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Abstract
New information and communication technologies are changing the way products are developed, manufactured, serviced 
and managed over the product’s lifecycle. Today’s smart products not only consist of their physical components, but are also 
endowed with intelligence. Data and the capabilities to process data into knowledge and eventually decisions have become 
critical components of the product itself and of the process to develop/operate the product. This paper investigates how 
engineers and a new functional role, data scientists, can effectively collaborate in a mixed team for new product develop-
ment with data-driven features  (NPD3). We focus on the concept development stage, typically the fuzziest phase of product 
development. In this paper, an integrated process model is explored by revisiting the traditional new product development 
(NPD) process model as well as the knowledge discovery and data mining (KDDM) process model. Then a case study of the 
development of an application-specific unmanned aircraft system (UAS) is used to examine the proposed model.

Keywords Smart product development · Concept development · NPD · KDDM · Data-driven product design · UAS 
development

1 Introduction

The transformative power arising out of the fusion of infor-
mation and communication technologies including sen-
sor networks, big data analytics and cloud computing has 
changed the way a product is developed, manufactured, 
serviced and managed throughout the product’s lifecycle. 
Products are getting smarter with the capabilities to per-
form reasoning based on known knowledge and to learn new 
knowledge from past experience (Li et al. 2015). With sen-
sors and complicated algorithms, a household thermostat 
can, for example, autonomously establish a mathematical 
model that captures a building’s inside thermal dynamics, 
without prior knowledge about the building characteris-
tics such as its size, layout, leakiness, and HVAC system 
(Nest Labs 2012). Equally interesting, an unmanned aircraft 
vehicle can establish an occupancy map of its environment 

and can sense and avoid obstacles. As these two examples 
demonstrate, data and the capabilities to process data into 
knowledge and decisions have become critical components 
of the product itself and of the process to develop/operate 
the product.

The need for smart products to monitor, control and pro-
vide adaptation capabilities sets them apart from traditional 
products. The coordination needed across product design, 
cloud operation, service improvement, and customer engage-
ment is continuous and never ends, even after the sale (Por-
ter and Heppelmann 2015). Often times, the use of sensors 
within smart products provides the data needed for intel-
ligence. Data analytics provides the tools and technologies 
needed to increase the intelligence of the device (Li et al. 
2015). New data-centered product design and development 
paradigms have been emerging to inform the traditional 
processes and for the development of data-driven products. 
In the data-informed design paradigm, data can be utilized 
to reveal patterns and trends to drive innovation, measure 
product performance, and incrementally improve the product 
experience (Pavliscak 2015). As a result, a data-centered 
design approach can improve the development and opera-
tions of the product. On the other hand, data can be the 
“material” being processed by machine-learning algorithms 
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to produce data-driven products (e.g. predictive or prescrip-
tive analytics models), which in turn, can generate more data 
(Patil 2012; Dhar 2013). In this case, data are used to create 
data-driven machine-learning features within a smart prod-
uct. The two paradigms have been collectively used in the 
development of modern smart mechatronics systems. For 
instance, automotive companies are employing these data-
centered design techniques for the development of a car’s 
autopilot capability as well as to improve the car’s reliability 
(Geiger and Sarakakis 2016).

From both the product and process perspectives, data-
driven modeling has emerged as a complement or replace-
ment to the traditional knowledge-driven approaches. 
Data-driven modeling focuses on using advanced machine-
learning methods in building models that capture physical 
behaviors (Solomatine and Ostfeld 2008). It is beneficial 
in situations where there is a considerable amount of data 
available and where it is difficult to build adequate knowl-
edge-driven models, due to the lack of understanding of 
the underlying physical phenomenon and/or the difficulty 
in constructing a mathematical model of such a phenom-
enon. Consequently, this new discipline, Data Science, and 
the new experts, Data Scientists, need to be incorporated 
into the product development team (Porter and Heppelmann 
2015).

The rest of this paper is as follows. First, Sect. 2 pro-
vides more details on our motivation and our research goal 
to explore the new paradigm of product development with 
data-driven features. Then Sect. 3 provides the background 
contexts of previous work in modeling the physical product 
development and data analytics processes. Section 4 explains 
our integrated process model,  NPD3, to incorporate the 
traditional new product development process model. Sec-
tion 5 reports a pilot study that was conducted on a smart 
unmanned aircraft system development project that utilized 
the  NPD3 approach. Section 6 discusses the observations 
from the case study and reflects the new model’s implica-
tions. And finally, Sect. 7 concludes our findings as well as 
reviews some research limitations and potential next steps.

2  Motivation

To better understand the motivation of our research, we 
first review the Nest Thermostat’s auto-schedule feature 
and suggest the need for an integrated process model. With 
respect to the Nest’s energy-efficient thermostat, the pri-
mary customer need is to achieve greater energy savings 
while maintaining the user’s comfort. However, literature 
has reported that many residential thermostats fail to achieve 
energy savings even though they can be automated via pro-
gramming because users tend not to use the feature (Peffer 
et al. 2011). The Nest Thermostat was the first self-learning 

thermostat that implemented a smart feature called Auto-
Schedule (Lohr 2011) to fill the gap. It employs a sophis-
ticated machine-learning algorithm that can automatically 
learn a user’s preferred temperature profile as well as his/
her schedule. This auto-schedule feature together with its 
supporting smart features (Auto-Away detection, Time-
to-Temperature estimation, etc.), as well as the underlying 
data and computing infrastructure, form a smart ecosystem 
named Nest Sense.

A set of technical reports explain the details of the auto-
schedule feature development and improvement (Nest Labs 
2012, 2013, 2014). Figure 1 shows the Nest Thermostat’s 
product structure including its physical components, embed-
ded analytics features, and cloud-based analytics services. 
The auto-schedule’s decision-making process and its data 
dependency are presented on the right side of Fig. 1.

According to Nest Labs (2012), the first-generation auto-
schedule feature was developed via simulation. The simu-
lation model consisted of physics-based models (includ-
ing heat transfer model, air infiltration model and weather 
model, heating/cooling equipment model) and data-driven 
analytics models (auto-away, auto-schedule, time-to-temper-
ature) to capture the dynamics of the environment in which 
the thermostat had been installed. Three years later after 
the first release, an Enhanced Auto-Schedule feature was 
released. This upgrade was a result of utilizing the accumu-
lated actual usage data collected from many houses across 
different climate regions, thus more accurately captured 
thermal dynamics and users’ behaviors (Nest Labs 2014). 
This enhanced auto-schedule feature had been upgraded on 
all three generations of Nest Thermostats in service ever 
since 2011, without introducing new hardware components.

The Nest Thermostat example shows data had become 
a critical factor that drives the development, operations, 
and improvement activities related to the product itself and 
its ecosystem. The Nest development team needed to co-
develop the physical architecture (e.g. HVAC control) and 
the data architecture (e.g. a home model) to achieve optimal 
solutions for energy savings. Each embedded data analyt-
ics feature (e.g. auto-schedule) can be seen as a product 
part/component rather than an operational function. This 
is because the analytics feature adapts for each individual-
installed instance rather than an aggregate function for a 
fleet of products. Consequently, data analytics is no longer 
an operational process, but rather, a product development 
activity that introduces new product features.

That is to say, product engineers and data scientists (if 
this role can be decoupled from or newly introduced into 
the development team) need to work together to formulate 
the problem, explore, screen, and evaluate the potential con-
cepts, and eventually select one or more optimal concepts 
to finalize the product specification (Fig. 2). The conceptual 
question is how to decompose the tasks for data scientists 
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from a product development process? In another words, what 
are the key tasks that the engineers in a physical product 
development team and the data scientists in a data product 
development team need to conduct? Accordingly, the fol-
lowing research questions should be addressed: (1) which 
tasks need to be coordinated across the two team groups; (2) 
when and what information needs to be exchanged between 
the two groups to collectively achieve the product develop-
ment; and (3) what are the patterns and characteristics of 
their interactions.

To answer these questions, we revisit the existing process 
models for physical product development, software devel-
opment, and data analytics since each one has prescribed 
the common activities used in many practical projects. The 
standard steps and activities prescribed in these existing 
models provide an initial view of how engineers or data 

scientists individually work. We then hypothesize the poten-
tial collaboration points by aligning and comparing these 
models. This analysis helps to derive an initial integrated 
model that for both engineers and data scientists. We then 
apply the hypothesized model to a real-world smart product 
development case. We develop an information decomposi-
tion framework to qualitatively categorize the observations 
of the interaction patterns within the case study, which leads 
us to achieve a theoretical framework for presenting the 
detailed interaction contents of the information flows. The 
interaction patterns and information contents complement 
our initial view of the integrated model that depicts the high-
level key tasks and information flows.

To start, we focus on investigating the Concept Devel-
opment stage of a new product development process. We 
believe an effective collaboration between engineers and 
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data scientists in the front-end of the process will help avoid 
wasteful rework in the downstream processes and will enable 
the creation of better products that maximizes the poten-
tial of both the physical and analytical components of the 
product.

3  Product development process models

Numerous process models have been proposed and adopted 
to understand, improve, and support the design and develop-
ment processes for physical products as well as for software 
products. These process models either define the project 
structures at the macro-level, end-to-end flows of tasks at 
the meso-level, or individual process steps and their immedi-
ate contexts at the micro-level (Wynn and Clarkson 2018). 
There is no means one individual model could cover all the 
necessary tasks and activities for a product development 
project. The practitioners have to select and adapt appropri-
ate models for their needs. Since our target user roles are 
engineers and data scientists, we explore the New Product 
Development (NPD) process models for our baseline engi-
neering process and the knowledge discovery and data min-
ing (KDDM) models for the data science process. Below, we 
describe these models and then discuss how we think about 
incorporating KDDM into NPD.

1. Physical product development process: New Product 
Development (NPD)

New product development (NPD) transforms a market 
opportunity into a product (tangible or intangible) that is 
available to the market. There are two types of process 
models that are typically used in the traditional product 

development process (PDP). A sequential process model, 
also known as linear or waterfall, is a stage-gate-based pro-
cess that has dominated in the manufacturing industry for 
several decades and is also often used for development of 
large-scale software systems.

Many NPD models have been adapted from the Cooper’s 
Stage-Gate model (Cooper 1994, 2008) that typically con-
sists of a series of stages followed by gates (the middle lane 
in Fig. 3). The prescribed stages and the criteria for transit-
ing from one stage to the next provide useful guidelines to 
practitioners using the process. There are many versions of 
this process, such as the Ulrich and Eppinger’s model, which 
is one of the well-adopted stage-gate models for physical 
product development. It consists of six high-level stages: 
Planning, Concept Development, Sub-System Design, Detail 
Design, Testing and Refinement, and Production Ramp-up 
(Ulrich and Eppinger 2012), see the upper lane in Fig. 3.

An alternative process model is a spiral process that 
incorporates cross-phase iterations (Unger and Eppinger 
2009). The spiral process is commonly used in the software 
industry in the form of an agile methodology. For example, 
an agile scrum methodology typically consists of a number 
of short development cycles (2–4 weeks) undertaken by a 
dedicated project team.

The trend of mixing agile and stage-gate processes has 
been seen recently in manufacturing companies (Karlström 
and Runeson 2005, 2006; Cooper 2014, 2016), particularly 
in high-tech companies developing large-scale mechatronics 
that consist of mechanical parts, electronic parts, and soft-
ware (Eklund and Bosch 2012; Eklund et al. 2014; Conforto 
and Amaral 2016). The agile–stage-gate hybrid model com-
bines the predictability and planning that is typically desired 
within manufacturing physical products with the dynamic 
capabilities of modern agile software development. This 
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agile–stage-gate model results in faster product releases, 
as well as better handling of changing customer needs, and 
improved team communication and morale (Cooper 2016). 
However, there are some challenges causing manufactur-
ers to be hindered in the adoption of agile practices. The 
primary difficulty is that the development of a physical 
product cannot be easily incrementalized, in that creating a 
potentially releasable, working product in a short-sprint is 
not usually feasible. Furthermore, developing a mechanical 
part often includes developing and investing in very expen-
sive manufacturing tools with long lead times, which can 
expand the development cycle for the product to 12 months 
or longer.

For these reasons, agile methodologies are currently 
employed mainly in the development and testing phases of 
a product development project. The overall product develop-
ment approach at an organization level is still governed by a 
stage-gate model (for project management) or single-cycle 
V-model (for systems engineering). Hence, since our focus 
is on the concept development phase of the project, we lever-
aged a stage-gate model.

2. Data product development process: knowledge discovery 
and data mining (KDDM)

There has been a trend in the data science community to 
formalize data analytics projects as a Data Product devel-
opment process. A data product is defined as a concrete 
component that facilitates the end goal analysis through the 
processing of data (Patil 2012). This product perspective 
suggests that data analytics is indeed a production process 
for producing data products, taking data as materials, turning 
data into usable knowledge models, and delivering results 
based on data. Data product development (DPD) produces 
software-like but data-centered products (e.g. data process-
ing pipelines, statistics and machine-learning algorithms, 
and mathematical analytics models). However, the data 
analytics process is different from the traditional software 
development process because of the requirement to moni-
tor and tune the model in short iterations and the fact that 
it is difficult for data scientists to know a priori what will 
be found when “exploring the data” (Saltz 2015). However, 
similar to software development, the data analytics process 
is iterative by its nature, and data scientists require constant 
revalidation of the problem, data sources, and outcomes.

Formal process models for data analytics projects origi-
nated from the knowledge discovery and data mining 
(KDDM) community. CRISP-DM (CRoss-Industry Standard 
Process for Data Mining) is one of the more successful pro-
cess models that has been adopted by both industry and aca-
demia (Kurgan and Musilek 2006). CRISP-DM is a waterfall 
model that prescribes six high-level phases (the lower lane 
in Fig. 3) to formally describe a data analytics project and 

each phase is further decomposed into several key tasks and 
deliverables (Shearer 2000). The CRISP-DM’s six high-
level phases—Business Understanding, Data Understand-
ing, Data Preparation, Modeling, Evaluation, and Deploy-
ment—appropriately capture the necessary lifecycle stages 
for data science activities (Li et al. 2015). This provides the 
possibilities to align the KDDM tasks with the NPD tasks to 
formulate a data-driven product development process, with 
appropriate adaptation and complementation of both models.

3. Incorporating KDDM in NPD

Most engineering design models prefer sequential mod-
els, focusing on an individual domain rather than consid-
ering interactions with other domains from a system per-
spective (Gericke and Blessing 2011). Integrated product 
development (IPD), or concurrent engineering (CE), is an 
effective means to address overlaps and interactions between 
multidisciplinary activities in the new product development 
process, increasing the need to coordinate and be com-
pensated through other aspects of the NPD process (e.g., 
integrated tools), product definitions (e.g., incremental 
development), organizational context (e.g., reduced task 
specialization), and teaming (e.g., cross-functional teams) 
(Gerwin and Barrowman 2002). These traditional models 
have not explicitly addressed how to do data analytics dur-
ing those processes. Systems engineering, another effective 
approach for developing multidisciplinary, large-scale, com-
plex systems recently introduced the data-centric perspec-
tive (Wheatcraft et al. 2017). The concept is focused on the 
formalized use of a common, integrated dataset to support 
concept maturation, requirements analysis, design, analysis, 
verification and validation activities. This integrated dataset 
represents the work product and the underlying data and 
information generated during each lifecycle phase of the 
product. Similar to IPD/CE, the systems engineering frame-
work has not explicitly prescribed a data analytics process.

From a data-centered perspective, an integrated product 
development process can be seen as an information-process-
ing system or a decision production system, in which a net-
work of stakeholders carries out various activities to process 
the development information, formulating specifications, 
concepts, and design details (Ulrich and Eppinger 2012). 
The process concludes when all the information required 
has been created and communicated, as well as when the 
key decisions have been made within the project time and 
budget constraints (Herrmann and Schmidt 2002; Krishnan 
and Ulrich 2011). This perspective implies there have been 
data analytics tasks embedded within the NPD process. 
Indeed, incorporating a KDDM process into an NPD process 
presents two further challenges.

The first challenge is related to the current data analyt-
ics practices as conducted in manufacturing firms. The data 
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vary significantly across a product’s full lifecycle (Kassner 
et al. 2015). The product, production, and service-related 
data are available in various manufacturing information sys-
tems (e.g., PLM, MES, and ERP systems) (Roy et al. 2014), 
but might also reside in an external supply chain partner’s 
system. There can also be an inability of big data process-
ing within manufacturing firms due to the limitations of IT 
resources within those firms (Sun et al. 2017). For example, 
few manufacturing experts are familiar with modern big data 
analytics techniques. If the data analytics tasks that have pre-
viously been embedded in the engineering processes could 
be decoupled, it would be more efficient for those tasks to 
be done by a dedicated data science team. The question is, 
what are those embedded tasks?

The second challenge is related to the natural latency 
between the physical product development activities and 
the data product development activities. This is because the 
development of accurate analytics models greatly relies on 
new data generated as part of the physical product develop-
ment process and there is an inevitable time lag between 
these development processes (Li et  al. 2015). In other 
words, while the NPD and KDDM processes both follow 
similar high-level stage sequences, there is no systematic 
way to synchronize the two sides’ activities. Consequently, 
the different cycle times of physical product development 
and data product development can lead to less optimal solu-
tions where issues are solved in software or data analytics 
(upgrade to the product) even though they would have been 
better solved in physical design (new generation of prod-
uct), or vice versa. Understanding the interaction patterns 
of engineers and data scientists would be beneficial to the 
integrated decision-making process design, which in return 
facilitates a better system architecture design, for the devel-
opment of a smart product.

4  An initial view of the  NPD3 model

Taking the abovementioned information-processing per-
spective, the product development system becomes an 
information network. This product development informa-
tion network usually consists of three levels of information-
processing units (Collins et al. 2008; Distanont et al. 2012): 
(1) the overall structure—the product development process 
as a whole is a single entity of tasks that share information; 
(2) the subgroup—the groups of tasks that interact more 
with each other than with other tasks in the product devel-
opment process; and (3) the individual tasks—the key tasks 
that are identified based on their relational roles as informa-
tion transmitters (coordinator, gatekeeper, representative, 
liaison, or consultant).

To maximally leverage the existing models, we need to 
(1) identify the three levels of units already prescribed in the 

standard NPD model and the CRISP-DM model; (2) identify 
the prescribed tasks for individual roles. More specifically, 
in the NPD model we focus on the tasks prescribed for pro-
ject manager, design engineer, and manufacturing engineer; 
in the CRISP-DM model we focus on the tasks prescribed 
for data scientists. Note that this paper employs the business 
process model and notation (BPMN) and decision model and 
notation (DMN) conventions to represent process workflows 
and the decision-making logics in a data-driven product. 
Compared to other process diagramming approaches such 
as business process execution language (BPEL) and Petri 
Nets, BPMN focuses more on participants, and controls their 
interactions and flow with events and decisions (Debevoise 
and Taylor 2014). BPMN and its companion, DMN, for 
modeling modular decision models, can be automated in a 
business process management system.

As mentioned previously, we focus on analyzing the 
concept development stage. The main engineering tasks 
prescribed in the NPD concept development stage include 
Investigate feasibility of product concepts, Develop indus-
trial design concepts, Build/test experimental prototypes, 
Estimate manufacturing cost, and Assess production feasi-
bility (Ulrich and Eppinger 2012). Design engineers usu-
ally fulfill the first three tasks and manufacturing engineers 
typically fulfill the last two tasks. According to Marbán et al. 
(2009), the tasks defined in the CRISP-DM that are relevant 
to concept development (for data products) are mainly in the 
Business Understanding and Data Understanding stages. We 
argue that the concept development should focus on the role 
of translating business needs into technical implementation 
specifications. Therefore, we align the CRISP-DM’s Busi-
ness Understanding stage with the NPD’s Planning stage, 
and we only count the tasks defined in the Data Under-
standing stage as concept development activities for data 
products. These tasks include Collect data, Describe data, 
Explore data, and Verify data. It is noted there are implicit 
activities when exploring data: hypotheses modeling and 
testing (descriptive analytics), followed by discovering data 
mining opportunities (predictive analytics). These explora-
tory activities are analogous with the concept investigation 
and design activities in NPD, and shall be differentiated 
from the later Modeling stage of the CRISP-DM. Therefore, 
we explicitly add these activities in the Data Understanding 
stage and term them as Generate and test initial hypothesis, 
Investigate feasibility of predictive analytics, and Discover 
repeatable analytics services.

In summary, the engineering activities are grouped as 
Identify and design concepts, Build and test concepts, and 
Evaluate concepts for selection; similarly, the data science 
activities are grouped as Identify and collect data, Descrip-
tive analytics, Verify data quality, and Investigate analytics 
concepts. This setting structures the time lag for data scien-
tists’ activities compared to the engineers’ activities.
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Specifically, in Fig. 4, the upper lane represents the engi-
neering team, who focus on the engineering tasks for the 
development of the physical product. They translate the 
customer needs into the technical specification and use the 
technical specification to come up with the optimal solu-
tion for the physical design. Engineers usually employ well-
established Design for ‘X’ principles (e.g. Design for Manu-
facturing and Assembly, Design for Environment, etc.) to 
evaluate and refine the product concept (Li and Roy 2018). 
The final specification includes a bill-of-materials of the 
physical components and target values of their properties. 
The Identify and design concepts task has larger informa-
tion integration workloads while the Evaluate concepts for 
selection has larger information dissemination workloads.

The lower lane represents the data science team, who 
focus on data processing and analytical modeling tasks for 
the development of the data product. They translate the 
customer needs into the data specification and use the data 
specification to come up with the optimal data analytics 
solution. Since data quality greatly impacts the analytics 
results, there must be a gateway to go/kill the decision to 
the Investigate analytics concepts task. The final specifica-
tion includes both the data specification and the analytics 
feature specification. Similarly, a bill-of-services shall be 
included if the analytics feature can be further decomposed 
into reusable services. Intuitively, the Identify and collect 
data is dominated by information collection workloads and 
the Investigate analytics concepts task is dominated by infor-
mation dissemination workloads.

The middle lane in Fig. 4 represents the project man-
agement (PM) team, who follow a stage-gate-based NPD 
process. It takes a Mission Statement as input and produces 
the approved Development Plan. The first two tasks (Identify 
customer needs and Establish target specification) involve 
the marketing team, management team, customers, and other 
stakeholders. The engineers and data scientists participate 
in these preparation stages, and their collaboration is mainly 
brokered by the PM team. The dominance of outgoing flows 
indicates the information brokerage and dissemination role 
of these tasks. The design-build-test task group comprise of 
the core activities with which the engineers and data scien-
tists work to collectively solve the problem. Detailed tasks 
are conducted in the individual team activities. Engineers 
and data scientists can use face-to-face communications if 
the organizational structure and geolocation allow, and the 
PM team can focus on ensuring the coordination of the tasks. 
This task group is also where the high rate of iteration takes 
place. The last task, Set final specification, again involves 
stakeholders from many disciplines to complete the develop-
ment plan. The dominance of incoming flows indicates the 
information integration workloads of the task.

Note that the engineering and data science tasks are coor-
dinated by the PM design-build-test tasks; hence, there are 

two implicit gateways (for project decomposition and inte-
gration) located before and after the design-build-test task 
group. It is also noted that test data from a simulation model, 
a physical prototype, or a field test can only be obtained after 
such a model/prototype has been built. Therefore, there is 
a message flow from the Build and test concept task to the 
Identify and collect data task of a later iteration for data sci-
entists. In addition, the sequence flows across the discipline 
boundaries also carry the necessary message information; 
we do not draw explicit message flow symbols for a clearer 
representation.

5  Case study using the  NPD3 model

The initial  NPD3 model sets up the key tasks and main data/
information flows, but we need to understand, in more detail, 
the content of these information flows and the team inter-
action patterns. In this section, we report on a project that 
utilized the  NPD3 approach to develop an unmanned aircraft 
system (UAS) that integrated advanced analytics within an 
unmanned aircraft vehicle (UAV) and its supporting sys-
tems, which we term a “Smart UAS”.

Information for this case study consisted of weekly semi-
structured observation notes. In addition, a product lifecy-
cle management (PLM) system was deployed for the team 
to centrally store the project artifacts (e.g., project weekly 
meeting minutes, 3D models, simulation data) and this pro-
ject documentation was also leveraged to analyze the case 
study.

We start with a brief overview of the generic UAS archi-
tecture and its data-driven needs, followed by the project 
requirements, team formation, and the data infrastructure to 
support the team collaboration. We then report on the con-
cept design process, including discussion of the challenges 
faced by the project team, the concept testing that was per-
formed, and how our  NPD3 approach was leveraged within 
the case study. In Sect. 6, we discuss in detail a theoretical 
framework for the information decomposition based on our 
observations within the case study.

1. The data-driven features for UAS

A UAS consists of five distinct elements (NATO 2012): 
(1) the Unmanned Air Vehicle (UAV) element includes the 
air frame, power system, and the avionics required for flight 
control; (2) the Payload element includes the sensor sys-
tems, associated recording devices, and associated control/
feedback mechanisms; (3) the UAV Control System (UCS) 
element incorporates ground and air control systems for 
generating, loading, and executing the mission and to dis-
seminate information to various command, control, commu-
nication, and intelligence (C4I) systems; (4) the Launch and 
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Recovery element incorporates the functionality required to 
safely launch and land the UAV; and finally (5) the Data 
Link element, which enables ground–air communication or 
air–air communication.

The data-driven nature of a smart UAS arises from its 
transition from an automated system to an autonomous sys-
tem (Li et al. 2017). The autonomy of an UAS is defined 
as the UAS’s own abilities of sensing, perceiving, analyz-
ing, communicating, planning, decision-making, and act-
ing/executing, to achieve its goals as assigned by its human 
operator(s) through a designed human–robot interface or by 
another system that the UAS communicates with (Huang 
2008). The autonomy enabling functions for a UAS can be 
grouped into three subsystems: navigation, guidance, and 
control (Kendoul 2012). Navigation is the process of moni-
toring and controlling the movement of an air vehicle from 
one place to another. It is a highly data-intensive process 
involving data acquisition, analysis, extraction and inference 
of information about the vehicle’s state and its surround-
ing environment with the objective of accomplishing the 
assigned mission successfully and safely. Guidance is the 
driver of the UAS that exercises the planning and decision-
making functions to achieve the assigned mission or goal. 
It takes inputs from the navigation system and generates 
reference trajectories and commands for the flight control 
system. Finally, control is the process of manipulating the 

inputs to a dynamical system to obtain a desired effect on its 
outputs without a human in the control loop.

Figure 5 depicts the core elements of an autonomous 
UAS’s generic architecture, which consists of its physical 
architecture, autonomy architecture, cyber-physical inter-
faces, and the supporting subsystems.

2. The UAS requirement, team formation, and project man-
agement

The smart UAS was designed for a Water-Quality-Sam-
pling application that was requested by a civil engineering 
scientist. The usual practice in this area is to collect small 
water samples for lab analyses because many water proper-
ties cannot be measured in the field (Ore et al. 2015). If 
the properties can be measured in the field, they require an 
onsite monitoring system or a suitable vehicle to carry the 
instruments. In our case, the scientist requested a UAS to 
measure the water properties including temperature, pH, dis-
solved oxygen, etc. A UAS platform could access hazardous 
environments, be more flexible than an onsite water monitor-
ing system, and be faster than other vehicles (e.g. a boat). 
Most importantly, if properly designed, a UAS platform 
could be a cost-effective solution with the capability to adapt 
itself to conduct different missions. The overall requirements 
and the initial system specification are shown in Table 1.

U
AV

Airframe

Avionics

Payloads

Power System

Environment: Occupancy Map, Terrain, Weather

Mission Requirements: Time, Cost, Goal

Ground Control System: Mission Planner, Computational Tools

External C4I System: UAS Product Lifecycle Management

Sensors:
• Accelerometer
• Gyroscope
• Barometer
• GPS
• Compass
• Wind Speed
• Camera
• Lidar
• ADS-B
…

Actuators:
• Autopilot
• Motor controller
• Engine controller

Data/Information:
• Environment data
• Air traffic data
• Onboard sensor data
• Geolocation and 

velocity
• Flight logs
• Mission-specific data
…

Decision-Makings:
• Flight modes: Altitude 

hold, Obstacle 
avoidance, …

• Control signals: 
Throttle, Pitch, Yaw, 
Roll

Autonom
y

Navigation

State Estimation

Perception

Situation 
Awareness

Guidance

Path Planning

Mission Planning

Multi-UAV 
Cooperation

Control

Linear Control

Model-based 
Nonlinear Control

Learning-based 
Control

Fig. 5  A generic architecture of an autonomous unmanned aircraft system (UAS) (Li et al. 2017)
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There were twelve people working on this smart UAS 
project. As shown in Table 2, the team was comprised of 
researchers on the mechanical, electrical and data groups, 
as well as a remote pilot, a project manager, and an industry 
expert. The authors of the paper were part of the team to 
help building the data infrastructure, providing data analyt-
ics guidance, and coordinating the project management. In 
the project kickoff meeting, the authors presented the  NPD3 
diagram of Fig. 4 to the project team and explained the NPD 
model, the CRISP-DM model, and the integrated model. 
The  NPD3 model provided a common language and guid-
ance to both engineers and data scientists, who otherwise 
are not familiar with the process used by their counterparts. 
The authors then documented the observations via weekly 
semi-structured notes throughout the remaining project time.

A data model was developed to capture the metadata 
of the generic elements and their relationships of the UAS 
architecture shown in Fig. 5. The data model derived was 
based on the concept of the smart component data model 
(Li et al. 2015). This abstract model facilitated data stor-
age, access, exchange, and tracing of all the data generated 
throughout the project. The core classes of the UAS data 
model are described as follows:

• PLM generic item The root class of the PLM system; all 
other classes inherit from this class and the children of 
this class.

• Physical component The physical components of a 
product to form its body. The classes for the overall air 
vehicle, the airframe and propellers, the avionics, the 

Table 1  The UAS requirement and the Target specification

Requirement Target specification

Is lightweight to be carried and operated by a single scientist The total weight is less than … kilograms with all the necessary pay-
loads

Is cost-effective The total cost is less than … dollars
Can hover over the water area The UAV can hover 1 m above the water surface without moistening the 

onboard payloads
Is safe and has certain levels of autonomy The UAV can detect-and-avoid a static or dynamic obstacle within a 

radius 5 m surrounding it
Can measure a range of water-quality properties at predefined loca-

tions
The UAV can measure pH, temperature, dissolved oxygen using 

onboard sensors
The accuracy of measurement should fall between … and …

Can collaborate with other UAVs to achieve a mission The UAV can work with at least one another UAV to simultaneously 
measure the water-quality properties at a predefined location without 
sacrificing the safety

Can quickly adapt to different water-sampling missions The UAV can replace with different sensors to sample different water-
quality properties

Table 2  The multidisciplinary team

Role group Role description Team members

End user Providing the domain knowledge regarding the 
water-quality monitoring application

One professor from civil engineering

Mechanical design and manufacturing Designing the UAS mechanical parts and their 
configurations

3D modeling and 3D printing of the custom-
made parts

Two professors from mechanical engineering
One PhD student and one Master student from 

mechanical engineering

Electrical design and software development Designing the UAS autopilot, communication 
and control, and autonomy algorithms

One professor from computer science and one 
professor from control engineering

Data architecture and analytics Designing and implementing the data man-
agement architecture and data processing 
platform

Conducting data processing and data analytics

Two PhD students from mechanical engineering 
with the background of industrial engineering 
and data science

Pilot/Operator Operating the UAV for test flights and mission 
flights

One FAA-certified UAS remote pilot

Project management Overseeing and coordinating the project One principal researcher of the project
Project sponsor and industrial advisor Providing advice and feedbacks from the indus-

trial perspective
One industrial expert from sensor industry
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payloads, and the power systems are inherited from this 
class.

• Analytical component The analytical components of a 
product to implement its intelligence. All the auton-
omy-related functions (navigation, guidance, and con-
trol) can be implemented in different derivations of 
this class. Business rules, a specific case of analytics 
models, also inherits from this class and implements 
the regulatory rules.

• Dataset The datasets that have been extracted, aggre-
gated, cleaned, and structured from various sources of 
raw data. It can be a training or test dataset and pro-
vides the context to the analytics models built.

• UAS An application-oriented UAS that is composed of 
certain physical components and analytical components 
and is compatible with a range of missions.

• Mission plan The operations of an individual UAV or 
a fleet of UAVs to fulfill the mission requirement.

3. The UAS development

There were not many UAS-based water-sampling appli-
cations available when this project was started. In the pro-
ject preparation stage (the first 2 weeks), a large number of 
articles in the fields of infrastructure management, envi-
ronment monitoring, and traditional water-sampling meth-
ods were reviewed and studied. The recent research topics 
on UAS were also explored from technical publications. 
For example, publications on the International Conference 
on Unmanned Aircraft Systems (ICUAS, http://www.uasco 
nfere nces.com) during 2013–2016 timeframe indicate top-
ics such as UAS applications, navigation, path planning, 
control architectures, and simulation were constantly the 
top research areas. Other data sources included the product 
specifications from UAV and sensor vendors, the patent 
database for water-sampling mechanism design, and gov-
ernment data regarding water-quality monitoring.

The sharing of this information, including the system 
requirements, literature analyses, and other publicly avail-
able information, together with the initial target product 
specification was coordinated by the project management 
team and able to be accessed by both the engineering and 
data analytics groups for concept development. In the early 
concept exploration stage, the project team met frequently 
to brainstorm the possible concepts, during which the 
domain knowledge had to be exchanged.

Each concept needed to consider a suitable configura-
tion of the UAV hardware (air frame, avionics, payload, 
and power system), autonomy functions (state estimation, 
obstacle avoidance, etc.), and data communication meth-
ods. To leverage the potential of the data analytics, several 

questions were consistently asked by the team as they gen-
erated each new concept:

• Is the current knowledge sufficient to capture the real-
world dynamics (for example, the water area the UAV 
will fly over)?

• If not, can the problem in hand be solved by a data-driven 
modeling approach, and with what hypotheses?

• What data should be collected and how often should the 
data be collected?

• What sensors should be used and what parameters are 
required?

• How to decompose the decision-making process of an 
autonomy function?

• What are the repeatable/reusable analytics services can 
be adapted for future applications?

• Where to implement the analytics services, onboard or 
offboard? What are the physical constraints?

These questions occurred across all levels of the concept 
development process. For example, it was difficult to prees-
tablish a model for the target flight environment. The system 
needed to check the terrain, water surface, weather dynam-
ics, and any possible surrounding obstacles. The establish-
ment of such an environmental model needed significant 
effort to work with many external data service providers, for 
instance, the UTM (UAS Traffic Management) services. The 
algorithms to map the environment could be implemented 
either at the ground control station computer or onboard the 
UAV equipped with LiDAR sensors or vision cameras. Fur-
thermore, these functions should work independently with-
out affecting the water sampling, the main function of the 
UAS. This implies that the data infrastructure and communi-
cation protocols had to be co-developed with the UAS hard-
ware and control software at the system architecture level. At 
the component level, a challenge the team faced was ‘What 
if the UAS is used in a GPS-denied environment where the 
GPS signal is no longer available’. In this situation, two 
alternative concepts could be viable: (1) use other types of 
global positioning systems to provide the GPS-equivalent 
data; or (2) use a completely different localization method, 
for example, a vision-based or a LiDAR-based system, to 
predict the desired state variables. In the first case, another 
positioning system (such as GLONASS) providing the same 
GPS format data solves the problem, and the software and 
all the data-processing functions for state estimate are not 
necessarily changed. In the second case, additional sensors, 
processors, software, and data-processing functions have to 
be built into the design, which means the team would need 
to review and revise the system architecture.

Similar to the Nest Thermostat development, the team 
set up a hybrid simulation environment that incorporated 
a UAV simulator, communication hardware, and the PLM 

http://www.uasconferences.com
http://www.uasconferences.com
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system as a data repository to automatically store the test 
mission plans and process the mission data so as to provide 
performance analysis and train the machine-learning models 
(Fig. 6). The simulator used the same autopilot controller 
firmware as was used by the real UAV so that the simulation 
settings could be used for field test flights. The data scientist 
could work with the simulation data to explore the data and 
build initial machine-learning models before any real data 
had be collected from the field flights. Then the validity of 
the models could be tested by the field tests. The data were 
used for either diagnosing the UAS performance (e.g. flying 
stability due to inappropriate tuning or signal interference) 
or for historical data to build predictive models (e.g. obstacle 
recognition and avoidance). The results of the data analyt-
ics were twofold: (1) feedback to the next design iteration 
to inspire a new design, and (2) analytics models directly 
improving the current concept. The latter is an interesting 
“self-improvement” effect, in that it is a unique character-
istic in a data-driven product. For example, we can recall 

the smart thermostat case, where more installations and 
usage generate more data that could be used to improve the 
auto-schedule feature; similarly, more flight scenarios could 
enhance the UAV obstacle avoidance capability.

Several sample concepts are presented in Table 3. Both 
the engineers and data scientist had their domain-specific 
requirements. For example, a set of well-established Design 
for ‘X’ principles (e.g. design for manufacturing and assem-
bly, design for sustainability) were used by the engineers 
to evaluate and refine the product concepts. The product 
bill-of-materials for physical components was critical to 
determine the selection of raw materials, manufacturing 
tools and processes, as well as the assembly/disassembly 
and recycling methods. Similarly, data scientists employed 
a set of measurements, including data quality, prediction 
accuracy, computational costs, the capability to incremen-
tally update with new data, in order to screen the analytics 
models. A bill-of-data and bill-of-services for data analytics 
models were also critical to determine which data analytics 

Physical Components
• Airframe and power system
• Autopilot and remote controllers
• Payload sensors and mechanics
• Communication network

Analytics Models
• UAV autonomy and intelligence
• Environment prediction
• Risk assessment
• Predictive maintenance

Simulation
• Software-in-the-loop
• Hardware-in-the-loop
• Human-in-the-loop
• PLM-in-the-loop

Field Flight
• UAV performance test
• Single-UAV mission test
• Multi-UAV mission test

Flight Logs Data
• Geolocation
• IMU
• GPS
• Battery
• Weather

Payload Data
• Temperature
• pH
• Dissolved oxygen
• Point cloud
• Still images & videos

UAV Performance Assessment
• Flying stability
• Safety
• Location accuracy
• Water-sampling performance

Machine Learning Models
• Environment mapping
• Obstacle avoidance
• Battery remaining life
• UAV autotuning
• Water quality prediction

feedbacks to inspire new concepts / improved analytics models

new knowledge to refine the simulation and field flight

Fig. 6  The UAS design, simulation, test, and data analysis

Table 3  Several UAS concepts

Concept Concept description Characteristics

Concept #1 Quadcopter with autopilot
ADS-B for sense-and-avoid
Water-quality sensors
Cloud data storage

Low cost
Collaborative sense-and-avoid capability
No to low-level autonomy

Concept #2 Quadcopter with autopilot and onboard computer
LiDAR for detect-and-avoid
Water-quality sensors
Onboard and cloud data storage

Affordable
Non-collaborative sense-and-avoid capability
Low-level autonomy

Concept #3 Octocopter with autopilot and onboard computer
ADS-B and LiDAR for detect-and-avoid
High-precision water-quality sensors
Onboard and cloud data storage

Expensive
Collaborative and non-collaborative sense-

and-avoid capabilities
Medium-level autonomy
High payload capacity
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techniques should be employed in the downstream processes. 
Collectively, the criteria for concept ranking and selection 
took the functionality, level of autonomy, cost, degree of 
modularity, and regulation requirements into consideration. 
Here, the level of autonomy is an important criterion even 
though it may compromise the overall cost and the product 
modularity (because of redundant components and computa-
tion). The team chose the second concept that was overall 
affordable and was satisfied with the project requirement.

The final UAS specification included the hardware 
specification, software specification, data specification, 
and analytics model specification. System design and other 
later stages defined in the NPD and CRISP-DM were then 
followed.

6  Further discussion

1. Observations of the team interaction patterns and char-
acteristics

The UAS development project lasted for five months. 
The team interaction patterns are summarized and shown 
in Fig. 7. Specifically, the rows in the table represent the 
phases of the project from a data science perspective and 
columns represent the phases of the project from an engi-
neering perspective, and each cell represents a possible set 
of interactions.

In analyzing the goals of the interactions, we followed 
Distanont et al. (2012), who noted that, in a collaborative 
product development network, one can view the interaction 
flows as one of four goals for the interaction—awareness, 

access, knowledge-transfer, and problem-solving. Figure 7 
shows that as one moves further along the concept develop-
ment process, the goal moves towards problem-solving. In 
the smart UAS project, a significant amount of interactions 
was needed to identify the data sources and interests dur-
ing the early project phase. The multidisciplinary team was 
finally able to collectively deliver the water-sampling UAS 
platform with appropriate composition of physical compo-
nents, compatible control software, and suitable data analyt-
ics pipeline.

Furthermore, in analyzing the characteristics of each 
information flow that occurred within our case study, we 
leveraged four attributes proposed by Krovi et al. (2003). 
The density (De) is defined by the number of intermediate 
interaction nodes. The velocity (Ve) refers to the speed of 
incoming information at an interaction node. The viscosity 
(Vi) reflects the degree of conflict due to presence of con-
tradictory information components at the interaction node. 
The volatility (Vo) denotes the associated uncertainty in the 
information. At a high level, when the UAS project had to 
integrate and evaluate the various concepts, the presence of 
contradictory information increased because there had to be 
a compromise for the multiple performance measures. It was 
also observed that the speed of incoming information was 
initially high, then decreased but then increased later, once 
the simulation model started to generate data based on vari-
ous trial settings. As the process progressed, more data and 
information were available and the design problem was more 
constrained; therefore, the problem became less uncertain.

With this framework, we can categorize the interaction for 
the flow of a specific phase combination. Below we describe 
the interaction patterns among the different combinations 

Fig. 7  Interaction patterns and 
characteristics between engi-
neers and data scientists
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of engineering and data science project phases. As a start-
ing point, we define each attribute to have three levels: low, 
moderate, and high:

Identify and design concepts—Identify and collect data 
At the start of the project, a significant amount of interaction 
between engineers and data scientists was needed to identify 
the data sources and interests. The data sources included 
market surveys, technical publications, patent database, gov-
ernment data, and manufacturer/vendor whitepapers. The 
velocity of incoming data was fast, the data/information pre-
sent had a high conflict, and uncertainty was also high. In 
short, all four parameters were at the high level.

Identify and design concepts—Descriptive analytics At 
this stage, the data had been collected, and the data science 
team was focusing on the data analysis. Hence, the interac-
tion density was moderate and velocity was low. However, 
the viscosity and the volatility were high because the two 
groups had a different understanding with respect to the 
large amount of data from the different sources. For exam-
ple, it was difficult for the data scientists to understand the 
meaning of each column presented in the flight log data.

Identify and design concepts—Investigate analytics con-
cepts At this stage, the data science team started to generate 
analytics concepts which in turn affected the development of 
the physical concepts. The interaction density again became 
high, the velocity and viscosity were also high since more 
data and information had become available. For example, the 
localization function required data from different sensors for 
GPS-friendly environment versus the GPS-denied environ-
ment. The concept designs for the sensor systems and the 
analytics models were mutually affected. The volatility was 
kept low to moderate.

Build and test concepts—Identify and collect data, 
Descriptive analytics At these stages, the data sources were 
mainly from the simulation, field test, and the customer feed-
back. The data formats had been determined and the data 
stream processing could be automated to some extent. With 
both the physical and analytical concepts being built into the 
prototypes, descriptive analytics were conducted on vari-
ous testing scenarios. Sensitivity analysis was conducted to 
identify the impacting variables on the product performance. 
The interaction density was, therefore, low; the velocity was 
high to moderate. There were low viscosity and volatility.

Build and test concepts—Investigate analytics concepts 
At this stage, the data science team refined the previous ana-
lytical concepts, to generate and test new analytical concepts 
for the next iteration. The interaction density and velocity 
were moderate to high, the viscosity was high but the volatil-
ity kept low to moderate.

Evaluate concepts for selection—Identify and collect 
data, Descriptive analytics At these stages, the product con-
cepts had been filtered to a limited set, and the focus of data 
scientists had turned to a new iteration to collect data for 

product performance analysis—to provide guidance in build-
ing a closed-loop product operation for continuous improve-
ment. The interaction density and viscosity were moderate; 
the velocity and volatility were low.

Evaluate concepts for selection—Investigate analytics 
concepts At this last stage, both groups determined the final 
concepts. The interaction density and viscosity increased 
again because of the integrated evaluation and there had to 
be a compromise across the multiple performance measures. 
For example, collecting more data was beneficial to the ana-
lytics model development; however, this implied the sensors 
and the controllers needed to work in higher frequencies. 
Thus, it had a negative impact on the battery power. The 
interaction velocity was moderate. The volatility was low 
because most uncertainties had been eliminated and there 
had been risk mitigation plan in place.

All engineering tasks—Verify data quality At these 
stages, the data had been cleaned, processed, and descrip-
tive analysis results were generated and presented. Data 
scientists needed engineering experts or other stakeholders 
to verify the data quality to prepare the datasets for the fol-
lowing analytical concept development tasks. The interac-
tion density, velocity, and volatility were low. Since this was 
always a go/no-go decision-making point, the viscosity was 
moderate to high.

2. A theoretical view on the decomposition of information 
content for individual/subgroup tasks

In this section, we discuss, from a theoretical perspective, 
the details of the information flows related to an individual 
task or group of tasks. To show these input and output flows, 
we employ an IDEF0-based notation which decomposes the 
information related to unit collaborative design activity into 
four categories: intra-disciplinary design information (I), 
cross-disciplinary design information (C), external design 
information (E), and design information output (O). This 
notation was originally proposed by Austin et al. (1999) 
termed as IDEF0v, to facilitate a collaborative building-
design process, while the IDEF0 (Integrated computer aided 
manufacturing DEFinition for function modeling) technique 
was developed to better communicate and analyze manufac-
turing systems in an attempt to improve productivity.

The information content of each information flow is iden-
tified by revisiting the standard activities defined in the NPD 
and the CRISP-DM, as well as the activities we found during 
our smart UAS project. For instance, the intra-disciplinary 
input information for the Identify and collect data stage 
consists of historical data of the product and production, 
while the output information includes the concept classi-
fication tree and combination table. By this way, the infor-
mation flows for the engineering and data science activi-
ties are elaborated in Figs. 8 and 9. The intra-disciplinary, 
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cross-disciplinary, external, and output information for the 
engineers are encoded as Ieng1~3, Ceng1~3, Eeng1~3, and 
Oeng1~3. We explicitly encode the potential cross-disci-
plinary information received from the data scientists as 
Ceng1~3-DST. On the data scientists’ side, Idst1~4, Cdst1~4, 
Edst1~4, Odst1~4, and Cdst1~4-ENG are the intra-discipli-
nary, cross-disciplinary, external, output information, and 
cross-disciplinary information explicitly from the engineers.

This information decomposition reveals several inter-
esting factors of the information dependency between the 
engineering and data science groups. First, the external and 
cross-disciplinary information shows the shared informa-
tion between the two groups (for example, product speci-
fication, customer feedback, and publicly available data), 
indicating that a common dedicated team, or a higher level 
project management team (if there is one), could help broker 
this information. In the smart UAS project, the project man-
ager, the industrial advisor, and the end user indeed helped 
to coordinate tasks for the collection and dissemination of 
these shared data. The PLM implementation of the high-
level  NPD3 model also helped the data/information sharing. 
Second, the cross-disciplinary information coming from the 
two groups indicates engineers and data scientists may need 

to directly communicate with each other for effectiveness 
and efficiency, suggesting that an appropriate organiza-
tional structure or geolocation arrangement between the two 
groups would be helpful. In our case study, the engineers, 
the data scientists, and the remote pilot were from different 
departments, which created some time schedule and com-
munication challenges. For example, there were situations 
where the data scientists were waiting for new test data but 
the pilot was not available for field testing the new engineer-
ing design.

Furthermore, the information content in the cross-disci-
plinary flow not only needs to be aware of and accessed by 
each group, but also transfers domain-specific knowledge to 
the counterpart for collective problem-solving. The output 
information of each activity is not only for the next activ-
ity within the same discipline, but might also be consumed 
by the collaborative tasks in the other discipline since an 
effective process requires each subsequent task to maximize 
the utility of the stable information available from the pre-
vious task (Cooper 2014). However, it was observed that 
the analytical concept generation was always at least one 
step behind the physical concept generation unless the data 
could be obtained from an existing data source. This implies 

Fig. 8  Information flow from the engineers’ perspective
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a dependency between these two concept generation pro-
cesses. Hence, simulation with appropriate assumptions 
becomes a critical method to synchronize these two pro-
cesses. This is consistent with the previous finding regarding 
the development of a data-driven manufacturing system (Li 
and Roy 2015).

Finally, Figs. 4, 8, and 9 together provide a more com-
plete view of the  NPD3 model. The  NPD3 process model 
framework provides a starting point to understand how engi-
neers and data scientists collaborate when they co-develop 
physical components and data-driven features involved in 
smart products. This understanding would also be beneficial 
to the integrated decision-making process design, which in 
return facilitates better product architecture design, for the 
development of a smart product.

7  Conclusion

A smart product can adapt itself to the environment where 
it is deployed and the data generated from its day-to-day 
use in turn improves its intelligence as well as benefits to 
all other instances. Creating these smart products requires 
developing two components—physical products (for 

physical bodies) and data products (for intelligence)—in 
a transdisciplinary approach across mechatronics, soft-
ware, data science, and services domains. Specifically, 
mechanical and electrical engineers need to work closely 
with software engineers and data scientists to decide how 
to design the product to support more data-driven features. 
However, the misalignment of the product architecture and 
the development team organization may have a negative 
impact on product performance (Sosa et al. 2004). This 
is due to the fact that product-related interdependencies 
may not be addressed by the team’s interactions, or that 
the design teams may interact in spite of the absence of a 
product-related interdependency.

To address our research key questions raised in Sect. 2 
(which tasks need to be coordinated across the two team 
groups; when and what information needs to be exchanged 
between the two groups to collectively achieve the product 
development; and what are the patterns and characteristics of 
their interactions), this paper proposes  NPD3, an integrated 
process model for new product development with data-
driven features. We revisited the classic NPD process model 
and a well-adopted data analytics process model, CRISP-
DM, to understand the key tasks prescribed for the engineers 

Fig. 9  Information flow from the data scientists’ perspective
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in a physical product development team and the data scien-
tists in a data product development team, respectively.

The  NPD3 model was then evaluated within a case study 
of the creation of a smart unmanned aircraft system. The 
results of our case study demonstrate that there was cross-
disciplinary design information required by the engineers 
as well as the data scientists, and that it was critical that 
direct interactions and messages were exchanged between 
the two groups, with a project management group acting as a 
mediator to guide the collaboration across the team. In addi-
tion, the project management group helped to ensure that the 
required external design information was shared between the 
two disciplinary groups.

The timing and contents of information exchanged 
between the two groups facilitates information awareness 
and access, knowledge transfer, and problem-solving. We 
used four attributes—the number of interactions, the speed 
of information, the amount of contradictory information, and 
the uncertainty of the information—to characterize the inter-
action patterns. At the beginning of our project, a signifi-
cant number of interactions were needed to identify the data 
sources and interests. As the process progressed, more data 
and information were available and the design problem was 
more constrained; therefore, the problem became less uncer-
tain. When it came to the integration and evaluation of the 
concepts, the contradictory information increased because 
there had to be a compromise for the multiple competing 
performance measures. It was also noted that the speed of 
information decreased at first but then increased once the 
simulation model started to generate data based on various 
trial settings.

Our integrated process model is encoded with BPMN 
notation so that it can be implemented for automation, in a 
business management system, e.g. a PLM system. The  NPD3 
model and the PLM implementation provided the UAS 
development team a collaborative environment and data 
repository to facilitate effective data/information exchange, 
visual communication, and traceable decision-making. The 
integrated process model also provided a common language 
and guidance to both engineers and data scientists, who oth-
erwise would not have been familiar with the process used 
by their counterparts.

This work is a starting point to understand how engineers 
and data scientists should collaborate when they collectively 
need to develop future smart products that are highly data 
driven. We note that this UAS case study was carried out by 
university researchers and staff, and that a case study within 
an industry context might yield different results. However, 
we also note that UAS, as a tool or service, has been adopted 
by research scientists as well as within commercial applica-
tions, across a diverse and broad set of areas, including envi-
ronment monitoring, infrastructure inspection, and precision 
agriculture (Gupta et al. 2013). The method used for within 

this case study is likely to be applicable to research scien-
tists, as well as industry practitioners, who need to leverage 
UAS capabilities.

As with many empirical studies, however, the generality 
of our findings could be enhanced by conducting additional 
case studies for other smart products in different industries 
(Gibbert and Ruigrok 2010). We also realize the descriptive 
nature of the interaction patterns between engineers and data 
scientists. Hence, as more case studies are conducted, these 
patterns and characteristics could be further analyzed for 
quantitative evaluation and comparison. Last but not least, 
we only focused on the concept development stage in this 
paper; similar analyses could be conducted on other stages 
(e.g. sub-system design and detail design) of the product 
development process.
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