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Abstract Mechatronic system is considered as the result-

ing integration of electrical/electronic system, mechanical

parts and information processing. Therefore, to enable a

systematic design process of mechatronic systems with a

high-level integration, the so-called multidisciplinary

integrated design is required. However, neither academia

nor industry has yet provided an effective solution, which

can fully support the whole design process to achieve such

multidisciplinary integrated design. In order to organise the

design activities from different disciplines and to aid the

designers to achieve the multidisciplinary integrated

design, the authors propose a design methodology based on

a multidisciplinary interface model. In line with the sys-

tems engineering practices, an extended V-model is used as

the macro-level process in the proposed design methodol-

ogy. It starts with identification of requirements on the

entire system and ends with a user-validated system. The

hierarchical design model is adopted as the micro-level

process. It supports the specific design phases where indi-

vidual designers can structure design sub-tasks and proceed

and react in unforeseen situations. To ensure the consis-

tency and traceability between the two levels, the multi-

disciplinary interface model is proposed. This design

methodology is demonstrated by studying the design pro-

cess of a quadrotor.

Keywords Mechatronic design � Design methodology �
Multidisciplinary integration � Interface modelling

1 Introduction

The term mechatronics originated at the Yaskawa Corpo-

ration from the combination of mechanics and electronics

in 1969. After the 1970s, the meaning of mechatronic has

been broadened to include software and computation

(Carryer et al. 2011). Nowadays, mechatronics becomes

the synergistic integration of mechanical parts with elec-

trical/electronic systems and information processing

(Tomizuka 2002). With the development of technology,

other disciplines (e.g. optics, hydraulics and pneumatics)

are involved in the development of mechatronic systems

(Gausemeier et al. 2009).

As mechatronic systems encompass a wide range of

disciplines, the design of mechatronic systems requires a

multidisciplinary integrated design (Abramovici and Bel-

lalouna 2007). The design methodology can help the

engineers from different disciplines to enable their col-

laboration for increasingly complex tasks (Hazelrigg

1996). However, neither academia nor industry has yet

provided an effective design methodology, which can fully

support the engineers to achieve such multidisciplinary

integration (Zheng et al. 2014; Bricogne et al. 2014).

In order to overcome the limits of current design

methodologies for the design of mechatronic systems, the

paper proposes a design methodology based on a multi-

disciplinary interfaces model. This methodology is divided

into two levels, called macro-level and micro-level. The

two-level structure can be found in previous studies

(Gausemeier and Moehringer 2003; Jansen and Welp 2005;

Hadas et al. 2010; Brezina et al. 2011). The macro-level
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process is used to describe the generic procedure for the

design of mechatronic systems, and it can be specified

according to the individual design phase which is called the

micro-level process. The micro-level process supports

every specific design phase where individual designers can

structure design sub-tasks and proceed and react in

unforeseen situations. The proposed design methodology

adopts an extended V-model as the macro-level process

and the hierarchical design model as the micro-level pro-

cess. A multidisciplinary interface model is proposed to

ensure the consistency and traceability between the two

levels.

The term ‘‘interface’’ used in the paper is defined by the

authors as ‘‘the logical or physical relationship integrating

the system components of one mechatronic system or the

components with their environment’’. The multidisci-

plinary interface model can provide an effective guidance

for the organisation of design activities and support the

collaboration of designers during the design process.

Therefore, the proposed design methodology based on the

multidisciplinary interface model will help the designers to

focus and achieve a multidisciplinary integrated design for

mechatronic systems.

The paper is organised as follows:

Section 2 reviews the current design methodologies,

V-model and its variants, hierarchical design model and

interface model of current product models. Their limita-

tions in multidisciplinary integrated design will be pointed

out in this section. Section 3 presents the macro-level

design process (the extended V-model), the micro-level

design process (the hierarchical design model) and the

realisation of consistency between the two levels. A case

study of the design activities based on a quadrotor is then

introduced to demonstrate the proposed design methodol-

ogy in Sect. 4. Section 5 provides a detailed discussion on

the proposed design methodology. Finally, the authors

draw the conclusion in Sect. 6.

2 Literature review

2.1 Current design process models and design

methodologies

To achieve a multidisciplinary integrated design for the

design of mechatronic systems, one of the most significant

issues is to overcome the ‘‘Process-based problems’’

(Abramovici and Bellalouna 2008). The ‘‘Process-based

problems’’ are described as ‘‘the coordination and syn-

chronisation of discipline-specific development process,

the coherences and interactions between the different dis-

ciplines and comprehensive integration across all disci-

plines’’ (Abramovici and Bellalouna 2007). Various design

process models and design methodologies focusing on

multidisciplinary integration have been proposed, and they

are all considered as a potential solution to such ‘‘Process-

based problems’’.

The traditional approach for the design of mechatronic

systems is called sequential design process. In this design

process, the main concerns of the mechanical view are

reliability and technical performance of the system. The

control view of the system is then designed and added to

provide additional performance or reliability and also to

correct undetected errors in the design (Alvarez Cabrera

et al. 2010). According to the definition given by Shetty,

the sequential design is ‘‘a traditional design process of

keeping engineering disciplines separate’’ and the design

activities carried by engineers of various disciplines work

on a project occur sequentially (Shetty and Kolk 2010). In

sequential design process, new discipline-specific design

task cannot start before the previous one has been finished.

For example, the mechanical design has to be ‘‘frozen’’

before proceeding to the design of control software (Shetty

and Kolk 2010).

Above presentation shows the process-based problems

related to the integrated design of mechatronic systems

contrast the sequential design process since the sequential

design process is the inherently complex nature of

designing a multidisciplinary system (Shetty and Kolk

2010). Although the sequential design process can help

executive managers to have a global view about the whole

design, it is not suitable for modern industries any longer

because the whole duration of the design process is very

long (the design in each discipline has to be carried out one

after another) and the sequential design process does not

reach a high integration level. The result of a survey carried

out by Aberdeen researchers reveals that the companies in

which concurrent design process is used prove to be much

more likely to hit product cost targets and product launch

dates than those who adopt sequential design process (Lock

2009; Shetty and Kolk 2010).

Since the late 1950s and the early 1960s, systems

engineering has been proposed as a multidisciplinary

approach and means to enable the realisation of a concur-

rent design process for complex systems (Blanchard 2012).

A concurrent design process is a means to decrease the

project lead time and to harvest the synergy of a multi-

disciplinary design (Torry-Smith et al. 2013). In the 1980s,

some system design methods, such as waterfall model

(Boehm 1981), spiral model (Boehm 1988) and V-model

(Forsberg and Mooz 1999), were widely used for systems

engineering, but a design method specially adapted for

design of mechatronic systems was not put forward at that

time. Since the 1980s, the continuously growing com-

plexity of mechatronic systems has required a more inte-

grated design than ever. Therefore, a number of
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mechatronic design methods have emerged to meet the

need of multidisciplinary collaboration during the design

process of mechatronic systems. From approaches such as

the traditional sequential design to the concurrent engi-

neering (Li et al. 2001) or the much recent lean product

development (Gautam and Singh 2008), many design

methods have been proposed, but these design methods still

remain poor to support the multidisciplinary perspectives

in the design of mechatronic systems (Zheng et al. 2014).

The field of design methodology is a rich collection of

findings and understandings, resulting from studies on how

the designers carry on the design process. Tomiyama et al.

(2009) define the design methodology as ‘‘it is about design

processes and activities’’. A non-exhaustive list of current

design methodologies is presented hereafter.

Model-based systems engineering (MBSE) has attracted

numerous researchers’ attention recently. It is considered

as a significant methodology for the design of mechatronic

systems with the increasing complexity (Fisher 1998). The

Object Management Group’s System Modelling Language

(SysML) has been widely used to support the MBSE

recently (Object Management Group 2009). Some exten-

sions have been developed for SysML to support the

specific requirements of design of mechatronic systems,

such as automatic simulation (Cao et al. 2011), dependency

modelling (Qamar and Paredis 2012) and design-making

process (Kerzhner and Paredis 2012). However, current

studies on MBSE mainly focus on early design phases and

seldom involve the detailed design phases. Moreover, a

systematic design process supported by a uniform

methodology which integrates all the extensions still needs

to be further developed.

Function-Behaviour-State (FBS) modelling has been

used to analyse the functional structure in the functional

design phase for complex systems for a long time (Umeda

et al. 1990, 1996; Hamraz et al. 2014). Several extensions

of FBS modelling approach and design methodologies for

mechatronic systems have been developed by the research

team of Tomiyama (Alvarez Cabrera et al. 2010; Komoto

and Tomiyama 2011, 2012). However, like the MBSE, the

methodologies based on FBS also focus on the early design

phase, i.e. descriptions of the decomposition result from

functional, parameter-level, structural and behavioural

aspects. How to ensure a correct integration after the

decomposition process is seldom involved.

Characteristic properties modelling/property-driven

development (CPM/PDD) developed by Weber provides

new explanations of phenomena that have previously been

insufficiently understood in design theory and methodology

for complex systems (Weber 2005). CPM/PDD does not

claim to be a new or alternative design methodology; it

provides a framework that can be integrated many existing

approaches. However, CPM/PDD remains in the area of

mechanical engineering, and electrical/electronic and

software components are not well covered (Weber 2014).

By analysing the literature review, the main current

design process models and design methodologies and their

limitations are summarised in Table 1:

In order to break through the barriers related to design

process models and design methodologies, the paper pro-

poses a design methodology combining the macro- and

micro-level processes. For the macro-level process, an

extended V-model is used. In next section, the current

V-model and its variants are reviewed.

2.2 V-model and its variants

As depicted previously, systems engineering has been

proposed as a multidisciplinary approach to enable the

realisation of complex systems. The V-model is considered

as an effective way of representing the systems engineering

and development process. It starts with identification of

requirements on the total system. Once the requirements

have been taken into account, they are then placed under

project control (upper-left) and the V-model will end with a

user-validated system (upper right). In order to achieve the

final product, each stage of the product definition should be

tested (Forsberg and Mooz 1999).

The V-model defines a multidisciplinary design process

for the complex system, but it remains generic to support

the design of mechatronic systems. During the phase of

implementation, the V-model simply divides a complex

system into software and hardware, ignoring the fact that

the mechatronic system is the combination of mechanics,

electronics and software. For that reason the multidisci-

plinary integrated design is partially performed in

V-model.

Some design methods using the V-model as the macro-

level have been specially put forward for the design of

mechatronic systems. The macro-level of design process

means that the generic process is related to design phases

and corresponding product states (Gausemeier and Moeh-

ringer 2003). The VDI guideline 2206 (VDI 2206 2003) is

developed and standardised by VDI committee, a German

engineers association. It represents a practice-oriented

guideline for the systematic development of mechatronic

systems based on the V-model (Fotso et al. 2012). Com-

pared with the V-model, the VDI guideline 2206 unifies the

discipline-specific design more systematically (mechanical

engineering, electrical engineering and information tech-

nology), but the specific design activities in every design

phase have not been specified (Fig. 1).

Some design methods that possess several passes of

V-models as macro-level have been proposed because a

single V-model is understood as a generic procedure pat-

tern and a complex mechatronic product will normally not
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be finished within one macro-cycle (Gausemeier and

Moehringer 2003). Vasić and Lazarević (2008) believe that

the product maturity (i.e. ‘‘laboratory specimen’’, ‘‘func-

tional specimen’’ and ‘‘pilot-run product’’) should be taken

into consideration during the design process; thus, several

V-models should be adopted in order to represent the

product maturity. Hofmann et al. (2010) also insist that a

number of macro-levels should be required for the design

of complex mechatronic systems. They propose an addi-

tional V-model to represent the reliability information flow

during the design process. Gausemeier et al. (2011) pro-

pose a 3-cycle model. In this model, two V-models are

used to represent the virtual product development and the

virtual production process, respectively. A W-model based

on the V-model is proposed for the development of

mechatronic systems. Two V-models are linked together to

represent five design phases: ‘‘System analyzing’’,

‘‘Specific solutions and dependency analysis’’, ‘‘Virtual

system integration’’, ‘‘Model analysis and detailed devel-

opment’’ and ‘‘System integration’’. Central element is

‘‘Virtual system integration’’ defining the name giving

‘‘W’’-shape (Nattermann and Anderl 2013; Barbieri et al.

2014). However, all the design methods possess several

passes of V-models as the macro-level process, but none of

Table 1 Summary of current

design process models and

design methodologies and their

limitations

Design process models and design methodologies Limitations

Sequential design process (Shetty and Kolk 2010) Does not allow a concurrent

engineering

Waterfall model (Boehm 1981);

Spiral model (Boehm 1988);

V-model (Forsberg and Mooz 1999);

CPM/PDD methodology (Weber 2014);

Concurrent engineering (Li et al. 2001)

Lean product development (Gautam and Singh 2008)

Is not specially adapted for design of

mechatronic systems

MBSE and its extensions (Fisher 1998; Cao et al. 2011;

Kerzhner and Paredis 2012; Qamar and Paredis 2012)

FBS and its extensions (Umeda et al. 1996; Alvarez Cabrera et al.

2010; Komoto and Tomiyama 2011, 2012)

Only focuses on the conceptual design

phase

Fig. 1 V-model in the VDI

guideline 2206 (VDI 2206

2003)
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them support the specific design phases in which individual

designers can structure design sub-tasks and proceed and

react in unforeseen situations, i.e. micro-level process.

Attentions have been paid to the micro-level process by

recent studies, and some variants of V-models have been

proposed. Bathelt et al. (2005) applied the extensions for

every design phase based on the VDI guideline 2206 in

order to improve the development of systems controlled by

a programmable logic controller (PLC). However, due to

the speciality of systems controlled by PLC, the discipline-

specific design phase is simply divided into 3D CAD part

and PLC programming environment part. The electrical

engineering discipline is neglected. The Requirement

Functional Logical Physical (RFLP) approach is a specific

V-model-derived method particularly adapted to design of

mechatronic systems. In this method, the descending

branch of V-model is divided into four specific phases:

Requirement engineering, Functional design, Logical

design and Physical design—RFLP (Lefèvre et al. 2012).

As for the four phases, different technical tools can help the

designers to realise the micro-level process. For example,

the method APTE1 and the language SysML have been

used for the Requirement engineering, the method IDEF2

and the language SysML for Functional design, Matlab/

Simulink,3 Modelica,4 Bond Graph5 and VHDL-AMS6 for

Logical design, Flux 3D,7Abaqus/CATIA8 for detailed

Physical design (Penas et al. 2011). Nowadays, the RFLP

approach has been implemented as a basis for Systems

Engineering in the Product Lifecycle Management (PLM)

environment of Dassault Systèmes and can therefore be

considered as a commercial approach (Kleiner and Kramer

2013). The drawback of the RFLP approach, however, is

that the exchange of information between software design

and other disciplines remains a challenge.

In summary, the V-model and its variants bring forth

great benefits for proposing an effective way of repre-

senting a macro-level process for the design of complex

systems (Department of Transportation 2007), but not all of

them cover all the disciplines for the design of mechatronic

systems (Bathelt et al. 2005; Penas et al. 2011; Kleiner and

Kramer 2013). Moreover, they seldom or never pay

attention on the micro-level process (Gausemeier and

Moehringer 2003; VDI 2206 2003; Vasić and Lazarević

2008; Hofmann et al. 2010; Gausemeier et al. 2011;

Nattermann and Anderl 2013; Barbieri et al. 2014). Finally,

to the authors’ knowledge, none of current variants propose

an effective method to ensure the consistency and trace-

ability among different design phases.

Next subsection will present the state of the art of the

hierarchical design model, which is used as the micro-level

design process in the proposed design methodology.

2.3 Hierarchical design model

Hierarchical design model describes the structure in which

a model is broken down into smaller parts. It helps the

designers to describe product models from different

viewpoints and guarantee the consistency of these models

in the overall product development process (Hehenberger

2014).

According to VDI 2206 (2003), the development pro-

cess of mechatronic systems can be carried out by using the

V-model as macro-level process. After analysing the

requirements for the whole system, the sub-functions are

defined. The sub-systems (or components) are then to be

developed simultaneously by the cooperating development

teams. After verifying the sub-functions of the sub-systems

(or components), they are integrated step by step. Then, the

performance of the integrated system is checked.

The requirements of a new mechatronic system should be

analysed, and a requirements specification (i.e. requirements

list) should be determined once the design process carries

out. However, identification of these requirements is often

difficult. Seyff et al. (2009) propose a promising approach by

applying use cases that incorporate possible scenarios to

identify the product requirements. The initial requirements

can be decomposed into further sub-requirements, thus cre-

ating a hierarchy of requirements. Therefore, a hierarchical

structure is necessary to specify the requirements.

After the requirement definition, the mechatronic sys-

tem’s overall function, its most important sub-functions

and their interactions should be determined, which leads to

a functional structure. This functional structure can be

organised hierarchically in order to describe the different

levels of abstraction. Pahl and Beitz (1988) propose a

method to show that a function structure can be developed

by decomposing an overall function into sub-functions.

Umeda et al. (1990) propose a way to construct the func-

tional structure. They claim that function decomposition

continues until the function matches a design in the cata-

logue. Stone and Wood (2000) formalise the modelling

techniques of the functional basis for design based on

previous studies. They propose that functional modelling of

a device is an important step in the design process in which

the focus is on the flows of material, energy and signals.

The system’s architecture is formed by grouping the

functions which are already collected before. The system’s

1 http://methode-apte.com/.
2 http://www.idef.com/.
3 http://www.mathworks.com.
4 https://www.modelica.org/.
5 http://www.bondgraph.org/.
6 http://www.eda.org/.
7 http://www.cedrat.com/fr.html.
8 http://www.3ds.com/products-services/simulia/products/abaqus/.
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structure can be decomposed hierarchically into sub-sys-

tems, components and the interfaces among them. van

Beek et al. (2010) propose a method based on the FBS

modelling. In this method, the three steps of decomposition

into components, identification of the relations between the

components and clustering of the components into modules

are realised.

The literature review of the hierarchical structures for

the requirements design, the functional design and the

architectural design shows that the hierarchical structure

can be used as an effective support for the micro-level

process. The consistency among different design phases

can be also ensured by such hierarchical structure. A

multidisciplinary interface model is devoted to guarantee

the consistency between the macro-level process and the

micro-level process. Next subsection will review the

studies on interface model developed in current product

models.

2.4 Interface model

The topic of interface is at the heart of the multidisciplinary

nature of Systems Engineering (Fosse et al. 2013). From

the mid-1980s, the interface between systems and sub-

systems has been widely used in software engineering

(Dorfman 1990; Hoffman 1990). During the design process

of software, separated module of a program executes one

aspect of the desire functionality. Such modules interact

with each other through interfaces. As system became

increasingly complex, a complex system is always

decomposed into sub-systems, components and interfaces.

Interface management is considered as one of the most

powerful tools of systems management because the inter-

faces are used to manage the interdependencies between

different models (Blyler 2004). The paper will review the

previous studies on interface model by focusing on the

current product models.

STandard for the Exchange of Product model data

(STEP) is actually a series of standards, known as ISO

10303 developed by experts’ worldwide (ISO10303-1

1994; Pratt 2001). The parts known as APs (Application

Protocol) of STEP are used to define the scope, context and

information requirements of applications. STEP AP233

describes the key product data and information for systems

engineering that must be exchanged between dissimilar

applications for requirements engineering and for systems

modelling and simulation. Industries that can benefit from

using AP233 are automotive, aerospace, shipbuilding,

consumer goods electronics and others with complex

products and processes (ISO10303-233 2012). In AP233,

an interface connector is defined as the term for the part of

a system that interacts with other systems or the environ-

ment, and the interface connection as the link between

connectors (Sellgren et al. 2009), but no more details of the

interface connector and interface connection are provided

by AP233. Pandikow et al. (2000) try to integrate the UML

with AP233 in order to provide detailed interface and

association descriptions to extend AP233, but this extended

AP233 focuses on the software engineering, not on the

mechatronics engineering. Core Product Model (CPM), an

abstract model with generic semantics, initially developed

at NIST (National Institute of Standards and Technology),

can support a full range of PLM information (Fenves et al.

2006). Nevertheless, the interfaces model is not developed

in CPM. Some extensions of CPM have been proposed to

address the interface issue. For example, Zha et al. (2005)

develop an extension of the CPM, called Embedded Sys-

tem Model (ESM). Like the term ‘‘interface connector’’ of

STEP AP233, ‘‘Port’’ is defined to describe the connection

point of interface in ESM. The extended model provides

the interface features between hardware/software, hard-

ware/hardware and software/software. To a certain extent,

an embedded system is similar to a mechatronic system and

ESM partially performs the collaboration between elec-

tronic and software disciplines, but the collaboration with

mechanical discipline has not been deeply discussed.

Product-Process-Organisation (PPO) model describes

information of product, process and organisation (Noël and

Roucoules 2008). An interface class is described in the

product model by the way a component (mechanical,

electrical, etc.) may be linked to another (Nowak et al.

2004), but the interface class is simply divided into Com-

mon Interfaces (CI), Alternative Interfaces (AI) and View

Interfaces (VI) and its details has not been given. As shown

with recent PPO model developments, PPO is generally

considered as an extensible model (Le Duigou et al. 2011).

Therefore, the extension of PPO for detailing the interfaces

in mechatronic systems should be developed.

A multidisciplinary interface model has been defined

through the past continuous research efforts of the authors

(Zheng et al. 2015a, b, 2016). The authors propose the

multidisciplinary interface model to deal with the problem

of multidisciplinary integration. Figure 2 shows the mul-

tidisciplinary interface model specified with a UML class

diagram. This multidisciplinary interface model not only

provides a structured representation to store the design data

related to the interface in order to achieve the knowledge

reuse, but offers a compatibility rules to the designers to

guarantee the different components integrate correctly.

First, the proposed multidisciplinary interface model

provides a structured representation to store the design data

related to the interface in order to realise the knowledge

reuse. It contains classes to define the attributes of one

interface and its ports. The interface attributes are defined

by taking into consideration of three different features:

type, configuration and desired/undesired. Type attribute
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focuses on which types of transfer (geometric, energy,

control or data) occur through one interface. Configura-

tion attribute describes which elements are linked by the

interface. Desired/undesired attribute expresses whether

the interface creates positive effects (e.g. data or energy

transmission) or unintended side effects (e.g. heat, mag-

netic fields, vibration and other side effects). In summary,

the attributes contained in the multidisciplinary interface

model provide a common representation for the interfaces

defined by design teams of different disciplines. The term

‘‘port’’ is considered as the primary location through which

one element of a system interacts with other elements.

Figure 2 shows that there are two classes linking with class

Port to describe the port’s details. The class Parameter

specifies the principal parameters related to the port which

can be quantified, such as the wheel size, the input impe-

dance or the image resolution, while the class Document is

used to store the documents (such as standards, special

constraints, etc.) related to the port which cannot be simply

quantified.

Second, the multidisciplinary interface model offers the

compatibility rules to the designers to guarantee the dif-

ferent components integrate correctly. The method com-

patibility() is contained by the class Interface to check the

compatibility of the interface. One example is cited here to

illustrate the compatibility test method. Two components

(Component 1 and Component 2) are connected by an

interface (Interface) through the ports (CP1 and CP2). Two

foundational compatibility rules are presented as follows.

Rule 1:

CP1. Parameters1. value = CP2. Parameters2. value

CP1. Parameters1. unit = CP2. Parameters2. unit

Rule 2:

Fig. 2 UML class diagram of multidisciplinary interface model
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CP1. Parameter1. value < CP2. Parameters2.

maxValue

CP1. Parameter1. value > CP2. Parameters2.

minValue

CP1. Parameter1. unit = CP2. Parameters2. unit

CP1. Parameter1 represents the parameter stored in the

class Parameter of the port CP1, and CP2. Parameter2

is the parameter of port CP2. In the compatibility Rule

1, in order to ensure the two components integrate with

each other correctly, both the value and the unit of the

parameters of CP1 and CP2 should be equal. However,

sometimes the design parameter of one port is not

specified by an exact value accurately. The compatibility

Rule 2 is used to illustrate that case. If the port CP2

specifies the parameter by using an interval (minValue,

maxValue), the parameter of CP1 should satisfy that

CP1. Parameter1.value[ (CP2. Parameters2. minVa-

lue, CP2. Parameters2. maxValue).

The rules previously presented are considered as two

foundational rules to deal with the two types of interface

compatibility. The designers may encounter some complex

compatibility problems. For example, the parameter of port

CP1 can be equal to several values at the same time, or it can

lie in several intervals which are discontinuous. Such com-

plex compatibility rules can be considered as the combina-

tion of the two foundational compatibility rules, which are

combined with the logical operation (‘‘and’’ or ‘‘or’’).

Nowadays, the increasing integration of mechatronic

systems shows the trend to transfer several different types of

transfers through one interface. For instance, as for the

interface between two electrical components, the electrical

energy (voltage) can be transferred through this interface,

and meanwhile, the geometrical connections (pin numbers)

exist between the two components in order to have a better

physical integration. The technology of power-line com-

munication (PLC) is another example. The PLC is used to

carry data among conductors that are also used simultane-

ously for AC electric power transmission or electric power

distribution. In the example of the PLC, data and energy can

be transferred simultaneously through one interface. Such

interfaces should be further decomposed and refined into

sub-interfaces according to the different transfers through

them, and the compatibility of each interface should be tested

once the interface models have been instantiated.

The multidisciplinary interface model is an effective

support for the design of mechatronic systems, but one

drawback of the multidisciplinary interface model is that it

cannot be used directly to manage the design process. In the

paper, the multidisciplinary interface model is integrated

with the proposed methodology to support of the design

process of mechatronic systems; therefore, the drawback of

the multidisciplinary interface model can be eliminated.

Next section presents the details of the proposed design

methodology for the design of mechatronic systems.

3 Design methodology based on interface model

The design methodology presented in the paper adopts an

extended V-model as the macro-level process and the hier-

archical design model as the micro-level process. The mul-

tidisciplinary interface model helps the designers to ensure

the consistency between the two levels. The details of the

proposed design methodology will be presented hereafter.

3.1 Macro-level process

The macro-level design process adopted an extended

V-model to present the general flow for the design process

of mechatronic system. The left branch of the extended

V-model represents the system design sub-process and is

described with qualitative models. After analysing all

requirements for the whole system, the sub-functions and

sub-systems are defined. Three design phases are identified

during the system design sub-process: Requirements

specification phase, Functional model phase and Archi-

tectural model phase (see Fig. 3).

The discipline-specific design sub-process is presented at

the bottom of the extended V-model. The objective of the

discipline-specific sub-process is to obtain the physical ele-

ments of the system such as hardware components or soft-

ware code. The sub-systems have a very discipline-specific

character and are developed simultaneously by the different

design teams. The models constructed by the teams from

different disciplines are quantitative for the most part.

The right branch of the V-model represents the system

integration sub-process. In the extended V-model, this sub-

process can be divided into two phases: Compatibility test

phase and Verification and validation phase. The objective

of the Compatibility test phase is to guarantee the sub-

systems integrate correctly and to ensure the multidisci-

plinary integration among different design teams. If the

sub-systems prove to be incompatible with each other, an

iterative process should be carried on. This compatibility

test in the early phase of system integration will greatly

reduce the iterations number in the later phase so that the

overall development costs and the time-to-market can

decrease accordingly. The Verification and Validation

phase is used to test the performance of the integrated

system and check whether the system realises the proposed

function and satisfies all the requirements proposed before.

If the system has to be improved, the previous design

phases will be repeated.

In summary, the macro-level design process is devel-

oped based on V-model, which is considered as one of the
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more typical systems engineering approaches. Therefore,

the three main design sub-processes (system design sub-

process, discipline-specific design sub-process and system

integration sub-process) of macro-level design process are

sequentially organised in line with the systems engineering

practice. However, designers from various disciplines carry

out concurrent design activities during each sub-process of

the whole design process in order to achieve a more inte-

grated design. Organisation of design activities during each

sub-process is called micro-level design process. Next

subsection presents the micro-level design process sup-

ported by the hierarchical design model in detail.

3.2 Micro-level process

In this section, the micro-level process will be discussed in

more detail. The hierarchical structure will be applied in

the three design phases of the system design sub-process. A

hierarchy of the design parameters is also proposed to help

the designers to define the key parameters in the discipline-

specific design sub-process.

3.2.1 Requirement specification

The requirements specification is derived from all

requirements on the mechatronic system, and these

requirements can provide initial information about what is

required by the customers. Requirements can be applied to

the overall system, every single sub-system (or component)

and the interconnection between two sub-systems. There-

fore, requirements can be detailed by decomposing into

further sub-requirements, thus creating a hierarchy of

requirements.

The requirements can be classified into several groups:

global requirements, cumulative requirements, specific

requirements and interconnected requirements. Examples

will be taken to clarify the four groups. The global

requirement, for example, is that certain materials must not

be used in any components of the mechatronic system. An

example of a cumulative requirement is the size of the

mechatronic system, to which every component contributes

to a certain degree. A good example of specific require-

ment is electromagnetic pulse protection, which is only

relevant to the electrical system, or the lubrication which

applies only to moving components. The interconnected

requirements are the requirements, which may be influ-

enced by other requirements. An example of intercon-

nected requirement is the performance of the system, such

as the energy consumption (Requirement 1), which relates

to the dynamical properties of the system and describes the

performance of the system. This requirement is influenced

by the maximum mass of the systems (Requirement 2) and

the required force (Requirement 3). In other words, the

Requirement 2 and 3 can be determined separately;

Fig. 3 Macro-level process: an

extended V-model based on

VDI 2206
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however, the energy consumption should be determined by

considering the system’s mass and requirement force

according to the physical relationships. In this example,

Requirement 1 is influenced by Requirements 2 and 3 and

named ‘‘interconnected requirement’’ (Hehenberger 2014).

Above introduction reveals that two kinds of relation-

ships between requirements should be manipulated in the

requirement specification phase. On the one hand, the

relationship between the requirement and sub-requirement

can be described as ‘‘composition’’ when requirements are

detailed by decomposing into sub-requirements; on the

other hand, the relationship ‘‘interconnection’’ is proposed

so that the designers can easily find the details which reflect

additional implementation considerations or constrains

between two interconnected requirements. A hierarchical

structure is necessary in order to manipulate the proposed

four groups of requirements as well as the two kinds of

relationships between them. Many mainstream modelling

languages (e.g. SysML) can be used to support such hier-

archical structure and to implement the relationships for

requirement specification.

Once the requirements are placed in groups, they can be

considered accordingly in specific sub-functions. For

example, the breakdown voltage, one sub-requirement of

security requirements, should be considered to avoid the

breakdown condition (sub-function). Therefore, the func-

tional model can be constructed according to the hierar-

chical structure of requirements specification.

3.2.2 Functional model

A functional model refers to the phase of modelling and

specification of the functional solutions. Functional model

plays a significant role during the system design process

because it is constructed as a bridge between the customers

and the mechatronic system. On the one hand, the functions

and sub-functions proposed in the functional models are

used to satisfy the customer’s requirements. On the other

hand, the system architecture is decided based on this

functional model.

In this design phase, the functional model of mecha-

tronic systems should be created. It must fulfil the specified

requirements and thus provide the basis for deriving the

functional structure. Hierarchical structure can also be used

for functional modelling. If it is assumed that a complex

mechatronic system comprises a certain number of ele-

mentary functions, the functional structure as cooperation

among these elementary functions should be taken into

consideration. A single elementary function is charac-

terised by using primarily one clearly defined effect (e.g.

physical, chemical or biological), which may be regarded

as indivisible within the set of functions. An architectural

model is then formed by grouping sub-functions from the

functional model in order to implement the proposed

functions.

In the proposed design methodology, the functional

model is used to model and specify the functional solutions

in a hierarchical structure. Although a number of modelling

techniques have been proposed to help the designers to

define the functional structure, such as the method APTE

and IDEF, the language SysML and the tool like 3DEX-

PERIENCE9 of Dassault Systèmes, however, not all the

modelling techniques above mentioned can represent such

hierarchical structure. In the paper, the Functional View of

the 3DEXPERIENCE platform is used to represent

functions.

3.2.3 Architectural model

After the hierarchical decomposition process of function,

the designers should find the sub-systems, which can

embody the proposed sub-functions. In other words, these

sub-systems should exhibit decomposed sub-functions so

that there is the consistency between the functional model

and the architectural model. A complete architecture will

then be constructed by decomposing the sub-systems in

architectural model phase.

The decomposition process should be applied recur-

sively. However, there is always a research question, that

is, what are appropriate hierarchies and granularities for

architectural models of mechatronic systems? In order to

answer this question, the authors two steps to help the

designers decompose the systems. In the proposed archi-

tectural hierarchy, the system can be presented top–down

as mechatronic system, mechatronic module and disci-

pline-specific component. A mechatronic module is defined

as a mechatronic sub-system at the lowest hierarchical

level of mechatronic system and is indivisible within the

set of mechatronic sub-systems. ‘‘Indivisible’’ means that a

mechatronic module can be decomposed only into disci-

pline-specific (non-mechatronic) components, but not into

other mechatronic modules or mechatronic system com-

ponents. Discipline-specific components are considered as

the lowest level of the system’s architecture. ‘‘Lowest

level’’ refers to the components that can be obtained with

standard components, past designs or within the discipline-

specific teams.

In the proposed two-step decomposition process, the

mechatronic systems are decomposed into mechatronic

modules in the first step. In this step, designers should

primarily consider their design experience. For example,

can the mechatronic module be implemented based on past

design or standard component in handbooks? If certain

mechatronic modules can be perfectly realised thanks to

9 http://www.3ds.com/about-3ds/3dexperience-platform/.

342 Res Eng Design (2017) 28:333–356

123

http://www.3ds.com/about-3ds/3dexperience-platform/


earlier designs or with standard components, further

decomposition is not necessary. This situation implies that

it is not necessary to decompose a system down to its

discipline-specific components. However, such past

designs or standard components are not always available.

For those cases, the second step of the decomposition

process is proposed. In this step, the mechatronic module is

further decomposed down to discipline-specific compo-

nents that can be obtained with standard components,

earlier designs or via discipline-specific teams (Fig. 4).

Each model pillar in Fig. 4 characterises the group of

discipline-specific components, which is structured into

several hierarchical levels corresponding to the proceeding

degree of detailing. During the decomposition process, the

interfaces among the discipline-specific sub-systems

should be also clarified and decomposed in order to verify

whether the sub-systems can be correctly integrated with

each other.

As discussed before, pillar design model requires the

designers to decompose the mechatronic system into

mechatronic modules. If past designs or standard compo-

nents are not available for certain mechatronic modules,

such modules should be further decomposed into disci-

pline-specific sub-systems. During this decomposition

process, the interfaces linked to the mechatronic modules

or even discipline-specific sub-systems should be simulta-

neously decomposed (see Fig. 4). Attention should be paid

to the traceability of the interfaces during the decomposi-

tion process. In other words, the information stored in the

product models needs to be unambiguously understood by

the designers not only in different disciplines, but the dif-

ferent decomposition levels as well. The multidisciplinary

interface model proposed by (Zheng et al. 2016) provides a

common representation of interfaces by using three attri-

butes to describe an interface of mechatronic systems and

helps the designers to overcome the lack of commonality in

interface definitions from different decomposition levels or

different disciplines. Before entering the discipline-specific

design process, the consistency between each two design

phases should be checked because functional models and

architectural models are always created and maintained by

the designers from different disciplines. As presented

before, during the system design process, the functions and

sub-functions proposed in the functional models are used to

satisfy the costumer’s requirements, while the architectural

model for the sub-systems is constructed to embody the

proposed sub-functions (Fig. 5). Therefore, it is necessary

to ensure correctness of such models. Every requirement

should be met by one or more functions (or sub-functions),

and every sub-function must be realised by one or more

sub-systems (in certain case several sub-functions can be

realised by one sub-system).

After the mechatronic modules are further decomposed

into discipline-specific sub-systems and the interfaces

among them, these discipline-specific sub-systems (with

their interface) will be developed by the engineers in dif-

ferent disciplines during the discipline-specific design

phase.

Fig. 4 Mechatronic module
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3.2.4 Discipline-specific design

During the discipline-specific design phase, the designers

of each design discipline should develop sub-systems,

which have been decided in the architectural model phase.

Certain components of the discipline-specific sub-systems

can be perfectly realised by the past designs or the standard

components. However, if they cannot be realised by any

past designs or standard components, a new design

embodying the function of this component should be car-

ried on.

As for the components which need to be designed as

new embodiments to realise the function proposed before,

the authors propose a hierarchy of the design parameters to

help the designers to define the key parameters at an early

stage of the discipline-specific design sub-process.

Figure 6 shows the hierarchy of the design parameters.

The steps to establish such hierarchy of the design

parameters will be described as follows:

• Step 1: Define the functional requirement (FR) of each

model pillar by several design parameters (DP).

• Step 2: Define the FRs at level i ? 1 by considering the

FR at level and its DPs.

• Step 3: Classify the design parameters at one level into

two categories, the internal design parameters and the

external design parameters. The external parameters

affect other parameters of the next level, while the

internal parameters are exclusively local at the active

level for dimensioning the component at this level, and

they have nothing to do with other parameters.

• Step 4: The process of defining hierarchical levels must

be repeated until well-known DPs (e.g. proven solu-

tions and standard components) are achieved.

• Step 5: Iteration and feedback across hierarchical level

should be carried on to verify whether the design

parameters meet the functional requirement in each

level.

More information about the hierarchy of the design

parameters can be found in (Hehenberger et al. 2010).

3.2.5 Compatibility test and Verification and Validation

The design of mechatronic systems requires a multidisci-

plinary collaboration, which often leads to the iteration

during the concurrent design process, because the designers

often have to jump back one or more steps to redesign or to

tune what they created before to satisfy the parts designed

by other designers. Therefore, the interface compatibility is

very important for the mechatronic system, as it can detect

the design errors before the design is completely finished,

which can greatly reduce the unnecessary iterations. As a

result, the overall development costs and the time-to-mar-

ket can be decreased accordingly.

Fig. 5 Consistency between

different design phases during

system design process

Fig. 6 Hierarchy of design parameters (Hehenberger et al. 2010)
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The current product models discussed in Sect. 2.4 show

that attention has been paid to the port, which is considered

as the primary location through which one component of a

system interacts with other components. The main function

of one interface is to connect two separated components

and to exchange the information between them, so one

interface can link two ports. As discussed in Sect. 3.2.4, the

external parameter affects other parameters; therefore, it is

stored in the port’s class of the multidisciplinary interface

model, which has been introduced in Sect. 2.4. The method

compatibility() is contained by the interface class to check

the compatibility of the interface, which helps the design-

ers to guarantee the different components integrate cor-

rectly and eventually ensure the multidisciplinary

integration among design teams. Once the model of an

interface has been instantiated, the designers should check

the compatibility of the interface by making use of the

method compatibility().

Two solutions are proposed to deal with the incompat-

ible interface. These solutions will be presented as follows:

• Solution 1: Change one of the two component linked by

the interface; the compatibility should therefore be

checked again. This solution is called ‘‘component

change’’.

• Solution 2: Decompose the interface into an interface–

component–interface structure; the compatibility of the

two newly created interfaces should be checked. This

solution is called ‘‘interface decomposition’’.

Figure 7 illustrates these two kinds of solutions. In this

example, a simple mechatronic system (System) is

decomposed into two components (Component 1 and

Component 2) and an interface (Interface 1). However,

when the designs of the two components have been fin-

ished by the designers, the compatibility test result of the

interface (Interface1) indicates that both components are

incompatible with each other (Fig. 7a). Figure 7b shows

the Component change solution. The Component 2 can be

redesigned and replaced by the Component 3. Because one

component should be redesigned, the design process will

go back to the discipline-specific design sub-process. The

compatibility of the interface (Interface 1) should be then

checked again. Figure 7c shows the second solution–in-

terface decomposition solution. A new component (Com-

ponent 3) can be added between the two components, and

two new interfaces (Interface 1.1 and Interface 1.2) will be

created accordingly. Due to the decomposition of the

incompatible interface, the design process will return to the

architectural model phase. The compatibilities of the two

new interfaces should be checked.

Compared with the interface decomposition solution,

the component change solution is much simpler to operate

by the designers, because the interface decomposition

solution demands the designers to further decomposed the

incompatible interface into an interface–component–inter-

face structure and the architectural model of the entire

mechatronic system should be modified (a new component

is added into the mechatronic system). However, the

interface decomposition solution is more often adopted

during the design process. The first reason is that it can

help the designers to refine the architectural model of the

mechatronic system. In most cases, the architectural model

of a mechatronic system cannot be completely decided by

the designers during the system design sub-process due to

some reasons, such as the lack of design experiences and

the unforeseen incompatibility between two sub-systems.

When the interface decomposition solution is adopted, the

design process should go back to the architectural model

phase. Therefore, the interface decomposition solution can

be used as an effective support to help the designers to

refine the architecture of the mechatronic system. The

second reason is that the interface decomposition solution

can help the designers to avoid the design conflict. In a

complex mechatronic system, one component may link to

others through several interfaces. If the component change

solution is adopted by the designers to solve the incom-

patibility problem, other interfaces linked to this compo-

nent which proves to be compatible before may become

incompatible after the change of such component. Such

conflict may always exist during the design process. The

interface decomposition solution does not create design

conflicts because the new component does not affect other

components of the system.

If all the interfaces in the mechatronic system have

proved to be compatible, which means that all the com-

ponents has been correctly integrated with each other, the

design process should move on to the verification and

validation phase. The verification and validation phase is

used to test the performance of the integrated system and

check whether the system realises the proposed function

and satisfies all the requirements proposed before. If the

system has to be improved, the initial operation phase will

be repeated. The above subsections, respectively, intro-

duced the macro-level and micro-level process of the

proposed design methodology. Next subsection will pre-

sent the realisation of consistency between the two levels.

3.3 Realisation of consistency between macro-

and micro-level design processes

In previous subsections, the authors introduce the extended

V-model and the hierarchical design model used as the

macro- and micro-level design processes, respectively.

How to use the multidisciplinary interface model to support

the refinement of system’s architecture during the archi-

tectural model phase and to test the compatibility between
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sub-systems in the compatibility test phase is also pre-

sented. This subsection will present the realisation of

consistency between the two process models.

3.3.1 From macro-level process to micro-level process:

hierarchical structure

The proposed extended V-model presents a general flow

for the design process of mechatronic systems. It can be

generally divided into three sub-processes: system design

sub-process, discipline-specific design sub-process and

system integration sub-process. During the two design sub-

processes (the system design sub-process and discipline-

specific sub-process), every design phase can be detailed

by a hierarchical structure as the micro-level process.

In the system design sub-process, hierarchical structure

can be used to establish the requirement specification,

functional model and architectural model. Moreover, a

hierarchy of the design parameters has been proposed to

help the designers to define the key parameters in the

discipline-specific design sub-process. Generally speaking,

the consistency between the macro-level process and

micro-level process is ensured by the hierarchical structure

during the two design sub-processes.

3.3.2 From micro-level process to macro-level process:

multidisciplinary interface model

The multidisciplinary interface model provides a common

representation for the interfaces, which can be used during

both the architectural model phase of the system design

sub-process and the compatibility test phase of the system

integration sub-process.

During the architectural model phase, the three attri-

butes of the multidisciplinary interface model can define an

interface from different decomposition levels or different

disciplines with a same terminology. The consistency

between the architectural model of system design sub-

process and the discipline-specific design sub-process can

be therefore ensured by this common representation of

interfaces.

During the compatibility test phase, the method com-

patibility() proposed based on the multidisciplinary inter-

face model will test the compatibility among the sub-

systems (or components) and help the designers to decide

whether the design process can enter the next phase (the

verification and validation phase) or it should go back to

the previous design phase (the discipline-specific sub-pro-

cess or the architectural model phase of the system design

sub-process). In summary, with the support of the multi-

disciplinary interface model, the designers can go back to

the general development flow of the macro-level process

from the specific design activities of the micro-process.

The consistency between the micro-level process and the

macro-level process is ensured by the multidisciplinary

interface model.

Figure 8 shows the consistency between the two level

processes. As discussed previously, the consistency is

ensured by the hierarchical structure during the system

design sub-process and discipline-specific design sub-

Fig. 7 Example of solutions to

incompatible interfaces
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process, while by the interface model during the system

integration sub-process. Next section will present the

design process of a quadrotor, one type of Unmanned

Aerial Vehicles (UAVs), as a case study to demonstrate the

design methodology.

4 Case study

The aim of this section is to demonstrate the use of the

proposed design methodology in a mechatronic design

process. The case study chosen to demonstrate the design

methodology is a quadrotor. Quadrotor is a one type of the

UAVs with four propellers and a fixed cross structure.

Because the quadrotor is considered as a complex mecha-

tronic system integrating synergistically the electri-

cal/electronic system, mechanical parts, information

processing and aerodynamic technology, the multidisci-

plinary integration is required during the design process.

Next subsections will present the principles of the

quadrotor.

4.1 Presentation of quadrotor

The quadrotor is one typical UAV, which can be simply

represented with four propellers in a cross configuration

(Fig. 9). The propellers usually have identical pitch blades

and are symmetric about the centre of the cross. Each

propeller is connected to the motor through the reduction

gears, and the movement of the quadrotor can be controlled

by changing the rotational speed of each motor through the

control sub-system.

The following sections will present the design process of

the quadrotor based on the proposed multidisciplinary

methodology by an implementation using 3DEXPERI-

ENCE platform of Dassault systems.

4.2 System design sub-process

The first phase of the system design sub-process is to create

the requirements specification. The general functional

requirement proposed by the customers is that ‘‘this

quadrotor should move from one location to another’’. In

order to satisfy this functional requirement, hierarchical

structure of the requirement should be constructed to detail

this general requirement in the corresponding phase of the

micro-level process.

When the requirements specification has been finished,

the macro-level process enters into the functional model

phase. In the corresponding phase of the micro-level pro-

cess, a hierarchical functional model should be proposed

according to the requirements specification. Attention

should be paid to the consistency between the requirements

specification and the functional model, which means that

every requirement should be realised by one or more sub-

functions. For example, the requirement ‘‘Power should be

Fig. 8 Consistency between two level processes
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supplied to the quadrotor’’ can be realised by the sub-

function ‘‘Supply the power’’.

The last phase of the system design sub-process is the

architectural model phase. In the micro-level process, the

system’s general architecture formed by sub-systems or

components can be obtained. The designers should firstly

decompose the quadrotor into mechatronic modules and try

to use the past designs or standard components to realise

the functions of these mechatronic modules. For example, a

DC motor can realise the function of providing the

mechanical energy. If such standard components or the past

designs do not exist, the designers can use the proposed

pillar design model for the further decomposition. The

interfaces among the sub-systems should be also clarified

in this phase.

Figure 10 shows the hierarchical models in different

design phases during the system design sub-process. In the

paper, the authors use the 3DEXPERIENCE platform to

support the management of the three hierarchical models

and their consistency.

In order to clarify the interfaces among sub-systems of

the architectural model, the Logical Editor workbench of

3DEXPERIENCE platform is used to describe the hierar-

chical structure. In Fig. 11, the sub-systems (or the com-

ponents) and interfaces are represented, respectively, by

grey and purple boxes.

4.3 Discipline-specific design

In the discipline-specific design sub-process, the hierarchy

of design parameters is proposed to help the designers

define the key parameters related to the quadrotor at an

early stage. By analysing the architecture of the quadrotor

decided previously, the system engineers find that the four

main sub-systems of the quadrotor (i.e. the propellers

driving sub-system, the control sub-system, the power

supply sub-system and the propellers sub-system) should

be developed by mechanical engineers, control engineers,

electrical engineers and aerodynamics engineers sepa-

rately. The propeller’s rotational speed is considered as one

of the most important design parameters because it plays an

important role in all the involved disciplines. For example,

the electrical engineers estimate the battery consumption

by considering the propeller’s rotational speed; one of the

objectives of the control discipline is to control the pro-

peller’s rotational speed; the choice of the motor and the

gearbox should take into account the propeller’s rotational

speed by the mechanical engineers; finally, the total aero-

dynamic forces are determined by the propeller’s rotational

speed. In order to demonstrate how the hierarchy of the

design parameters helps the designer to define the key

design parameter (i.e. propeller’s rotational speed), the

propellers driving sub-system (mechanical discipline), the

propellers sub-system (aerodynamics discipline) and the

interfaces between them are chosen as an example.

The propellers driving sub-system which is composed of

the motor and the gear box is designed by the mechanical

engineers. The design parameters related to the mechanical

discipline should be taken into consideration. Hierarchy of

the design parameters can be constructed according to the

steps depicted in Sect. 3.2.4. Figure 12 presents the hier-

archy of the design parameters for the quadrotor during the

discipline-specific design process. Equation (1) at the first

level of the hierarchy related to the mechanical discipline

describes the general dynamics between the motor and the

load (i.e. the gear box and the propeller). The design

parameters of this level can be divided into internal design

parameters and external design parameters. The motor’s

and the propeller’s moments of inertia, the electric and

mechanic motor constants, the motor resistance, the gear

box efficiency and the gear box reduction ratio are classi-

fied as the internal design parameters, because they are

exclusively local at this level and have nothing to do with

the parameters related to other disciplines, while the

motor’s and propeller’s rotational speeds, the load torque

and the input motor voltage are considered as the external

design parameters. Therefore, the process of defining

hierarchical levels should be repeated until the internal

design parameters are achieved. The load torque is chosen

as an example to show the process of defining hierarchical

Fig. 9 Simplified quadrotor

representation
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Fig. 10 Hierarchical models and their consistency in the three design phases

Fig. 11 Representation of the quadrotor based on 3DEXPERIENCE platform
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levels for the external design parameters by Eqs. (2), (3)

and (4). Equation (4) specifies that the propeller’s rota-

tional speed to the input motor voltage is not linear, so it is

much more effective and efficient to estimate the pro-

peller’s rotational speed from the measurements results of

experiments than to obtain the analytic solution by solving

Fig. 12 Hierarchy of design parameters related to the mechanical and aerodynamics disciplines
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the differential equation. By referring to the data sheet of

the DC motor, the mechanical engineers find that the

motor’s rated voltage is 9.6 V. The propeller’s rotational

speed at the rated voltage is 221 rad/s, which can be

obtained from the experiment.

Another hierarchy of the design parameters related to

the aerodynamics discipline is constructed by the aerody-

namics engineers. Equation (5) at the first level shows that

the thrusts created by the propellers should counterbalance

the force due to gravity. Considering the external design

parameters and internal design parameters, the aerody-

namics engineers can construct their own hierarchy of

design parameters. In this case study, the total mass of the

quadrotor (M) is 1.0 kg, and the thrust factor (b) is

53.8 N s2, which can be obtained from Eq. (7). Taking into

account Eqs. (5), (6) and (7), the engineers can obtain the

minimum rotational speed of the propeller (xpmin) which

can maintain the quadrotor on the flight state is 213 rad/s.

4.4 System integration

In the system integration sub-process, the designers should

check the compatibility of the interface once the model of

an interface has been instantiated by making use of the

compatibility rules in order to achieve the multidisciplinary

integration.

Section 4.2 introduces the discipline-specific design

phase for the propellers driving sub-system and the pro-

pellers sub-system. The hierarchy of the design parameters

shows that some design parameters are exclusively local at

this level and have nothing to do with the parameters

related to other disciplines (i.e. internal design parameters),

while others affect the design parameters related to other

disciplines (i.e. external design parameters). The pro-

peller’s rotational speed is considered as the external

design parameter, and both the mechanical engineers and

the aerodynamics engineers propose their own propeller’s

rotational speed. Therefore, the compatibility of the inter-

face between the propellers driving sub-system and the

propellers sub-system should be checked by using the

compatibility rules of the interface model.

Previous subsection shows that the minimum rotational

speed of the propeller to maintain the quadrotor on the

flight state has been calculated by the aerodynamics engi-

neers. However, the propellers driving sub-system,

including the motor and the gear box, is designed by the

mechanical engineers. The compatibility of the interface

between the propellers sub-system and the propellers

driving sub-system should be checked in order to ensure

that the propeller’s rotational speed provided by the motor

at the rated voltage is greater than the minimum rotational

speed. The interface compatibility rule is realised thanks to

the Knowledgeware workbenches of 3DEXPERIENCE

platform (Fig. 13). Figure 13a shows the instance of the

multidisciplinary interface model for the interface (I2)

between the propellers driving sub-system and the pro-

pellers sub-system. Figure 13b shows the compatibility

rules and the test result. Because the propeller’s rotational

speed provided by the motor at the rated voltage is greater

than the minimum rotational speed which can maintain the

quadrotor on the flight state, the interface proves to be

compatible. It should be emphasised that the energy

interface related to the rotational speed of propellers is not

the only interface between the propellers driving sub-sys-

tem and the propellers sub-system, and other types of

interfaces (such as the geometric interface) may also exist

between the two sub-systems. In that case the energy

interface is just one sub-interface of the interface I2.

However, for the sake of clarity, the authors do not further

decompose the interface I2 into sub-interfaces, but use the

I2 to represent the energy interface.

4.5 Synthesis on results of the case study

The quadrotor is used as a case study to demonstrate the

proposed design methodology. The design process guided

by this design methodology and its effectiveness will be

summarised as follows:

As for the system design sub-process, the main tasks of

this design sub-process are to identify the customers’

requirements, analyse system’s functions and finally define

the system’s architecture. Therefore, three phases of the

system design sub-process have been proposed in the

macro-level process, including the requirements specifica-

tion phase, the functional model phase and the architectural

model phase. The system design sub-process of the

quadrotor guided by the design methodology demonstrates

that the proposed hierarchical structures can effectively

guarantee the design consistency among the three phases.

In the discipline-specific design sub-process, the hier-

archy of design parameters is proposed to help the

designers define the key parameters related to the quadrotor

at an early stage. In this case study, the propellers driving

sub-system (mechanical discipline), the propellers sub-

system (aerodynamics discipline) and the interfaces

between them are chosen, and the hierarchies of the design

parameters which help the designers to fix the propeller’s

rotational speed are demonstrated by the two involved

disciplines. The demonstration indicates that the hierarchy

of the design parameters is an effective solution to handle

the multidisciplinary design. It is able to shift the design of

mechatronic systems from the multidisciplinary level down

to the discipline-specific level.

In the system integration sub-process, the compatibility

of the interface between the propellers driving sub-system

and the propellers sub-system is checked by the
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compatibility rules of the multidisciplinary interface

model. The multidisciplinary interface model provides a

common representation for the interfaces. It can detect the

design errors before the design is completely finished,

which can greatly reduce the unnecessary iterations. As a

result, the overall development costs and the time-to-mar-

ket can be decreased accordingly.

5 Discussion

In the paper, the authors propose a design methodology

adopting an extended V-model as the macro-level design

process and the hierarchical design model as the micro-

level design process. The multidisciplinary interface model

is used to ensure the consistency between the two levels.

Therefore, the three aspects, macro-level design process,

micro-level design process and multidisciplinary interface

model, are considered as the cores of the paper. The three

aspects are coherent with each other and their combination

help designers to achieve integrated design:

• Macro-level design process: An extended V-model is

defined as the macro-level design process. In this

design process, sub-processes and their design phases

are presented. An iterative process is also described to

guarantee the components integrate correctly and

eventually to ensure the multidisciplinary integration

among different design teams.

Fig. 13 Interface model instance and compatibility test
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• Micro-level design process: The hierarchical design

model is used to support the micro-level design process,

which describes the details of design activities in every

design phase.

• Multidisciplinary interface model The multidisci-

plinary interface model is proposed to ensure the

consistency between the two levels of design process.

With the support of the interface, the designers can go

back to the general development flow of the macro-

level process from the specific design activities, and

therefore, the consistency between the two levels of

design process is ensured.

The paper provides the design process of a quadrotor as

a case study to demonstrate the design methodology for

mechatronic systems, but this design methodology still has

some limitations and needs to be further expanded in

several directions:

• During the discipline-specific design sub-process, the

authors propose a hierarchy of the design parameters to

help the designers to define the key parameters of the

components at an early stage. The authors provide an

optimal model to describe this hierarchy of the design

parameters (see Fig. 6). In this optimal model, every

Functional Requirement can be satisfied by one com-

ponent possessing several Design Parameters. How-

ever, due to the increasing integration level of systems

or the designers’ experiences, various hierarchies may

be constructed by different designers when facing the

same system. And even sometimes certain Functional

Requirement should be satisfied by a systematic

integration of numbers of components. Although a

method called Degree of Mechatronic Coupling

(DoMC) has been proposed by (Hehenberger et al.

2010) to help the designers to analyse and evaluate

different hierarchies of the design parameters, more

attention should be still paid to the issue of hierarchy in

the future research.

• 3DEXPERIENCE platform allows the designers to

construct the hierarchical structures for the requirement

specification, functional model and the architectural

model, and a demonstrator of the multidisciplinary

interface model based on the Knowledgeware work-

benches of 3DEXPERIENCE platform has been devel-

oped by the authors. However, an automatic IT

platform means more than that. It should not only be

able to facilitate the collaboration and communication

among the design teams of different disciplines, which

have been partially realised by the demonstrator

presented in the paper, but also provide an automation

of these design activities or tasks according to the

decisions made by the designers. Therefore, such

automatic IT platform which can fully support the

entire design methodology should be further developed

in future.

• Identification of all requirements on the total system, as

the first design phase of the proposed design method-

ology, depends largely on the experience of the

designers. Therefore, different designers may propose

diverse architectural models which are derived from the

requirements specifications. As for a designer who does

not have enough design experiences, a complete

architectural model cannot be obtained without itera-

tions, and it needs to be improved along with the design

process. As presented in Sect. 3.2.5, the second solu-

tion to the incompatibility problem–interface decom-

position solution can help the designers to improve the

architectural model by decomposing the incompatible

interface. However, as for an experienced mechatronic

system designer, a more complete architectural model

can be fixed at the early stage of the system design sub-

process and the iterative loop to solve the incompat-

ibility problem can be reduced accordingly. Therefore,

the designers’ experiences play significant roles for the

design of mechatronic system. Much more attention

should be paid to the designers’ experiences because

the iterative loops can be greatly avoided so that the

development costs and the time-to-market can be

decreased.

• The V-model is considered as an effective way of

representing the systems engineering and development

process. The principle of V-model for the design of

complex systems can be simply concluded as ‘‘De-

composition and definition (upper-left)’’ and ‘‘Integra-

tion and recomposition’’ (Department of Transportation

2007). Such ‘‘Decomposition-Recomposition’’ princi-

ple proves to be quite useful to support the design of

complex systems. However, the real projects may

deviate from the V-model. One challenge of V-model is

that it is not flexible enough. The requirement docu-

ments may change due to the rapid changing market

during the design process; therefore, the information,

data or documents used for the design should be

updated. Additionally, the V-model is proposed to

solve the design problems of complex systems. Nev-

ertheless, as for a simple system, or even a complex

system but the design process of its similar system (i.e.

product family) has been well established and manage-

ment, it is not necessary to carry on the design process

according to the V-model (interested reader can refer to

(Kolberg et al. 2014); in this reference, a comprehen-

sive robot development process has been presented, and

it proves to be successful, but the development process

does not follow the V-model and even the concurrent

design approach has not been adopted by the process).

Although sometimes the designers may follow the
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design process which deviate significantly from the

V-model as the macro-level process, however, the

approaches in the micro-level process proposed in the

paper, such as the hierarchical structure to specify the

requirements, analyse the functions and define the

architecture, the hierarchy of the design parameters and

the multidisciplinary interface model can be still used

to support the design process. The hierarchical structure

can guarantee the design consistency among the

different design phases, the hierarchy of the design

parameters can help the designers to define the key

parameters in an early stage, while the multidisci-

plinary interface model can greatly help the designers

to avoid the design errors and reduce the iterative loops

during the design process.

6 Conclusions

The paper has presented a design methodology which can

aid the designers to achieve the multidisciplinary integra-

tion for the design of mechatronic systems. A case study—

a quadrotor—is used to demonstrate the proposed design

methodology by using 3DEXPERIENCE platform.

In order to achieve the multidisciplinary integration, the

designers should pay attention to both the macro-level

process and the micro-level process during the collabora-

tive design process of mechatronic systems. The macro-

level process describes the generic procedure for the design

of mechatronic systems, while the micro-level process

supports every specific design phase where individual

designers can structure design sub-tasks and proceed and

react in unforeseen situations. This proposed design

methodology uses an extended V-model as the macro-level

process. It describes the generic procedure for the design of

mechatronic systems from the identification of all

requirements on the total system to a user-validated system.

The micro-level process is realised by the hierarchical

design model. Such hierarchical design model supports

each design phase where individual designers can proceed

and react in unforeseen situations and structure design sub-

tasks. Moreover, a multidisciplinary interface model is

developed as an extension of the product model to ensure

the consistency between the macro- and micro-design

processes. The multidisciplinary interface model provides a

common representation for the interfaces, which can be

used to help the designers to ensure the consistency

between the two levels of design process. With the support

of the interface, the designers can go back to the general

development flow of the macro-level process from the

specific design activities, and therefore, the consistency

between the two levels of design process is ensured.

Acknowledgements This work was in part supported by the Linz

Center of Mechatronics (LCM) within the framework of the Austrian

COMET-K2 program and the Labex MS2T (supported by the French

Government, through the program ‘‘Investments for the future’’

managed by the National Agency for Research—Reference ANR-11-

IDEX-0004-02) at the Université de Technologie de Compiègne.
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ISO (1994) Overview and fundamental principles. ISO, Geneva

ISO10303-233 (2012) Industrial automation systems and integra-

tion—Product data representation and exchange—Part 233:

application protocol: systems engineering. International organi-

zation for standardization, Geneva

Jansen S, Welp EG (2005) Model-based design of actuation concepts:

a support for domain allocation in mechatronics. International

conference on engineering design (ICED 05), Melbourne,

Australia, pp 1–15

KerzhnerAA,ParedisCJJ (2012)ASysML-based language formodeling

system-level architecture selection decisions. ASME 2012 interna-

tional design engineering technical conferences and computers and

information in engineering conference, Chicago, USA

Kleiner S, Kramer C (2013) Model based design with systems

engineering based on RFLP using V6. Proceedings of the 23rd

CIRP Design Conference, Bochum, Germany. 11–13 March,

pp 93–102

Kolberg E, Reich Y, Levin I (2014) Designing winning robots by

careful design of their development process. Res Eng Des

25:157–183

Komoto H, Tomiyama T (2011) Multi-disciplinary system decompo-

sition of complex mechatronics systems. CIRP Ann Manuf

Technol 60:191–194

Komoto H, Tomiyama T (2012) A framework for computer-aided

conceptual design and its application to system architecting of

mechatronics products. Comput Des 44:931–946

Le Duigou J, Bernard A, Perry N (2011) Framework for product

lifecycle management integration in small and medium enter-

prises networks. Comput Aided Des Appl 8:531–544
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