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Abstract Design decisions often require input from mul-

tiple stakeholders or require balancing multiple design

requirements. However, leading axiomatic approaches to

decision-based design suggest that combining preferences

across these elements is virtually guaranteed to result in

irrational outcomes. This has led some to conclude that a

single ‘‘dictator’’ is required to make design decisions. In

contrast, proponents of heuristic approaches observe that

aggregate decisions are frequently made in practice, and

argue that this widespread usage justifies the value of these

heuristics to the engineering design community. This paper

demonstrates that these approaches need not be mutually

exclusive. Axiomatic approaches can be informed by

empirically motivated restrictions on the way that indi-

viduals can order their preferences. These restrictions are

represented using ‘‘anigrafs’’—structured relationships

between alternatives that are represented using a graph–

theoretic formalism. This formalism allows for a compu-

tational assessment of the likelihood of irrational outcomes.

Simulation results show that even minimal amounts of

structure can vastly reduce the likelihood of irrational

outcomes at the level of the group, and that slightly

stronger restrictions yield probabilities of irrational pref-

erences that never exceed 5%. Next, an empirical case

study demonstrates how anigrafs may be extracted from

survey data, and a model selection technique is introduced

to examine the goodness-of-fit of these anigrafs to prefer-

ence data. Taken together, these results show how axio-

matic consistency can be combined with empirical

correspondence to determine the circumstances under

which ‘‘dictators’’ are necessary in design decisions.
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1 Motivation

Design often requires balancing the competing needs of

multiple stakeholders or design requirements. Stakeholders

may not agree on the characteristics of the best design; that

is, their preferences may differ. Similarly, a design which

aims to best fulfill one requirement may not perform ade-

quately on other requirements. Thus, the ‘‘preferred’’

design may differ across these elements.

A considerable body of work has examined the impact

of differing preferences on design. On one hand, Hazelrigg

(1996, 1997, 1998, 1999) argues that defining a ‘‘best’’

rational design (i.e., one that maximize some utility func-

tion) requires attending only to a single decision-maker (a

‘‘dictator’’). This position is justified using mathematical

theories of social choice. Given a set of generally accepted

axioms, Arrow’s Impossibility Theorem (Arrow 1963;

described below) states that one cannot guarantee the

existence of a rational aggregate preference ordering (and

therefore, an aggregate utility function) when there are at

Preparation of this manuscript was supported in part by the National

Institute of General Medical Sciences under award number

R01GM114771.

Electronic supplementary material The online version of this
article (doi:10.1007/s00163-017-0259-2) contains supplementary
material, which is available to authorized users.

& David A. Broniatowski

broniatowski@gwu.edu

1 Department of Engineering Management and Systems

Engineering, School of Engineering and Applied Science,

The George Washington University, 800 22nd St. NW #2700,

Washington, DC 20052, USA

123

Res Eng Design (2018) 29:67–85

https://doi.org/10.1007/s00163-017-0259-2

http://dx.doi.org/10.1007/s00163-017-0259-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-017-0259-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-017-0259-2&amp;domain=pdf
https://doi.org/10.1007/s00163-017-0259-2


least three alternatives. Specifically, attempts to aggregate

preferences across individuals may result in cyclic prefer-

ences at the level of the group, such that one alternative is

both superior and inferior to another. Furthermore, even if

there is such a ‘‘dictator’’, Franssen (2005) argues that most

decision-based design methods are subject to failure when

that individual must choose between concepts with multi-

ple competing requirements because these design require-

ments function exactly as the stakeholders do in

Hazelrigg’s version of the problem.

On the other hand, scholars such as Frey et al. (2009)

argue that these axiomatic arguments are not empirically

justified. They point to the wide use of popular techniques

such as the Pugh Controlled Convergence (PuCC) method

(Pugh 1991), the Analytic Hierarchy Process (AHP; Saaty

1990), and similar techniques, arguing that engineers’

satisfaction with the decision outcome is a better measure

of a technique’s utility than is any mathematical guarantee

of optimality or rationality.

A recent editorial in Research in Engineering Design

(Reich 2010) characterized this debate as one between

‘‘scientism’’ and ‘‘praxis’’ (or ‘‘coherence’’ and ‘‘corre-

spondence’’; Katsikopoulos 2009, 2012). Specifically,

axiomatic approaches aim to maintain internal consistency

such that the process used to make design decisions is

logically consistent. In contrast, practical approaches aim

to maximize external validity, such that the results of the

design process are widely accepted by the design com-

munity, regardless of whether they might be chosen in a

rational manner (e.g., by allowing a group utility function

to be maximized or even defined). Thus, the core of the

debate centers around differences in how a design should

be evaluated.

Advocates for the axiomatic approach argue that all

design decisions must be made by a single decision-maker,

and that alternate methods are virtually guaranteed not to

deliver value to the customer in the long run. Furthermore,

these alternatives leave designers subject to the caprices of

known social processes such as fads, groupthink, and status

effects; especially when experts disagree. Finally, even if

there is a single decision-maker, Franssen (2005) argues

that any multi-criteria decision problem is still subject to

irrational outcomes because the criteria themselves may be

treated as independent decision-makers. In contrast, pro-

ponents of the heuristic approach argue that techniques

lacking axiomatic coherence, such as PuCC and AHP, have

been shown to perform well in practice despite theoretical

limitations.

This paper draws upon recent innovations in the social

choice and mathematical psychology literatures, and

especially the work of Richards et al. (1998, 2002) to

demonstrate how these approaches might be synthesized.

This demonstration relies upon a slight, yet empirically

supported, relaxation of one of Arrow’s axioms: the axiom

of unrestricted domain. Given this relaxation, one may

define a set of conditions under which a group of decision-

makers can rationally aggregate their preferences. Specif-

ically, if teams of designers are known to share a common

mental model, one may often define an aggregate set of

preferences for the group. This group-level preference

ordering exists under the vast majority of circumstances,

allowing team members to select a ‘‘best’’ design from

among a set of structured alternatives. A similar argument

applies to comparisons between design requirements that

are related by known physical laws and other sources of

structure specific to the design domain.

The novelty of the approach presented here comes from the

use of designers’ mental models (typically associated with

empirical regularities) that constrain the set of possible pref-

erence orderings between alternatives considered by design-

ers. Although this constraint violates one of the axioms

typically taken for granted in decision-based design, such a

violation need not result in an irrational design. On the con-

trary, this approach rules out ‘‘irrational’’ preference orders

that violate empirical regularities and are therefore ‘‘un-

thinkable’’. Such an approach allows for the incorporation of

empirical regularities (including physical constraints, cogni-

tive effects, and socio-cultural factors) into the decision-

making process, such that decision-makers choose between

alternatives based on the knowledge they have available to

them. Importantly, this approach does not require that only

one decision-maker’s preferences should be followed to the

exclusion of all others (i.e., the requirement for a ‘‘dictator’’).

Rather, decision-makers must only agree on the underlying

problem structure—a much weaker condition. This slight

relaxation of the axiomatic approach to decision-making is

shown to be sufficient to guarantee the existence and selection

of an optimal1 decision outcome in the vast majority of cases.

Furthermore, this approach allows the precise definition of the

conditions under which cyclic preferences (and therefore, no

best outcome) may occur. Finally, this approach is used to

motivate a new research agenda: the empirical measurement

and evaluation of designers’ mental models, how closely these

mental models correspond to one another and to empirical

regularities, and the implications of this correspondence for

decision-based design.

The outline of this paper is as follows: Sect. 2 provides a

motivation for the approach presented in this paper by

comparing and contrasting leading approaches to decision-

1 Here, ‘‘optimal’’ means that an aggregate preference order can be

defined, that a top choice can be defined for this preference order, and

that the method used to generate this preference order is most likely to

result in a preference ordering that is consistent with the group’s

common design goal, as defined by Condorcet’s formulation

discussed in Young (1995). Importantly, Condorcet notes that the

existence of such an optimum is not guaranteed.
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based design. Section 3 introduces the main approach used

in this paper. Section 4 presents the results of a simulation

illustrating the generality of this approach. Section 5

demonstrates an application of this approach based on

empirical data. Finally, Sect. 6 discusses this approach in

light of alternate theories of decision-based design, and

concludes by summarizing the novel contributions of this

work.

2 Background

Engineers rely heavily upon techniques that help designers to

select one or a subset of best designs from within a much larger

tradespace. Since design teams may have many members, and

the designs themselves may aim to meet several requirements

or to incorporate feedback from several stakeholders, com-

monly used techniques aim to aggregate preferences across

these elements. Examples of such techniques include the

Analytic Hierarchy Process (AHP; Saaty 1990), which

prompts designers to assign weights to decision criteria and to

various stakeholders, and the Pugh Controlled Convergence

Method (PuCC; Pugh 1991), in which teams of design engi-

neers must reach consensus regarding pairwise comparisons

between candidate designs and a baseline ‘‘datum’’ concept.

Each such approach relies upon the aggregation of preferences

from individuals to generate a group-level preference ordering

for the design team.

2.1 Decision-based design

These methods have been sharply criticized by adherents of

the decision-based design paradigm, and especially

Hazelrigg (1996), who claims that ‘‘…popular approaches

to design optimization, such as Total Quality Management

(TQM) and Quality Functional Deployment (QFD), are

logically inconsistent and can lead to highly erroneous

results.’’ (p. 161). To illustrate this point, Hazelrigg con-

siders the case where a team of decision-makers must

choose between three alternatives: A (e.g., an apple), B (a

pear), and C (an orange). For an individual who prefers A

to B, B to C, and A to C, we say that A[B[C. Fur-

thermore, one would expect this decision-maker to choose

option A all else being equal. Following Arrow (1963),

Hazelrigg next considers the hypothetical scenario where

there are three decision-makers. The first decision-maker

has preference order A[B[C, the second B[C[A,

and the third C[A[B. Under these conditions, and

given a choice between A and B, two decision-makers

would ‘‘vote’’ for option A such that the preference of the

group is A[B. Similarly, the group prefers B[C, and

C[A. Combining these elements, we see that

A[B[C[A—a ‘‘cyclic’’ preference structure. When

cyclic preferences such as these exist, there is no best

design. Furthermore, Hazelrigg (1996) asserts that selec-

tion of any design that is part of such a preference cycle

would be disastrous:

Given an apple, the individual [with cyclic prefer-

ences] would prefer to trade to a pear. And since the

individual has a strong preference for a pear, he

would be willing to give up something of value to

affect the trade, say a penny. After the trade, the

individual has a pear. But he would prefer to have an

orange, and would be willing to spend another penny

to affect this trade. Now, with the orange, he would

spend another penny to trade for an apple, returning

to his starting point at a loss of three cents. This

trading would continue ad infinitum…He cannot stop

trading without denying his preferences …the case

shown here is not a rare, pathological case. It is the

norm…Virtually all groups will have intransitive

preferences…As a consequence, any methodology

that demands the construction of a group utility

function in any aspect of its construct is logically

inconsistent and doomed to failure (p. 162).

This critique is based on Arrow’s Impossibility Theo-

rem (1963), a seminal result in social choice theory.

Arrow’s Impossibility Theorem states that there is no

ranked voting system that can convert individual prefer-

ences to a complete and transitive ranking for the group

(i.e., one in which all preferences are ranked and there are

no cyclic preferences) that also obeys the following

axioms:

• Unrestricted domain: All individual preference orders

are admissible. For example, one cannot say that

B[C[A is ‘‘not allowed’’. All individual rankings

are allowed.

• Independence of irrelevant alternatives: The social

order will not change by addition of a new alternative.

For example, if the group prefers A[B when this pair

is considered in isolation, the group will still prefer

A[B when A is compared to C and when B is

compared to C.

• Monotonicity: If an individual changes his or her

preference by ranking a given alternative more highly,

that alternative cannot be ranked less highly in the

social order as a result. For example, if the social order

is A[B[C, and an individual changes his or her

preference from C[B[A to B[C[A (i.e., C is

now ranked more highly), the rank of C cannot go down

in the social order (i.e., A[C[B is not an admissible

social order).

• Non-imposition: Any function that generates a social

order from individual orders should be able to generate all
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social orders for some set of individual orders. For

example, given alternatives A, B, C, and D, there must be

some set of individual orders such that A[B[C[D.

• Non-dictatorship: There is no individual for whom the

social order always mirrors that individual’s preference

order.

As the number of decision-makers and alternatives grows,

the likelihood of encountering cyclic preferences converges to

unity. Since individual decision-makers are assumed not to

have cyclic preferences, Hazelrigg interprets Arrow’s Theo-

rem as a proof that a ‘‘dictator’’—i.e., one decision-maker who

determines the final preference order—is necessary for a

rational design. Strictly speaking, Arrow’s Theorem does not

specify that this individual must be a literal dictator. Rather, it

is a formal requirement of the axiomatic framework that there

is a one-to-one correspondence between this individual’s

preferences and the group’s preferences, regardless of

aggregation method, and presuming all the other axioms are

correct. Nevertheless, Hazelrigg (1997) states:

It is the responsibility of the project manager to align,

to the maximum possible extent, the utilities of the

individual designers. This can be done in two ways.

First, it is necessary for the manager to state explic-

itly the utility against which the design should be

judged. Second, the manager must create a set of

incentives and rewards that make it in the best

interest of each design engineer to make use of the

stated utility measure (p. 196).

2.1.1 The axiom of unrestricted domain

Arrow’s axiom of unrestricted domain specifies that any

limitation placed on the set of possible preference

orderings could potentially negate the impossibility result.

Significant attention in the literature has focused on a

specific class of domain restrictions: ‘‘single-peaked pref-

erences’’ (Black 1948). Single-peaked preferences occur

when alternatives may be ranked relative to one another in

a linear fashion. For example, jet engines may be ranked

relative to one another in terms of their specific impulse.

Similarly, Starbucks uses its ‘‘roast curve’’ to rank coffee

flavors along a left-to-right spectrum (see Fig. 1). Building

upon this insight, Scott and Antonsson (1999) have argued

that the axiom of unrestricted domain is not applicable to

engineering design because any given engineering variable

is almost always ordered on some external scale such that

‘‘less is better, more is better, or closer to a particular target

is better’’ (p. 224). Per the coffee example, an individual

decision-maker who prefers a Sumatra blend would choose

a House Blend over a Veranda Blend when the Sumatra

blend is unavailable. Similarly, a vehicle structures group

may prefer a material with a stronger bending stiffness over

a weaker one. Preference orders that are inconsistent with

this structure, such as a preference for a French Roast over

an Italian Roast, but green coffee over French Roast, would

be considered irrational from an empirical perspective.

Thus, Scott and Antonsson contend that Arrow’s Theo-

rem does not apply to decision-based design, and that a

choice that is best for the group should exist if each indi-

vidual criterion is single-peaked. There is some theoretical

support for this position. For example, Barberà, Gul, and

Stacchetti (1993) have generalized single-peaked prefer-

ences to multiple dimensions, showing that Arrow’s The-

orem does not apply when preferences may be ranked

relative to one another in a grid, such as when designs can

be located relative to one another in a multidimensional

tradespace with a global optimum. Indeed, Scott and

Fig. 1 The Starbucks ‘‘roast curve’’—a set of alternatives that are structured so as to induce single-peaked preferences
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Antonsson note that designers tend to avoid unrestricted

domain problems by restricting their attention to local

optima (treating them like global optima).

2.1.2 Arrow’s theorem in the context of multi-criteria

decision-making

Contrary to Scott and Antonsson (1999), Franssen (2005)

argues that single-peaked preferences at the level of design

criteria are insufficient to avoid cyclic preferences. This is

because they do not, in general, imply single-peaked

preferences at the level of the design task. On one hand, he

notes that conceptual design requirements fulfill the same

function as human decision-makers in social choice prob-

lems; on the other hand, he asserts that these requirements

behave in a manner that is fundamentally unlike humans.

Specifically, Franssen claims that each criterion (regardless

of whether it is single-peaked) can order its preferences

differently per its own internal logic. If these criteria are

treated as independent ‘‘decision-makers’’ they are subject

to Arrow’s paradox. Indeed, it is traditional to think of

design criteria as orthogonal (i.e., independent) axes in a

tradespace, where orthogonality implies that the associated

criteria are uncorrelated.2

It is well known that design performance criteria are

often correlated to some degree. Consider a system with

requirements for response time and accuracy. The well-

known speed/accuracy tradeoff in control theory states that

any system that aims to increase its response time must

sacrifice its ability to avoid oscillation or overshoot, all else

being equal. This relationship between these two design

criteria violates Franssen’s assumption of independence

between design requirements. Similarly, a system’s main-

tainability (as measured by lines of code or cyclomatic

complexity) generally comes at the cost of robustness or

flexibility—the ability of the system to respond to unan-

ticipated changes (see Broniatowski and Moses 2016 for a

more general discussion of the relationship between flexi-

bility and system complexity). Finally, consider the design

of an airplane, where one must typically make fundamental

tradeoffs between criteria such as cruising speed and mass.

These tradeoffs are often direct consequences of the laws

of physics and, even though these designs are typically

represented by coordinates in a high-dimensional trade-

space, the designs themselves are not uniformly distributed

throughout that space, as would be expected if these cri-

teria were indeed independent. Clearly, not all design

criteria are correlated with one another. However, such

correlations, when they exist, place limits on the ability of

these criteria to order their ‘‘preferences’’ across designs.

Indeed, these physical relationships between design criteria

are at least as constraining as the social constraints on

preference orders.

Franssen observes that a system’s physical form is in

many cases distinct from its use, or function (see also

Broniatowski 2017), and that preferences over design cri-

teria are driven by a decision-maker’s mental representa-

tion of these criteria more so than their physical attributes.

This is perhaps most clearly expressed in his statement that

‘‘preference is a mental concept and is neither logically nor

causally determined by the physical characteristics of a

design option’’ (Franssen 2005, pp. 48–49). Furthermore,

he warns against imposing artificial constraints upon the set

of admissible preference orders because they can ‘‘… be

interpreted as compromising the impartiality of the pro-

cedure, when it reflects a restriction of the freedom of the

individuals to order the options as they please.’’ (p. 44).

Although physical constraints limit the design of the form,

the underlying assumption is that mental concepts are not

constrained except by artificial means, and therefore, all

preference orders are admissible, consistent with the axiom

of unrestricted domain—a chain of logic that leads inex-

orably to Arrow’s Impossibility result.

2.2 Mental models

Mental concepts are indeed constrained. Furthermore,

these constraints are often natural, not artificial. Several

bodies of scholarly literature have independently con-

cluded that structured mental constraints, or ‘‘mental

models’’, are often held in common by members of a

design team (e.g., Ahamed et al. 2016; Anderson 1995;

Avnet and Weigel 2013; Langan-Fox et al. 2000, 2004).

Structured mental models are a result of deep domain

expertise that are strongly shaped by empirical regularities

(e.g., Bang et al. 2007; Reyna and Lloyd 2006; Romney

et al. 1996, 1986). For example, mental models may result

from causal regularities in a system’s behavior (Moray

1990), from sources of non-random structure in the envi-

ronment, or from other repeated lawful behaviors (i.e.,

‘‘natural modes’’, Richards 2008; Richards and Bobick

1988), including from the physical constraints mentioned

above. Mental models are therefore highly structured and

generally take the form of causal or similarity relations

among categories of objects (Richards 2001). Richards

et al. (1998) note that:

Such knowledge structures and relationships are present

in all choice contexts, whether physical, social, or cog-

nitive. Their origin lies in the laws and regularities that

2 If so, then Scott and Antonsson’s (1999) argument, that designers

tend to avoid unrestricted domain problems by restricting their

attention to local optima, seems to somewhat refute Franssen’s (2005)

argument for many real designs. However, one could certainly

conceive of designs where there are several local optima – the

situation to which Franssen presumably refers.
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bring order into our world…To illustrate, consider the

frequency of vocal sounds made by animals: large ani-

mals make low pitch sounds because they have large

vocal tracts, whereas small animals with smaller vocal

cavities will make higher pitched sounds. If we hear a

sound made by an unseen animal in the forest, we can

guess the size, and hence the category of the animal. We

all share and use this kind of intrinsic knowledge in order

to make rational perceptual inferences from sense data.

Second, at a more cognitive level, stories, like other

forms of linguistic communication, must have a known

intrinsic structure in order for the meaning to be

understood by the audience…consider types of stories

as reflected in categories of films. Film categories have a

natural ordering from ‘‘light cognitive’’ such as

romantic comedies to ‘‘heavy physical’’ such as martial

arts. People who prefer light cognitive films will typical

avoid violent films, and vice versa. However, both

groups of people may accept documentaries…Finally,

our daily social interactions are also very regularized

and lawful, following certain traditions and conven-

tions. In the U.S., we drive on the right side of the road,

with the steering wheel on the left. In Japan and Britain,

it is the opposite. These conventions dictate the place-

ment of traffic signals, signs, and which way we look

first before crossing the street. Such strong correlations

at all levels—perceptual, cognitive, and social—impose

an enormous amount of structure on our thoughts and

behaviors, and affect our ways of holding and sharing

knowledge (p. 3).

2.2.1 Anigrafs

Mental models structure relationships between alternatives.

In this section, this paper shows how the structure of these

relationships can impose restrictions on the set of possible

preference orders that may be entertained, thereby avoiding

cyclic preferences. As an illustration, consider seven drinks

which one may obtain from a coffee shop (see Fig. 2):

• Espresso: Dark-roasted filtered coffee

• Americano: An espresso mixed with hot water

• Macchiato: An espresso mixed with foamed milk

• Latte (or Flat White): An espresso mixed with steamed

milk

• Cappuccino: Equal parts espresso, foamed milk, and

steamed milk

• Mocha: An espresso mixed with steamed milk and

chocolate syrup

• Hot chocolate: Steamed milk mixed with chocolate

syrup

Given this illustrative example, a latte is more similar to

a mocha (a mocha is simply a latte with chocolate syrup)

than it is to an americano. Furthermore, given a choice

between these seven alternatives, and all else being equal, a

consumer with a preference for a mocha might rank a latte

as his or her second choice, e.g., if chocolate syrup has run

out. In contrast, an espresso would be ranked lower and an

americano even lower.

The same logic holds in the domain of multi-criteria

decision-making. Even if one were to treat design criteria

as fully independent ‘‘decision-makers’’, the preference

orderings over design options corresponding to each indi-

vidual criterion constrain one another to the extent that the

criteria are themselves correlated, as in the relationships

between speed and accuracy discussed above (in contrast,

the speed of a system is usually not related to its color).

Because of these correlations, it would be irrational (in the

sense that it violates the laws of physics) to prefer more

speed without also preferring less accuracy (and vice

versa).

Figure 2 is an example of what Richards (2015) calls an

‘‘anigraf’’—a graph-based representation of a mental

model encoding similarity relations between alternatives.

In general, given that an individual expresses a preference

for a top-ranked alternative, the anigraf imposes a partial

order on the remainder of that individual’s preferences.

Table 1 shows the preference ordering expected for each

item in the graph. For example, an individual that prefers a

hot chocolate would rank a mocha as second best, a latte as

third best, etc.

Fig. 2 An anigraf representing similarity relationships between

different types of hot beverages
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2.2.2 Condorcet tallies

Anigrafs represent the structure imposed upon a set of

alternatives, restricting the domain of preference orderings.

Furthermore, Richards (2015) describes how one may use

an anigraf to determine an aggregate partial order over

preferences for a group. For example, consider a hypo-

thetical group with 25 members that must select one type of

beverage for all members. The number of group members

preferring each flavor is shown in Table 2. Given these

preferences, the optimal aggregate group preference may

be determined by means of a summation over pairwise

Condorcet tallies (de Caritat marquis de Condorcet 1785),

corresponding to Saari’s ‘‘pairwise plurality rule’’ (Saari

1994; Saari and Sieberg 2004)—i.e., the winner is the

option that is preferred in the largest number of pairwise

comparison, as shown in Table 3.

Although Arrow showed that such tallies are, in general,

subject to cyclic preferences when the domain is unre-

stricted, domain restrictions can alleviate this problem. For

example, this particular tally yields a total aggregate

preference order for this group with no cycles:

E[ F[B[D[C[G[A. Although only 4 out of 25

(16%) group members identified a latte as their most pre-

ferred alternative, it is the highest-ranked in the aggregate

preference order and therefore represents the optimal

choice. Specifically, when the group chooses a latte, four

people (16%) get their top choice, thirteen people (52%)

get their second choice or better, and all 25 people (100%)

get their third choice or better. Furthermore, the group’s

second most preferred choice is a mocha—a compromise

between a hot chocolate and a latte—even though no group

members chose the mocha as the best alternative and hot

chocolate, the option preferred by a plurality of nine group

members (36%), is ranked second worst overall.

2.2.3 Indifference between options

When group members must select between multiple options

that are equidistant from their top choice, the anigraf method

predicts that those members will, on balance, be indifferent

between these options. Although individual group members

might express ‘‘micro-preferences’’—e.g., some of those

possessing an espresso as their first choice would prefer an

americano over a latte when these are directly compared,

whereas others would have the opposite preference—recall

that the overall preference order for the group is constructed

using a Condorcet tally: one determines the overall group

preference by subtracting the number of people who prefer the

latte from the number of people who prefer the americano.

Thus, the anigraf model would predict that, at the level of the

group, members are indifferent between these options. In

practice, there might be slight differences between predictions

and actual subject data due to measurement error. If one

assumes that this error is symmetrically distributed, meaning

that the number of people preferring americano as their second

choice is roughly equal to the number of people choosing latte

as their second choice, these two groups cancel each other out

in the Condorcet tally, leading to zero contribution overall.3

Table 1 Admissible individual-level preference orderings for agents given the anigraf in Fig. 2

1st choice 2nd choice 3rd choice 4th choice 5th choice

Americano Espresso Macchiato or Latte Cappuccino or Mocha Hot chocolate

Espresso Americano, Latte, or Macchiato Cappuccino or Mocha Hot chocolate

Macchiato Espresso or Cappuccino Latte or Americano Mocha Hot chocolate

Cappuccino Macchiato or Latte Espresso or Mocha Americano or hot

chocolate

Latte Espresso, Cappuccino, or

Mocha

Hot chocolate, Americano, or

Macchiato

Mocha Latte or hot chocolate Espresso or Cappuccino Macchiato or Americano

Hot

chocolate

Mocha Latte Espresso or Cappuccino Americano or

Macchiato

Table 2 Weights to each vertex in Fig. 2 anigraf

Americano (A) Espresso (B) Macchiato (C) Cappuccino (D) Latte (E) Mocha (F) Hot chocolate (G)

0 5 3 4 4 0 9

The weight of each vertex is equivalent to the number of respondents for whom the corresponding option is their most preferred choice

3 One might object to the assumption of a symmetric distribution

over these two options. However, if large and consistent preferences

for one option over the other exist, the anigraf itself would possess a

different structure. Thus, in such a case, we are no longer dealing with

‘‘micro’’-preferences at all.
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2.2.4 Top cycles

Not all anigrafs preclude cyclic preferences. For example, if

two more people preferring a cappuccino join the group, a

rather complex cycle emerges:

(D * F)[C[B[ (D * F), meaning that the group is

indifferent between a cappuccino and a mocha, prefers both of

these to a macchiato, prefers a macchiato over an espresso, and

prefers an espresso over both a cappuccino and a mocha.4

However, cycles need not be a source of concern if it is still

possible to define a single most preferred outcome. Despite the

existence of a cycle, the group can identify option E, a latte, as

the best choice overall, meaning that the group is still able to

make a stable selection.

Richards et al. (1998, 2002) focused their attention on

structures that induce top cycles: those for which it was not

possible to define a single best alternative due to the existence

of cyclic preferences among the top-ranked choices. For

example, these authors showed that all rings with at least five

nodes yield top cycles for some set of weights. This approach

is extensible to engineering design teams: although one cannot

generally control the preferences of a given team’s members,

one can determine empirically whether the team’s preferences

interact with the knowledge structure in a manner that can lead

to top cycles.

3 Simulation

Richards et al. (2002) used a simulation to examine the

circumstances under which randomly selected anigrafs

might lead to top cycles. Their major finding was that even

very limited domain restrictions greatly reduce the

Table 3 Condorcet tally results

given weights shown in Table 2
A (0) B (5) C (3) D (4) E (4) F (0) G (9) Total Preferred outcome

A vs B 0 -5 -3 -4 -4 0 -9 -25 B

A vs C 0 0 -3 -4 0 0 0 -7 C

A vs D 0 5 -3 -4 -4 0 -9 -15 D

A vs E 0 0 0 -4 -4 0 -9 -17 E

A vs F 0 5 3 -4 -4 0 -9 -9 F

A vs G 0 5 3 0 0 0 -9 -1 G

B vs C 0 5 -3 -4 4 0 9 11 B

B vs D 0 5 0 -4 0 0 0 1 B

B vs E 0 5 3 -4 -4 0 -9 -9 E

B vs F 0 5 3 0 0 0 -9 -1 F

B vs G 0 5 3 4 4 0 -9 7 B

C vs D 0 5 3 -4 -4 0 -9 -9 D

C vs E 0 0 3 0 -4 0 -9 -10 E

C vs F 0 5 3 4 -4 0 -9 -1 F

C vs G 0 5 3 4 0 0 -9 3 C

D vs E 0 -5 3 4 -4 0 -9 -11 E

D vs F 0 0 3 4 0 0 -9 -2 F

D vs G 0 5 3 4 4 0 -9 7 D

E vs F 0 5 3 4 4 0 -9 7 E

E vs G 0 5 3 4 4 0 -9 7 E

F vs G 0 5 3 4 4 0 -9 7 F

Each hot drink is followed by its corresponding weight, shown in parentheses as given in Table 2. Someone

with a top choice for a given drink, X, will prefer closer drinks over farther drinks on the anigraf. Therefore,

in a pairwise comparison between two drinks, the closer drink gets an equal number of ‘‘votes’’ to the total

weight of X. Positive entries indicate that the first option in the pairwise comparison is preferred, whereas

negative entries indicate that the second option is preferred. In the case where both drinks are equidistant

from X, neither option gets any weight because, on average, the votes in favor of each option, if any, cancel

each other out

A Americano, B Espresso; C Macchiato, D Cappuccino, E Latte, F Mocha, G Hot chocolate

4 The pairwise plurality rule generates a partial order over options,

and not always a total order. In this case, the partial order is

E[ {(D * F)[B[C[ (D * F)}[G[A, where E is the top

choice, A is the last choice, G is second-to-last, and the remaining

options are all ranked worse than E but better than G and A. In

addition, the group is indifferent between D and F. However, this is

only a partial order, rather than a total order, because the relationships

between F, B, C, and D lead to cycles, precluding an aggregate

ranking of these alternatives relative to one another.
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probability of top cycles. In this section, their results are

replicated and extended.

The structure of the simulation proposed by Richards

et al. (2002) is as follows: An Erdös-Rényi random graph

(i.e., a graph in which each edge is present with fixed

probability, p) is generated with n vertices. Weights, ran-

domly selected between 0 and 1000, are assigned to each

node at random following a uniform distribution. The result

is an anigraf with n nodes. For each such anigraf, the

Condorcet tally procedure is used to determine if there is a

top cycle. Thus, by generating many such graphs, one can

compute the a priori probability that a given graph with a

given number of nodes will have a top cycle.

3.1 Knowledge depth

One might argue that it is unreasonable to expect engi-

neering designers to possess fully ordered preferences over

several design alternatives. This concern is especially rel-

evant if there are many alternatives, if alternatives are

closely preferred to one another, or if there is another

source of noise in preference gathering data. Instead, one

might expect designers to only have strong preferences

over their top k alternatives. Following Richards et al.

(2002), this paper refers to k as ‘‘knowledge depth.’’ A

knowledge depth of k means that decision-makers order the

top k ? 1 options per the anigraf, and all other options are

ordered at random (following a uniform distribution). Thus,

k = 0 means that the anigraf does not factor into decision-

making at all and any pairwise comparisons between

options that are not top-ranked are made uniformly at

random, corresponding to an unrestricted domain. When

k = 1, the top-ranked option is assigned a value of 0, the

second best options (according to the anigraf) are assigned

a value of 1, and all other options are assigned a random

value between 2 and N. This means that each decision-

maker’s second best choice is the set of nodes that are one

step removed from the top choice, and all other choices are

determined uniformly at random. When k = 2, the top-

ranked option is assigned a value of 0, the second- and

third best options are assigned values of 1 and 2, respec-

tively, and all other options are assigned a random value

between 3 and N. Therefore, the second- and third best

choices are determined by the anigraf and all other choices

are determined uniformly at random, etc.5 Thus, as

k increases, preferences are increasingly constrained by the

anigraf.

In practice, one might speculate that k represents the

maximum number of alternatives that a decision-maker can

maintain in short-term memory. Although initially esti-

mated as 7 ± 2 (Miller 1956), more recent estimates place

human short-term memory capacity at 4 ± 1 (e.g., Mathy

and Feldman 2012).6 However, this speculative interpre-

tation of k is not crucial to the results presented here.

3.2 Simulation procedure

Three parameters, n, p, and k, were used as inputs to the

simulation described above. Specifically, 100,000 graphs

were generated for values of n ranging from 3 to 20 in

increments of 1, and 20 to 100 in increments of 10. Values

of p ranged from 0.1 to 0.9 in increments of 0.1 (p = 0.99

was also included). Following Richards et al. (2002), the

probability of top cycles was calculated for anigrafs in

which agents had fully unconstrained preferences (k = 0),

minimally constrained preferences (k = 1; k = 2 was also

tested with results that did not differ significantly from

k = 1), constraints consistent with human short-term

memory limitations (k = 3), and preferences that were

fully constrained by the associated anigraf. Results indicate

that the probability of a top cycle was insensitive to

changes in p, replicating the findings of Richards et al.

(2002). Therefore, results were collapsed across this

dimension, leading to 1 million samples for each value of

k and n. Simulation results are shown in Fig. 3.

3.3 Simulation results

The analysis presented here suggests that cyclic prefer-

ences, although possible in theory, are a rare occurrence.

Results show that, when preferences are unconstrained, the

probability of a top cycle approaches 100%, especially for

large numbers of nodes. However, even a minor constraint,

k = 1, drastically decreases the probability of a top cycle.

Even for 100 nodes, this probability remains below 5%.

When k = 3, which might be interpreted as a lower bound

for the value that is most consistent with human cognitive

limitations, results are virtually indistinguishable from a

fully constrained anigraf for a large number of nodes.

Furthermore, for 100 nodes, the probability of a top cycle

does not exceed 2%. Finally, the peak of the curve indexing

5 Richards et al. (2002) distinguished between ‘‘knowledge depth’’,

as defined here, and ‘‘knowledge depth with indifference’’, meaning

that only the top k options are ranked, and all remaining options are

given rank k ? 1. The simulations in this manuscript all assume

knowledge depth without indifference. Nevertheless, the results

presented here do not differ qualitatively from those presented by

Richards et al. (2002) who assumed knowledge depth with

indifference.

6 Experts may be able to hold many more alternatives in memory

because their expertise allows them to ‘‘chunk’’ or abstract sequences

of alternatives more efficiently (e.g., Mathy and Feldman 2012). In

such a case, knowledge depth would be much greater than 3, which

would impose even more structure on outcomes. As will be shown

below, this means that experts are even more likely to avoid cyclic

outcomes compared to novices.
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k = 3 never exceeds 5%. These results broadly replicate,

and strengthen, the findings of Richards et al. (2002).

4 Obtaining anigraf data

Ultimately, anigrafs are mental constructs that must be elicited

from groups of stakeholders. Richards and Koenderink (1995)

proposed ‘‘Trajectory Mapping’’ (TM) as a non-metric scaling

technique that may be used to elicit anigrafs from one or

several subjects. One may elicit an anigraf by presenting

subjects with a randomly chosen pair of alternatives (X, Y). A

subject identifies a single feature that varies between the two

alternatives (or indicates that no such feature exists).7 The

subject is first asked to extrapolate which alternatives, A and

C, might be on either end of the pair and then to interpolate

which alternative, B, is intermediate between the two items in

the pair. Subjects may also indicate that there is no alternative

that is an appropriate interpolant or extrapolant (denoted by

‘‘|’’) or that there is an appropriate interpolant or extrapolant

that is not listed in the set of alternatives (denoted by ‘‘O’’).

The result is an ordered quintuple of alternatives constituting a

trajectory (i.e., a path) through an anigraf, (A,X,B,Y,C). This

quintuple is then used to generate three triples: (A,X,B),

(X,B,Y), and (B,Y,C). If the quintuple contains a | or a O as an

extrapolant, it is truncated. For example (|,X,B,Y,C) and

(O,X,B,Y,C) can only generate triples (X,B,Y) and (B,Y,C).

Similarly, (A,X,|,Y,C) cannot generate any triples. On the

other hand, transitivity suggests that (A,X,O,Y,C) can gen-

erate the triples (A,X,Y) and (X,Y,C).

Richards and Koenderink (1995) propose a set of rules

for constructing anigrafs from triples—an approach that

they have applied in the domains of human factors,

mathematical psychology, and political science. Specific

application domains include the analysis of musical inter-

vals (Gilbert and Richards 1994); colors, textures, and

geographic features (Richards and Koenderink 1995); tra-

vel routes (Lokuge et al. 1996); geometric shapes (Feldman

and Richards 1998), and relationships between political

movements (Richards 2001).

4.1 Statistical significance of anigrafs

Although Richards and Koenderink (1995) originally pro-

posed using a triple’s frequency as a continuous measure of

how strongly structures are connected, this approach is

highly sensitive to random variation. This paper therefore

proposes a novel approach to constructing anigrafs from

survey data. Assuming that preferences are unstructured

Fig. 3 Simulation results

represent one million runs per

datapoint. The horizontal axis

represents n, the number of

vertices. The vertical axis,

representing the probability of

top cycles, uses a logarithmic

scale

7 A ‘‘feature’’ can, but need not, be a continuous design attribute.

Indeed, taking continuous design attributes as given, and using them

as features, can be misleading. For example, when trying to

characterize the relationship between alternatives in a color space

defined by hue, saturation, and lightness axes, Richards and Koen-

derink (1995) found that ‘‘transformations used by the subjects to

move along a route in the constant lightness plane must vary in both

saturation and hue simultaneously’’. Similarly, a feature may

correspond to a transformation that takes alternative A into alternative

B, as in Richards and Koenderink’s (1995) texture space example,

where they found that ‘‘the proper representation for textures is not

simply a space of material types, but rather a space of types of

transformations’’. In general, features capture the subject’s percep-

tions of how various options are related or how one may be

transformed into the other holding all else equal.

76 Res Eng Design (2018) 29:67–85

123



(i.e., unrestricted domain), it is straightforward to demon-

strate that the probability that any randomly chosen triple

appears m times is given by a Poisson distribution,

P(m) = kme�k

m! , with parameter k = T/N where T is the

expected total number of triples elicited from experimental

subjects and N is the number of unique triples that may be

generated (in each case accounting for | and O entries and

removing them as appropriate). A given triple is statisti-

cally significant if it appears significantly more often than

would be expected per this Poisson distribution. Further-

more, an ensemble of triples constitutes a statistically

significant anigraf at the p\ 0.05 level if its family-wise

error rate is less than 0.05. Thus, standard approaches to

control family-wise error rate after multiple comparisons,

such as the Holm-Bonferroni correction, apply.

4.2 Case study: smartphone anigraf

The ultimate purpose of this paper is to demonstrate how

preference orders are constrained by empirical regularities

such as similarity judgments. Thus, this section examines

the relationship between anigraf data and preference

judgments for the five Android smartphones listed in

Table 4, adapted from Haston (2014). Similarity data for

these five smartphones were collected from 36 experi-

mental subjects who were recruited using a Human Intel-

ligence Task (HIT) posted to Amazon’s Mechanical Turk

service on December 30, 2016. Each subject was asked to

rank the similarity (on a scale of 0-100) of, and then to

generate quintuples for, the ten pairs of smartphones in the

list. 28 (78%) subjects completed all ten pairwise com-

parisons (data from the remaining eight subjects were

excluded because they violated the same HIT instructions

at least twice), yielding a total of 280 quintuples. These

quintuples generated 840 triples, of which 517 (62%) were

admissible (e.g., they did not possess a ‘‘|’’). After com-

pleting the TM survey, subjects were also asked to rank the

smartphones (indifference between options was allowed).

The associated survey protocol was determined to be

exempt from IRB review by the George Washington

University’s Office of Human Research (IRB #061650; full

survey protocol in the Supplemental Material). Six triples,

each of which appeared at least 23 times, were retained,

yielding a set that was statistically significant at the

p\ 0.05 level after adjusting for multiple comparisons

using the Holm-Bonferroni correction (Table 5).

Although these triples significantly constrain the set of

preference orders that may be considered (specifically,

each anigraf is required to order alternatives as in the

corresponding triples), Richards and Koenderink (1995)

indicate that the rules for constructing anigrafs from TM

data are not fully deterministic. Therefore, they suggest

heuristics to select a best fitting anigraf given the set of

triples (although see Gilbert 1997, for a simulated

annealing algorithm that aims to address this limitation).

Thus, the original trajectory mapping technique proposed

by Richards and Koenderink (1995) is underspecified.

Furthermore, ‘‘O’’ was entered by subjects for 296 (35%)

of the 840 entries recorded, indicating that additional nodes

may be missing from the set of five smartphones consid-

ered. In general, allowing subjects to volunteer ‘‘O’’—

indicating an intermediate category that is not included in

the TM survey—allows for extra degrees of freedom in

anigraf models. At one extreme, any time at least one

subject indicates the presence of an ‘‘O’’, one could

interpolate a new category to be included in the anigraf.

Naturally, this would overfit the data to that subject’s

judgment. On the other extreme, one could ignore all ‘‘O’’

entries, relying on transitivity as mentioned above. This

tends to underfit (or bias) the data to the limited set of

categories suggested by the researcher. This is therefore an

instance of the bias-variance tradeoff frequently encoun-

tered in model selection. Since the ultimate purpose of the

analysis of anigrafs is to examine the extent to which

similarity structure drives preferences, the next section

presents an approach to model selection based on the

Table 4 Attributes of the top five Android smartphones reported by (Haston 2014)

Nexus 5 LG G2 Samsung Galaxy S4 Samsung Galaxy J HTC ONE

Display

size

5.0’’ 1080p 5.2’’ 1080p 5.0’’ 1080p 5.0’’ 1080p 4.7’’ 1080p

Processor Snapdragon 800 Snapdragon 800 Snapdragon 800 Snapdragon 800 Snapdragon 600

Camera 8MP 13MP 13MP 13MP 4MP

Storage/

RAM

16/32 GB, 2 GB 16/32 GB, 2 GB 16/32 GB, 2 GB 16 GB, 3 GB 16/32 GB, 2 GB

Battery 2300 mAh 3000 mAh 2600 mAh 2600 mAh 2300 mAh

Dimensions 137.9 9 69.2 9 8.6 mm 138.5 9 70.9 9 8.9 mm 136.6 9 69.8 9 7.9 mm 137 9 70 9 8.6 mm 137.4 9 68.2 9 9.3 mm

Weight 130 g 143 g 130 g 146 g 143 g
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selection of a maximum-likelihood anigraf from a training

set of preference data.

4.2.1 Anigraf model selection

Figure 4 summarizes the structures of 36 anigrafs, all of

which are consistent with the triples in Table 5. This set is

not collectively exhaustive; however, these selections are

the most consistent with the triples collected. A training set

consisting of an additional 81 preference orders was col-

lected to adjudicate between these models. The test set

constitutes the preferences expressed by the 28 subjects

from whom the anigraf triples were derived. (Two of the

preference orders in the training set and one of the pref-

erence orders in the test set were excluded because subjects

expressed indifference for their top choice.) Pairwise

comparisons for both the training and test sets were derived

from these preference orders (Table 6). Logistic regression

models were fit to the training data for each of the 12

anigrafs in Table 7 (downselected by inspection from the

original set of 36) and a ‘‘null’’ model in which those who

preferred a given phone were indifferent between all but

their first choice options. Adjudication between these ani-

grafs proceeded as follows: given a pairwise comparison

between two options, Y1 and Y2, the probability, P(x), that

a subject selected option Y1 is given by ln
P xð Þ

1�P xð Þ

� �
¼ ax;

where x is equal to ?1 if a given anigraf predicted that Y1

is preferred, -1 if Y2 was preferred, and 0 if the anigraf

predicted indifference. a, which indicates the strength of

preference, was fit to each anigraf using standard L2-norm

regularization: i.e., a was selected to minimize the quantityP
x;Yi

½lnð1 þ e�axÞ� þ a2. To avoid overfitting, standard

goodness-of-fit metrics that penalize models with more

parameters (Akaike Information Criterion; AIC, and

Bayesian Information Criterion; BIC), were also calculated

(Table 7). Here, the number of parameters in each model

was given by the number of possible edges in the

associated anigraf:
nðn�1Þ

2
edges, where n is the number of

nodes. Finally, the log-likelihood of the test data was cal-

culated for each anigraf. This same technique is easily

extensible to the remaining 24 anigrafs (analysis omitted

for brevity).

4.2.2 Results

Results were consistent across multiple methodologies. All

anigrafs shown in Fig. 4 displayed similar gross prefer-

ence structure, although as model likelihood and goodness-

of-fit decreased, differences between actual and predicted

preferences occurred more often. Even so, given the top

choice expressed by each subject, 7 of the 13 (54%) models

listed agreed with the data that the LG G2 was the top

choice, and all models ranked the LG G2 among the top

two choices. All models also ranked the HTC One as the

worst choice and the Nexus 5 as second worst. None of the

models expressed cyclic preferences. Finally, all of these

models generated predictions for subjects’ pairwise pref-

erences that are within the test set’s 95% confidence

intervals (Table 6). Thus, consistent with Richards’ modal

hypothesis (Richards and Bobick 1988), these results

indicate that preference orders and similarity rankings are

strongly associated in this case. Consequently, it is rea-

sonable to conclude that the axiom of unrestricted domain

does not apply here.

Given subjects’ top choices, predicted and actual num-

bers of subjects preferring each option in the Condorcet

tally were almost perfectly correlated in the test set for the

best fitting anigraf (number 12 in Table 7, corresponding to

Fig. 4d), r(8) = 0.99, p\ 0.001. Thus, the anigraf con-

strains the group-level preference order. Although prefer-

ences for the second- and third choice options (the

Samsung Galaxy S4 and the Samsung Galaxy J) are

reversed between this anigraf’s predictions and the data,

subjects’ preferences between these two options were weak

Table 5 Six triples elicited from anigraf survey data

Triple Frequency Possible interpretation

HTC One Nexus 5 Samsung Galaxy S4 31 MP

HTC One Nexus 5 Samsung Galaxy J 31 MP

LG G2 Samsung Galaxy S4 Samsung Galaxy J 25 (Battery OR display size)/RAM

HTC One Nexus 5 LG G2 25 MP

Samsung Galaxy J Samsung Galaxy S4 Nexus 5 23 Camera * RAM

LG G2 Samsung Galaxy J Samsung Galaxy S4 23 Volume

Although each triple is associated with a possible interpretation (selected by the author), these triples were elicited from subjects independently

of these interpretations. Other interpretations are possible, and this in no way affects the underlying anigraf structure

MP Megapixels
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(as shown by the small magnitudes in the both the test set

and predicted Condorcet tallies in Table 6), suggesting that

this preference reversal is a consequence of measurement

error. Furthermore, independent of the test data, this same

anigraf had the lowest AIC and BIC values, indicating that

this model’s fit to the training data is parsimonious—i.e.,

the extra model complexity resulting from adding two extra

nodes that were not on the initial list of five smartphones is

nevertheless worth the additional explanatory power.

Finally, pairwise distance between nodes is strongly asso-

ciated with average pairwise similarity rankings (shown in

Table 6) elicited from the 28 subjects in the test set,

r(8) = 0.90, p\ 0.001.

Beyond these findings, several anigrafs that incorrectly

predicted indifference between two options (such as ani-

graf 3 in Table 7, which predicts that those who prefer the

Samsung Galaxy S4 will be indifferent between the Nexus

5 and the Samsung Galaxy J), or that predicted a strong

preference when data indicated that there was none (such

as anigrafs 1 and 8, which predict that those who prefer the

Samsung Galaxy J will prefer the Samsung Galaxy S4 over

the LG G2) were ruled out by model selection. Remaining

deviations from this best fitting model (i.e., differences in

preference whose magnitudes were not sufficiently large as

to be statistically significantly) were roughly symmetrically

distributed as predicted. Naturally, recruitment of addi-

tional subjects would allow one to capture even more

nuanced anigraf structure.

4.2.3 Empirical assessment of knowledge depth

The model in Sect. 3 demonstrates that even minimal

constraints on preference orders are sufficient to greatly

reduce the likelihood of top cycles. The smartphone TM

data allow for an empirical assessment of the knowledge

depth parameter in that case. Specifically, the best fitting

anigraf can be used to assess the relationship between

strength of preference and knowledge depth. Strength of

preference was measured as the absolute value of the

normalized entries in the Condorcet tally (for example, if 9

out of 10 subjects preferred option Y1 and the remaining

subject preferred option Y2, strength of preference was

80%; if subjects were split such that 5 subjects preferred

option Y1 and 5 preferred option Y2, strength of preference

was 0, etc.) and knowledge depth was measured as the

minimum distance between the decision-maker’s topmost

preferred option and the options being compared. These

two quantities were significantly anticorrelated,

r(48) = -0.51, p\ 0.001. A linear fit of these data is

given by the equation d = -1.4s ? 1.99 where s is

strength of preference and d is the average distance

between the node performing the evaluation and the closest

node being evaluated. This equation indicates that when

decision-makers assess options represented by nodes that

are two hops away or more, subjects are, on average,

indifferent between these options suggesting a knowledge

depth of unity for this task.

a

c

b

d

Fig. 4 Representation of 36 anigrafs that are consistent with the

triples elicited from Trajectory Mapping survey data. H1 HTC One,

N5 Nexus 5, S4 Samsung Galaxy S4, J Samsung Galaxy J, G2 LG G2.

Since several subjects indicated ‘‘O’’ on their surveys, nodes O1 or O2

were included in several candidate anigraf models. Finally, edges a,

b, and c, although present in the elicited triples, need not be included

because of the transitive property of similarity relations. The best

fitting anigraf includes nodes O1 and O2, as well as edges a, b, and c
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5 Discussion

The analysis presented here shows that the theoretically

motivated possibility of cyclic preferences is an important

constraint on decision-based design that cannot be ruled

out entirely. However, even minimal domain restrictions

can vastly reduce the likelihood of cyclic preferences.

Thus, Arrow’s Theorem, which has previously been char-

acterized as widely requiring ‘‘dictatorship’’ in engineering

design teams with multiple stakeholders, does not usually

apply.

Without domain restrictions, the probability of cyclic

preferences swiftly goes to unity when there are more than

three alternatives. However, this assumes that all cyclic

preferences, not just top cycles, are problematic. Our

results show that the probability of top cycles remains less

than 50% if the number of alternatives remains small (12 or

fewer). However, when the number of alternatives becomes

Table 6 Subjects’ pairwise similarity judgments and preferences

1st

choice

N5 G2 S4 J

2nd

choice

G2 S4 J H1 S4 J H1 J H1 H1

Subjects’ pairwise similarity judgments

Mean

(SD)

50.14

(21.44)

32.18

(18.82)

48.96 (21.02) 51.68

(23.05)

28.82

(19.85)

33.21

(21.98)

67.43

(20.88)

20.82

(21.01)

61.86

(22.20)

60.64

(23.07)

1st

choice

(n)

Training set Condorcet tally

N5 (9) 9 9 9 9 3 3 3 3 -1 -3

G2 (22) -22 -18 -14 21 22 22 22 13 20 20

S4 (12) -6 -12 -8 10 -12 -2 10 12 12 10

J (6) -6 -5 -6 6 -2 -6 6 -6 6 6

H1 (3) -1 1 1 -3 1 3 -3 0 -3 -3

1st

choice

(n)

Test set Condorcet tally

N5 (1) 1 1 1 1 -1 -1 -1 -1 1 1

G2 (12) -12 -10 -10 12 12 12 12 9 12 12

S4 (4) -4 -4 -4 4 -4 0 4 4 4 4

J (9) -5 -7 -9 9 -1 -9 9 -9 7 9

H1 (1) 1 1 1 -1 -1 -1 -1 -1 -1 -1

Total -19 -19 -21 25 5 1 23 2 23 25

95% CI [- 9.46,

-23.81]

[-9.46,

-23.81]

[- 11.85,

-24.92]

[26.65,

17.13]

[13.76,

-5.01]

[10.40,

-8.65]

[25.89,

14.38]

[11.47,

-7.85]

[25.89,

14.38]

[26.65,

17.13]

1st

choice

(n)

Condorcet tally predicted by best fitting anigraf given test set’s top choices

N5 (1) 1 1 1 1 0 0 0 0 0 0

G2 (12) -12 -12 -12 12 12 12 12 0 12 12

S4 (4) -4 -4 -4 4 -4 0 0 0 0 0

J (9) -9 -9 -9 9 0 -9 9 -9 9 9

H1 (1) 1 1 1 -1 0 -1 0 -1 -1 -1

Total -23 -23 -23 25 8 3 24 -5 24 24

Each entry in the Condorcet Tally sections indicates the difference between the number of subjects preferring the first option and the number of

subjects preferring the second option, with positive numbers indicating an overall preference for the first option. For example, the entry

corresponding to a pairwise comparison between S4 and J by the 22 subjects listing the J as their top choice has a value of 13 in the Training Set

because 16 subjects preferred the S4, 3 subject preferred the J, and 3 subjects were indifferent (16 - 3 = 13)

N5 Nexus 5, G2 LG G2 S4 Samsung Galaxy S4, J Samsung Galaxy J, H1 HTC one, SD standard deviation, n number of subjects listing the

smartphone in the leftmost column as their first choice, CI confidence intervals
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large even the probability of top cycles goes to unity. Since

modern engineered systems must typically explore vast

trade spaces with very large numbers of options, restricting

one’s attention only to unstructured preferences with an

unrestricted domain is no guarantee of a winning outcome.

The assumption of unrestricted domain is not empiri-

cally justifiable given the vast literature on mental models

in engineering design. Following Richards et al. (1998;

2002), the analysis presented in this paper shows that cyclic

outcomes can be avoided in the vast majority of cases if

decision-makers can agree on similarity relationships

between design alternatives, using a simple technique

relying on Condorcet tallies and pairwise comparisons.

This need not in any way restrict their choice of their most

preferred alternative. Furthermore, total agreement on the

knowledge structure is not necessary. When decision-

makers’ mental models minimally overlap (k = 1), the

probability of a top cycle falls below 5%, even for 100

alternatives. Furthermore, a knowledge depth of k = 3

yields results that are virtually indistinguishable from fully

constrained preference orders when the number of alter-

natives exceeds 20.

Data regarding similarity relations between alternatives

can be extracted in a straightforward manner using tech-

niques such as TM. Since individual designers indicate

their preferences independently, groupthink need not

dominate. However, once an anigraf has been generated

from the data gathered from all stakeholders, these elicited

results can encourage convergence on a common mental

model, further increasing the likelihood of a rational

aggregate preference order. Since the results of the

Condorcet tally are guaranteed to be optimal (Young

1995), this approach need not sacrifice internal consistency

to obtain empirical correspondence. Finally, once an ani-

graf has been elicited, it can be analyzed to determine if the

structure could lead to top cycles, prior to the commitment

of significant resources. Only in these rare situations may a

single decision-maker be necessary. Thus, the novelty of

this approach is that it enables the systematic incorporation

of a much wider range of perspectives in design, main-

taining both consistency with an axiomatic framework

while making the correspondence with empirical regulari-

ties explicit. When these regularities are physical in nature,

designers will have better information regarding the extent

to which their preferences might be constrained. Moreover,

when these regularities are socio-cultural, this information

may help designers to better understand the extent to which

their values limit possible design options.

5.1 Comparisons to other models

The results of the simulation presented here are not

restricted to social choice problems. If one chooses to

interpret the preferences over nodes in an anigraf as pref-

erences over options imposed by (potentially single-

peaked) design criteria, consistent with Franssen’s (2005)

argument, the same logic applies to engineering design

requirements. Here, relationships between the preferences

orders imposed by each design criterion in isolation are

structured by physical laws and other regularities (e.g.,

Broniatowski and Weigel 2008, discuss regular relation-

ships between the political and technical domain in the

Table 7 Goodness of fit

metrics for 10 anigraf models
Nodes Edges a AIC BIC LL r Preference order

Null 3.37 444.80 444.31 -121.18 0.78 G2[S4[ J[N5[H1

1 None None 2.14 392.65 412.16 -73.64 0.95 S4[G2[ J[N5[H1

2 None c 2.34 377.14 396.65 -71.58 0.99 G2[ J[S4[N5[H1

3 None a, b, c 1.63 558.89 578.41 -134.73 0.67 G2[ J[S4[N5[H1

4 O1 b 2.23 364.70 393.93 -65.65 0.98 S4[G2[ J[N5[H1

5 O1 c 2.13 393.83 423.10 -66.61 0.99 G2[ J[S4[N5[H1

6 O1 a, b 2.33 373.75 403.02 -61.02 0.97 S4[G2[ J[N5[H1

7 O1 a, b, c 2.37 377.05 418.03 -61.11 0.99 G2[ J[S4[N5[H1

8 O1,O2 None 2.15 391.32 432.30 -63.82 0.98 S4[G2[ J[N5[H1

9 O1,O2 b 2.44 348.52 389.49 -62.74 0.99 S4[G2[ J[N5[H1

10 O1,O2 c 2.26 390.43 431.40 -62.00 0.99 G2[ J[S4[N5[H1

11 O1,O2 a, b 2.68 340.22 390.20 -60.59 0.97 S4[G2[ J[N5[H1

12 O1,O2 a, b, c 2.73 339.50 380.47 -54.16 0.99 G2 > J > S4 > N5 > H1

The best fitting model, number 12, is shown in bold. A ‘‘null’’ model, in which subjects prefer only their top

choice, and are otherwise indifferent, is included for reference

a estimated parameter of logistic regression model associated with this anigraf, AIC Akaike Information

Criterion of training set, BIC Bayesian Information Criterion of training set, LL log-likelihood of test set,

r Pearson correlation between predicted and actual Condorcet tallies on test set, H1 HTC One, N5 Nexus 5,

S4 Samsung Galaxy S4, J Samsung Galaxy J, G2 LG G2
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context of human space exploration). Specifically, the

ordering over design options imposed by these criteria

constrain one another to the extent that they are correlated

or related in a lawful manner, such that a high-dimensional

tradespace may be approximated by a lower-dimensional

subspace. Eliciting these correlations can be straightfor-

ward when design criteria are physically well-character-

ized. Furthermore, even if one does not know a given

design’s criteria a priori (precluding one’s ability to

guarantee with absolute certainty that cyclic outcomes are

avoidable), simulation results indicate that top cycles are

the exception rather than the rule. On the other hand,

designers have not yet come to consensus regarding how to

measure non-traditional requirements, such as resilience,

adaptability, etc. Examining the relationship between

cyclic outcomes and non-traditional design requirements is

therefore a topic that would benefit significantly from

future empirical research.

Franssen and Bucciarelli (2005) state that broadening

the concepts of rationality and optimality in engineering

design is a valuable goal, noting that existing concepts

from the social choice literature have direct bearing on

design decision problems and thus deserve more attention.

Specifically, Franssen and Bucciarelli (2005) argued that

the definition of rationality in design decision-making

should be expanded to account for multiple stakeholders

who do not share a common utility function. Contrary to

Hazelrigg (1997), they note that ‘‘…the possibilities for

[a] single individual calling the shots, [or] setting-out a

single utility function which would yield an optimum,

appear slim.’’ (p. 949), motivating the use of game theory

to select a design. Illustrative examples such as the classic

Prisoner’s Dilemma, show that, absent cooperation, such

approaches are not Pareto-optimal (meaning that they do

not maximize the total utility when summed across all

stakeholders). Thus, Franssen and Bucciarelli advocate for

negotiation among stakeholders, stating that ‘‘If they are

rational and if they have the possibility of arranging a form

of cooperation that enables them to realize the design

jointly, rationality will prompt them to do so’’ (p. 949)—an

approach that is broadly consistent with the one presented

in this paper. However, there are important differences.

Franssen and Bucciarelli’s approach aims to find the Par-

eto-optimal solution from among a set of individual utility

functions such that all stakeholders agree on outcomes.

This may not be achievable in the event of utility functions

that are at odds with one another, as in zero-sum games. In

contrast, the approach presented here demonstrates that it

may indeed be possible to define a group-level preference

ordering. This approach does not require agreement on

outcomes, or even on preferences; rather, it requires only a

minimal degree of overlap between mental models. Fur-

thermore, this overlap is demonstrably optimal given

empirical limitations (per Condorcet’s formulation, dis-

cussed by Young 1995). Thus, the technique presented here

refutes Hazelrigg’s (1996) assertion that ‘‘any methodology

that demands the construction of a group utility function in

any aspect of its construct is logically inconsistent and

doomed to failure’’ (p. 162).

Others might object that heuristic approaches, such as

PuCC, have strengths that this approach does not. For

example, Frey et al. (2009) emphasized the role of ideation

using PuCC, whereas the approach presented here does not

explicitly allow for the incorporation of new alternatives in

the middle of the decision-making process. However, the

construction of anigrafs can be construed as an iterative

process. During each iteration, nodes can included or

excluded based upon prior survey results, the collection of

pilot data, etc. Between these iterations, ideation tech-

niques may be used to generate alternatives for inclusion in

the anigraf surveys. The strength of the approach presented

here is that it combines axiomatic coherence with empirical

correspondence in a principled way; nevertheless, the role

of ideation in design remains an important topic for future

work.

On the other hand, the axiomatic limitations of the

PuCC are well known (Hazelrigg 2010). This paper does

not claim that all, or even most, heuristic techniques can

avoid cyclic preferences. The literature, and especially the

work of Hazelrigg, has taken for granted that cyclic pref-

erences are unavoidable necessitating ‘‘dictators’’. If,

however, there exists even a single method that can reliably

avoid cyclic preferences in most cases, and if it is possible

to determine, in advance, when cyclic preferences can be

ruled out empirically, then that method could be used in

concert with existing heuristic techniques to avoid

cyclicality.

5.2 Limitations and directions for future work

The techniques discussed in this paper are premised on the

idea that similarity of decision alternatives implies simi-

larity of preference. In other words, one’s second choice

will be the option that is most similar to one’s top choice.

This assumption is widely used in multiple domains; for

example, Richards (2001) gathered data showing that

preferences within domains as separate as political choice

and movie rentals conformed to this model. Our empirical

results are consistent with this assumption, and there is no

reason to believe that it would be violated within the

domain of engineering design; nevertheless, more exten-

sive empirical validation of this framework remains an

immediate next step for future work.

Similarly, one might object that preferences over alter-

natives do not necessarily correspond to preferences over

outcomes. This is the essence of Franssen’s (2005) critique
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of Scott and Antonsson (1999). This paper addresses this

objection using Richards and Bobick’s (1988) observation

that mental constructs are themselves shaped by empirical

regularities. Furthermore, the feasible regions of trade-

spaces are highly structured by regularities that are at least

as strong. To the extent that outcomes depend on alterna-

tives, preferences should follow suit. Nevertheless, one

might further object that outcomes themselves cannot be

anticipated in sufficiently complex situations. This is a

general critique of decision-based design that is not limited

to the techniques discussed in this paper—indeed, this

critique has been leveled against utility theory in general.

Addressing this critique is outside of the scope of this

paper, since it directly contradicts the foundations of any

axiomatic approach.

Finally, one might object that the framework presented

in this paper does not account for design teams whose

members have stark differences in their mental models.

Specifically, these models may sharply diverge if partici-

pants hold very different ways of structuring world infor-

mation. In such circumstances, cyclic preferences may

indeed dominate. For example, Bucciarelli (1994), notes

that professional disciplines function as separate ‘‘cul-

tures’’, which could lead one to conclude that multidisci-

plinary design teams are especially likely to be subject to

cyclic preferences. However, recent data indicate that

members of multidisciplinary design teams do indeed

construct shared mental models (Avnet 2015, 2016; Avnet

and Weigel 2013) suggesting that culture, as defined by

Bucciarelli, does not preclude shared cognitive represen-

tations (see also, Romney et al. 1986, 1996). Future work

should therefore focus on determining the situations under

which group members’ mental models diverge in a manner

that allows for cyclic preferences to occur.

In such circumstances, techniques such as problem

structuring methods (PSMs; e.g., Mingers and Rosenhead

2004) may be instrumental in establishing a common

mental representation prior to selection of an alternative for

the group. Furthermore, the techniques presented here

allow for the evaluation of the success of these methods by

measuring the extent to which mental models overlap

before and after these methods are used. Indeed, anigraf

data could be elicited in concert with these methods, first

by helping decision-makers to come to some agreement

regarding what alternatives should be included, and then by

helping decision-makers to construct a common mental

model. This, in turn, requires extension and refinement of

the empirical techniques discussed in this paper.

One may further object that constructing an anigraf is

labor intensive due to the large number of pairwise com-

parisons needed to fully construct a preference order.

Indeed, prior authors (Frey et al. 2009) have commented on

the associated workload (although Dym, Wood, and Scott

2002, note that pairwise comparisons are ‘‘cheap and

require little detailed knowledge, and are thus valuable in

conceptual design’’, p. 241). Furthermore, the statistical

approach presented here, based on the Poisson distribution,

can be used to perform a power analysis to determine the

total number of pairwise comparisons necessary to estab-

lish a meaningful structure. Thus, it is conceivable that not

all subjects need to perform all pairwise comparisons,

especially since only minimal structural constraints are

necessary to severely limit the likelihood of cyclic pref-

erences. Furthermore, this analysis suggests a compelling

new research agenda for decision-based design: the

empirical elicitation of mental models. Although some

work has been performed in this area (e.g., Ahamed et al.

2016; Doyle and Ford 1998; Moray 1990; Sterman 1994)

little attention has been devoted to the specific interaction

between mental model formation and design decision-

making. A full treatment of this topic is left to future work.

Finally, this paper does not address the question of when

group members should give up trying to find a common

design, such as when their preferences are so divergent that

the best outcome at the level of the group is nevertheless of

very low value to some, or all, group members. Although

outside the scope of this paper, this question is related to

the issue of how to design flexibility into a system such that

it can change its functionality as needed to support multiple

decision-makers, environments, etc. (Broniatowski 2017).

This flexibility often leads to quite complex designs and/or

several rework cycles, although some system architectures

handle this tradeoff better than others (Broniatowski and

Moses 2016). An intriguing direction for future work

would combine this stream of research with the techniques

presented in this paper.

6 Conclusion

In conclusion, there are several novel contributions of this

paper. Its primary contribution is to demonstrate that

adherence to design axioms need not conflict with empir-

ical correspondence. The analysis presented here reduces

the debate between proponents of scientism and praxis to

an empirical question: For this design, does the structure of

the commonly held knowledge allow cyclic preferences?

Similarly, for multi-criteria decision problems, this ques-

tion may be formulated as follows: For this design do the

relationships between design criteria allow cyclic

preferences?

In the theoretical domain, this paper is the first to

examine the extent to which the axiom of unrestricted

domain applies to engineering design outside of the

restrictive context of single-peaked preferences—the only

domain restriction considered in the engineering design
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literature in any depth. Specifically, using a novel simula-

tion technique that builds upon the pioneering work of

Richards and colleagues (Richards et al. 2002; Richards

2015) this paper demonstrates that single-peaked prefer-

ences are overly restrictive. Several different anigrafs

possess structures that are sufficient to avoid top cycles.

In the empirical domain, this paper proposes the use of a

technique that has previously not been applied to engi-

neering design—Trajectory Mapping—to measure the

extent to which empirical data corresponds to axiomatic

coherence. This technique is certainly not the only one that

can accomplish these goals; however, it does indicate that

such a combination is both plausible and feasible. In

addition, this paper is the first to relate the work on mental

models in engineering design to preference orders, thus

connecting two previously disparate bodies of literature.

This work also represents several computational

advances. Specifically, it is the first to use a statistical

technique, based upon the Poisson distribution, to elicit

similarity triples from anigraf extrapolant and interpolant

data. It is also the first to use a model selection approach,

based upon binomial logistic regression, to adjudicate

between multiple anigrafs that are consistent with elicited

triples. Specifically, a training dataset is used to select a

best fitting anigraf whose predicted preference orders are

then compared against a test set of preferences. Using this

technique, which is applied here for the first time to a

multi-criterion decision problem by a group in a technical

domain (selection among smartphones), this paper has

empirically verified that similarity relations are associated

with preference orders, and that strength of preference

varies with knowledge depth.

In conclusion, this paper demonstrates that coherence

and correspondence need not be opposing imperatives in

design. Indeed, an ideal approach would combine elements

of both. Empirical information may be used to augment the

correspondence of decision-based design methods while

still maintaining axiomatic coherence.
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