picking processes.

Comparing AlternativeA and AlternativeC from the simu-
lation perspective:

In AlternativeA the number of ‘Forklift’ in both picking
and storing processes was reduced to three and it was simu-
lated again. Simulation of the updated AlternativeA revealed
that with the new quantification (three Forklifts for each of
the storing and picking processes) the throughput was satis-
fied with a lower total cost compared to AlternativeC.

This is an important benefit of applying the proposed
framework in this design case. In fact, without addressing
the operational policies and simulation, the evaluation of
different alternatives (from cost minimization perspective)
could lead to losing a better alternative for the detail design.
However, the studying warehouse can be considered as small
to medium scale size warehouse. Therefore, the aforemen-
tioned potential savings can be more significant for a lar-
gescale warehouse. Nonetheless, this example is a simple
demonstration regarding having an integrated-holistic design
approach and the advantageous of early validation (simula-
tion) at early design stages.

50%

(

2(possible number of forklifts) × 5(available time window) × 100

4(existing number of forklifts) × 5((available time window))

)

< utilization < 75%
(

3 × 5 × 100

4 × 5

)

.

Fig. 17 Multi-dimensional solution space by adding the design
requirements related to the operational policy

49Research in Engineering Design (2020) 31:25–52

1 3

5 Discussion

The contributions of the introduced modelling approach in
this paper can be summarised as follow:

• The paper introduced a full detail approach to develop a
system architecture (SSMM) with the following charac-
teristics:

– Embodies the design knowledge holistically: embod-
ies all types of design requirements from different
disciplines, allows the multi-disciplinary and inte-
grated design of CESs.

– All design alternatives conform to that.
– Is executable and all design alternatives can be simu-

lated with it.
– Is interconnected with the optimization models A full

detail approach was introduced to use optimization
models such that leverage the feasible alternatives to
a level that can be simulated with the SSMM.

– Stands as a design platform In the early design
stages, the system engineer develops the SSMM and
simulates a simple behaviour of alternatives to get
some insights about the system behaviour. However,
by moving forward to the design process (evolution)
the detail designers can add (encapsulate) more
detail to the SSMM (in particular the object-state-
functions). Therefore, the system engineer and detail
designers can communicate with the single SSMM,
which helps to track the changes and have the same
understating about the design process.

• Reducing the design failure risk Application of feasibility
checking algorithm ensures that the introducing alter-
natives satisfy the constraints that address the possible
inconsistencies between different disciplines.

• Ensuring data integrity in the framework All models are
systematically interconnected with a set of parameters
such that minimises the risk of data mismatch between
models that are developed with different participants.
This integrity can considerably facilitate the collabora-
tive design of such systems where the design knowledge
is complex, massive and multidisciplinary.

Application of the framework in the case study demon-
strated certain benefits of that. First, having an integrated
design approach opens avenues to find a better design
alternative. In the case study, the optimization–quantifi-
cation models found an optimum solution with regards to
the quantifiable DRs without including the DRs related to
operational policies. Simulation of alternatives revealed
that there is an alternative that can have a lower total cost,
which was not identified as the optimum alternative by the

optimization–quantification models. In fact, addressing dif-
ferent design disciplines with a holistic approach allows
capturing more dimensions of the solution space, which is
not limited to the dimensions of the quantifiable DRs. As
shown in Fig. 17, an optimization model seeks to find an
optimum or near optimum solution in a solution space that
its dimension is defined by quantifiable DRs. Nonetheless,
when the solution space is searched by adding the dimen-
sion of the operational policies, a better solution might be
identified. Although some limited aspects of operational
policies might be modelled with complicated optimization
formulation, the possibility of trapping in local optima might
increase by adding more variables to the optimization mod-
els. Therefore, this framework could guarantee that its best-
identified alternative is at least as good as the best solution
that is formulated by optimization–quantification models
in the existing literature. On the other hand, it is possible
that an optimum result from the optimization–quantifica-
tion cannot satisfy the initial constraints through simulation.
This reference (Wang and Dagli 2013) simulated an optimal
solution found by genetic algorithm and showed that the
solution could not meet the throughput (that was addressed
as optimization constraint). This deviation happened due to
the interactions in the system, which the optimization model
could not capture it properly, while simulation does.

6 Limitations and future research

Simulation of all the alternatives takes considerable time,
and this is a limitation of the framework. Hence, to reduce
the computational complexity, application of a supervi-
sory approach can be useful to select a limited number of
alternatives for simulation while such selection would not
necessarily lead to losing an optimum alternative. However,
simulation-based optimization can be used instead of apply-
ing them in tandem. However, simulation-based optimisa-
tion problems face several challenges, which the computa-
tional cost is one of them (Figueira and Almada-Lobo 2014;
Steponavičė et al. 2014). In fact, the simulation takes longer
time when the number of design variables is large, while
the number of decision variables is considerably large in
the early design stages. Although, simulation-based opti-
mizations also do not guarantee to find the global optimum,
investigation on their application can be future work for this
research.

The SSMM simulates the behaviour of an alternative
under certain sets of case-specific assumptions regarding
the design knowledge, such as deterministic time of machin-
ing operations or fixed supply rate of the suppliers. However,
the alternative might express a different performance if the
assumptions are changed. Therefore, it is useful to address
such uncertainties (e.g. stochastic data) in the SSMM to

50 Research in Engineering Design (2020) 31:25–52

1 3

know the magnitude of such a deviation from the initial
modelled performance.

7 Conclusion

This paper introduced a framework by application of differ-
ent modelling methods and formalisms to develop intercon-
nected artefacts, which play certain roles in the framework
for the purpose of having integrated and holistic design of
complex engineering systems in the early design stages.
Accordingly, the framework allows evaluating the impact
of each design decisions from different disciplines on sys-
tem behaviour/performance. With the achieved results it is
expectable that this framework may receive attention from
designers for real design applications as well as academics
for extension and further elaboration.

References

Abdoli S, Kara S (2017a) A modelling framework to design execut-
able logical architecture of engineering systems. Mod Appl Sci
11(9):75

Abdoli S, Kara S (2017b) A review of modelling approaches for con-
ceptual design of complex engineering systems (CESs). In: 2017
IEEE international conference on industrial engineering and engi-
neering management (IEEM). IEEE, Singapore, Singapore

Albers A, Braun A (2011) A generalised framework to compass and to
support complex product engineering processes. Int J Prod Dev
15(1–3):6–25

Alfaris AAF (2009) The evolutionary design model (EDM) for
the design of complex engineered systems: Masdar City as a
case study. Doctoral dissertation, Massachusetts Institute of
Technology

Alvarez Cabrera AA, Foeken MJ, Tekin OA, Woestenenk K, Erden
MS, De Schutter B, van Tooren MJL, Babuška R, van Houten
FJAM, Tomiyama T (2010) Towards automation of control soft-
ware: a review of challenges in mechatronic design. Mechatron-
ics 20(8):876–886. https ://doi.org/10.1016/j.mecha troni
cs.2010.05.003

Alves AC, Silva SC (2009) A review of design methodologies for man-
ufacturing systems. In: 1ST International Conference on Innova-
tions, Recent Trends and Challenges in Mechatronics, Mechanical
Engineering and New High-Tech Products Development MECA-
HITECH‘09. Bucharest

Baker P, Canessa M (2009) Warehouse design: a structured approach.
Eur J Oper Res 193(2):425–436. https ://doi.org/10.1016/j.
ejor.2007.11.045

Bar-Yam Y (2002) General features of complex systems. Encyclopedia
of Life Support Systems (EOLSS), UNESCO, EOLSS Publish-
ers, Oxford

Bar-Yam Y (2004) A mathematical theory of strong emergence
using multiscale variety. Complexity 9(6):15–24. https ://doi.
org/10.1002/cplx.20029

Bortolini M, Faccio M, Gamberi M, Manzini R, Pilati F (2016) Sto-
chastic timed Petri nets to dynamically design and simulate indus-
trial production processes. Int J Logist Syst Manag 25(1):20–43

Braha D, Minai AA, Bar-Yam Y (2006) Complex engineered sys-
tems: science meets technology. Springer, Berli. https ://doi.
org/10.1007/3-540-32834 -3n

Chakrabarti A, Blessing LTM (2014) An anthology of theories and
models of design. Springer, New York

Christophe F, Bernard A, Coatanéa E (2010) RFBS: a model for knowl-
edge representation of conceptual design. CIRP Ann Manuf Tech-
nol 59(1):155–158

Cloutier RJ, Verma D (2007) Applying the concept of patterns to sys-
tems architecture. Syst Eng 10(2):138–154

Cochran DS, Reinhart G, Linck J, Mauderer M (2000) Decision sup-
port for manufacturing system design-combining a decomposition
methodology with procedural manufacturing system design. In:
The Third world congress on intelligent manufacturing processes
and systems. Cambridge

Dauby JP, Dagli CH (2011) The canonical decomposition fuzzy com-
parative methodology for assessing architectures. IEEE Syst J
5(2):244–255. https ://doi.org/10.1109/JSYST .2011.21252 50

de Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control
of warehouse order picking: a literature review. Eur J Oper Res
182(2):481–501. https ://doi.org/10.1016/j.ejor.2006.07.009

Dori D (2002) Object-process methodology. Springer, New York
Dori D, Renick Aharon, Wengrowicz Niva (2016) When quantitative

meets qualitative: enhancing OPM conceptual systems modeling
with MATLAB computational capabilities. Res Eng Design
27(2):141–164. https ://doi.org/10.1007/s0016 3-015-0209-9

Douglass BP (2016) Chapter 1—What is model-based systems engi-
neering? Agile Systems Engineering. Morgan Kaufmann, Boston,
pp 1–39

ElMaraghy HA, Kuzgunkaya O, Urbanic RJ (2005) Manufacturing
systems configuration complexity. CIRP Ann Manuf Technol
54(1):445–450. https ://doi.org/10.1016/S0007 -8506(07)60141 -3

Estefan JA (2003) Survey of model-based systems engineering (MBSE)
methodologies. Jet Propulsion Laboratory, Pasadena

Figueira G, Almada-Lobo B (2014) Hybrid simulation–optimization
methods: a taxonomy and discussion. Simul Model Pract Theory
46:118–134

Fishwick PA (2007) Handbook of dynamic system modeling. CRC
Press, Boca Raton

Fleck M, Berardinelli L, Langer P, Mayerhofer T, Cortellessa V (2013)
Resource contention analysis of service-based systems through
fUML-driven model execution. Proc. of NiM-ALP:6

Gausemeier J, Dumitrescu R, Kahl S, Nordsiek D (2011) Integrative
development of product and production system for mechatronic
products. Robot Comput Integr Manuf 27(4):772–778. https ://doi.
org/10.1016/j.rcim.2011.02.005

Gu P, Rao HA, Tseng MM (2001) Systematic design of manufacturing
systems based on axiomatic design approach. CIRP Ann Manuf
Technol 50(1):299–304

Hopp WJ, Spearman ML (2011) Factory physics. Waveland Press,
Long Grove

Huang E, Ramamurthy R, McGinnis LF (2007) System and simula-
tion modeling using SysML. In: Proceedings of the 2007 winter
simulation conference. IEEE, Washington, DC, USA

INCOSE (2015) INCOSE SE Handbook Working Group, INCOSE sys-
tem engineering handbook San Diego, 4th edn. Wiley, Hoboken

Jørgensen HD (2004) Interactive process models. Doctoral thesis,
Norwegian University of Science and Technology, Fakultet for
informasjonsteknologi, matematikk og elektroteknikk

Kapos GD (2015) Enabling system models automated evaluation
through cross-concept information utilization. In: 2015 IEEE 9th
international conference on research challenges in information
science. IEEE, Athens, Greece

Kapos GD, Dalakas V, Nikolaidou M, Anagnostopoulos D (2014) An
integrated framework for automated simulation of SysML models
using DEVS. Simulation 90(6):717–744

Khan I (2010) Methodology for the development of executable system
architecture. In: Proceedings of the 8th international conference

https://doi.org/10.1016/j.mechatronics.2010.05.003
https://doi.org/10.1016/j.mechatronics.2010.05.003
https://doi.org/10.1016/j.ejor.2007.11.045
https://doi.org/10.1016/j.ejor.2007.11.045
https://doi.org/10.1002/cplx.20029
https://doi.org/10.1002/cplx.20029
https://doi.org/10.1007/3-540-32834-3
https://doi.org/10.1007/3-540-32834-3
https://doi.org/10.1109/JSYST.2011.2125250
https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/10.1007/s00163-015-0209-9
https://doi.org/10.1016/S0007-8506(07)60141-3
https://doi.org/10.1016/j.rcim.2011.02.005
https://doi.org/10.1016/j.rcim.2011.02.005

51Research in Engineering Design (2020) 31:25–52

1 3

on frontiers of information technology. ACM, Islamabad. https ://
doi.org/10.1145/19436 28.19436 77

Komoto H, Tomiyama T (2012) A framework for computer-aided
conceptual design and its application to system architecting of
mechatronics products. Comput Aided Des 44(10):931–946. https
://doi.org/10.1016/j.cad.2012.02.004

Koo HYB (2005) A meta-language for systems architecting. Technion,
Israel Institute of Technology, Haifa

Kossiakoff A, Sweet WN, Seymour SJ, Biemer SM (2011) Systems
engineering principles and practice, vol 83. Wiley, New York

Maropoulos PG, Ceglarek D (2010) Design verification and valida-
tion in product lifecycle. CIRP Ann 59(2):740–759. https ://doi.
org/10.1016/j.cirp.2010.05.005

Matei I, Bock C (2012) SysML extension for dynamical system simu-
lation tools. US Department of Commerce, National Institute of
Standards and Technology. https ://doi.org/10.6028/NIST.IR.7888

Mayerhofer T, Langer P, Wimmer M, Kappel G (2013) xMOF: execut-
able DSMLs based on fUML. In: International conference on soft-
ware language engineering, Springer, Cham, pp 56–75. https://doi.
org/10.1007/978-3-319-02654-1-4

McGinnis LF, Ustun V (2009) A simple example of SysML-driven
simulation. In: Proceedings of the 2009 winter simulation confer-
ence. Austin, Texas, pp 1703–1710

McGinnis LF, Huang E, Wu K (2006) Systems engineering and
design of high-tech factories. In: Proceedings of the 2006 winter
simulation conference. IEEE, Monterey, CA, USA. https ://doi.
org/10.1109/WSC.2006.32296 9

McGinnis L, Huang E, Kwon KS, Ustun V (2011) Ontologies and
simulation: a practical approach. J Simul 5(3):190–201

Meng X (2010) Modeling of reconfigurable manufacturing systems
based on colored timed object-oriented Petri nets. J Manuf Syst
29(2–3):81–90. https ://doi.org/10.1016/j.jmsy.2010.11.002

Mijatov S, Mayerhofer T, Langer P, Kappel G (2015) Testing functional
requirements in UML activity diagrams. International conference
on tests and proofs. Part of the Lecture notes in computer sci-
ence, LNCS, vol 9154. Springer, Cham, pp 173–190. https ://doi.
org/10.1007/978-3-319-21215 -9_11

Mönch L, Lendermann P, McGinnis LF, Schirrmann A (2011) A sur-
vey of challenges in modelling and decision-making for discrete
event logistics systems. Comput Ind 62(6):557–567. https ://doi.
org/10.1016/j.compi nd.2011.05.001

Moses J (2002) The anatomy of large scale systems. ESD Internal
Symposium

Nikolaidou M, Kapos GD, Dalakas V, Anagnostopoulos D (2012)
Basic guidelines for simulating SysML models: an experience
report. In: 2012 7th international conference on system of systems
engineering (SoSE), IEEE, Genova, Italy, pp 95–100. https ://doi.
org/10.1109/SYSoS E.2012.63841 72

Osorio CA, Dori D, Sussman J (2011) COIM: an object-process based
method for analyzing architectures of complex, interconnected,
large-scale socio-technical systems. Syst Eng 14(4):364–382

Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design—a
systematic approach, 3rd edn. Springer, New York

Pape L, Giammarco K, Colombi J, Dagli C, Kilicay-Ergin N, Rebo-
vich G (2013) A fuzzy evaluation method for system of systems
meta-architectures. Procedia Comput Sci 16:245–254. https ://doi.
org/10.1016/j.procs .2013.01.026

Reich Y (2017) What is a reference? Res Eng Design 28(4):411–419.
https ://doi.org/10.1007/s0016 3-017-0270-7

Robinson S (2006) Conceptual modeling for simulation: issues and
research requirements. In: Proceedings of the 2006 winter simula-
tion conference. IEEE, Monterey, CA, USA, pp 792–800. https ://
doi.org/10.1109/WSC.2006.32316 0

Rouwenhorst B, Reuter B, Stockrahm V, van Houtum GJ, Mantel RJ,
Zijm WHM (2000) Warehouse design and control: framework

and literature review. Eur J Oper Res 122(3):515–533. https ://doi.
org/10.1016/S0377 -2217(99)00020 -X

Roy R, Hinduja S, Teti R (2008) Recent advances in engineer-
ing design optimisation: challenges and future trends. CIRP
Ann Manuf Technol 57(2):697–715. https ://doi.org/10.1016/j.
cirp.2008.09.007

Schönherr O, Rose O (2009) First steps towards a general SysML
model for discrete processes in production systems. In: Proceed-
ings of the 2009 Winter Simulation Conference (WSC). IEEE,
Austin, TX, USA, USA, pp 1711–1718. https ://doi.org/10.1109/
WSC.2009.54291 64

Schotborgh WO, McMahon C, Van Houten FJAM (2012) A knowledge
acquisition method to model parametric engineering design pro-
cesses. Int J Comput Aided Eng Technol 4(4):373–391

Schuh G, Monostori L, Csáji BC, Döring S (2008) Complexity-based
modeling of reconfigurable collaborations in production industry.
CIRP Ann Manuf Technol 57(1):445–450

Sitton M, Reich Y (2018) EPIC framework for enterprise processes
integrative collaboration. Syst Eng 21(1):30–46

Steponavičė I, Ruuska S, Miettinen K (2014) A solution process for
simulation-based multiobjective design optimization with an
application in the paper industry. Comput Aided Des 47:45–58

Thiers G (2014) A model-based systems engineering methodology
to make engineering analysis of discrete-event logistics systems
more cost-accessible. Doctoral dissertation, Georgia Institute of
Technology

Tomiyama T, D’Amelio V, Urbanic J, ElMaraghy W (2007) Com-
plexity of multi-disciplinary design. CIRP Ann Manuf Technol
56(1):185–188

Tomiyama T, Gu P, Jin Y, Lutters D, Kind C, Kimura F (2009) Design
methodologies: industrial and educational applications. CIRP
Ann Manuf Technol 58(2):543–565. https ://doi.org/10.1016/j.
cirp.2009.09.003

Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996)
Supporting conceptual design based on the function-behavior-
state modeler. Artif Intell Eng Des Anal Manuf 10(04):275–288

Vrabič R, Butala P (2011) Computational mechanics approach to
managing complexity in manufacturing systems. CIRP Ann
Manuf Technol 60(1):503–506. https ://doi.org/10.1016/j.
cirp.2011.03.050

Wagenhals LW, Haider S, Levis AH (2003) Synthesizing executable
models of object oriented architectures. Syst Eng 6(4):266–300.
https ://doi.org/10.1002/sys.10049

Wang R (2012) Search-based system architecture development using
a holistic modeling approach. Doctoral Dissertation, Missouri
University of Science and Technology (2256)

Wang R, Dagli CH (2008) An executable system architecture approach
to discrete events system modeling using SysML in conjunc-
tion with colored Petri Net. In: 2008 2nd annual IEEE systems
conference. IEEE, Montreal, Que., Canada, pp 1–8. https ://doi.
org/10.1109/SYSTE MS.2008.45189 97

Wang RZ, and Dagli CH (2013) Developing a holistic modeling
approach for search-based system architecting. In: 2013 Confer-
ence on Systems Engineering Research, vol 16, pp 206–215. https
://doi.org/10.1016/j.procs .2013.01.022

White BE (2007) On interpreting scale (or view) and emergence in
complex systems engineering. In: 2007 1st annual IEEE sys-
tems conference. IEEE, Honolulu, HI, USA, pp 1–7. https ://doi.
org/10.1109/SYSTE MS.2007.37466 0

Wolfram S (1985) Complex systems theory. The Institute for Advanced
Study, Princeton

Yaroker Y, Perelman V, Dori D (2013) An OPM conceptual model-
based executable simulation environment: implementation and
evaluation. Syst Eng 16(4):381–390

https://doi.org/10.1145/1943628.1943677
https://doi.org/10.1145/1943628.1943677
https://doi.org/10.1016/j.cad.2012.02.004
https://doi.org/10.1016/j.cad.2012.02.004
https://doi.org/10.1016/j.cirp.2010.05.005
https://doi.org/10.1016/j.cirp.2010.05.005
https://doi.org/10.6028/NIST.IR.7888
https://doi.org/10.1007/978-3-319-02654-1-4
https://doi.org/10.1007/978-3-319-02654-1-4
https://doi.org/10.1109/WSC.2006.322969
https://doi.org/10.1109/WSC.2006.322969
https://doi.org/10.1016/j.jmsy.2010.11.002
https://doi.org/10.1007/978-3-319-21215-9_11
https://doi.org/10.1007/978-3-319-21215-9_11
https://doi.org/10.1016/j.compind.2011.05.001
https://doi.org/10.1016/j.compind.2011.05.001
https://doi.org/10.1109/SYSoSE.2012.6384172
https://doi.org/10.1109/SYSoSE.2012.6384172
https://doi.org/10.1016/j.procs.2013.01.026
https://doi.org/10.1016/j.procs.2013.01.026
https://doi.org/10.1007/s00163-017-0270-7
https://doi.org/10.1109/WSC.2006.323160
https://doi.org/10.1109/WSC.2006.323160
https://doi.org/10.1016/S0377-2217(99)00020-X
https://doi.org/10.1016/S0377-2217(99)00020-X
https://doi.org/10.1016/j.cirp.2008.09.007
https://doi.org/10.1016/j.cirp.2008.09.007
https://doi.org/10.1109/WSC.2009.5429164
https://doi.org/10.1109/WSC.2009.5429164
https://doi.org/10.1016/j.cirp.2009.09.003
https://doi.org/10.1016/j.cirp.2009.09.003
https://doi.org/10.1016/j.cirp.2011.03.050
https://doi.org/10.1016/j.cirp.2011.03.050
https://doi.org/10.1002/sys.10049
https://doi.org/10.1109/SYSTEMS.2008.4518997
https://doi.org/10.1109/SYSTEMS.2008.4518997
https://doi.org/10.1016/j.procs.2013.01.022
https://doi.org/10.1016/j.procs.2013.01.022
https://doi.org/10.1109/SYSTEMS.2007.374660
https://doi.org/10.1109/SYSTEMS.2007.374660

52 Research in Engineering Design (2020) 31:25–52

1 3

Zheng C, Hehenberger P, Duigou JL, Bricogne M, Eynard B (2016)
Multidisciplinary design methodology for mechatronic systems
based on interface model. Res Eng Des 28(3):1–24

Zhow W, Yang F, Zhu Y (2015) A transformation method of OPM
Model to CPN model for system concept development. In: Pro-
ceedings of the First International Conference on Information Sci-
ence and Electronic Technology (ISET)

Ziv-Av A, Reich Y (2005) SOS–subjective objective system for gener-
ating optimal product concepts. Des Stud 26(5):509–533

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A modelling framework to support design of complex engineering systems in early design stages
	Abstract
	1 Introduction
	1.1 Background
	1.2 Research scope

	2 Literature review
	3 Modelling framework
	3.1 Framework overall structure
	3.2 Framework requirements
	3.3 Framework overview
	3.4 Framework artefacts and their interconnection
	3.4.1 SSMM
	3.4.2 Design database
	3.4.3 Parameters of design alternatives
	3.4.4 Design constraints
	3.4.5 Alternative generation algorithm
	3.4.6 Feasibility checking algorithm
	3.4.7 Quantification models
	3.4.8 Simulation of the SSMM

	4 Case study
	4.1 Design meta-model and developing design alternatives
	4.2 Application of alternative generation and feasibility checking algorithms
	4.3 Application of optimization–quantification on the design alternatives
	4.3.1 LP application
	4.3.2 ALDeP application

	4.4 Embodiment of the design specifications to simulate a design alternative
	4.4.1 Supplier SKUs into stored SKUs
	4.4.2 Stored SKUs into shipped orders

	4.5 Simulation results

	5 Discussion
	6 Limitations and future research
	7 Conclusion
	References

