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Abstract Ever increasing functionality and complexity of

products and systems challenge development companies in

achieving high and consistent quality. A model-based

approach is used to investigate the relationship between

system complexity and system robustness. The measure for

complexity is based on the degree of functional coupling

and the level of contradiction in the couplings. Whilst

Suh’s independence axiom states that functional indepen-

dence (uncoupled designs) produces more robust designs,

this study proves this not to be the case for max-/min-is-

best requirements, and only to be true in the general sense

for nominal-is-best requirements. In specific cases, the

independence axiom has exceptions as illustrated with a

machining example, showing how a coupled solution is

more robust than its uncoupled counterpart. This study also

shows with statistical significance, that for max- and min-

is-best requirements, the robustness is most affected by the

level of contradiction between coupled functional

requirements (p = 1.4e-36). In practice, the results imply

that if the main influencing factors for each function in a

system are known in the concept phase, an evaluation of

the contradiction level can be used to evaluate concept

robustness.

Keywords Robust design � Complexity � Axiomatic

design � Coupling � Contradiction

1 Introduction

Many products from hairdryers to systems like a spacecraft

become more and more complex and integrated. Func-

tionality is being added with every product generation as

technology advances. For example, Figs. 1 and 2 show

exemplarily the evolution of car safety features and added

technology for every generation of the Apple iPhone,

respectively. The performance but also the robustness

against variation and noise factors of the functions is of

high importance.

The pursuit of robustness, i.e. insensitivity to variation

in noise (type I Robust Design) and design parameters

(type II Robust Design), challenges the developing com-

panies. ‘‘Small changes to a complex coupled system can

result in large unexpected changes in behaviour, possibly

taking the system outside of its designers’ expected oper-

ating regime’’ (Gribble 2001). The analysis of large-scale

design/engineering networks points towards the same

conclusion that complexity i.e. ‘‘design coupling’’ tends to

negatively influence system robustness (Braha and Bar-

Yam 2004, 2007). The question arises how large the impact

of complexity on robustness is and whether generalizations

can be made.

There are various design guidelines available fostering a

‘‘good’’ and robust design. One of them—axiomatic design

(AD) by Nam P. Suh (2001)—addresses the complexity

and coupling of the design. The first axiom promotes
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independence of functions which is said to produce

inherently more robust designs (Suh 2001, p. 125, 126). A

designer should first and foremost seek for an uncoupled or

decoupled design and then, in adherence to the second

axiom, minimize the information content. Slagle (2007)

investigated the influence of the system architecture on the

robustness and proposed 9 principles. Among those are the

principles of ‘‘Independence’’ and ‘‘Simplicity’’ in accor-

dance with the notion of Suh. However, it is not always

practically possible to uncouple or decouple functions due

to other conflicting DfX requirements. Furthermore, with

respect to robustness the first axiom is not always true in

reality as there are instances where a coupled design has a

lower information content, which actually produces a

higher probability of success and robustness.

Consider a machine that can position a drill with an

accuracy of 0.02 mm (l = 0, r = 0.02 mm) in the x

direction and 0.005 mm (l = 0, r = 0.005 mm) in the y

direction. Let us also say that the tolerances on the position

of the hole are ±0.04 mm in the x and ±0.03 mm in the y

direction. If the workpiece is oriented square to the axes,

the mapping from design parameter (DP) to functional

requirement (FR) is diagonal and hence the design

uncoupled (design 1). The probability of success is about

p = 95 %. However, if the part is reoriented at an angle of

about 30 degrees, the FR-DP mapping is coupled (design 2)

and the probability of success rises to about p = 97.5 %,

which is roughly a factor of 2 drop in failure rate (see

Figs. 3, 4). This example provides proof that axiom 1 is not

always true; however, the authors believe that axiom 1 is

Fig. 1 Evolution of car safety features (Jackson 2013)

Fig. 2 Added functionality for

every generation of the Apple

iPhone (Apple 2015)
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still an incredibly valuable design principle (Ebro and

Howard 2016) that should be used and taught despite the

odd exception.

2 Research delimitation and methodology

The aim of this research is to investigate the link between

the complexity of a design and its robustness. In order to

understand this link first, several terms need to be defined.

The robustness of a design is a key factor in achieving the

desired quality of a product where yield = f (robustness,

variation). Therefore, in order to increase the yield, either

the variation (coming from manufacturing, assembly,

ambient conditions, time, load, the material and signal)

needs to be reduced, or the robustness of the design (in-

herent in the product architecture, geometry and dimen-

sions) needs to be increased.

In this research, we have chosen numerical analysis as a

means for simulating the yield values since empirical data

necessary to obtain meaningful statistical results would be

unfeasible. The variation of the different design parameters

has been modelled using a Monte Carlo simulation. By setting

up the analysis in this way, it can be deduced that the designs

that produced the greatest yield are therefore the most robust.

In order to create the designs, 250 different design

architectures have been modelled based on the hierarchical

probability model by Frey and Li (2008) (see the complex

systems modelling approach later), each with differing

complexity. In this paper, the authors define complexity to be

related to the degree of coupling of the functions in the design

(directly related to axiom 1) (Summers and Shah 2010) and

the level of contradiction of the couplings. The definitions for

coupling and contractions are best laid out in a previous

research by Göhler and Howard (2015) in the following:

• A coupling with low level of contradiction (positive

coupling): When changing a design parameter can lead

to improvements in both of its coupled functions

(Fig. 5).

• A coupling with high level of contradiction (negative

coupling): When changing a design parameter will only

positively affect one of the coupled functions as the

other will be negatively affected (Fig. 6).

From this theoretical basis, two main research

questions (RQ) arise and are addressed in this article:

RQ1 Is there an association between the degree of

coupling in a design and its robustness?

RQ2 Is there an association between the level of

contradiction in a design and its robustness?

2.1 A practical example case

To illustrate the practical implication of contradicting and

positive couplings, consider an automobile diaphragm

Fig. 3 Hole pattern for design 1 (p = 95 %)

Fig. 4 Hole pattern for design 2 (p = 97.5 %)

Fig. 5 Positive coupling of functions
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spring clutch as shown in Fig. 7. The release bearing

pushes the diaphragm spring inwards forcing it to buckle

and release the pressure plate from pressing clutch plate

and flywheel together.

Assuming the main functional requirements and design

parameters to be the ones listed in Table 1, a simplified

model using response surface methodology (RSM)

(Box and Wilson 1951) yields the governing Eqs. (1–5).

T ¼ �69:9þ 0:01 � k þ 504:4 � sþ 121:0 � ri þ 139:2 � ro
ð1Þ

F ¼ �247:5þ 0:1 � k þ 5068� t ð2Þ

R ¼ 0:13� 0:6 � 10�5 � k � 0:64 � t ð3Þ

W ¼ 0:002� 0:6 � 10�8 � k � 0:06 � t þ 0:04 � ri
þ 0:005 � ro þ 0:1 � 10�6 � kt � 0:12 � riro ð4Þ

c ¼ �29562� 10900 � ri þ 33724 � ro þ 2:6 � 106 � tro
þ 16 � roq ð5Þ

T "
F #
R #
W #
c "

2
66664

3
77775
¼

x " x " x " x " 0

x # x # 0 0 0

x " x " 0 0 0

x " x " x # x " 0

0 x " x # x " x "

2
66664

3
77775

k

s

ri
ro
q

2
66664

3
77775
þ�����*

constant

ð6Þ

In linearized and simplified form, the functional

dependencies of the five main functions of the clutch

(Eqs. 1–5) can be summarized using Suh’s design matrix

(DM) either quantitatively using partial derivatives or

qualitatively as shown in Eq. (6). The arrows next to the

FRs and the entries in the DM show the desired tendency of

the value for the FRs and associated DPs. The design is

coupled and is not easy to decouple or uncouple without

changing the whole concept. However, since many of the

requirements tend in the ‘‘same direction’’ the couplings

are supporting (positive) couplings with no negative

impact. Only the force required to disengage the clutch is

in contradiction to the other requirements. However,

solutions with for example an increased length of the lever

arm or a hydraulic actuation could decrease the maximum

required force.

3 A complex systems model

3.1 Assumptions

A product or system usually comprises of multiple func-

tions and sub-functions that interact and are more or less

coupled through the structural realization of the product or

system (compare to the simplified diaphragm spring clutch

example with its five functions which are coupled through

the design parameters). For the presented model, a system

is defined by the governing equations of its functions. All

information and dependencies between design parameters,

noise factors and functional outputs are assumed to be

known. However, for real-world examples, this would be

unrealistically resource intensive. The probabilistic mod-

elling approach used in this study enables the investigator

to generalize from a population of systems, but also easily

alter assumptions of the model to match new findings and

Fig. 7 Schematic of a diaphragm spring clutch. Adopted from Hillier

and Coombes (2004)

Fig. 6 Contradicting (negative) coupling of functions

Table 1 List of FRs and DPs for diaphragm clutch example

Functional requirements (FR) Design parameters (DP)

Transmittable torque (T) Diaphragm spring constant (k)

Force to disengage clutch (F) Thickness of friction surface (t)

Responsiveness of clutch (R) Friction surface inner radius (ri)

Wear (W) Friction surface outer radius (ro)

Heat capacity of friction

surface (c)

Friction surface density (q)
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to check the robustness of the results. It is further assumed

that the random parameter set x1. . .xn is a valid solution to

the design problem and all m functions are satisfactory

fulfilled in that point. An optimization for maximum

robustness is out of scope for this study. In a real design

situation, there would also be weighting factors for each

function meaning certain functions are more important or

critical than others. The nature of the functions may also

differ, some being more binary in nature, either functioning

or non-functioning, where others would have a continuous

spectrum of performance. For the purpose of this study, it

is assumed that all functions are equally weighted and have

a continuous nature. It is also assumed that the relative

variation is the same for all influencing factors.

3.2 Model characteristics and set-up

In a previous study, Frey and Li (2008) adapted the

hierarchical probability model (HPM) developed by

Chipman et al. (1997) to assess the effectivity of param-

eter design methods. The HPM is solely a model for single

functions and has in this work been extended for complex

products and systems. Looking only at a small number of

systems can be misleading since there are examples for

complex but robust (aero engines, see also Carlson and

Doyle 2000) but also simple and non-robust systems (GM

ignition switch Eifler et al. 2014). The purpose of the

surrogate model presented in the following is to be able to

analyse a population of systems in a quick and inexpen-

sive manner to be able to probabilistically assess the

association between complexity and robustness. The

model builds upon the nature of functional dependencies

as observed in real-world systems. Three main character-

istics and regularities can be seen from empirical data that

have also widely been used in the design of experiment

(DoE) context (see for example Box and Meyer 1986; Wu

and Hamada 2011).

1. Sparsity of effects: Experiments have shown that ‘‘the

responses [of functions] are driven largely by a limited

number of main effects and lower-order interactions in

most of the systems, and that higher-order interactions

usually are relatively unimportant’’ (Kutner et al.

2004). In other words, there are usually only a small

number of factors or parameters in systems that are

actually influencing the performance of the functions.

These are called to be ‘‘active’’ (Lenth 1989). This

follows along with the well known Pareto’s principle,

also commonly referred to as the 80/20-rule stating

that 80 % of the effects comes from 20 % of all

influencing factors. In terms of modelling, this char-

acteristic reduces the complexity and eases the repre-

sentation of a function.

2. Hierarchy: Another common observation is that main

effects are typically stronger than second-order inter-

actions which are usually larger than third-order

interactions and so on (Wu and Hamada 2011).

3. Inheritance: Empirical data reveal that interaction

effects are more likely to be active if the interacting

parameters’ main effects are active (Wu and Hamada

2011).

To capture the entire product or system, which can be

seen as a set of coupled functions, the model of Frey and Li

(2008) has been extended. Equations (7) through (14)

describe the main structure of the hierarchical probability

systems model (HPSM). The HPSM describes functional

response hyper-surfaces of multi-factor–multi-function

systems that reflect observed functional regularities of

sparsity, hierarchy and inheritance. In the way it is set up, it

allows the investigator to adjust model parameters and

probabilities to match assumptions and empirical data.

The hierarchical probability model by Frey & Li has

been augmented by a functional dimension. There are m

functions in a system with the ith function’s performance

yl x1; . . .; xnð Þ expressed by a third-order polynomial equa-

tion that covers the effects of all n parameters x1. . .xn and

their interactions up to third order (Eq. 7). Modelling up to

the third order is a sensible way of covering the most

common effects without over-complicating the model.

x1. . .xn are the influencing parameters to the entire system

(Eq. 8). These can be design parameters or part properties

that can be controlled by the designer or environmental

effects outside of the control of the engineers. In contrast to

the model by Frey and Li, the differentiation between

design parameters and noise factors is not necessary, since

the analysis of couplings and contradictions is independent

of the nature of the influencing factor. However, the dis-

tinction can easily be reintegrated to the model. For the

remainder of the article, design parameters and noise fac-

tors will be referred to as influencing parameters (IPs).

The IPs are described by �x, a vector of continuous

variables each randomly assigned between 0…1 to be able

to vary the parameters for the assessment of the system

robustness. The hierarchical probability model by Frey &

Li has only two levels [0, 1] for x. It reflects the original

experiments the model is based on, which chose the can-

didate range for x to cover the highest and lowest antici-

pated x. The experimental error from observations e is

irrelevant for this model and has been omitted. The prob-

ability p that a main effect is active di ¼ 1ð Þ is described by

Eq. (9). p is a probability value that incorporates the

sparsity characteristic to the system. Equation (10) and

(11) provide the probabilities that second- and third-order

effects are active dependent on their parental main effects’

activity. This introduces the characteristic of inheritance to

Res Eng Design (2017) 28:223–234 227
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the system. Lastly, Eqs. (12–14) prescribe the b coeffi-

cients, i.e. the magnitudes of the effects on the functional

output y, dependent on the associated effect being active or

not (d ¼ 1 or d ¼ 0, respectively). As opposed to IPs, the

effect magnitudes solely depend on the underlying natural

laws and are therefore theoretically unbounded (see

example Fig. 8). To reflect that, the coefficients are random

normally distributed values with mean l ¼ 0 and variance

r2 ¼ d2 for active effects and 0 for inactive effects. Note

that even active effects can have insignificant effects on the

function since the mean of b is set to zero. Inactive effects

have been omitted for this model opposed to the underlying

model to avoid coupling in all possible parameters and

allow for independence of the functions in the system as

this is good design practice. Depending on the investiga-

tion, the constant b0 can be chosen to ensure non-zero or

positive values of y or simply be set to zero without loss of

generality. The hierarchical structure of effects is described

by Eqs. (13) and (14) reducing the second- and third-order

effects by 1
s1

and 1
s2

, respectively.

yl x1; x2; . . .; xnð Þ ¼ b0l
þ
Xn
i¼1

bil xi þ
Xn
i¼1

X
j¼1

n

j[ i

bijl xixj

þ
Xn
i¼1

X
j¼1

n

j[ i

X
k¼1
k[ i

n

k[ j

bijkl xixjxk

l 2 1. . .m

ð7Þ

xi 2 0. . .1f g i 2 1. . .n ð8Þ
Pr di ¼ 1ð Þ ¼ p ð9Þ

Pr dij ¼ 1jdi; dj
� �

¼
p00 if di þ dj ¼ 0

p01 if di þ dj ¼ 1

p11 if di þ dj ¼ 2

8<
: ð10Þ

Pr dij ¼ 1jdi; dj; dk
� �

¼

p000 if di þ dj þ dk ¼ 0

p001 if di þ dj þ dk ¼ 1

p011 if di þ dj þ dk ¼ 2

p111 if di þ dj þ dk ¼ 3

8>><
>>:

ð11Þ

f bijdið Þ ¼ 0 if di ¼ 0

N 0; d2ð Þ if di ¼ 1

�
ð12Þ

f bijdið Þ ¼ 0 if di ¼ 0

N 0; d2ð Þ if di ¼ 1

�
ð13Þ

f bijkjdijk
� �

¼ 1

s2

0 if dijk ¼ 0

N 0; d2ð Þ if dijk ¼ 1

�
ð14Þ

3.3 Types of functional requirements

There are three types of functional requirements as descri-

bed in (Taguchi et al. 2005)—maximum is best, minimum is

best and nominal is best. The first two differ only in the sign

and can be described in the same manner. These require-

ments are functionally bound only by a minimum (for

maximum is best) or maximum (for minimum is best)

requirement. However, physical constraints limit the maxi-

mum performance. An example for a minimum-is-best

requirement is the weight of an airplane. The weight

determines the fuel consumption and the lift needed. How-

ever, since a certain payload capability is required which

again requires a certain lift and thrust the structural rigidity

sets the lower bound for the empty weight of the airplane.

An example for a maximum-is-best requirement is a simple

pair of scissors where the length of the lever arm determines

the cutting force. The lower limit of the size of the pair of

scissors is set by the minimum required cutting force, the

upper bound by the sheer size and ergonomics. Nominal-is-

best requirements are functionally constraint on the upper

and lower bound. A push button of a device, for example,

should not be too easy or too hard to push since the user

would associate both with a malfunction.

In the presented surrogate system model, the functions

have requirements of the type maximum is best and mini-

mum is best. Nominal-is-best requirements can be modelled

as two separate functions one minimum is best, the other

maximum is best with the same set of beta coefficients.

4 System evaluation

The developed surrogate model realistically describes a

product or system with multiple functions and multiple

influencing parameters. For this study, the system properties

of interest are the complexity, i.e. the couplings and their

level of contradiction, and the robustness. However, the

model is not limited to complexity and robustness studies but

can also be used for other investigations like optimization or

design of experiments investigations.

4.1 Coupling and contradiction

A system as described in the presented model consists of

multiple functions with multiple influencing parameters

and their interactions. A common way to measure the

Fig. 8 Modelling the outgoing force Fout að Þ in a principle lever

design with a third-order polynomial equation for small a gives

(theoretically unbounded) high values for ba
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123



complexity of the system is to evaluate the degree of

coupling between the single functions, i.e. how many

parameters are shared and what the influence of these

parameters on the individual function is (Summers and

Shah 2010). In axiomatic design (AD), Nam P. Suh dis-

tinguishes between three different types of systems and

stresses the importance of the independence of functions

for a predictable and high performance (design axiom 1).

1. Uncoupled systems

2. Decoupled systems

3. Coupled systems

However, no further distinction between systems of the

same type is made on the conceptual level. Meaning that in

cases where uncoupling or decoupling of the system cannot

be achieved due to, for example, other DfX constraints,

there is no means to further screen and compare the

goodness of concepts. Suh’s second design axiom, the

information axiom, aims at the probability of achieving the

required performances of the designed functions, which

needs further and more detailed insights about the

requirements on the one hand and the production capabil-

ities on the other hand. A sensible extension of the inde-

pendence axiom is to assess a system’s complexity by

evaluating the level of contradiction imposed onto the

design, as discussed earlier in this paper.

In the presented study, the contradiction of a function in

a system is described by the comparison of the influences

cijk of the single parameters on the different functions

(Eq. 15). For this purpose, the weighted ratio was taken,

reflecting the correlation of two functions in a particular

parameter. The contradiction cijkl of a function l with

respect to a parameter xixjxk is then defined as the maxi-

mum of the weighted ratios evaluated against all other

functions w (Eq. 16). Note that there is minus sign to get a

positive contradiction value.

cil ¼ max
� 0

�cil
cil
ciw

� �
; cijl ¼ max

� 0
�cijl

cijl
cijw

 !
; cijkl

¼ max
� 0

�cijkl
cijkl
cijkw

 !
ð16Þ

The highest possible value of contradiction in an IP is

therefore cijkl ¼ 1 in the case that two functions share the

same IP which accounts for 100 % of the functions’ per-

formance with opposite signs on the betas and therefore

opposite requirements for this parameter or property. To

describe the contradiction of a function, the sum is taken

over all the individual contradictions in the IPs (Eq. 17).

cl ¼
Xn
i¼1

cil þ
Xn
i¼1

X
j¼1

n

j[ i

cijl þ
Xn
i¼1

X
j¼1

n

j[ i

X
k¼1
k[ i

n

k[ j

cijkl ð17Þ

As for the contradiction value of functions to single IPs,

the function contradiction cl is bounded to 1 (or 100 %).

cl = 100 % relates to a fully contradicted function mean-

ing that the function shares all of its IPs with other func-

tions with entirely contradicting requirements towards the

IPs. To evaluate the contradiction level of a system, the

most contradicted function was taken (Eq. 18).

cSys ¼ max clð Þ ð18Þ

The example of the diaphragm spring clutch introduced

in Sect. 2 yields a contradiction value of 0.7. The force to

disengage the clutch (F) and the responsiveness (R) have

strongly contradicting requirements with respect to the

relevant IPs (k and t). However, as mentioned before the

force to disengage the clutch can be addressed by a sup-

porting function like a lever arm or hydraulic actuator. This

essentially decouples the functions leading also to a lower

contradiction score. Neglecting the disengagement force as

a function leads to a contradiction value of 10 %.

It has to be noted that this is a simplification for the

description of a system’s contradiction level to ensure

applicability in practice. There are instances where cou-

plings and contradictions span multiple functions compli-

cating the metric significantly.

4.2 Robustness

The robustness level of a product or system describes its

functional insensitivity to variation of any kind whilst

satisfactory meeting all functional requirements. The

sources of variation can be categorized in manufacturing,

cijkl ¼
bijkxixjxkPn

i¼1 bil
�� ��xi þPn

i¼1

Pn

j ¼ 1

j[ i

bijl
�� ��xixj þPn

i¼1

Pn

j ¼ 1

j[ i

Pn

k ¼ 1

k[ i

k[ j

bijkl
�� ��xixjxk ð15Þ
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assembly, load, environment, material, signal and time-

dependent variation (Ebro et al. 2012). Robustness can be

evaluated in many ways (Göhler et al. 2016). However,

most metrics to describe robustness only address single

functions. Among those are for example, the signal-to-

noise ratio (Taguchi et al. 2005), derivative-based and

variance-based as well regression-based sensitivities indi-

ces (Saltelli et al. 2008). In robust design optimization

(RDO), this trade-off problem is addressed with multi-ob-

jective optimization algorithms. For example, Bras and

Mistree (1993) utilize the methodology of compromise

decision support problems (cDSP).

For this study, the evaluation of the system robustness is

based on the idea that a robust system is less sensitive to

ingoing variation and therefore has a larger design space

also called common range which is the overlap between the

design range and the system range (Suh 2001). Monte Carlo

analysis (MCA) is used to alter all influencing parameters

simultaneously in order to cover the entire system range.

However, the definition of the common range is dependent

on a ‘‘goodness’’ criterion for the systems’ individual

functional performance. Using this criterion to judge if a

parameter set leads to the system being acceptable or

unacceptable is similar to reliability assessments where a

system can also only have two states: working or failed. The

number of successes in the MCA is a measure of how big

the common range is and therefore how robust the system is

to variation. In the remainder of this paper, we will refer to

this robustness score as the yield Y .

The MCA comprises of b iterations (trials) where the

parameters x1. . .xn are varied randomly in a specified

interval vDP for allowed variations to derive the varied

parameter set x
0
i (Eq. 19). The performance ratio prl for the

individual functions yl is computed and compared to the

yield criterion z (Eqs. 20 ? 21). If the performance ratio is

greater than or equal to the yield criterion, this iteration (in

design terms: combination of varied parameters) is con-

sider a ‘‘success’’. As discussed earlier in this article, only

max-is-best and min-is-best requirements are taken into

account for this study. In this case, z can be interpreted as

minimum required performance relative to the nominal

performance. The yield, i.e. the ratio of successes to trials,

is normalized with the number of influential factors a in the

system (Eqs. 22 ? 23). Even though a parameter is active,

its contribution can be very low. By normalizing with the

number of influencing factors, the robustness scores can be

made comparable.

x
0

i ¼ 1� vDP

2

� 	
þ rand � vDP

h i
� xi ð19Þ

prl ¼
yl �x

0ð Þ � yl �xð Þ
yl �xð Þ

ð20Þ

success prl� z for all l ð21Þ

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# of successes

# of trials

� �
a

s
ð22Þ

a ¼ # of xijkj
bijkl
�� ��xijk
bijkl
�� ��xijk*

� 1

# of Active Paramters
ð23Þ

5 Model execution

MATLAB is used to compute a data set of q systems with the

presented hierarchical probability system model and to eval-

uate their functional contradiction and robustness. Analysing

a population of systems yields the advantage to detect trends

and correlations. Due to the probabilistic set-up of the model

there is a chance of ‘‘zero’’ functions where all coefficients b
are zero for a function. In that case, the product or system

would fail to accomplish one of the required functions. Those

systems are considered incomplete and erased from the data

set. Furthermore, there is a chance for the parameter set �x

being the only solution for z ¼ 0 and low numbers of influ-

encing factors. These cases have also been disregarded.

The values for the probabilities and factors for the single

functions in the model have been adapted from Frey and Li

(2008), who investigated various empirical examples to

extract those, to ensure the link to real-world systems.

Table 2 states all probabilities and factors used in the model.

Given the probabilities in Table 2, the system model has

been set up for n = 5 influencing parameters and m = 5

functions in a population of q = 250 systems. These model

parameters have been chosen to keep the computational effort

to a reasonable extent whilst ensuring well distributed data

points across the whole range of contradiction and level of

robustness and therefore ensuring the power of the data. The

dependence of the selected number of influencing parameters

and functions on the outcome will be investigated and dis-

cussed later in the paper. The MCA sample size has been

selected to b ¼ 1000000 following a study of the conver-

gence for the slope and the intercept in the linear regression

model (for the case vDP ¼ 10%, z ¼ 0) as a balance between

computational time and accuracy (see Fig. 9).

6 Results

6.1 Association between coupling and robustness

Figure 10 shows a scatter plot of the normalized yield and

therefore of the system robustness against the number of

couplings in a system for q ¼ 250 simulated systems with

a uniformly distributed variation vDP ¼ 10% in the IPs and
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a yield limit of z ¼ 0. In the context of manufacturing

variation, a normal distribution is often used to reflect the

nature of the variation. With the focus on the system and

common range, i.e. the robustness, a uniform distribution

of the variation in the IPs was chosen to cover the system

range as efficiently as possible. Two data points for the

example of the diaphragm spring clutch (with and without

the function for the disengagement force) have been added

to the plot to illustrate the connection to a real-world

design example. The Pearson’s and Spearman’s tests for

independence have been conducted to quantify the asso-

ciation. With p values of 0.13 and 0.11, respectively, the

tests suggest independence. That means that considering

the number of couplings alone does not give any insights

to how robust a system is, addressing Research Question 1.

6.2 Association between functional contradiction

and robustness

The scatter plot in (Fig. 11) shows the normalized yield

against the functional contradiction as defined in the pre-

vious section for the same model run as before. To describe

the association, the linear least square fit (Eq. 24) with its

95 % confidence bounds is included in the plot. Again, the

data points for the example of the diaphragm spring clutch

have been added to the plot.

f ðcsysÞ ¼ p1 � csys þ p2

with

p1 ¼ �0:50

p2 ¼ 64:08

ð24Þ

As can be seen from the scatter plot (Fig. 11), there is

strong association between the level of contradiction in the

functional requirements and the yield, i.e. the robustness of

the system. With a p value of the F-statistic of 1.4e-36, the

association is statistically significant. The Pearson’s and

Spearman’s tests confirm this. Also, the 95 % confidence

bounds do not include a zero slope, which would poten-

tially mean independence. This result addresses Research

Question 2.

6.3 Sensitivity to assumptions and model set-up

To verify the validity of the outcome and the independence

to the model assumptions, some variations of the model

have been investigated. Table 3 summarizes the model

variants with their parameters and results.

As can be read off from Table 3, the association

between the level of contradiction and the normalized yield

Fig. 9 Convergence analysis

Fig. 10 Scatter plot of normalized yield against no. of couplings

Fig. 11 Association between normalized yield and contradiction

Table 2 Model parameter

p ¼ 0:41 p00 ¼ 0:0048 p001 ¼ 0:035 s1 ¼ 3:6

p11 ¼ 0:33 p111 ¼ 0:15 p000 ¼ 0:012 s2 ¼ 7:3

p01 ¼ 0:045 p011 ¼ 0:067 d ¼ 10 b0 ¼ 0
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is statistically significant for the model variants 1–7. In

particular, the results show that the association holds also

for systems with higher numbers of IPs n and functions m.

Furthermore, the results from variant 4 suggest that the

association is independent of the setting of the variation

interval vDP. However, the yield is strongly associated with

the minimum required performance of the functions z.

Since main effects with linear correlations to the functional

performance are most likely and most powerful in the

presented model, it is expected that for decreasing yield

limits to equal or close to the magnitude of the ingoing

variation vDP, the yield increases and becomes independent

of the level of contradiction. In simple terms, this means

that as the specification window becomes wider, finding a

design solution becomes easier and easier with a huge

range of values to choose from. At a certain point, the

specification windows are so large that the contradictions

cause a relatively minor limitation to the parameter selec-

tion range and therefore have little impact on the yield. The

results for variants 5–8 confirm this. Figure 12 shows the

linear fits for a decreasing yield limit z ¼ 0. . .� 0:1. The

ingoing variation is in all cases vDP ¼ 10 %. All other

model parameters are also kept.

7 Discussion

Various scholars have investigated the relation between

robustness to variation and complexity. However, there is

no universal definition of complexity, and therefore, the

studies had often different foci and levels of detail. One of

the most influential frameworks in this field is axiomatic

design, as discussed in this paper. Suh (2001) defines

complexity ‘‘as a measure of uncertainty on achieving the

specified FRs’’. The metric of the information content,

which is defined as the logarithm of the inverse of the

probability of success, is used both as metric for robustness

but also complexity (El-Haik and Yang 1999). Magee and

de Weck (2004) describe a complex system as ‘‘a system

with numerous components and interconnections, interac-

tions or interdependence […]’’. In accordance with this

definition, some complexity metrics can be found in the

literature that are based on the part and interface count as

well as the number of part and interface types (Slagle

2007). These, however, are very simplified metrics and not

appropriate to be used in the context of robustness due to

the lack of the functional dimension. In the original robust

design approach by Taguchi, system complexity plays a

minor role. Implicitly, a less complex design can easily be

optimized in the parameter design phase. On the other

hand, a certain complexity is necessary to be able to find

more robust parameter settings (Taguchi et al. 2005).

Taguchi’s view on complexity, however, refers therefore

more to the sheer number of parameters. Summers and

Shah (2010) distinguish between complexity metrics based

on the size (‘‘information that is contained within a prob-

lem’’), coupling (‘‘connections between variables at mul-

tiple levels’’) and solvability (the difficulty of solving a

design problem) for the evaluation of parametric and

geometric embodiment design problems (see also Braha

and Maimon 1998). In this study, we define complexity

through the degree of coupling and the level of contra-

diction between functional requirements. This is an

extension of the ideas of the independence axiom. Suh

presents a mathematical argumentation showing that for

deterministic worst case considerations, the allowable

variations in the design parameters DDP for specified

variation limits of the functional requirements DFR are

greatest for uncoupled designs (Suh 2001). However, these

robustness calculations are dependent on set DFRs imply-

ing that all FRs are of the type nominal is best, which

cannot always be assumed as shown in the clutch example

case. Furthermore, an example for a more robust coupled

Fig. 12 Association between normalized yield and contradiction

dependent on yield criterion z

Table 3 Model variants

Variant n m vDP z Intercept Slope p value

Baseline 5 5 0.1 0 64.08 -0.50 1.4e-36

1 10 10 0.1 0 63.59 -0.33 1.0e-8

2 10 5 0.1 0 79.27 -0.36 1.8e-32

3 15 5 0.1 0 85.02 -0.24 2.6e-28

4 5 5 0.3 0 65.50 -0.51 1.2e-33

5 5 5 0.1 -2.5 % 70.12 -0.23 7.9e-20

6 5 5 0.1 -5 % 75.36 -0.11 1.4e-5

7 5 5 0.1 -7.5 % 84.75 -0.07 0.0005

8 5 5 0.1 -10 % 91.01 -0.04 0.12
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design has been presented in the opening of this paper

(Figs. 3, 4).

To the authors’ knowledge, the presented study is the

first attempt to relate robustness and complexity quantita-

tively using a model-based probabilistic approach. We

found that for max- and min-is-best requirements, it is not

the coupling of functions itself, but rather the level of

contradiction of the couplings that influences robustness.

As long as contradictions in the requirements imposed on

the parameters, properties and dimensions of the system

can be avoided, coupling does not inherently harm the

robustness. Descriptive studies like the one by Frey et al.

(2007) support this finding with an empirical analysis of

complex systems. They assessed part counts and com-

plexity of airplane engines against their reliability and

found that despite the constantly increasing degree of

coupling and integration, the reliability of aero engine

improved. Braha and Bar-Yam (2007, 2013) studied the

network topology of four large-scale product development

networks. They defined coupling with the concept of

assortativity, which describes the tendency of nodes (IPs in

the case of engineering design networks) with high con-

nectivity to connect with other nodes with high connec-

tivity. Networks with high assortativity are inherently more

complex which tends to reduce system robustness. Con-

tradiction as defined in this study can be seen as a measure

of assortativity in the domain of unipartite networks. Fur-

thermore, it was found that systems are robust and error

tolerant to variation in random nodes but vulnerable to

perturbation in the highly connected central nodes (‘‘design

hubs’’) (Albert and Barabási 2002; Braha et al. 2013; Sosa

et al. 2011). In the engineering design context, this refers to

the necessity to control the design but also the variation of

the most influential parameters with contradicting

requirements (Braha and Bar-Yam 2004, 2007). Carlson

and Doyle (2000) proposed and discussed the framework of

HOT (Highly Optimized Tolerances). They argue that

evolving complex systems which underwent numerous

generations are extremely robust to designed-for variation,

but ‘‘hypersensitive to design flaws and unanticipated

perturbations’’. The increase in robustness is driven by

continuous development and improvement including solv-

ing of known imperfections and contradictions. This view

supports the results of the presented study. An implication

of these findings is that the TRIZ contradiction matrix

(Altshuller 1996) is likely to be a suitable method for

increasing system robustness at a conceptual level. The

method suggests that the contradicting parameters are the

limiting factors of a design and inventive principles can be

identified to overcome the contradictions ‘‘without

compromise’’.

A limitation of the presented study is that as of now, the

model features only maximum-is-best and minimum-is-

best requirements. Nominal-is-best requirements have

been neglected. To extend the insight to all types of

requirements, further investigations are needed. Further,

this study is based on the analysis of a population of

complex systems generated with the model proposed in

this paper. We found clear correlations between the level

of contradiction and robustness. Whilst definite predictions

for the robustness of single systems cannot be made, it can

be concluded that the chance that a contradicted system is

less robust is high.

8 Concluding remarks

In this study, we extended the hierarchical probability

model by Frey and Li (2008) to model complex systems

and their functional responses for the case of maximum-is-

best and minimum-is-best requirements. The model was

used to assess how a system’s robustness to variation is

influenced by design complexity in terms of the degree of

functional coupling and the level of contradiction between

the functional requirements.

In answer to Research Question 1, the correlation between

the number of couplings in the system and the system

robustness was found not to be statistically significant.

In answer to Research Question 2, a statistically sig-

nificant association between the level of contradiction and

system robustness was found (p = 1.4e-36) where an

increase in contradiction is associated with a decrease in

robustness.

These results have great implications on our under-

standing of the nature of complexity and robustness. Suh

suggests two design axioms which can be, to an extent,

‘‘accepted without proof’’ (as per the definition of an axiom).

The robustness claims of the independence axiom are based

on assumptions about the fill of the design matrices and the

nature of the functional requirements, which are not always

fulfilled in real-world examples. The results in this study

challenge Suh’s theory about the negative impact of cou-

pling in systems with max- and min-is-best requirements,

stressing that it is actually the level of contradiction of the

couplings that determines the level of robustness. Uncoupled

designs are by definition free from coupling and therefore

contradictions and as a result are inherently robust relative to

coupled designs (in general). However, there are specific

examples where this does not hold, since coupling can be

used to reduce the number of influencing factors, it is pos-

sible to reduce the overall variability and therefore improve

the robustness by the introduction of positive couplings

(couplings without contradiction).

In practical terms, the knowledge of the association

between system robustness and functional coupling can be

used in early design stages. When the first concepts and
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embodiments are produced, engineers are often able to

identify the most influential properties and dimensions for

the performance of the single functions, making it possible

to evaluate contradictions to a certain level. A robustness

evaluation can therefore be conducted on the different

concepts based on the level of contradiction identified

within the concepts. Further, the design focus and control

should lay on the coupled and contradicted parameters.

However, for precise evaluations of functional perfor-

mances, yield and reliability, detailed models and experi-

ments are necessary. Knowing about contradicting and

competing requirements provides insight into the robust-

ness characteristics of complex products or systems that

can be utilized to minimize risk and make more educated

concept selections.
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