
Vol.:(0123456789)1 3

Research in Engineering Design (2018) 29:547–563 
https://doi.org/10.1007/s00163-018-0288-5

ORIGINAL PAPER

Product family platform selection using a Pareto front of maximum 
commonality and strategic modularity

Kyle Baylis1 · Guanglu Zhang1 · Daniel A. McAdams1 

Received: 29 May 2017 / Revised: 20 April 2018 / Accepted: 23 April 2018 / Published online: 8 May 2018 
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Product family design offers a cost-effective solution for providing a variety of products to meet the needs of diverse markets. 
At the beginning of product family design, designers must decide what can be shared among the product variants in a family. 
Optimal design formulations have been developed by researchers to find one optimal component sharing solution based on 
commonality, cost or technical performance of a product family. However, these optimization methods may not be able to 
apply in consumer product design because some metrics (e.g., visual appeal and ergonomics) of a consumer product can-
not be formulized. In this paper, we suggest a tradeoff between commonality and the quality of the modular architecture in 
product family platform selection. We introduce a method for designers to identify multiple component sharing options that 
lie along a Pareto front of maximum commonality and strategic modularity. The component sharing options along the Pareto 
front can be evaluated, compared, and further modified. We demonstrate the method using a case study of product family 
platform selection of high-end and low-end impact drivers and electric drills. In the case study, the quality of the modular 
architecture is evaluated using a design structure matrix (DSM) for each of product variants. Three architectures along the 
Pareto front with maximum commonality, optimal modularity, and a balanced solution of the two metrics are highlighted 
and further examined to validate the effectiveness of our method.

Keywords  Product family design · Product platform · Modular design · Design structure matrix (DSM) · Component 
clustering

1  Introduction

In an effort to boost revenue, companies try to offer tailored 
products to meet the needs of many market segments. How-
ever, it is expensive for a company to design, manufacture, 
and support a large set of different products (Otto and Wood 
2001). Product family design is developed to conciliate the 
conflict. A product family is a group of similar product vari-
ants that share one or more common components (Harlou 
2006; Meyer and Lehnerd 1997). The common components 
form a product family platform (Erens and Verhulst 1997; 

Kristjansson et al. 2004). Product family design offers a 
cost-effective solution for providing a variety of products 
to meet the needs of diverse markets (Meyer and Utterback 
1993; Simpson et al. 2006).

At the beginning of product family design, designers must 
decide what can be shared among a set of product variants 
aiming for different market segments. Optimal design for-
mulations have been developed to balance commonality, 
cost and technical performance loss across a product fam-
ily (Fellini et al. 2004; Liu et al. 2011; Nelson et al. 2000). 
Designers use these methods to derive one optimal compo-
nent sharing solution for industrial product (e.g., automo-
bile and airplane) development. However, these optimiza-
tion methods may not be able to apply in consumer product 
design because a consumer product often has many other 
metrics for its performance, and some metrics (e.g., visual 
appeal and ergonomics) cannot be formulized. In this sce-
nario, designers could exhaustively enumerate the sharing 
possibilities and build a chart to qualitatively evaluate these 
component sharing options (Otto and Wood 2001), but the 
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exhaustive enumeration is only suitable for the family with 
a small number of sharing components.

In this paper, we introduce a method for designers to 
identify multiple component sharing options that lie along 
a Pareto front of maximum commonality and strategic mod-
ularity. The component sharing alternatives on the Pareto 
front can be evaluated, compared, and further modified. To 
our knowledge, the application of Pareto front in this manner 
is a new contribution to product family platform selection. 
Our method helps designers address the uncertainty in the 
design process by providing multiple component sharing 
options. Designers can utilize area-specific expertise in the 
following decision-making process. Moreover, our method is 
broadly applicable since the method is compatible with any 
commonality indices and component clustering methods. 
Designers also could substitute other metrics (e.g., techni-
cal performance, cost, complexity, and adaptability) for the 
strategic modularity used in this paper to derive one or more 
customized Pareto fronts.

The rest of this paper is organized as follows. We begin 
with a short review of background and related work of prod-
uct family design in Sect. 2. The methodology to gener-
ate a Pareto front of maximum commonality and strategic 
modularity for platform selection is presented in Sect. 3. In 
Sect. 4, we demonstrate our method through a case study of 
an impact driver and electric drill product family platform 
selection in which we highlight three-component sharing 
options along the Pareto front of maximum commonality 
and strategic modularity. We conclude with the contribution 
of this work and future research directions.

2 � Background and related work

A group of product variants that shares common components 
to satisfy a variety of market niches is a product family (Har-
lou 2006). A product platform is a group of common compo-
nents that are shared by multiple products or generations of 
products (Kristjansson et al. 2004). Using a product platform 
of common components, multiple product variants can be 
efficiently developed (Meyer and Lehnerd 1997). Research 
has shown product family design to be a cost-effective option 
for providing variety in products, allowing designers to meet 
the needs of multiple market segments (Meyer and Utterback 
1993; Simpson et al. 2006).

Product family design is an active research area in recent 
years. Researchers have developed great amount of method-
ologies for designers to build a product family. These meth-
ods often have a prerequisite that the platform of a product 
family has been selected. The specified product platform is 
then optimized, and product variants are designed to meet 
the customers’ needs in different market segments. Gebhardt 
et al. (2014) developed a Module Interface Graph (MIG) 

to help designers define module interfaces and boundaries 
during the modularization of a product family. Lei et al. 
(2016) introduced additive manufacturing into product 
family design. By utilizing additive manufacturing, they 
eliminate constraints arisen in conventional product family 
designs from finding a compromise between commonality 
and technical performance. Ma and Kim (2016) developed 
a predictive data-driven product family design (PDPFD) 
method to determine optimal product family architectures 
with customer preference data. Wang et al. (2016) created a 
Stackelberg game theoretic model to optimize product fam-
ily architecture. Their model considered supply chain-related 
issues that previously received scant research attention in 
product family design. Jung and Simpson (2016) employed 
an integrated approach that utilizes multiple product fam-
ily metrics to develop an effective product platform rede-
sign strategy. More research publications in product family 
design and platform-based product development before 2014 
could be found in an edited book (Simpson et al. 2014) or 
review papers written by Jose and Tollenaere (2005), Jiao 
et al. (2007), Pirmoradi et al. (2014) and Simpson et al. 
(2006).

At the beginning of product family design, designers 
must make a decision on platform selection. Designers must 
choose what components can be shared among product vari-
ants in a product family. Each of product variants is created 
by an independent design team or reverse-engineered from a 
dominant product in the market segment. Functional model, 
design optimization, and exhaustive enumeration are three 
major approaches that help designers to select an appropriate 
platform in a product family.

Zamirowski and Otto united the function structures of 
product variants into a family function structure to represent 
the entire product family (Otto and Wood 2001; Zamirowski 
and Otto 1999). Shared components, which are called a plat-
form module in their paper, can be defined by the shared 
functions of a product family. Stone et al. (2000) introduced 
a method to represent a functional model of a product in a 
quantitative manner. The quantitative functional models help 
designers to compute product families and customer need 
ratings for modules.

The functional model approaches are broadly applicable, 
but the approach only gives designers several platform selec-
tion heuristics rather than provide solution in physical form 
level. To determine the optimum physical platform in a prod-
uct family, researchers consider the platform selection as a 
multidisciplinary optimization problem with respect to dif-
ferent design metrics. Gonzalez-Zugasti et al. (2000) formu-
lated a general optimization problem for selecting product 
platforms and designing the product family that considers 
technical performance and the cost of the product family. 
Spacecraft design was used as a case study to illustrate their 
method. Fujita and Yoshida (2004) proposed a method to 
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optimize the final profit of a product family under techni-
cal constraints. They took passenger airplane as an exam-
ple to demonstrate their optimization method. Fellini et al. 
(2004) formulated a method to obtain optimal product fam-
ily designs for maximizing commonality without exceeding 
user-specified bounds on technical performance. A family of 
automotive body side frames was used to demonstrate their 
optimization method. Moon et al. (2014) introduced a multi-
objective particle swarm optimization approach to determine 
design variables for the best platform design strategy based 
on commonality and multiple technical performances of a 
product family. To demonstrate their approach, they used a 
family of general aviation aircraft as a case study. Eichstetter 
et al. (2015) used iterative Monte Carlo sampling to com-
pute solution space of a generic optimization problem. The 
shared components were identified to optimize commonal-
ity in a product family, and a set of common components 
is computed for 13 vehicles with ten design parameters for 
each of the vehicles.

Of note, the product families discussed as case stud-
ies in these design optimization papers are industrial 
products (e.g., spacecraft, automobile, and airplane). The 
optimization objective is to maximize product technical 
performance(s) and commonality, or to minimize the cost 
of a product family, and the design optimization usually only 
provides one “optimal” component sharing solution. How-
ever, there are several other metrics designers must consider 
in product family design (Jiao et al. 2007), such as modu-
larity (Ulrich 1994), complexity (Kim et al. 2016), sustain-
ability (Kim and Moon 2017), and adaptability (Engel et al. 
2017; Engel and Reich 2015). It is hard to include all these 
metrics as objectives in an optimization problem. In addi-
tion, some metrics (e.g., visual appeal and ergonomics) for 
consumer products cannot be formulized, thus the design 
optimization approaches stated earlier may not be able to 
apply in consumer product design. Otto and Wood (2001) 
suggested exhaustive enumeration in platform selection for 
consumer product family design. Designers could exhaus-
tively enumerate the sharing possibilities and build a chart 
to qualitatively evaluate these component sharing options, 
but the exhaustive enumeration is only suitable for the fam-
ily with a small number of shared components because the 
number of sharing possibilities becomes large quickly with 
more shared components in a product family.

3 � Methodology

Based on the research gap discussed in Sect. 2, we introduce 
a method for product family platform selection with a bal-
ance of commonality and strategic modular architecture. We 
use a Pareto front of maximum commonality and strategic 
modularity to produce multiple component sharing options 

for a product family. These component sharing options along 
the Pareto front can be evaluated, compared, and further 
modified by designers based on their preference or other 
considerations (e.g., other design metrics). The proposed 
method can be applied not only to industrial product design 
but also consumer product design.

A block diagram of the flow of our methodology is shown 
in Fig. 1. We divide the components of a product family into 
groups based on the set of products between which they 
may be shared. Each of the groups is then clustered into 
modules using design structure matrix (DSM) clustering and 
combined to form the complete modular architectures of the 
product family. Further alternative modular architectures 
and platforming strategies are considered by decreasing the 
amount of sharing in the product family to move common 
components to groups of less commonality which contain 
components with which they are highly coupled. This pro-
cess follows a trade-off, creating better modules at the cost 
of commonality in the product family.

To evaluate alternatives, we score the proposed product 
family architectures based on commonality and the quality 
of the modular architecture. Taking advantage of algorith-
mically based DSM clustering, a Pareto front of maximum 
commonality and strategic modularity can be determined. 
This Pareto front provides multiple component sharing 
options from which the final design of the product family 
may be chosen or further refined.

3.1 � Method input

The proposed method requires two primary inputs. The first 
input is a list of the components that make up each of prod-
uct variants in the family. The second is a DSM matrix for 
the product family.

The list of products and their constituent components may 
be encapsulated in a binary matrix, termed the product–com-
ponent matrix (PCM) as shown in Eq. (1). Each row of the 
PCM corresponds to a product in the product family. Each 

Fig. 1   Block diagram of the methodology flow
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column corresponds to a component used in at least one of 
the products. A similar matrix has been introduced by Braha 
to partition tasks to different product development teams 
(Braha 2002).

Designers need to list the components that build the prod-
uct family prior to the construction of the PCM. Determin-
ing what component each of product variants may share is 
an important part to set up the product–component matrix. 
A component may be shared if the component is function-
ally, morphologically, and parametrically the same in each 
of product variants.

3.2 � Component clustering

To begin the component clustering process, we identify the 
platforming strategy with the highest possible commonality 
(given the PCM input). Components in the PCM are first 
organized into groups based on the set of products to which 
each of components is common. This grouping of compo-
nents is designed around one rule: if Component A and 
Component B are both included in the same set of product 
variants, these components are placed into the same group. 
These organized groups are termed a platforming strategy. 
The platforming strategy can be visualized using a Venn 
diagram. Each segment of the diagram contains components 
that are shared by the same set of products, different than 
that of components in other groups. Each distinct group of 
components is termed as a shared group. The Venn diagram 
in Fig. 2 shows the shared groups of a family with three 
product variants.

After identifying the platforming strategy of maximum 
commonality, we use DSM clustering to identify the opti-
mal modular architecture for this strategy. The design struc-
ture matrix (DSM) is a commonly used tool for defining 
the module boundaries of a product. DSM clustering was 
first introduced by Steward (1981) for designing complex 
systems. Since then, DSM has been adapted for grouping 
and organizing components into modules within a product 
(Eppinger and Browning 2012; Yassine and Braha 2003). 
Of note, there exist several other methods to cluster compo-
nents into modules for a product (Holtta and Salonen 2003; 
Östgren 1994), such as modular function deployment (MFD) 
(Erixon 1998) and hybrid DSM and MFD approach (Borjes-
son and Hölttä-Otto 2014). Designers are free to use one of 
these methods to cluster components into modules.

For each of the shared groups in our platforming strategy, 
a new DSM is created from the DSM of the product family. 

(1)

⎧
⎪⎨⎪⎩

product 1

…

product m

⎫
⎪⎬⎪⎭

=
PCM�

m × n binary matrix
� ⎧

⎪⎨⎪⎩

component 1

…

component n

⎫
⎪⎬⎪⎭

.

The new DSM for each group contains only the components 
within that shared group and the interactions between the 
components. We then separately cluster each of the shared 
groups using a DSM clustering algorithm. Researchers have 
developed several algorithms for DSM clustering (Helmer 
et al. 2010; Thebeau 2001; Yu et al. 2007). Designers can 
choose the algorithm based on their preference. The DSM 
clustering modularizes each of the groups individually. 
Modularizing the product family in this manner produces 
the optimal modular architecture for a given platforming 
strategy.

3.3 � Alternative platforming strategies

Further modular architectures may be considered by decreas-
ing commonality in the product family to identify alternative 
platforming strategies. A component that might be shared 
by a large number of product variants could be shared by a 
lesser number of product variants to allow the component 
to be integrally modularized with another group (Robertson 
and Ulrich 1998).

This process of decreasing commonality to attain different 
possibilities for modularizing the product can be represented 
again using a Venn diagram. The diagram in Fig. 3 demon-
strates the differences in the leveraging strategies of two archi-
tectures. This process of decreasing sharing to obtain different 
modular architectures can be carried out for every component 
in a product family. Repeatedly carrying out this process of 
decreasing the commonality of each of the components in the 
product family ultimately leads to a product family with no 
common component. In this case, each product in the product 
family may be modularized independently. Thus, the optimal 

Fig. 2   Venn diagram of the shared groups of a family with three 
product variants
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modular architecture for each product variant may be chosen, 
but the family will not receive the benefits of commonality.

3.4 � Number of platforming strategies

Because of the computational nature of the described method, 
it is valuable to determine the number of operations required 
to analyze the product family. As the number of products that 
contain a given component increases, the number of possible 
platforming strategies for that component increases with its 
corresponding Bell number (Bell 1934), Bn. Bell numbers give 
the number of ways a set of elements can be partitioned into 
nonempty subsets, or in this case, the number of ways a com-
ponent can be split into component instances shared by differ-
ent sets of products. Table 1 gives the first nine Bell numbers.

Given that each of components that are common to n num-
ber of product variants may be shared in Bn number of ways, 
the maximum number of platforming strategies of a product 
family can be calculated by

where Bpi is the Bell number for pi, pi is the number of prod-
uct variants that can share component i, and C is the number 
of components in the product family.

To reduce the computation time of finding optimal plat-
forming architectures, we suggest a strategic search technique. 
We utilize the DSM of the product family to predetermine 
where shared group components should be moved to in order 
to improve the modular architecture of the product family. In 
this case, a component would only be moved into a lower level 

(2)Number of platforming strategies =

C∏
pi

Bpi

of sharing that contains component(s) with which it has DSM 
connections, thus eliminating a large number of platforming 
strategies from evaluation.

3.5 � Architecture evaluation

To evaluate the large number of component sharing alterna-
tives, we introduce the scores for commonality and modular 
architecture to generate a Pareto front for platforming archi-
tecture options. While the following metrics provide a good 
basis for assessing proposed platforming architectures, these 
metrics may be altered or added upon to best meet design-
specific goals.

3.5.1 � Commonality assessment

A number of different indices have been developed for assess-
ing commonality between product variants within a family. 
The widely used commonality indices include but are not 
limited to degree of commonality index (DCI), total constant 
commonality index (TCCI), product line commonality index 
(PCI), percent commonality index (%C), commonality index 
(CI), component part commonality (CI(c)), commonality versus 
diversity index (CDI), comprehensive metric for commonality 
(CMC), and total commonality metric (TCM). Each of the 
commonality indices have major focus but also have its limita-
tions (Pirmoradi et al. 2014; Thevenot and Simpson 2006). Of 
note, our method is compatible with any commonality indices. 
Designers can choose whichever commonality index is best 
suited for their application to assess the commonality of the 
platforming architecture alternatives.

As an example, we use constant commonality index (TCCI) 
(Wacker and Treleven 1986) in our case study of impact 

Fig. 3   Venn diagrams of the leveraging strategies of architectures 1 and 2

Table 1   List of Bell numbers 
(Bell 1934)

n 1 2 3 4 5 6 7 8 9 …

Bn 1 2 5 15 52 203 877 4140 21,147 …
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drivers and electric drills family design in Sect. 4. The TCCI 
assesses commonality based on the number of parent products 
of each component in the family. The equation for calculating 
the TCCI is:

where d is the number of distinct component instances and 
Φj is the number of products to which component instance 
j is common. The TCCI is easy to calculate and setup 
(Thevenot and Simpson 2006). The TCCI provides a good 
initial estimate of the benefits of added commonality. How-
ever, the TCCI provides a relatively simplified view of com-
monality. The TCCI weights each component equally when 
assigning the commonality score. Therefore, it may not fully 
account for the complex benefits gained from sharing each of 
components. A more detailed representation of the benefits 
of commonality can be attained using an index that reflects 
more subtle designer preference.

3.5.2 � Modular architecture assessment

To assess the quality of a proposed modular architecture, we 
develop a modularity score termed as strategic modularity. 
The modularity score is based on the clustering cost used 
in DSM clustering algorithms. When using DSM cluster-
ing algorithms to find an optimal modular design, a cost is 
calculated for each proposed clustering of components into 
modules. This clustering cost is typically the sum of Intra-
ClusterCost, or the cost of interactions occurring within a 
cluster/module, and ExtraClusterCost, or cost from interac-
tions occurring between components in separate clusters/
modules. DSM clustering algorithms attempt to minimize 
this cost function in their search for the optimal clustering, 
or modularization, of a product. Using the cost function of 
a chosen DSM clustering algorithm, modular architectures 
for the product family can be compared.

Ideally, to obtain the optimal modular architecture for a 
given product variant, the components of the product variant 

(3)TCCI = 1 −
d − 1∑d

j
Φj − 1

would be clustered into modules without consideration of 
other product variants in the family. However, designing 
modules that are common to multiple product variants add 
restrictions to how the product variants are modularized. 
The minimum module clustering cost of a given product is 
obtained when the DSM of each product variant is clustered 
without consideration of commonality. Knowing this, the 
clustering cost of a sub-optimally clustered product variant, 
modularized as part of a product family, can be compared 
with the minimum possible clustering cost of that product 
variant. Comparing with the minimum clustering cost allows 
any proposed clustering of a product variant to be evaluated 
and quantified as a modularity score.

We use an example to demonstrate the calculation of a 
modularity score for a product variant in a family with a pre-
defined platforming strategy. Figure 4 shows an example of 
a platforming strategy for a product family and the DSM for 
Product 1. To determine the modularity score of Product 1, 
the minimum clustering cost of the product is first calculated 
using a chosen DSM clustering algorithm. In this example, 
Thebeau’s (2001) DSM algorithm is employed. The opti-
mally clustered DSM for Product 1 is shown in Fig. 5. The 
optimal clustering of Product 1 consists of four modules ({1 
2 3}, {4 5}, {6 7 8}, and {9 10}). This clustering has a cost 
of 71. Thus, the minimum DSM clustering cost of Product 
1 is 71.

The component clustering restrictions imposed by the 
proposed platforming strategy are then enacted. With these 
restrictions in place, each of shared groups of the platform-
ing strategy is individually clustered using Thebeau’s algo-
rithm. The optimal clustering of each of the shared groups 
that are common to Product 1 is given in Fig. 6. These shared 
groups are then combined back into one DSM to form the 
modular architecture of Product 1. Figure 7 shows the result-
ant modular architecture for Product 1. The regrouped DSM 
has a clustering cost of 140. This cost is compared to the 
optimal DSM cost (71) to calculate a ratio as the modularity 
score for this family modular architecture. The equation to 
calculate the modularity score is

Fig. 4   Platforming strategy and 
DSM of Product 1 in an exam-
ple product family

1 2 3 4 5 6 7 8 9 10
1 X X
2 X X
3 X X
4 X X
5 X X X
6 X X X
7
8 X X
9 X X X X

X01



553Research in Engineering Design (2018) 29:547–563	

1 3

Using this technique, we can calculate a score for the 
modular clustering of each product variant in the family 

(4)Modularity score for product i MSi =

(
DSM clustering costoptimal,i

DSM clustering costproposed,i

)
× 100

Example: MS1 =
71

140
× 100 = 50.7

under the proposed platforming strategy. By weighting 
each of product variants, we determine a single modularity 
score for the product family architecture. Weighting each 
of product variants also allows more flexibility in control-
ling the design process, as product variants deemed to be 
more important to the success of the product family may 
be weighted more heavily than other products.

We assume Product 2 and Product 3 have individ-
ual modularity scores of 33.0 and 60.0 (MS2 = 33.0, 
MS3 = 60.0) and each of product variants is weighted equally 
(w1 = w2 = w3=1/3). The modularity score for the product 
family is calculated as

The modularity score can then be used to compare differ-
ent modular architectures identified from different platform-
ing strategies. To obtain modular product family architec-
tures with higher modularity scores, commonality has to be 
decreased. Thus, various options for architecting the product 
family could be plotted as a Pareto front of maximized com-
monality and modularity score.

3.5.3 � Other metrics for product family design

We develop the procedure to generate Pareto front of maxi-
mum commonality and strategic modularity. The Pareto 
front provides designers multiple component sharing options 
to build a product family. The other design metrics of the 
product family, such as cost (Fujita and Yoshida 2004), tech-
nical performance (Fellini et al. 2004), complexity (Kim 
et al. 2016), sustainability (Kim and Moon 2017), and adapt-
ability (Engel et al. 2017; Engel and Reich 2015) for indus-
trial products, or visual appeal and ergonomics (Otto and 
Wood 2001) for consumer products, could then be evaluated 
for each of the component sharing options. These options 
could be compared and further modified, and designers can 

utilize area-specific expertise in this process. Importantly, 
the modular architecture of the product family derived by 
DSM to compute modularity score in Sect. 3.5.2 does not 
need to be the final product family modular architecture. In 
addition, designers also can substitute the other design met-
ric for strategic modularity to construct customized Pareto 

(5)

Modularity score for product family = MSPF =

N∑
i

wi ⋅MSi

Example: MSPF =
50.7 + 33.0 + 60.0

3
= 47.9

1 2 3 4 5 6 7 8 9 10
1 X X
2 X X
3 X X X
4 X
5 X X X
6 X
7 X X
8 X X
9 X X X

X01

Fig. 5   Optimally clustered DSM of Product 1

1 2 4
1 X
2 X
4

3 9 8
3 X
9 X
8

5 6 7 10
5
6 X
7 X
10

Fig. 6   Three shared groups of Product 1 with individual DSM clus-
tering

1 2 4 3 9 8 5 6 7 10
1 X X
2 X X
4 X
3 X X X
9 X X X

XX8
5 X X X
6 X
7 X X
10 X

Fig. 7   DSM of the optimal clustering of Product 1 given the pro-
posed family platforming strategy
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front for their specific product family platform selection 
problem. For example, designers can build a Pareto front 
of maximum commonality and a technical performance 
in a similar manner to derive multiple component sharing 
options for further evaluation.

Of note, the cost of a product family may be considered 
in our method. Braha (2002) addressed that sharing com-
ponents or modules between product variants in a family 
requires additional development and coordination costs. 
The costs may be represented by the weight w in modular-
ity score calculation. The modularity strategy for individual 
product variant that leads to higher cost will have a smaller 
weight value. The mathematical relationship between the 
cost and the weight may be derived by empirical studies in 
future research.

The minimum number of building blocks of a product 
family also may be calculated from our method. In many 
cases, modularity may be used in a product family to organ-
ize the product variants into building block modules, which 
facilitate assembly and configurability. If the goal of design-
ing the product family is to minimize the number of mod-
ules required to assemble the family, the minimum number 
of building block modules could be calculated by utilizing 
a DSM that represents the physical connections between 
components. This connectivity DSM may be the same as 
that used to complete the primary clustering of modules, or 
could be included in addition. After organizing the product 
family into modules based on the clustering DSM, two or 
more of these modules may be combined to form building 
blocks. Within each of shared groups in the product family, 
the identified modules are subsequently analyzed using the 
connectivity DSM to determine if the components of each 
module possess connections with components in other mod-
ules which allow them to be combined into a building block. 
By combining all modules in each shared group that is inter-
connected, the minimum number of building block modules 
needed to assemble the product family can be calculated. 
Here, the proposed minimum number of building blocks is 
only a reference for designers. There are many methodolo-
gies that suggest a balance between high-level and low-level 
granularity (AlGeddawy and ElMaraghy 2013; Chiriac et al. 
2011; Koh et al. 2015), which are valuable for designers 
to build an appropriate product family from the component 
sharing options derived by our method.

4 � A case study of impact driver and electric 
drill family design

To demonstrate the usefulness of our method, we apply the 
method to the product family platform selection of high-end 
and low-end impact drivers and electric drills. The product 
family includes a low-end electric drill, a low-end impact 

driver, a high-end brushless electric drill, and a high-end 
brushless impact driver. The list of product and components 
in the product family are given in Tables 2 and 3. The PCM 
for the product family is provided in “Appendix A”.

The interactions between the components in each of prod-
uct variants are represented in a single binary DSM. DSM 
clustering and the computing of clustering costs is com-
pleted using the clustering algorithm presented by Thebeau 
(2001). Each of the product variants’ DSM is created. The 
DSM for the product family and each of individual product 
variants is given in Fig. 8. The optimally clustered DSMs 
for each of product variants are included in “Appendix B”.

Using the proposed method with the PCM and DSM 
inputs for the product family, we generate a Pareto front of 
platforming architectures with maximum commonality and 
modularity score. Each of the points on the Pareto front cor-
responds to a number of building blocks needed to construct 
the family. The Pareto front is identified, starting from the 
maximum commonality architecture. To search for Pareto 
optimal architectures, components of high commonality are 
iteratively moved into shared groups of lower levels of com-
monality that contain components with which they possess 
DSM interactions. Architectures that demonstrated higher 
modularity score are kept, while those that do not are dis-
carded. The DSM in Fig. 8 is used as the connectivity DSM 
when calculating the number of building blocks needed for 
assembly. Figure 9 shows the Pareto fronts of platforming 
architecture options produced by our method. Unlike exist-
ing design optimization approaches, our method provides 
multiple component sharing options for designers’ further 
evaluation.

From the Pareto front in Fig. 9, we highlight three archi-
tectures for further analysis. The architectures with optimal 
modularity and maximum commonality are chosen to dem-
onstrate the extremes of the Pareto front. An architecture 
balanced between these two metrics is chosen to exemplify 
an alternative platforming strategy that might be chosen by 
designers from the Pareto front. The assessment metrics for 
each of these architectures are presented in Table 4.

Tables 5, 6 and 7 present the modular architectures with 
maximum commonality, optimal modularity, and balanced 
commonality and strategic modularity, respectively. Fig-
ures 10, 11, and 12 demonstrate the component sharing 
within the family. In these figures, the modules are shown to 

Table 2   Product list of a power tool product family

Product no. Product description

1 Low-end electric drill
2 Low-end impact driver
3 High-end electric drill
4 High-end impact driver
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exhibit the components in each module. The modules on the 
figures do not necessarily depict the specific detail design 
of each module. Components in each module would ideally 
be designed for high interaction between components within 
the module and low interaction between components outside 
of the module. Designers could modify each of the modules 
based on their own preference or other design considera-
tions from the component sharing options provided by our 
method.

In the architecture with maximum commonality, every 
component that can be shared between product variants in 
the family is shared, resulting in a high commonality (TCCI) 
of 0.524. However, this commonality adds restrictions to the 
component clustering that result in higher clustering costs 
and a modularity score of only 58.0. This platforming archi-
tecture also results in a large number of small modules that 
cannot be combined into larger building blocks.

The architecture with the optimal modularity score has 
a modularity score of 100. In this architecture, each of the 
product variants is individually clustered to produce the 
minimum possible clustering cost. While this clustering 
provides the ideal clustering of each product variant, few of 
the components and modules may be shared between prod-
uct variants in the family resulting in a commonality (TCCI) 
of 0.183.

The third highlighted platforming architecture provides 
a compromise of commonality and modularity score. This 
architecture has a commonality (TCCI) of 0.354 and a mod-
ularity score of 88.9. This balanced platforming architecture 

also requires 10 building blocks to construct in minimum, 
much less than that required by the platforming architecture 
with maximum commonality.

This case study and the logic behind this paper show a 
tradeoff between commonality and the quality of the modu-
lar architecture in product family design. This technique can 
informally be utilized, even without the implementation of 
DSM or other algorithmic approaches. Modules in a product 
family can be identified by first deciding the commonality 
of performance driving components and then evaluating the 
optimal tradeoff between the commonality of auxiliary com-
ponents and quality of the modular architecture, keeping in 
mind that commonality can be sacrificed to provide a better 
strategic modular architecture.

5 � Conclusion and future work

We introduce a method for product family platform selec-
tion with a balance of commonality and strategic modularity. 
We divide the components of a product family into groups 
based on the set of products between which they may be 
shared. Each of groups is then clustered into modules using 
DSM clustering and combined to form the complete modular 
architectures of the product family. Further alternative mod-
ular architectures and platforming strategies are considered 
by decreasing the amount of sharing in the product family 
to move common components to groups of less commonal-
ity which contain components with which they are highly 

Table 3   Component list of the 
power tool product family

Component no. Component description Component no. Component description

C1 Clamshell C21 VSR switch HE
C2 Armature 1 C22 Heat sink
C3 Armature 2 C23 Electronics board
C4 Field 1 C24 Belt clip
C5 Field 2 C25 Bit clip
C6 Motor brushes C26 Drill light
C7 Brush holders C27 Impact driver light
C8 Commutator C28 Chuck HE
C9 Front bearing C29 Chuck LE
C10 Pinion gear C30 Transmission LE
C11 Rear bearing C31 Transmission HE
C12 Motor fan C32 Impact mech LE
C13 Motor ESC C33 Impact mech HE
C14 Rotor magnet 1 C34 Anvil LE
C15 Rotor magnet 2 C35 Anvil HE
C16 Stator 1 C36 Nose cone
C17 Stator 2 C37 Battery terminal
C18 Trigger C38 20V battery
C19 Fwd/rev switch C39 Grip LE
C20 VSR switch LE C40 Grip HE
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 X X X
2 X X X X X
3 X X X X X
4 X X
5 X X
6 X X X
7 X X X
8 X X X
9 X X X X X X
10 XXXXXXXXX
11 XXXXXX
12 XXXXX
13 X X X
14 X X X X X
15 X X X X X
16 XXXX
17 XXXX
18 X X X
19 X X X
20 XXXXX
21 X X X X
22 X X
23 XXXXXX
24 XX
25 X X
26 XXX
27 XXXX
28 X
29 X
30 X X
31 X X
32 X X X
33 X X X
34 X
35 X
36 X X X X X X X
37 XXXX
38 X
39 X X
40 X X

Fig. 8   DSM of the power tool product family

Fig. 9   Pareto front of component sharing options with maximized commonality and strategic modularity for the power tool family
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coupled. To evaluate the component sharing options, we 
score the proposed product family platforming architectures 
based on commonality and the quality of the modular archi-
tecture. Taking advantage of algorithmically based DSM 
clustering, we determine a Pareto front of maximum com-
monality and strategic modularity. The component sharing 
options along the Pareto front could be evaluated, compared, 
and further modified based on designers’ preference and/
or other product family metrics (e.g., cost, technical per-
formance, complexity, sustainability, adaptability, visual 
appeal, and ergonomics). We use the product family design 
of high-end and low-end impact drivers and electric drills as 

Table 4   Assessment metrics for the three highlighted platforming 
architectures

Architecture Commonal-
ity TCCI

Modular-
ity score

Required number 
of building blocks

Max commonality 0.524 58.0 22
Max modularity score 0.183 100 8
Balanced 0.354 88.9 10

Table 5   Modular architecture of the product family design with max-
imum commonality

Number of 
products shared

Building block Module Components

4 B1 M1 C1 C9 C11 C24 C37
4 B2 M2 C10
4 B3 M3 C12
4 B4 M4 C18
4 B5 M5 C19
4 B6 M6 C38
2 B7 M7 C6 C7 C8
2 B8 M8 C20
2 B9 M9 C39
2 B10 M10 C13 C21 C22 C23
2 B11 M11 C40
2 B12 M12 C25
2 B13 M13 C27 C36
1 B14 M14 C2 C4
1 B15 M15 C29 C30
1 B16 M16 C3 C5
1 B17 M17 C32 C34
1 B18 M18 C14 C16
1 B19 M19 C26
1 B20 M20 C28 C31
1 B21 M21 C15 C17
1 B22 M22 C33 C35

Table 6   Modular architecture of the product family design with max-
imum modularity score

Number of 
products 
shared

Building block Module Components

4 B1 M1 C38
2 B2 M2 C6 C7
2 B3 M3 C18 C19 C20 C37
2 B4 M4 C18 C19 C21 C22 C23 C37
1 B5 M5 C1 C24 C25 C39

M6 C2 C4 C8 C9 C10 C11 C12
M7 C29 C30

1 B6 M8 C1 C24 C39
M9 C3 C5 C8 C9 C10 C11 C12
M10 C27 C32 C35 C36

1 B7 M11 C1 C24 C25 C26 C40
M12 C9 C10 C11 C12 C13 C14 

C16
M13 C28 C31

1 B8 M14 C1 C24 C40
M15 C9 C10 C11 C12 C13 C15 

C17
M16 C27 C33 C35 C36

Table 7   Modular architecture of the product family design with bal-
anced commonality and strategic modularity

Number of prod-
ucts shared

Building block Module Components

4 B1 M1 C12
4 B2 M2 C38
2 B3 M3 C1 C11 C24 C39

M4 C6 C7 C8
M5 C18 C19 C20 C37

2 B4 M6 C1 C11 C24 C40
M7 C18 C19 C21
M8 C13 C22 C23 C37

2 B5 M9 C25
1 B6 M10 C2 C4 C9 C10

M11 C29 C30
1 B7 M12 C3 C5 C9 C10

M13 C27 C32 C35 C36
1 B8 M14 C9 C10 C14 C16

M15 C28 C31
1 B9 M16 C26
1 B10 M17 C9 C10 C15 C17

M18 C27 C33 C35 C36
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Fig. 10   Component sharing in the architecture with maximum commonality

Fig. 11   Component sharing in the architecture with optimal modularity
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a case study to demonstrate our method. Three platforming 
strategies that lie on the Pareto front are highlighted.

Our method is broadly applicable and designers can apply 
our method not only in family design of industrial products 
but also use the method in consumer product design where 
some product metrics cannot be formulized. The method is 
compatible with any commonality indices and component 
clustering methods. Designer also can substitute the other 
product family metric (e.g., cost or technical performance) 
for strategic modularity to construct customized Pareto front. 
Moreover, our method helps designers address the uncertainty 
in the design process by providing multiple component sharing 
options, which is different from existing design optimization 
approaches. Designers can utilize area-specific expertise in the 
following decision-making process.

Our work has limitations that provide opportunities for 
future research. As the size of the product family increases, 
the computational time greatly increases. For a significantly 
large product family, the product family may need to be bro-
ken up and analyzed separately, determining the clustering 

of different sections of the product family independently. To 
reduce the computation time, advanced search algorithms may 
be developed in future research to select component sharing 
alternatives more strategically. In addition, researcher may 
improve the grading policy of strategic modularity presented 
in Sect. 3.5.2. In future research, a new modularity score that 
considers the cost or the technical performance of a product 
family may be developed.

Acknowledgements  This material is based in part on work supported 
by the National Science Foundation under Award number CMMI-
1200256. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation.

Fig. 12   Component sharing in the architecture with balanced commonality and strategic modularity



560	 Research in Engineering Design (2018) 29:547–563

1 3

Appendix A: The product–component matrix 
(PCM) of the power tool product family

Table 8 displays the transposed PCM for the power tool 
case study referenced in Sect. 4. It contains the list of 
components that constitute each of the product variants 

in the case study.

Table 8   The product–
component matrix (PCM) of 
power tool product family

No. Low-end cord-
less drill

Low-end impact 
driver

High-end cord-
less drill

High-end 
impact 
driver

1 Clamshell 1 1 1 1
2 Armature 1 1 0 0 0
3 Armature 2 0 1 0 0
4 Field 1 1 0 0 0
5 Field 2 0 1 0 0
6 Motor brushes 1 1 0 0
7 Brush holders 1 1 0 0
8 Commutator 1 1 0 0
9 Front bearing 1 1 1 1
10 Pinion gear 1 1 1 1
11 Rear bearing 1 1 1 1
12 Motor fan 1 1 1 1
13 ESC 0 0 1 1
14 Rotor magnet 1 0 0 1 0
15 Rotor magnet 2 0 0 0 1
16 Stator 1 0 0 1 0
17 Stator 2 0 0 0 1
18 Trigger 1 1 1 1
19 Fwd/rev switch 1 1 1 1
20 VSR switch LE 1 1 0 0
21 VSR switch HE 0 0 1 1
22 Heat sink 0 0 1 1
23 Electronics board 0 0 1 1
24 Belt clip 1 1 1 1
25 Bit clip 1 0 1 0
26 Drill light 0 0 1 0
27 Impact driver light 0 1 0 1
28 Chuck HE 0 0 1 0
29 Chuck LE 1 0 0 0
30 Transmission 1 1 0 0 0
31 Transmission 2 0 0 1 0
32 Impact mech LE 0 1 0 0
33 Impact mech HE 0 0 0 1
34 Anvil LE 0 1 0 0
35 Anvil HE 0 0 0 1
36 Nose cone 0 1 0 1
37 Battery connector 1 1 1 1
38 20V battery 1 1 1 1
39 Grip LE 1 1 0 0
40 Grip HE 0 0 1 1
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Appendix B: Optimal component clusters 
of product variants in the power tool 
product family

Figure 13 shows the optimal clusters of product variants in 
the power tool case study referenced in Sect. 4. Each modu-
lar architecture alternative was compared with the clustering 
costs of this optimal clustering to calculate the modularity 
scores of the product variants and the product family.
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