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assembly. The obtained results show how the new CAT 
simulation tool gives results nearer to reality than literature 
models do.
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1 Introduction

Even though modern manufacturing processes achieve 
an increasingly high accuracy, geometric deviations are 
observable on every manufactured part. Geometric devia-
tions have huge influence on both the function behaviour 
and on the customers’ quality perception of the product 
(Schleich et al. 2014). To control and to manage these geo-
metric deviations along the product life cycle, the first step 
is to consider during the design stage the tolerance specifi-
cation, the tolerance allocation and the tolerance analysis 
(Armillotta and Semeraro 2011).

In the context of Computer-Aided Tolerancing (CAT), 
various models for the representation of dimensions and 
geometric tolerances and for the solution of the tolerance 
chains have been developed, such as vector loop (Gao 
et  al. 1998), variational (Gupta and Turner 1993), matrix 
(Desrochers and Rivière 1997), Jacobian (Clemént et  al. 
1998), torsor (Rivest et  al. 1994; Ledoux and Teissandier 
2013), unified Jacobian-torsor (Desroschers et  al. 2003; 
Ghie 2010), Polytopes (Homri et al. 2015) and the T-Map® 
(Davidson et al. 2002; Ameta et al. 2011). Many commer-
cial CAT software packages support the product develop-
ment in these activities for geometric product specification 
and tolerancing, such as 3-DCS of Dimensional Control 
 Systems®, VisVSA of  Siemens®,  CETOL®, and so on 
(Prisco and Giorleo 2002; Shah et al. 2007). However, there 

Abstract The need of a univocal language for geometri-
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uct life cycle such as design, manufacturing, and inspection 
is inevitable. Most models for Computer-Aided Toleranc-
ing proposed by researchers and used in industry do not 
fully conform with standards. Moreover, most of them 
make severe assumptions on observable geometric devia-
tions and can therefore hardly handle all kinds of 3D toler-
ances. These lacks inspired the idea and the development 
of a discrete geometry framework that is capable of consid-
ering geometric deviations of different stages of the prod-
uct life cycle and is versatile regarding current and future 
tolerancing standards. This work uses a point cloud-based 
geometry representation scheme to implement the pattern 
left on the surfaces by a manufacturing process; then, this 
scheme has been inserted in a variational approach for tol-
erance analysis. Moreover, gravity and friction among the 
parts to assemble have been simulated too. In this way, a 
new Computer Aided Tolerancing (CAT) simulation tool 
has been developed; it approaches reality more than exist-
ing software packages do. To verify the effectiveness of the 
new CAT simulation tool, it has been applied to two case 
studies. The obtained results have been compared with 
those due to a geometrical model that has been developed 
by simulating what happens among the parts in the actual 
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is a growing interest in considering working conditions and 
operating windows in CAT (Anselmetti et al. 2010). These 
computer models for tolerance simulation and analysis 
make severe simplifications about observable geometric 
deviations, since they are reduced to rotational and transla-
tional feature defects (Polini 2012; Ameta et al. 2011). This 
leads to results with large ranges of uncertainty and a dis-
crepancy between the virtual models and the observed real-
ity (Charpentier et al. 2012). Furthermore, the tolerancing 
tasks in design as well as all other activities of geometric 
variations management should be incorporated in a com-
plete and coherent tolerancing process (Mathieu and Ballu 
2007; Dantan et  al. 2003). As a response to these needs, 
Skin Model concept was proposed (Schleich et  al. 2014; 
Schleich and Wartzack 2015). It is a model of the physi-
cal workpiece surface in contrast to the nominal model that 
is a “simple” model of the intended workpiece not taking 
into account inevitable geometric deviations (Schleich et al. 
2014).

The research contribution of this paper is to show how to 
modify the variational tolerance analysis model of the liter-
ature to include the manufacturing signature and the assem-
bly conditions, such as gravity and friction. The present 
paper connects a skin model scheme to a manufacturing 
process, in order to bring closer the CAT simulation tools 
to reality. The discrete geometry framework of the skin 
model has been represented by the pattern left on a surface 
by a manufacturing process. The manufacturing process 
leaves a pattern on the manufactured surface; this pattern 
is a geometrical correlation among the neighbouring points 
on the manufactured surface that is called signature; it has 
been inserted in the framework of the skin model.

To demonstrate the effectiveness of considering manu-
facturing signature, the variational skin model has been 
applied to a case study made up of three parts: a rigid box 
and two profiles that fit within it. The case study has been 
chosen simple to be solved manually, but representative 
since it allows to consider both dimensional and geomet-
rical tolerances applied to the same profile. The obtained 
results have been compared with those due to the use of 
the variational model of the literature. To verify the results 
obtained in this way, since the experimental validation is 
not compatible with the 2D nature of the case study, a geo-
metrical model has been developed. It numerically repro-
duces what happens in the actual assembling, and it has 
been considered as the reference case. It adopts a point 
cloud-based geometry representation scheme. Finally, to 
validate the methodology used and applied to a simple 2D 
case study, a 3D case study has been considered for a fur-
ther validation.

Matlab® and  Minitab® software packages have been 
used to carry out the tolerance analysis and the statistical 
analysis of the obtained results, respectively.

The paper is organized as follows: in Sect. 2, the modi-
fied variational model with manufacturing signature has 
been implemented on a 2D case study. In Sect.  3, the 
numerical validation is described by means of a geomet-
rical approach with and without considering the manu-
facturing signature. In Sect.  4, the results are compared 
and discussed. Finally, in Sect. 5, a final validation of the 
methodology developed in previous sections is applied on 
a 3D case study.

2  Variational model with manufacturing 
signature

The variational model proposed in (Marziale and Polini 
2010; Polini 2016) has been considered and implemented 
in this study. The basic idea of a variational model is to 
represent the variability of an assembly, due to the tol-
erances and the assembly conditions, through a set of 
parameters of a mathematical model.

To create an assembly, the designer has to define the 
nominal shape and the dimensions of each assembly 
component (these information are usually contained in 
CAD files). Then, the designer identifies the features of 
each component which affect the functional requirements 
(functional features) and the designer assigns the dimen-
sional and geometrical tolerances to them. Each feature 
has its local Datum Reference Frame (DRF), while each 
component and the whole assembly have their own global 
DRF. In nominal condition, the homogeneous transfor-
mation matrix (called TN) that allows to pass from a DRF 
to another is known. When real features are machined, 
they depart from nominal (see Fig. 1). Assuming that real 
features maintain their nominal form (i.e. form deviations 
are neglected), the location of a real feature deviates from 

Fig. 1  Nominal, real and substitute features



531Res Eng Design (2017) 28:529–544 

1 3

nominal, and this deviation is expressed by parameters 
that constitute a differential homogeneous transformation 
matrix DT. To pass from the global DRF of the part i (Ri) 
to the local DRF of a feature j of part i (Rij), it is enough 
to multiply the two matrices:

where TRi→Rij is the total transformation matrix to pass from 
the global DRF of the part i to the local DRF of feature j 
of part i; TNRi→Rij is the nominal transformation matrix to 
pass from the global DRF of the part i to the local DRF of 
feature j of part i; DTRij is the differential transformation 
matrix of the feature j of part i.

If a feature may not be directly referred to the global 
DRF, it is reported to it through a chain of features. To cal-
culate the total matrix, it is enough to make the product of 
the single contributions as shown in Fig. 2 that is valid for 
the case of two transformations.

Once modelled the variability of the components, they 
have to be assembled together. The relative location of the 
parts is expressed by means of parameters (that are called 

(1)TRi→Rij = TNRi→Rij × DTRij

small kinematic adjustments) which constitute the differ-
ential homogeneous transformation matrix DA (the trans-
formation matrix is indicated by the letter A = assembly to 
distinguish it from the matrix DT that is for the part). The 
total transformation to pass from the global DRF of part i 
(Ri) to the global DRF of part l (Rl) is simply obtained by 
means of the following equation (see Fig. 3):

where ARi→Rl is the assembly matrix between part i and part 
l, ANRi→Rl is the assembly matrix between part i and part l 
in nominal condition, DARi→Rl is the differential assembly 
matrix between part i and part l, DARij

→Rlk
 is the differen-

tial assembly matrix between the feature j of part i and the 
feature k of part l, TNRi→Rij is the nominal transformation 
matrix to pass from the global DRF of part i to the local 
DRF of feature j of part i, DTRij is the differential transfor-
mation matrix of feature j of part i, DTRlk is the differential 
transformation matrix of feature k of part l, and TNRl→Rlk is 
the nominal transformation matrix to pass from the global 
DRF of the part l to the local DRF of feature k of part l. 
The differential assembly matrices DARi→Rl and DARij

→Rlk
 

are hard to evaluate, since they depend by both the toler-
ances, that are applied to the components in contact, and 
the assembly conditions.

Some are the works in the literature to evaluate these dif-
ferential matrices. A strategy is to model the join between 
the coupled parts by reconstructing the coupling sequence 
between the features (Li and Roy 2001). Another possibil-
ity is to impose some analytical constraints on the assembly 
parameters (Bernam 2005). The idea of this work is to use 
the manufacturing signature and the operating conditions 
to estimate the form parameters of the differential matri-
ces. When all the transformation matrices are obtained, it is 

(2)
ARi→Rl = ANRi→Rl × DARi→Rl

= TNRi→Rij × DTRij × DARij→Rlk

× DT
−1
Rlk

× TN
−1
Rl→Rlk

Fig. 2  Model of a stack-up function in a part

Fig. 3  Model of a stack-up 
function between two parts
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possible to express all the features in the same global DRF 
of the assembly (R); then, the functional requirements on 
the assembly can be modelled. They appear as:

where FR is a functional requirement of the assembly, p1,…
,pn are the model parameters, and f is the stack-up function 
(that is usually not linear) in the model parameters.

In order to illustrate how the manufacturing signature 
and the operating conditions may be inserted inside the 
variational model, a simple assembly composed of three 
parts and a synoptic scheme to highlight the procedure are 
shown in Figs. 4 and 5, respectively. Part 1 is a hollow rec-
tangular box. Parts 2 and 3 are two circular profiles that fit 
within it. A two-dimensional tolerance analysis has been 
carried out, and the circular profiles have been considered 
with and without considering the manufacturing signature. 
The gravity and the friction have been considered during 
the assembly of the circular profiles with the box. The aim 
is the measurement of the gap g between the second circu-
lar profile and the top side of the box as a function of the 
tolerances applied to the components.

The manufacturing signature due to a turning process 
has been represented by means of an autoregressive (AR) 
moving-average (MA) model with exogenous (X) variable 
(ARMAX model), as proposed in (Moroni and Pacella 
2008), where the manufacturing signature was mainly 
affected by both bi-lobe and three-lobe contours, as shown 

(3)FR = f
(

p1, p2,… , pn
)

in Fig.  6. This model combines a harmonic term, that 
stands for the systematic pattern left by the turning process 
on the manufactured surface, with a second-order autore-
gressive of the noise term, that represents the random con-
tribution that may not be expected. Therefore, the paramet-
ric model of the identified process signature is given by:

where t = 1,2,…, N represents the index of data points in 
the sampled profile, B is the backshift operator, N is the 
number of equally spaced points measured on that profile. 
For each index t, Yt represents the radial distance between 
the actual point and the least square substitute circle, meas-
ured at angular position θt = 2πt/N. Each term of the first 
part of Eq. (4) represents the ith harmonic (i = 2, 3), charac-
terized by i undulations per revolution, by an amplitude 
equal to 

√

2∕N
(

b2
2i−1

+ b2
2i

)

 and by a phase equal to 

(4)

Y
t
=

√

2

N

3
∑

i=2

[

b
2i−1 ⋅ cos

(

i ⋅ t ⋅ 2 ⋅ �

N

)

+b
2i
⋅ sin

(

i ⋅ t ⋅ 2 ⋅ �

N

)]

+
1

1 − a
1
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2
B2

⋅ �
t

Fig. 4  Case study (all dimensions and tolerances are in mm)

Fig. 5  Scheme of the new point cloud variational model with operat-
ing conditions
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tan−1
(

b2i∕b2i−1
)

. The constant term 
√

2∕N is introduced to 
use normalized harmonic predictors. The parametric model 
in Eq. (4) is a special case of a general ARMAX model and 
assumes that the signature may be modelled as a weighed 
combination of independent predictor variables that are 
assumed known and constants. The parameters’ vector in 
Eq.  (4) forms a stochastic vector that has a multivariate 
normal distribution with the mean vector and the vari-
ance–covariance matrix, respectively, reported in Table 1. 
The term εt in Eq.  (4) was modelled as Gaussian white 
noise with standard deviation equal to 0.374 µm.

The gap g has been evaluated by means of the following 
analytical equation, while all the details to obtain the equa-
tion are reported in “Appendix”:

(5)

g = 40 − r
1
− r

2
− dA − dE

−

√

(

dC + r
1
+ r

2
+ 40

)2

−
(

dB + dD + r
1
+ r

2
− 10

)2

where r1 and r2 are the model parameters, due to the 
dimensional tolerance, of the first and second circular pro-
file, respectively,  di is the model parameters due to the form 
tolerance applied to the points i = A, B, C, D and E of two 
circular profiles in Fig. 4.

This variational model has been modified to insert the 
manufacturing signature and the operating conditions. To 
do so, at first the developed approach generates two nom-
inal circular profiles to insert into the hollow rectangular 
box. The circular profiles are constituted by a set of evenly 
distributed points, as shown in Fig.  7. The amplitude of 
this set is equal to 7150, since this value ensures to reach 
a g-gap equal to the nominal value (1.2702 mm) when the 
circular profiles are considered nominal. Moreover, this 
value seems to be large enough to simulate the assembly 
without numerical simulation being too slow. To each 
point of the circular profile, the following model has been 
applied:

where Pi is the generic point of the circular profile, O is the 
centre of the circle, R is the nominal value of the radius of 
the circular profile, r is the value due to the dimensional 
tolerance applied to the circular profiles, and d is the value 
due to the manufacturing signature represented by means 
of the ARMAX model. The r parameter has a Gaussian 
density function with mean value equal to zero and stand-
ard deviation equal to a sixth of the dimensional tolerance 
range.

Once the circular profiles are generated, the first step of 
assembly is to insert the first circular profile into the hollow 
rectangular box. The developed model takes the first gener-
ated circular profile and casually rotates it. Then, it analy-
ses the x and y coordinates of the points forming the first 
circular profile to identify the points of contact with the 
bottom and the left sides of the box (A and B in Fig. 8a). 
Finally, the model brings the first circular profile into con-
tact with the box in the identified points of contact.

The second step of the assembly is to insert the second 
circular profile into the box. The developed model takes the 
generated second circular profile and randomly rotates it. 
Then, it analyses the x and y coordinates of its points to 

(6)|

|

Pi − O|
|

= R + r + d
Fig. 6  Comparison between a nominal circular profile and bi-lobe 
and tri-lobe profiles

Table 1  ARMAX model 
parameters b̄

3
b̄
4

b̄
5

b̄
6

ā
1

ā
2

(a) −0.0341 0.0313 0.0080 −0.0322 0.3714 0.2723
(b) 0.0004 −0.0002 0.0001 0 0.0001 0.0003

−0.0002 0.0004 0.0001 0 0.0001 −0.0002
0.0001 0.0001 0.0002 0 0.0001 0
0 0 0 0.0003 0.0003 0.0003
0.0001 0.0001 0.0001 0.0003 0.0072 0.0012
0.0003 −0.0002 0 0.0003 0.0012 0.0036
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identify the contact point with the right side of the box (D 
in Fig. 8a). To search the contact point with the first circular 
profile, the model identifies the zones on the two circular 
profiles where the probability of contact is the highest (they 
are called contact zones and are shown in Fig. 8a). Then, it 
calculates the distance between each couple of faced points 
that have the same x-coordinate on the two contact zones. 
The minimum distance (called  dmin in Fig. 8a) identifies the 
couple of points that are the contact points between the two 
circular profiles. Therefore, all the points of the second cir-
cular profile are shifted to the minimum distance along the 
y-axis to bring the second circular profile into contact with 
the first circular profile just inserted in the box, as shown in 
Fig. 8b. The number of points equally distributed on each 
profile, influences the search of the contact point between 
the circular profiles. In fact, larger the number of points, 
more accurate the searching of the contact will be between 
the circular profiles, but larger the number of points, longer 
the simulation time. However, 7150 points seem to be a 
good compromise.

Once assembled, the developed model evaluates the 
stability of the circular profiles’ positions by taking into 
account the effect of the gravity on the circular profiles 
and the effect of the friction force on the contact points. 

If the direction of gravity force is oriented downwards 
(−y-axis), this analysis can be considered as a static equi-
librium. The system of forces that has to be equilibrated 
is composed by weight force, reaction force, and friction 
force applied to the points of contact among the circu-
lar profiles and the box. Therefore, to solve the balance 
it is necessary to translate the effect of those forces into 
terms of assembly specification. The general position of 
each circular profile is unstable if the friction force, due 
to the vectorial composition of the weight and the reac-
tion forces, is close to the normal vector on the wall of 
the box. The angles of tilt between the reaction forces and 
the normal vectors are the βi angles. If those angles’ val-
ues remain smaller than the friction limit angle, the circu-
lar profile’s position is stable. Otherwise, if the values of 
βi become larger than the friction limit angle, the circu-
lar profile rotates until the values become smaller. From 
Fig. 9, it is possible to see that the values of those angles 
and of variable g are a function of the assembly param-
eters α1 and α2 (i.e. of the random angles chosen for the 
rotation of the profiles to be assembled in the box) and 
of the values due to the dimensional and form tolerances.

Therefore, it is possible to know the stable and unstable 
positions of the two profiles under the action of the gravity 

Fig. 7  Discretization of the two circular profiles
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force and the range of variability of the objective function 
g. To do this, the following hypotheses have been adopted 
to simplify the analysis:

•	 The friction between the parts is a static friction type. 
In this way, dynamic effects are ignored. Its action is 
expressed by means of the friction limit angle φst. Gen-
erally, this value is given by the material nature of the 
surfaces in contact. If the parts are made of steel which 
is a material typically machined by turning without con-
sidering a lubricant, the realistic values of the friction 
limit angle are 1.5°–2.5°.

•	 The inertial effects are ignored; when a position 
becomes unstable, the first stable position has been 
reached without overcoming it due to the inertial effect.

•	 The positioning of the second profile depends on the 
positioning of the first profile.

Once verified that the positions of the two circular 
profiles are stable, the value of the form deviation of the 
actual points of contact among the two circular profiles 
and the box have been obtained. The values of the param-
eters di of the points of contact have been substituted into 
Eq.  (5). The value of R remains equal to 20  mm, while 
r is still a random variable following a Gaussian prob-
ability density function with means equal to 0  mm and 

Fig. 8  Approach to bring the two circular profiles into contact: a contact zone and minimum distance between two circular profiles; b contact in 
C point

Fig. 9  Tilt angles of the two circular profiles
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standard deviation equal to one-sixth of the dimensional 
range. The value of the g gap is estimated using Eq. (5).

Moreover, the case study has been solved also with 
the classical variational method of literature shown in 
Eq.  (5) by means of a statistical approach that consid-
ers the model parameters as statistical independent vari-
ables following Gaussian probability density functions. 
The value of R remains equal to 20 mm, while r1, r2 and 
di are random variables following a Gaussian probability 
density function with means equal to 0 mm and standard 
deviation equal to one-sixth of the dimensional and form 
tolerance respectively, as shown in Fig. 4.

3  Numerical validation

To verify the results obtained by means of the proposed 
model, a geometrical model has been developed for the 
case study. It numerically reproduces what happens in 
the actual assembling.

The geometrical model, which has been developed in 
the  Matlab® environment, starts by generating two cir-
cular profiles with the manufacturing signature. Those 
circular profiles are randomly rotated and they are 
assembled into the box by means of the actual points of 
contact, as done in the previous paragraph. Once verified 
that the positions of the two circular profiles are stable, 
by taking into account the weight and the friction forces 
applied to the circular profiles, as done in the previous 
paragraph, the value of the g gap is estimated as the dis-
tance between the upper side of the box and the top side 
of the circular profile. An example of the profiles gener-
ated in this case is shown in Fig. 9 where it is possible to 
see the typical form of profiles, when the manufacturing 
signature is applied on them, and the evaluation of the βi 
angles as done in the previous paragraph.

The same geometrical approach has been applied 
without considering the manufacturing signature either. 
In this case, the approach assigns to the parameter d of 
Eq. (6) a Gaussian distribution with mean equal to zero 
and standard deviation equal to a sixth of the form toler-
ance (six-sigma approach). In this approach, the points 
of the two profiles vary independently from each other 
thus generating a sudden oscillation of the profiles. An 
example of the circular profiles generated in this case is 
shown in Fig. 10.

4  Results comparison and discussion

Monte Carlo simulation has been carried out by imple-
menting 50,000 runs; this value has been chosen after 

performing a sensitivity analysis. In particular, the sen-
sitivity analysis has been carried out on all models by 
varying the number of Monte Carlo simulations and con-
sidering a scale factor F = 1. The results about the stand-
ard deviations due to the sensitivity analysis are shown in 
Fig. 11. It is evident that results are very stable if 50,000 
runs of Monte Carlo simulation are carried out.

Four factors F (1, 10, 50 and 100) have been used to 
scale the applied tolerance ranges in order to have four 
sets of geometrical conditions. Factor 1 involves the tol-
erance ranges of Fig. 4, while factor 10 implies tolerance 
ranges ten times larger, factor 50 implies tolerance ranges 
fifty time larger and so on.

The normality of the obtained distributions of the gap 
g has been evaluated by means of Anderson–Darling test. 

Fig. 10  Example of circular profiles without manufacturing signature 
(amplified 100 times)

Fig. 11  Results of the standard deviations due to the sensitivity anal-
ysis by considering a scale factor F = 1 in all models
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The results are reported in Table 2 for variational models 
and in Table 3 for geometrical models, together with mean 
and standard deviation, Skewness, Kurtosis and simulation 
time. Table 4 shows the values of the mean and the stand-
ard deviation for the considered models together with the 
simulation time involved by them.

The results of Tables 2 and 3 show that increasing the 
tolerance ranges, when the scale factor F passes from 1 
to 100 and involves a decrease of the mean value and an 
increase of the standard deviation of the g gap. Even, the 

geometric model without manufacturing signature (model 
2 in Table 3) reaches a negative mean value of the g gap, 
when F is equal to 100. This ongoing is due to the fact that 
when the tolerance ranges increase, the sudden oscillation 
of the circular profiles makes the point of contact between 
the circular profiles move to the peak; the next effect is 
the shift of the second circular profiles towards the upper 
side of the box up until exiting from the box. This aspect is 
shown in Fig. 10.

Table 2  Simulation results of variational model (50,000 runs)

Model F Mean (mm) Standard 
deviation 
(mm)

A-squared p value Skewness Kurtosis

3 Variational model WITHOUT manufacturing signature 1 1.2701 0.0143 0.470 0.247 0.004 −0.039
10 1.2693 0.1447 0.350 0.467 0.015 0.023
50 1.2713 0.7250 0.420 0.320 0.009 0.015

100 1.2707 1.4467 0.470 0.249 0.029 0.025
4 Variational model WITH manufacturing signature 1 1.2701 0.0177 0.430 0.307 0.011 −0.038

10 1.2690 0.1783 0.830 0.033 −0.014 −0.026
50 1.2400 0.8920 0.640 0.098 −0.001 −0.024

100 1.1400 1.7663 2.000 <0.005 0.054 −0.022

Table 3  Simulation results of geometrical model (50,000 runs)

Model F Mean (mm) Standard 
deviation 
(mm)

A-squared p value Skewness Kurtosis

1 Geometrical model WITH manufacturing signature 1 1.2699 0.0177 1.870 <0.005 −0.013 −0.057
10 1.2693 0.1773 0.280 0.653 −0.018 −0.018
50 1.2557 0.8887 1.220 <0.005 0.004 −0.061

100 1.2153 1.7757 1.180 <0.005 0.004 −0.061
2 Geometrical model WITHOUT manufacturing signature 1 1.2533 0.0160 102.28 <0.005 0.017 −0.072

10 1.0571 0.1583 0.380 0.401 0.015 0.010
50 0.0830 0.7767 0.700 0.068 0.010 0.059

100 −1.185 1.5307 0.870 0.025 0.027 0.055

Table 4  Comparison among models (50,000 runs)

Model F Mean (mm) Standard deviation 
(mm)

Simulation time

1 Geometrical model WITH manufacturing signature 1 1.2699 0.0177 3 h
10 1.2693 0.1773

2 Geometrical model WITHOUT manufacturing signature 1 1.2533 0.0160 2,5 h
10 1.0571 0.1583

3 Variational model WITHOUT manufacturing signature 1 1.2701 0.0143 19 s
10 1.2693 0.1447

4 Variational model WITH manufacturing signature 1 1.2701 0.0177 3 h
10 1.2690 0.1783
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The mean value of the gap g due to the variational model 
without and with manufacturing signature (models 3 and 4 
in Table 2) is very near to the nominal value of 1.2702 mm 
for both the values of F factor (1 and 10). The same thing 
happens comparing the geometrical approach with manu-
facturing signature (model 1 in Table 3) with the nominal 
value for the same values of F factor mentioned previously.

The geometrical approach without manufacturing signa-
ture (model 2) carries out a mean value of the gap that is 
significantly lower than the nominal value, for both the val-
ues of the F factor (1 and 10). The standard deviation of the 
gap g due to the variational model with manufacturing sig-
nature (model 4) is very near to that due to the geometrical 
approach with manufacturing signature (model 1) for both 
the values of F factor (1 and 10). It happens because the 
two models use the same method to find the actual points 
of contact among the components during the assembly, 
and they consider in the same way both the weight and the 
friction forces. Models 2 and 3 give values of the stand-
ard deviation that are significantly lower than those due to 
model 1:

since those models consider nominal contact points among 
the components during the assembly and they do not take 
into account the weight and the friction forces. Model 4 
gives values of the standard deviation of the g gap that are 
nearest to model 1:

These results are testified by the Levene test that has 
been carried out on the results (see Fig. 12).

The boxplots of Fig. 13 show results of the measured gap 
g for all the models (model 1 is the geometrical approach 
with manufacturing signature, model 2 is the geometrical 
approach without manufacturing signature, model 3 is the 
variational model without manufacturing signature, and 

(7)

model 2:
�2 − �1

�1

⋅ 100 = −9.6% (F = 1) and − 8.7% (F = 10)

(8)

model 3:
�3 − �1

�1

⋅ 100 = −19.2% (F = 1) and − 16.5% (F = 10)

(9)

model 4:
�4 − �1

�1

⋅ 100 = 0% (F = 1) and 0.6% (F = 10)

Fig. 12  Tests for equal vari-
ances
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model 4 is the variational model with manufacturing signa-
ture) and for the two scale factors. The same figure reports 
the nominal value of the gap g (equal to 1.2702 mm), the 
boxplots of the gap g as a result of the Monte Carlo simula-
tions and the tolerance range due to the worst case approach 
(classical approach in tolerance analysis). All the four mod-
els give a distribution of the gap g completely contained 
inside the worst case tolerance range.

Models 1, 2 and 4 have comparable simulation times that 
are 600 times higher than the time required for simulation 
3. In particular, the model 3 appears a good choice in terms 
of simulation time, if it is possible to neglect a decrease 
of about 19% in the estimation of gap g. It is evident that 
model 4 is the nearest to reference model 1.

5  Final validation on a 3D case study

To validate the used methodology a further 3D case study 
has been considered. The considered 3D case study is 
constituted by three components: a hollow box and two 
spheres, as shown in Fig. 14. The aim is the measurement 
of the gap g between the upper sphere and the top side of 
the box as a function of the tolerances applied to each com-
ponent. The manufacturing signature on each sphere has 
been represented by means of a Simultaneous Autoregres-
sive Model of first-order SAR(1). Traditional time series 
models, as the ARMAX model adopted in the 2D case, 
can represent correlation only along a single direction. The 
SAR(1) model instead can consider the spatial structure of 
the lattice defined by the triangulation of the points on the 
surface of the sphere at their nominal coordinates to gen-
erate a spatially correlated set of deviations from perfect 
sphericity.

In a SAR(1) model, the deviations from perfect spheric-
ity are simulated by means of the following equation:

where I is the identity matrix, G is a weight matrix and 
ε ~ N(0,σ2I) is a white noise with σ is equal to 0.0024 mm. 
In particular, G = ρW, where ρ is a correlation coeffi-
cient. Higher values of ρ denote a higher degree of spatial 

(10)d = (I − G)−1�

Fig. 13  Boxplots of the obtained results (average value ± 3 estimated 
standard deviation)

Fig. 14  3D case study (all dimensions and tolerances are in mm)
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correlation among nearby points. Its value is 0.9. W is a 
neighbourhood matrix defined based on the triangulation of 
the points on the surface of the sphere. In particular,

in which dij is the Cartesian distance between the Pi and 
the Pj points of the sphere, and Iij is an indicator variable, 
which denotes whether points i and j are neighbours, that is

The gap g has been evaluated by means of the follow-
ing analytical equation:

 where r1 and r2 are the model parameters, due to the 
dimensional tolerance, of the first and second spheres, 
respectively, di is the model parameters due to the form tol-
erance applied to the points i = A, B, C, D, E, F and G of 
two spheres in Fig. 14. Equation (13) was obtained with the 
same approach reported in “Appendix” and used on the 2D 
case study but considering the third dimension in the equa-
tions of features and constraints.

This variational model has been modified to insert the 
manufacturing signature. To do so, at first the developed 
approach starts by generating spheres. Each sphere has 
been simulated by a set of evenly distributed points. The 
amplitude of this set is equal to 235,822. To each point of 
the sphere, it has been applied the model of Eq. (6). Also 
in this case, Pi and O are the generic point and the cen-
tre of the sphere, R is the nominal value of the radius of 
the sphere, r is the value due to the dimensional tolerance 
applied to the sphere, and d is the value due to the manu-
facturing signature represented by means of the SAR(1) 
model. The r parameter has a Gaussian density function 
with mean value equal to zero and standard deviation 
equal to a sixth of the dimensional tolerance range.

Once the spheres are generated, these spheres are ran-
domly rotated around the Xi, Yi and Zi axes of a reference 

(11)Wij =

Iij

dij

Σk

Ikj

dkj

(12)Iij =

{

1, if point i and j belong to a same triangle

0, otherwise

(13)

g = 1.2702 −
[

dA + r
1
+ (3200 + 60dB + 40dc

− 40dE + 60dF + 100r
1
− 40dB − 40dC

+ 80dD1 + 80dD2 + 100r
2
+ 2dD1dD2 − 2dBr1

− 2dCr1 + 2dD1r1 + 2dD2r1 + 2dD1r2 + 2dD2r2

+ 40
(

dc + r
1

)

− 40
(

−dB − r
1

)

+ 2r
1
r
2

− dB
(

−2dB − 2r
1

)

+ dC
(

2dc + 2r
1

)

+ r
1

(

2dc + 2r
1

)

− r
1

(

−2dB − 2r
1

)

− d2
B
− d2

C
+ d2

D1
+ d2

D2
− r2

1

+ r2
2
−
(

dc + r
1

)2

−
(

+dB + r
1

)2

− 1700)0.5 − 58.73]

− 20 − r
2
− dG

system that is placed in the centre of gravity of each sphere 
that has been calculated by the arithmetic mean of all the 
points’ coordinates. Then, an absolute X–Y–Z reference 
system is placed at the intersection among the left, the back 
and the bottom sides of the box, as shown in Fig. 14. The 
coordinates of the points constituting the first sphere are 
analysed, and then the first sphere is brought into contact 
with the bottom, the left and the back sides of the box (A, 
B, C in Fig. 14).

Therefore, the coordinates of the points constituting the 
second sphere are analysed to identify the points of contact 
with the sides of the box, for example with the right and 
the back sides of the box (F and E in Fig.  14). To iden-
tify the point of contact with the first sphere, the zones on 
the spheres, where the probability of contact is the highest, 
are defined. They are a surrounding of the nominal point of 
contact. Then, the couples of faced points have been identi-
fied, as those points having the same x and z coordinates on 
the two contact zones. The minimum distance between each 
couple of faced points (called dmin in Fig. 15a) defines the 
couple of points that are the points of contact between the 
two spheres. All the points of the second sphere are shifted 
by the minimum distance along Y-axis to bring the second 
sphere into contact with the first sphere just inserted in the 
box, as shown in Fig. 15b. Once assembled, it is evaluated 
if the general position of each sphere is stable. The condi-
tion of balance among the forces is expressed by requiring 
that they pass through the same point. Therefore, consider-
ing the weight force applied in the centre of gravity of the 
clouds  (G1 and  G2 in Fig. 15b), the reactions are applied to 
the points of contact and they are directed towards the cen-
tre of gravity of the sphere. The angles among these reac-
tions and the normal vectors to the surfaces are β1, β2, β3, 
β4, β5, β6, as shown in Fig.  15b. These six angles should 
have a value smaller than the static friction limit angle in 
order to have a stable position of the sphere as explained in 
Sect. 2. Once verified that the positions of the two spheres 
are stable, the coordinates of the contact points are trans-
formed into coordinates associated with the DRF of each 
sphere. Then, they are used to enter inside the array of 
the generated point cloud to read the corresponding form 
deviations. The values of the model parameter of the points 
of contact have been substituted into Eq. (13). Finally, the 
value of the gap g is estimated as the distance between 
the upper side of the box and the top side G of the second 
sphere.

The 3D case study has been solved also with the clas-
sical variational method of literature shown in Eq. (13) by 
means of a statistical approach that considers the model 
parameters as statistical independent variables following 
Gaussian probability density functions. The values r1, r2 
and di are random variables following a Gaussian probabil-
ity density function with means equal to 0 mm and standard 
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deviation equal to one-sixth of the dimensional and form 
tolerance, respectively, as shown in Fig. 14.

Also in this case, a geometrical model has been devel-
oped for the 3D case study. The geometrical model starts 
by generating two spheres with the manufacturing sig-
nature. Those spheres are randomly rotated, and they are 
assembled into the box by means of the actual points of 
contact. Once verified that the positions of the two spheres 
are stable, by taking into account the weight and the fric-
tion forces applied to the circular profiles, the value of the 
g gap is estimated as the distance between the upper side of 
the box and the top side of the sphere.

Monte Carlo simulation has been carried out by imple-
menting 10,000 runs and considering only a scale factor 
F = 1. The results are reported in Table  5 together with 
mean, standard deviation, Skewness, Kurtosis and simu-
lation time.

All the three models give a distribution of the gap g 
completely contained inside the worst case tolerance 
range (1.2702 ± 0.0997). The normality of the obtained 
distributions of the gap g has been evaluated by means of 
Anderson–Darling test. The variational model with man-
ufacturing signature is very near to the geometrical model 
in terms of both mean value and standard deviation. The 
variational model overestimates slightly the mean value 
of the gap g, even if it is negligible. It underestimates the 

standard deviation of about 13% because the variaional 
model does not take into account the correlation among 
the points of the spheres.

The geometrical model and the variational model with 
manufacturing signature have comparable simulation 
times (108,000  s) that are significantly higher than the 
time required for simulation the variational model (few 
seconds). Therefore, this last one appears a good choice 
in terms of simulation time, if it is possible to neglect a 
decrease of about 13% in the estimation of gap g.

6  Conclusions

The first effort of this work was to integrate the manu-
facturing signature in a model of the literature for toler-
ance analysis: the variational one, in order to bring closer 
a CAT simulation tool to reality. The second effort was 
to develop a geometrical model to simulate the assem-
bly of parts with geometrical deviations that are corre-
lated according to the manufacturing process signature, 
in such a way to satisfy the Geometric Dimensioning and 
Tolerancing (GD&T) standards, and in the presence of 
the agents operating during the assembly, such as friction 
and gravity.

Fig. 15  Approach to bring the 
two spheres into contact: a con-
tact zone and minimum distance 
between two circular profiles; b 
tilt angles of the two spheres
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On the 2D case study, the results show that the vari-
ational model with the manufacturing signature and the 
operating conditions allows to better reproduce the actual 
assembling of machined circular profiles in the presence 
of weight and friction forces. In fact, the mean value and 
the standard deviation of this model are statistically equal 
to those of the geometrical approach that considers the 
manufacturing signature and the operating conditions. 
The variational model of literature without the manu-
facturing signature underestimates the tolerance range 
of the gap g by about 19%, even if its simulation time is 
only 19 s. The geometrical approach without manufactur-
ing signature does not reproduce what happens in real-
ity; it is due to the rapid variation of the discretized pro-
files, due to the considered Gaussian distributions of the 
dimensional and geometrical deviations. The variational 
model has a general structure that may be easily applica-
ble to any kind of assemblies by requiring a short com-
putational time, at the same time guaranteeing a good 
agreement with the reference geometrical model. The 
geometrical model, that has been built to validate the var-
iation model with and without manufacturing signature 
and operative conditions, requires a consistent modelling 
effort and cannot be easily implement in CAT software.

Same conclusions have been obtained on the 3D case 
study as a further validation of the methodology used.

This work represents a first step towards the integra-
tion of design and manufacturing, since it tries to inte-
grate in a design tool, such as the tolerance analysis, a 
typically manufacturing signature, an innate property of 
every manufacturing process that characterizes the cor-
relation among the points of the same profile. The man-
ufacturing signature and the operating conditions may 
influence the tolerance range of the functional require-
ment drastically also in simple case studies as those used 
in this work. The drawback of all the models that involves 
the manufacturing signature and the operating conditions 
is the simulation times, which may be overcome by paral-
lel computing techniques, which are currently object of 
further study.

Acknowledgements This research received no specific Grant from 
any funding agency.

Appendix

The linear features of the box have been called L1, L2, L3, 
and L4, while C1 and C2 are the two circular profiles. The 
DRFs (Datum Reference Frame) assigned to the features of 
the parts and to the whole assembly are shown in Fig. 16. 
The assembly DRF is the global DRF of the box. It is pos-
sible to evaluate the nominal transformations matrices that 

allow passing among the different DRFs and, giving the 
model parameters, evaluating the differential transforma-
tion matrices to pass from the nominal local DRF to the 
local real DRF. In a previous work, all differential trans-
formation matrices were presented in detail (Polini and 
Moroni 2015). Consequently, it is possible to evaluate the 
equations of the features in the DRF of the part. The equa-
tions of the features are:

where rzi and tyi are the rotation and the translation param-
eters of the generic side Li of the box measured in theirs 
DRF, respectively, R1 and R2 are the nominal values of 
the circular profiles’ radius. The model parameters, due to 
the dimensional tolerance, of the first and second circular 
profiles are r1 and r2, respectively,  d1 and  d2 are the model 
parameters due to the form tolerance applied to the points 
A, B, C, D and E of two circular profile. (O12X, O12Y) and 
(O13X, O13Y) are the centres nominal coordinates of two cir-
cular profiles. ΔX12 and ΔY12 are the assembly parameters 
of the first profile on the rectangular box, and ΔX13 and 

(14)L1: − rz1X + Y +
(

25rz1 − ty1
)

= 0

(15)L2: − X − rz2Y +
(

50 − ty2 + 40rz2
)

= 0

(16)L3:rz3X − Y +
(

80 − ty3 − 25rz3
)

= 0

(17)L4:X + rz4Y −
(

40rz4 + ty4
)

= 0

(18)
C1:

(

X − ΔX12 − O12X

)2
+
(

Y − ΔY12 − O12Y

)2
=
(

R1 + r1 + d1
)2

(19)
C2:

(

X − ΔX13 − O13X

)2
+
(

Y − ΔY13 − O13Y

)2
=
(

R2 + r2 + d2
)2

Fig. 16  Local and global DRFs and features



543Res Eng Design (2017) 28:529–544 

1 3

ΔY13 are the assembly parameters of the second profile on 
the previous parts.

The assembly issue is solved by applying the assembly 
conditions to the obtained expressions of all the features in 
the global DFR. The functional requirement is evaluated 
between the feature L3 of the box and the feature C2 of pro-
file 2, as shown in Fig. 4. Profile 1 is assembled to the box 
by means of two constraints of the cylinder slider type: the 
first between the feature C1 and the feature L1, and the sec-
ond between the feature C1 and the feature L4. For this type 
of constraint, the related mathematical expression is (Polini 
and Moroni 2015):

Therefore, the two equations of constraint are:

By solving system of Eqs. (21)–(22), it results:

which are the solutions of the assembly problem 
between profile 1 and the box.

The profile 2 is assembled on the subassembly box-
profile 1 by means of a constraint of cylinder slider type 
between the feature C2 and the feature L2 and by means of 
a constraint of cylinder–cylinder type between the features 
C2 and C1. For this last constraint, the assembly equation is:

Therefore, the two equations of constraint are:

(20)nxtx + nyty + cxnx + cyny + c − (d + r) = 0

(21)
C
1
− L

1
: − rz1

(

ΔX
12
+ 20

)

+
(

ΔY
12
+ 20

)

+
(

25rz1 − ty1 − 20 − r
1
− d

1

)

= 0

(22)
C
1
− L

4
:
(

ΔX
12
+ 20

)

+ rz4
(

ΔY
12
+ 20

)

−
(

40rz4 + ty4 + 20 + r
1
+ d

1

)

= 0

(23)
ΔX12 =

[

ty4 + r1 + dB + rz4
(

40 + 5rz1 − ty1 − r1 − dA
)]

∕
(

1 + rz1rz4
)

(24)ΔY12 = rz1ΔX12 − 5rz1 + ty1 + r1 + dA

(25)
t2
x
+ t2

y
+ 2

(

c
2x − c

1x

)

tx + 2
(

c
2y − c

1y

)

ty +
(

c
2x − c

1x

)2

+
(

c
2y − c

1y

)2

−
(

r
1
+ r

2
+ d

1
+ d

2

)2

= 0

(26)
C
2
− L

2
: −

(

ΔX
13
+ 30

)

− rz2
(

ΔY
13
+ 58.73

)

+
(

50 − ty2 + 40rz2 − 20 − r
2
− d

2

)

= 0

By solving system of Eqs. (26)–(27), it results:

where a, b and c are:

That is the solution of the assembly problem between 
profile 2 and the subassembly box-profile 1. Now, by 
evaluating the smallest oriented distance between a pro-
file with centre (cx, cy) and radius r, and a line of equation 
nxx + nyy + c = 0, it is possible to evaluate the functional 
requirement g:

The parameters rzi and tyi of the sides of the box are 
equal to zero, since the box has been considered nominal. 
Therefore, Eq. (34) becomes:
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