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Abstract The act of introducing an innovation into an

existing product by substituting or inserting new tech-

nologies is thought to be challenging due to the problem of

integrating new components and sub-system architectures

into existing ones. This article aims to challenge the

foundation of this problem and develop new insights into

the choice of functional architecture. The article will pro-

pose that the choice of functional architecture to achieve an

intended purpose locks-in a design by influencing the cost

of transformation. This paper studies functional lock-in

based on the transformation cost of the functional archi-

tectures of products. The transformation cost for a set of

biological and biologically inspired products is compared

to that of engineered products. The results show that the

biological and biologically inspired products have a sta-

tistically significant lower transformation cost than the

engineered products. The results indicate that the structure

of functions and flows in a product will constrain its

transformation. More broadly, the paper proposes mini-

mum transformation cost as an essential property of an

optimal design.

Keywords Product architecture � Innovation � Dominant

designs � Graph edit distance

1 Introduction

A practical challenge associated with engineering design

innovation is transforming an existing design (a product’s

components and their configuration) into a new design that

employs new solution principles. The product is not con-

ceptually new; it retains its intended purpose, but the

product employs some new technologies and associated

componentry configured in a new (but not wholly new)

way. The Apple iPhone introduced in 2007 marked the start

of the smartphone with a touch screen interface as a

dominant design for cell phones, but the product was

nonetheless a cell phone.

The changes may come about due to any number of

causes, including new requirements driven by customer

demand and revised design specifications (Fernandes et al.

2015) or corrections of design errors (Sudin and Ahmed-

Kristensen 2011). Rather than seeking a new way to

achieve a given function, engineering designers introduce

incremental improvements to a product over time. These

improvements may eventually result in a wholly trans-

formed product employing new solution principles and

technologies, but incremental improvements avoid as many

changes as possible (Eckert et al. 2012; Jarratt et al. 2011).

This is a challenge encountered most prominently by

companies with ‘legacy’ designs. Examples of these

companies include the major automotive companies (e.g.,

Ford, Fiat, Toyota) as they try to develop electric vehicles,

compared to Tesla, or software companies such as Micro-

soft as they struggle to transform their legacy desktop

computing products into products for mobile computing,

compared to Google or any number of startups capitalizing

on the mobile computing trend. The incumbents will make

gradual changes to a product, such as Microsoft adding

new collaboration features to the Office Suite to mimic

& Andy Dong

andy.dong@sydney.edu.au

1 Faculty of Engineering and Information Technologies, The

University of Sydney, Sydney, NSW 2006, Australia

123

Res Eng Design (2017) 28:203–221

DOI 10.1007/s00163-016-0234-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-016-0234-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-016-0234-3&amp;domain=pdf


Google’s ‘Apps for Work’ platform, but the product and

functional architecture will largely remain the same.

The problem described above is named ‘design inno-

vation by transformation.’ Design innovation by transfor-

mation is the process of changing a product’s solution

principles (Hubka 1992) and associated components to

achieve the same primary function of the product at higher

levels of performance. This wording borrows from the

scholarship of innovations in design through transforma-

tions (Singh et al. 2009). In that conceptualization, design

innovation through transformation is defined as a product

that can change its physical configuration (or state) in

operation to achieve a new primary function. In the current

sense, transformation is defined as a change to the existing

components and their architectural configuration at design

time to adopt one or more new solution principles.

The problem of design innovation by transformation

overlaps with the research scholarship of two areas. The

first area addresses the problem of designing a product to

accommodate future changes, synonymously called design

for flexibility (Neufville and Scholtes 2011) or design for

changeability (Niese and Singer 2014).

The second area addresses the technology infusion

problem (Denman et al. 2011; Suh et al. 2010; Smaling

and Weck 2007). In technology infusion, the problem is

determining the cost of implementing alternative archi-

tectures into an existing product architecture, including

‘downstream’ organizational change costs. Similarly,

research in estimating the cost of change propagation takes

into consideration the degree and risk of architectural

change that a new innovation may introduce into an

existing system architecture (Giffin et al. 2009; Clarkson

et al. 2004). Underlying this body of influential scholarship

is the conceptualization of products (or systems) based

upon their physical architecture (Ulrich 1995). While it is

not debated that the physical architecture imposes con-

straints upon the flexibility of the product to change, such a

conceptualization nonetheless suffers from several short-

comings. First, scholars cannot agree at what level of

architecture the analysis of flexibility should take place.

Should the analysis take place at the level of systems and

sub-systems, which are modules of systems and compo-

nents (Mikkola and Gassmann 2003), respectively, or at the

level of components and their interfaces? In fact, there is

no literature providing a theoretical basis for the ‘right’

level of granularity for architectural decomposition (Chir-

iac et al. 2011). There is no agreed-upon metric of archi-

tecture modularity for engineered products (Sarkar et al.

2014; Hölttä-Otto et al. 2012). The lack of consistency

leads to ambiguous strategic advice in directing design

search to improve the flexibility of the product.

Second, this architecture paradigm is based upon the

theory that the choice of technology and its components

create lock-in through component interdependencies. Small

shifts in one part of the product cannot be made without

making accompanying changes to other parts of the design.

New technologies may be difficult to implement into an

existing architecture due to component or interface

incompatibility. Such a theory obscures knowledge as an

impediment to the integration of a component into an

existing architecture. Architectural integration is not only a

simple technical matter of connecting physical interfaces.

The Boeing 787 introduced a number of technological

innovations into civilian aircraft such as the large-scale use

of composite materials rather than aluminum

alloys (Toensmeier 2005). While the technologies did not

create fundamental changes to the architecture of the plane

and were believed to be isolatable to their respective sub-

systems, their introduction introduced new knowledge

interdependencies that could not have been known

beforehand (Kotha and Srikanth 2013). Physical architec-

ture-based models of design innovation tend to underplay

the influence of the structure of knowledge of the product.

The structure of the knowledge may impose a hidden cost

that is not directly observable from the physical architec-

ture alone.

This research is intended to provide a new perspective

that addresses the above shortcomings. First, rather than

focusing on the physical architecture, the paper argues for a

focus on the underlying knowledge structure. The paper

will rely on the concept of functional models as a repre-

sentation of a product’s knowledge structure. The paper

presents the case that constraints on flexibility occur before

the establishment of a physical architecture. They appear

once engineers commit to a set of solution principles,

which will be reflected in the functional architecture for the

product. To illustrate these ideas, the paper conducts a

comparative, empirical analysis of a set of engineered

products and biological systems. To perform the compar-

ison, the paper lays down the foundation for a theoretically

consistent empirical methodology to analyze the con-

straints on transformation as a graph edit distance (GED)

problem (Gao et al. 2010). The GED provides the mech-

anism to compute the cost of transformation from one

graph structure to another, from the existing functional

architecture to another. The paper proposes a uniform basis

for the comparison of the cost of transformation through

comparison with two important graph structures—the

small-world network structure (optimal for diffusion of

information due to high clustering and short average path

lengths) and tree-like structures (minimal structure to

connect a set of nodes). This research will depart from

approaches that seek to understand the degree of change

available to a product based upon the propagation of

changes through its physical, architectural configuration.

Rather, the paper explores this question based upon the
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structural transformation of a product’s functional

architecture.

2 Background and theoretical development

2.1 Design for innovation

Scholarship in understanding the flexibility or changeabil-

ity of existing products (Hu and Cardin 2015; Cardin et al.

2013; Suh et al. 2007) is motivated by the reality that

‘new’ engineering design in industry is rarely a novel de

novo design; rather, a new product more commonly arises

through changes to existing products (Jarratt et al. 2011).

This article will focus on changes to the functional archi-

tecture of the product, while acknowledging that a number

of other associated changes such as process (how the

product will be made) and management (the organization

of the design team) coincide in the overall analysis of the

changeability of a product (Niese and Singer 2014).

One common design strategy to improve flexibility is to

standardize interfaces between elements and group ele-

ments into modules or sub-systems. Products that have a

modular architecture would be amenable to rapid changes

because a change in any one module would not necessarily

require a cascade of changes to the product due to stan-

dardized interfaces between modules. A highly modular

product architecture has been shown to decrease the time to

design the product (Kong et al. 2009), support end-user

innovation (Meehan et al. 2007), and facilitate the estab-

lishment of product platforms and families (Cai et al. 2009)

among other benefits that increase the flexibility to change

(Gershenson et al. 2003).

When the engineering change includes a new technol-

ogy that is inserted into an existing product architecture

(Denman et al. 2011), the transformation entails changes to

the physical architecture and ensuing changes to the flow of

material, energy, and information between components

(Suh et al. 2010). These seemingly minor and incremental

improvements are nonetheless an important source of

continual product innovation (Banbury and Mitchell 1995);

even a momentary gap in continuous improvement can

have a significant effect on long-term competitiveness

(Talay et al. 2014).

As it is now generally acknowledged that a product’s

physical architecture imposes costs on change, in what

could be termed a ‘design’ turn in forecasting, scholars

have been creating models to forecast the potential for

design innovation given an existing design. These models

aim to predict the long-term future for a product given its

current structural components and their interconnections

(Fujimoto 2014). These models are based on the design of

products rather than on cumulative production (e.g.,

learning curve) or consensus expert opinion. At least two

architectural properties matter in the analysis of the

potential for design innovation: (a) the number of elements

in the physical architecture of the design; and (b) the

coupling of the elements. A high degree of coupling

between design targets and design variables (Suh 2001) or

between properties of the designer–artifact–user system

(Maier and Fadel 2006) increases the challenges associated

with making changes to either the design targets or the

design variables because changes to the former will

invariably alter the latter. At least one process-oriented

property matters, the number of steps associated with the

process that transforms a design problem into a designed

product (Summers and Shah 2010).

One method to forecast this potential takes into account

the maximum design complexity d�. The design com-

plexity is a metric for the number of components with

which the slowest-improving component has dependencies

(McNerney et al. 2011). According to this model, reducing

the design complexity of the product architecture should

increase its rate of improvement. Designs are complex and

considered costly to change if their architectures have

highly integral connectivity (McNerney et al. 2011). In

other similar models, pairwise dependencies capture the

likelihood and impact of risk of change (Eckert et al. 2011;

Giffin et al. 2009). Architectural complexity is more likely

to be related to a strategic decision about the degree of

centralization or distribution of the product architecture

(Sinha and de Weck 2013) rather than an intrinsic feature

of the product. Furthermore, one of the challenges in

enacting the recommendation to reduce design complexity

by reducing the number of dependencies between compo-

nents is that the connectivity of an engineered system is

sometimes determined by the ‘natural’ existence of hubs in

its architecture (e.g., Sosa et al. 2011). For example, wire

bundles tend to connect to a single power distribution

panel, which cannot be practically eliminated. It is also

possible for system architectures to have a highly non-

homogeneous connectivity, that is, a few components

connect to many other components, but most components

are sparsely connected, resulting in a system architecture of

low complexity. Bus-like architectures, such as those

encountered in computer hardware, have high connectivity

between the bus to ‘leaf’ nodes, which are generally

modular sub-systems that are loosely coupled to the rest of

the system, resulting in an architecture of low complexity

(Hölttä-Otto et al. 2012). In other words, the connectivity

of components is the result of both strategic design deci-

sions and the intrinsic technical characteristics of some

products, which may have no relation to the core perfor-

mance of the product that companies seek to improve

through incremental improvement. The architecture of a

product can be changed to reduce its complexity. The
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decision to do so is as much a consequence of business

strategy as it is a consequence of engineering design

decisions. Therefore, the complexity of the product archi-

tecture may not provide accurate guidance about the

potential for design innovation, especially if the innovation

would involve changes to the solution principles. In par-

ticular, the architecture perspective ignores the cost of

knowledge change as companies reallocate assets and

resources (Sanchez and Mahoney 1996).

Henderson and Clark (1990) studied the often under

considered cost of knowledge change when companies

introduce innovations into existing product architectures,

which they described as architectural innovation. They

examined the relationships between architectural knowl-

edge as embodied in the product architecture and the

capability of companies to implement architectural inno-

vation. They showed that companies are often challenged

to change their information processing behaviors to suit

changes in product architecture—exactly the type of

architectural changes studied previously (Denman et al.

2011; Suh et al. 2010). They found, for example, that a

modular physical product architecture does not necessarily

lead to a simplified, modular knowledge structure wherein

each designer knows exactly how their knowledge inter-

faces and interacts with others’ knowledge. Brusoni and

Prencipe (2001, pp. 201–202) emphasize the point ‘that

product modularization does not derive from, nor bring

about, knowledge modularization.’ A significant amount of

knowledge is embodied in the product and in the organi-

zational structure. An existing product and its knowledge

structure embody an organization’s cumulated knowledge.

Even a subtle change to the architecture can pose a threat to

the organization with the incumbent design. In essence,

their contention is that there exists a knowledge structure

underlying a product. Architectural changes introduce

transformation costs by forcing the realignment of orga-

nizational boundaries to match the physical architecture of

the product (Sanchez and Mahoney 1996). That long-

established engineering companies do not change the basic

underlying function structure of their product even as they

introduce new component or architectural innovations to

achieve the same overall functionality suggests that func-

tional lock-in happened long before a stable architecture

emerges (Wyatt et al. 2009).

A product’s knowledge structure must therefore neces-

sarily influence the dynamics of change for the product.

The knowledge structure encodes the path dependency, that

is, a commitment to the solution principles of a particular

product (Dosi 1982). In other words, suppose that there are

two available technologies to accomplish a function for a

product, but the rate of progress of the technologies is

unknown. Examples include lithium-ion batteries or

hydrogen as alternative energy sources for cars, or solar

energy from crystalline- or amorphous-silicon technology.

While the products may have similar physical architec-

tures, their underlying knowledge structures can differ

significantly due the choice of technology. This difference

may impact design innovation by transformation. Thus far,

the knowledge structure has not been considered as a factor

influencing the cost of design transformation. Where

knowledge has been considered as part of calculating the

cost of change, the knowledge exists in the form of prior

cases to solve functional and component conflicts (Fei

et al. 2011). Therefore, we know precious little about the

constraints on change that the knowledge structure of a

product can impose. There may be functional architecture

structures that are more or less optimal in relation to the

degree to which the structure imposes costs on design

innovation by transformation.

2.2 Architectural properties of optimal designs

This article is not the first to consider the structural prop-

erties of the functional architecture of a product and its

relation to the optimality of a product’s design. Suh (2001)

is one of the first scholars to theorize principles of optimal

designs from a knowledge perspective. In axiomatic

design, the independence axiom states that the best design

is the one that partitions functional requirements (FRs) and

design parameters in such a way that a design parameter

can be modified to suit its associated FR without affecting

any other FR (Suh 2001, p. 16). That is, the FRs of the

product should be independent of each other. In a mathe-

matical model, the FR and the parameter (DP) represented

in a matrix A, which Suh calls the design matrix as shown

in Eq. 1, should be linearly independent.

A
FR1

FR2

..

.

FRn

0
BBBB@

1
CCCCA

¼

a1;1 a1;2 . . . a1;n

a2;1 a2;2 . . . a2;n

..

. ..
. . .

. ..
.

am;1 am;2 . . . am;n

0
BBBB@

1
CCCCA

DP1

DP2

..

.

DPn

0
BBBB@

1
CCCCA

ð1Þ

When the FRs of the product are independent, each

FR is satisfied by exactly one design parameter, and

there is an exact correspondence between each FR and

design parameter. Any function will not affect another

function; a design parameter satisfying a function can be

altered and improved without affecting another function.

All the aij except for 1 in each row will be 0, and only 1

aij in each row will be either 1 or some positive

dependence value. Then, A, properly permuted or

reordered, would be a diagonal matrix. The indepen-

dence axiom can also be expressed in a directed
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bipartite graph form. Let A ¼ ðV ;EÞ where

V ¼ V1 [ V2, and each edge has the form e ¼ ðx; yÞ
where x 2 V1 and y 2 V2. Each type-1 node x in A is

referred to as an FR, and each type-2 node y is referred

to as a design parameter. Then, the independence axiom

requires that, e.g., FR1 ! DP1, FR2 ! DP2. Each node

has a degree1 of exactly 1.

This principle can be extended to functional models.

Functional models link the different functional modeling

perspectives relevant to the different disciplines associated

with the design of engineered products (Eisenbart et al.

2013). The type of functional model that will be used in this

paper is the functional basis (Hirtz et al. 2002; Stone and

Wood 2000), an approach to functional modeling based

upon the Pahl and Beitz (1999) function structure approach.

A functional model can be represented as a directed

bipartite graph G ¼ ðV;EÞ where V ¼ V1 [ V2, and each

edge has the form e ¼ ða; bÞwhere a 2 V1 and b 2 V2. Each

type-1 node a in G is referred to as a function, and each type-

2 node b is referred to as a flow. According to the principle

of independent functions, the ideal functional model should

have independent functions, that is, function1 ! flow1,

function2 ! flow2, exactly as with the graph representation

of the design matrix. In practice, no product can attain this

ideal functional model. Functional models generally have at

least two functions connected by a common flow, e.g.,

function1 ! flow1, function2 ! flow1. Nonetheless, the

principle is that an ideal functional model could attain a

node degree of exactly 1. Research in the technological

progress potential of energy harvesting products (Dong and

Sarkar 2015) shows exactly this finding: as the node degree

in a functional model decreases toward 1, and similarly the

clustering coefficient tends toward 0, the progress potential

for the respective product increases because of decreasing

functional dependencies. However, a node degree of

exactly 1 for every node in G is physically meaningless in

terms of products, and accordingly, their knowledge struc-

tures, because this would result in n/2 disconnected sub-

graphs, where n is the total number of type-1 nodes

(functions). There has to be a sufficient number of edges

(flows) connecting the functions into a single, connected

graph with no disconnected nodes. The most parsimonious

functional model would have the fewest number of nodes

and edges connecting the functions and flows into an

aggregation to perform a certain intended purpose. That is,

there should be a physically meaningful answer to the

question, ‘Given a set of functions, how few edges can there

be between them?’

There are two structures that would be the most parsi-

monious. The first structure is a tree. For a given set of

nodes n, the structure that would have the minimum

number of edges forming a connected graph is a tree,

which has exactly n� 1 edges. In software architecture, the

tree is one of the most important data structures due to its

efficiency for a range of computing processes, such as an

index lookup. While the tree structure is minimal in terms

of number of edges, the paths between the nodes can

become long. This introduces inefficiencies in the trans-

mission of energy, material, or information between func-

tion nodes. However, if there is only a requirement to move

energy, material, or information up or down one level in a

hierarchy, then this is the most efficient structure.

A second structure is the small-world network. In all

networks, as the number of edges decreases, the more

sparse the network becomes. It is known, though, that even

in very sparse networks, the small-world properties of low

average path distance allow for efficient global information

transfer (Watts 1999). In small-world networks, connec-

tions between nodes are highly clustered. That is, any node

is likely to be connected to another node in its cluster or

neighborhood, no matter how this is defined, while, at the

same time, the average number of intermediate nodes

needed to connect any two nodes across the network

remains relatively short. The unusual combination of high

clustering and short path lengths in the same network turns

out to be an important organizing principle for increasing

the performance in many different types of systems. Col-

laboration networks, a type of social network, tend to

organize into small-world networks because the small-

world network properties enable the efficient exchange of

information between collaborators (Uzzi and Spiro 2005).

Likewise, studies of large-scale product development task

networks demonstrate that effective task networks are

organized into small-world networks because the small-

world topology enables rapid exchange of information

between tasks (Braha and Bar-Yam 2007). The small-

world network may be another possible parsimonious

structure for the functional model of a product. The addi-

tion of each extra edge to the structure may provide more

flexibility in energy, material, or information exchange but

also has associated costs of structure formation and main-

tenance. In a small-world network, there are ‘just enough’

edges in the knowledge structure to ensure efficient

exchange of energy, material, and information. Therefore,

the condition on small-world networks can provide a lower

bound on the theoretical question of how few edges there

can be in a functional model given a set of functions.

A small-world network is characterized by several

metrics. The clustering coefficient in a small-world net-

work is much higher than in an equivalent random network.

The clustering coefficient is defined in two ways. The

standard ‘social network’ definition of the (global) clus-

tering coefficient for a network (Newman 2010) is given by

Eq. 2:1 The node degree is the number of edges connected to the node.
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C ¼ number of triangles� 3

number of connected triples
ð2Þ

Watts and Strogatz propose an alternative local clustering

coefficient measure (Watts 1999). The Watts–Strogatz

local clustering coefficient for node i is given by:

Ci ¼
2Ei

kiðki � 1Þ ð3Þ

where Ei is the number of edges that actually exist and ki
is the number of edges connecting node i–ki other nodes.

The second metric is the path length, or the number of

‘hops’ between nodes, which is expected to be much

smaller than the diameter of the network, the maximum

number of ‘hops’ across the entire network. The path

length reported is the characteristic path length q between

nodes in a small-world network (Watts 1999). To assess

the small-worldness of the functional models, this paper

uses the method proposed by Humphries et al. (2006),

which relies on comparing the q and C values of a net-

work with a random network that has a similar number of

vertices and average node degree. The small-world index

(SWI) of each network can then be calculated using the

following equation:

SWI ¼ CqR

CRq
ð4Þ

It is sufficient to show small-worldness if the global

clustering coefficient is larger than the clustering coeffi-

cient of an equivalent random network with the same

number of nodes and mean node degree (Humphries et al.

2006), or equivalently, its SWI, the ratio of a network’s

clustering coefficient to that of an equivalent random net-

work, is[1. Even if the knowledge structure of a product

satisfies the small-world network properties, there would

still be a cost incurred to transform it to another small-

world structure. If, however, both the global and Watts–

Strogatz clustering coefficient are 0, then it implies that the

functional model is tending toward a tree-like structure.

Tree-like structures have zero clustering coefficients. If the

graph structure approaches a tree-like structure, then it will

have close to zero clustering coefficient.

To sum up, this section discussed and applied Suh’s

independence axiom to consider the optimal structure of

functional architectures. While no feasible functional

architecture could satisfy the independence axiom, this

section explained why tree-like and small-world graphs

should be the most parsimonious structure for feasible

functional architectures. These two important structures

can therefore be used as idealized functional architectures

to which real-world engineered products and biological

systems could be transformed. The transformation cost

from a functional architecture with a given structure to

these two structures provides a uniform basis for compar-

ison across products.

2.3 Biological systems

An empirical challenge in performing this research lies in

identifying a set of products for analysis and comparison.

What ‘products’ might set the benchmark for lowest trans-

formation cost? For examples of these products, this paper

uses biological systems2 because biological systems are

assumed to be optimal or at least nearly optimal.3 Indeed,

this is one of the attractions of biomimetic design: Nature

provides examples of (nearly) optimal designs that can be

copied to achieve an intended purpose. In this context,

nature’s products embody two types of optimality. First, the

biological system contributes to a species’ optimal perfor-

mance within its particular environment and way of living

relative to competing species. Weaker competing species

eventually die out because natural selection tends to elimi-

nate poor designs. In addition to optimal performance, bio-

logical systems are likely to have an optimal functional

architecture. Their functional architecture might be optimal

in two senses. First, the functional architecture would have

the most parsimonious number of functions and flows of

material, energy, and information to achieve an intended

purpose. In a study comparing the way that technology and

nature address a similar problem (Vincent et al. 2006), it

was found that in engineering the path to a solution tends to

favor changing the type or amount of material and accord-

ingly the energy requirement. In terms of functional archi-

tecture, this solution path results in increasing the number of

types of energy nodes and the number of types of material

edges. In contrast, in nature, there is an economy of design.

Intended purpose is achieved by manipulations of shape and

combinations of materials at larger sizes, with larger sizes

themselves achieved by high levels of hierarchy, while

economizing on the number of different functions. Second,

it would be advantageous for biological systems to have

functional architectures that are the least costly to transform

into another functional architecture. The new functional

architecture is necessary to achieve new intended purposes

or levels of performance that are required for the species to

adapt to the changing environment. Since nature (re)designs

through evolution, it is plausible to assume that the func-

tional architecture of nature’s designs should impose the

least cost on potential transformations. A functional archi-

tecture that imposes few impediments on transformation

2 This paper uses the term biological systems to refer to plant or

animal species or parts thereof, but not ecosystems.
3 It is debated that some of nature’s designs are not optimal, such as

the human visual cortex. This article assumes, though, that in general

nature’s designs, biological systems, are optimal.
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(has the least functional lock-in) could be transformed into

another functional architecture through the least number of

steps (generations) compared to other counterparts. An

optimal functional architecture would therefore require the

least number of generations for a species to change from one

form to another. This assumption is consistent with the

documentation of substantial micro-evolutionary changes on

the timescale of a few generations by evolutionary biolo-

gists (Gingerich 2001; Uyeda 2011).

In sum, biological systems should have optimal designs

for achieving an intended purpose. First, they have the best

level of performance relative to competing species for

survival in their environment. Second, they have parsi-

monious functional architectures. Their functional archi-

tectures have: (1) the minimum number of ‘functions’

necessary to achieve an intended purpose; (2) the minimum

number of flows of material, energy, and information

(signals); and (3) their functional architectures are likely to

impose the least cost on transformations into another

functional architecture.

3 Hypothesis

The proposition tested by the hypotheses is that when a

product undergoes design innovation by transformation, its

knowledge structure is transformed. This article claims that

the existing knowledge structure of a product locks-in a

design and constrains the selection of components and

component architecture. The existing knowledge structure

for the product may impose constraints on the flexibility of

change since components and component architecture must

satisfy the underlying function and flow requirements. The

product’s knowledge structure, represented by a functional

model, therefore has structural characteristics that affect

the flexibility to transform the product. This claims leads to

the main hypothesis tested in this article:

Hypothesis 1 The functional models of products that are

optimal have transformation costs that are lower than non-

optimal products.

In this hypothesis, optimality is construed in a functional

architecture sense, that is, products that have the minimum

number of functions necessary to achieve an intended

purpose, the minimum number of flows of energy, material,

and information between the functions, and a structure that

imposes the least constraints on transformation.

If certain functional architecture structures have a lower

cost of transformation than others, it would be useful to

know those structures a priori. The discussion in Sect. 2.2

about tree and small-world structures as being possible

parsimonious structures leads to the following hypothesis:

Hypothesis 2 Products having functional models with

tree or small-world structures will have lower transforma-

tion costs than products with other functional model

structures.

It is predicted that the biological systems and their

analogously design-engineered counterparts in the dataset

should have a lower transformation cost between their

current structure and target designs. Therefore, Hypothe-

sis 1 will be tested by investigating whether the transfor-

mation cost for biological systems is lower than engineered

products. Hypothesis 2 will be investigated by testing

whether the transformation cost of products having a tree

or small-world structure functional model is lower than

others. According to Hypothesis 2, these tree or small-

world structure products should have a lower transforma-

tion cost than their non-parsimonious structure counter-

parts. The following sections will test Hypothesis 2 by

comparing the biological systems to the engineered prod-

ucts and tree or small-world structure functional models of

both biological systems and engineered products to their

non-tree and non-small-world counterparts.

4 Research method

4.1 Modeling products

The knowledge structure of a product is modeled according

to a functional model and the ontology of the functional

basis (Stone and Wood 2000). The functional model in turn

is represented as a unipartite, directed graph G ¼
ðV;E; l; mÞ where V represents the nodes (functions), E

represents the edges (flows) and E � V � V . l ! V labels

the function nodes and m ! E labels the edges. In the

functional basis, flow types include energy, matter, and

information. A unipartite graph was chosen because of the

much smaller number of distinct edge types (flows) com-

pared to function types in a typical product. The bipartite

representation would bias the graphs toward star-like

structures. The models produced may include loops and

multiple edges between two nodes because different types

of flows can exist between two nodes or the same flow

between two nodes recur in the functional model. A deci-

sion was taken to represent each instantiation of a function

as one, common function node rather than as separate

function nodes each with a distinct label l. This creates

functional models with a fixed upper bound on the number

of nodes. While more complex graph representations are

possible in which distinct nodes and edges can be assigned

unique identifiers (Wyatt et al. 2013), maintaining a fixed

upper bound on the number of nodes eliminates the need to

test the obvious question that functional models with more
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nodes cost more to transform than models with fewer

nodes.

Functional models were sourced from various published

research articles (Nagel et al. 2008a, b; Nagel 2013;

Weaver et al. 2011) and products in the Oregon State

Design Repository (Stone 2014).4 The author aimed to

identify as many as possible peer-reviewed published

functional models represented according to the functional

basis without discarding any models found unless they

consisted of only a few functions and flows. In total, 30

products were identified and analyzed. While some func-

tional models were derived from actual products and others

from research into the potential design of a product, this is

not a limitation in the dataset. The purpose of the research

is to discover whether significant topological differences

exist across the functional models. Models based upon

research into the potential design may exclude some

functions and flows for simplicity, but the overall func-

tional model is likely to capture the essential functions and

flows of the product. More importantly, it captures the

structure of the functional architecture. Ten of the products

are biological systems or biologically inspired engineered

products having nearly the same functional model as their

biological counterpart. These biological products are:

1. Abscission, armadillo armor, automobile airbag,

housefly, Lexus SC430 convertible.

2. Microassembly abscission, puffer fish, retractable sta-

dium roof (Nagel et al. 2008a).

3. Chemical sensor (Nagel 2013).

4. Sparrow flapping wing microair vehicle

(FWMAV) (Bejgerowski et al. 2009; Nagel et al.

2008a).

The 20 engineered products are:

1. Brother sewing machine, crest toothbrush, drill,

DeWALT sander, genie garage door opener, delta

jigsaw, delta nail gun, juice extractor, lawn mower,

mixer, seiko kinetic watch, solar yardlight, stapler,

supermax hair dryer, vise (Stone 2014).

2. Digger the Dog (Nagel et al. 2008b).

3. Enviro energies wind tunnel, piezoelectric shoe heel

impact harvester (Weaver et al. 2011; Weaver 2008).

4. Rice cooker, shop-vac vacuum cleaner (Caldwell et al.

2012).

To ensure consistency in the level of hierarchy in the

functional models, each functional model was verified for

descriptions at least at the second level for all functions or

flows (Stone and Wood 2000) since the second level has

been shown to be the most useful and informative (Sen

et al. 2010). However, it became necessary to refine some

models to the third level of description of the functional

basis. The third level was sometimes necessary to disam-

biguate a function or flow when the second level disregards

important distinctions. For example, the electric tooth-

brush (Stone 2014) converts (function) energy–mechani-

cal–rotational (flow) to energy–mechanical–translational

(flow). The electric drill converts (function) energy–elec-

trical into energy–mechanical–rotational (flow) and con-

verts (function) energy–human into energy–mechanical–

translational. Without the third level in the functional basis

hierarchy for energy, the functional model would be

ambiguous in relation to what form of mechanical energy is

being converted. Some functional models must describe a

product at the third level to ensure a physically correct

description. For example, the housefly (Nagel et al. 2008a)

can detect (function) a solid–liquid–mixture (material) and

the puffer fish can export (function) a liquid–gas–mixture

(material). As such, if a function or flow must be described

at the third level for any product in the dataset, all other

models were similarly described and hence modified at the

third level for the particular function or flow.5 This is

necessary to ensure commensurate transformation cost

calculations for node or edge substitution (as described

below). Where it is not necessary to model down to the

third level, products were modeled at the second level of

the functional basis as explained previously. The third-

level descriptor generic complements was never used.

Functional models were entered into Microsoft� Excel�

and then converted into GraphML format using yEd (http://

www.yworks.com/en/products/yfiles/yed/). The GraphML

graphs were then imported into Mathematica� 10 for

analysis.

To contextualize the functional models, some proposed

measures of a design’s structural complexity (Summers

and Shah 2010; Mathieson and Summers 2010), the num-

ber of nodes and edges and the characteristic path length,

are calculated. The characteristic path length is defined as

the average number of edges in the shortest paths between

all node pairs. In addition to custom code, graph analyses

were performed in Mathematica� 10 using the following

built-in functions: GlobalClusteringCoefficient for the

clustering coefficient; MeanClusteringCoefficient for the

Watts–Strogatz local clustering coefficient; and

GraphDistanceMatrix to calculate the shortest paths

between all node pairs using Dijkstra’s method. The

characteristic path length is the mean of the shortest paths.

4 One of the challenges in performing this research is the lack of a

large number of functional models of complex products. Functional

models were taken from existing data sources to limit potential bias in

their production by the author.

5 The exception to this rule is the signal—status in parts of the

functional models for Digger the Dog and abscission. None of the

third-level descriptors correctly describe the type of signal. The

second-level descriptor of signal—status was therefore used. This is

not expected to alter the results significantly.
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The SWI for each product was calculated by comparing its

functional model graph to 1000 random small-world

equivalent graphs.

4.2 Modeling transformation

The calculation of the transformation cost of a functional

model entails two elements: first, identifying the minimal

set of operations that can transform a functional model

from the source to the target functional model; and second,

constructing the target functional model. The target func-

tional model is the new model to which the source model is

transformed.

At least two methods of calculating the transformation

cost are possible once a functional model is represented as

a graph. The GED [see Gao et al. (2010) for a review of

GED algorithms] is the sequence of operations that trans-

form a source graph into a target graph. A GED algorithm

calculates the minimal set of operations that can transform

a graph representation from a source model to a target

model. Second, researchers in computer science have

proposed graph kernels to measure the distance of archi-

tectural change between versions of software (Nakamura

and Basili 2005). The graph kernels measure the similarity

between two software architectures; the overlapping simi-

larity defines the kernel of the software architecture. The

main advantage of the GED approach is that the method

computes various sequences of transformation and selects

the least cost sequence, which is defined as the GED, from

this set. A sequence need not be unique. While this study

does not yet make use of the sequence of transformation, it

is anticipated that sequence information will be relevant to

physical systems architecture design. For example, a

company may prefer a function transformation sequence

that coincides with the decision order through which sys-

tem-level parameters flow down to component-level design

parameters (Eckert et al. 2012).

Graph edit transformations consist of three operators:

node insertion or deletion; edge insertion or deletion; and

node or edge substitution. Figure 1 illustrates a source graph

which should be transformed into the target graph of Fig. 2.

One possible sequence of transformation operations is:

1. Insert node import and its associated edge.

2. Delete node transport and its associated edges.

3. Substitute node shape with node store.

A cost function is defined for each operation. The total

transformation cost is the sum of all costs for operations in

the sequence. A number of feasible sequences are possible

to transform a source graph into the target graph. The

lowest cost transformation is reported as the GED.

The numerical value of the cost functions measures the

amount of transformation required by each edit operation.

The cost functions can be arbitrarily set to represent the

expense of the structural transformation and should

monotonically increase over the given distance metric. For

example, one could set the cost of transformation by

knowledge substitution (node substitution) higher than

knowledge addition (node addition) since substitution may

have cascading effects. In practice, the cost of adding,

deleting, or substituting a function could be proxied by

empirical values for R&D expenditures. Determining these

values is beyond the scope of this article, but could form

the basis of valuable empirical research.

While it is possible to calculate the exact GED for rel-

atively small graphs, the problem grows exponentially with

the number of nodes. That is, there is an exponential

growth in the possible number of sequences. Given the

relatively small number of nodes in this research, an A*

algorithm (Hart et al. 1968) (‘‘Appendix’’) implemented in

a graph matching toolkit (Riesen et al. 2013) was used to

calculate the GED. In the absence of empirical data on the

cost of knowledge addition, deletion, and substitution, the

cost of a node or edge addition or deletion was set as the

multiplication of the cost of the operation (set to 1). The

string edit distance between the current label and the target

label for the node or edge is used to calculate the cost of

substitution. The label describes the function or the flow.

The calculation of the string edit distance is based upon the

Levenshtein distance. For example, the Levenshtein string

edit distance between the flows energy—biological and

energy—electromagnetic is 13. To test a large number of

target product models to which a functional model could be

transformed, thereby simulating possible design innova-

tions that a human design engineer could introduce and to

which a product could be transformed, 1000 equivalent

random, target functional models were constructed for each

product. An equivalent functional model has the same

number of nodes and node degree as the source functional

model, but not necessarily the same functions or edges as

the source functional model. That is, which nodes are

connected and the labels for the nodes and edges will differ

between the source and target functional models. Further,

three types of graph structures for the target functional

models were generated: tree, small-world, and BernoulliFig. 1 Source graph

Fig. 2 Target graph
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random. In all, 3000 random equivalent target functional

models are generated per source functional model, thereby

providing a very broad comparison to possible functional

architectures that might be able to achieve the same pur-

pose as the original source functional model.

According to the discussion in Sect. 2.2, tree or small-

world networks are parsimonious functional model struc-

tures. The GED from these structures provides an indica-

tion of the sub-optimality of the source functional model.

A Bernoulli random graph is a baseline graph structure,

that is, a graph that represents an arbitrary functional model

to which the product could be transformed.

In the following explanations of graph construction

methods, the rewiring probability p is calculated as the

ratio of actual to total possible edges in a given functional

model. For example, if a functional model has m edges and
n nodes, then the rewiring probability is given by m

nðn�1Þ :

The random graphs were constructed using built-in graph

construction functions in Mathematica� 10: RandomGraph

with WattsStrogatzGraphDistribution for small-world

graphs; RandomGraph with BernoulliGraphDistribution

for Bernoulli random graphs; and RandomGraph with

n nodes and n� 1 edges for tree-like graphs. A small-

world graph is constructed by starting with a regular graph

and rewiring each edge by changing one of the nodes with

probability p such that no loop or multiple edge is created.

A Bernoulli random graph is generated by first creating a

complete graph with n nodes. Edges are retained with a

probability p according to a Bernoulli distribution. A ran-

dom tree-like graph is constructed by starting with an

n nodes and adding an edge according to a uniform dis-

tribution until n� 1 edges have been added. Node and edge

labels for the random graphs are assigned randomly by

selecting a label from the list of node or edge labels in the

source functional model, respectively. While the random

selection of edge labels may lead to functional models that

are not physically possible, the aim is to generate a large

number of samples of arbitrary designs to which the source

product could be transformed as a way to test the source

functional models’ constraints on transformation. The

repetition of edge types in the functional models increased

the likelihood of selection of common flows in a product.

All graphs constructed by Mathematica were exported in

GXL format to calculate the GED using the Java-based

graph matching toolkit (Riesen et al. 2013).

5 Results

Table 1 reports the graph properties of the products ana-

lyzed including topological properties for the structural

complexity of designs (Summers and Shah 2010;

Mathieson and Summers 2010). The products have been

categorized into the ‘Biological’ group if the model relates

to a biological system or its bio-inspired engineered analog

or the ‘Engineered’ group otherwise. Nearly all of the

products in the Biological Group have a 0 clustering

coefficient even though their node degrees (in and out) are

similar to the values for products in the Engineered Group.

Distribution tests of the SWI results confirmed that they do

not follow a normal distribution ðp\:001Þ: Figures 3 and 4
show the skew in the SWI distribution and poor fit to the

calculated normal probability distribution function for two

products, the Genie� garage door opener and Digger the

DogTM, respectively. Therefore, median values of SWI are

reported in Table 1.

A visual analysis of the functional models rendered

using Mathematica’s internal graph drawing tools suggests

that the functional models are of two types: tree (or star-

like) and non-tree-like. The graph illustrations of Figs. 5

and 6 typify this difference in the structure of the functional

models. The abscission (Nagel et al. 2008a) functional

model in Fig. 5 appears tree-like, having no transitive

loops and therefore a clustering coefficient (local and

global) of 0. The drill (Stone 2014) functional model in

Fig. 6, in contrast, has a non-tree-like structure and like-

wise a nonzero clustering coefficient. The following results

test the hypotheses to determine whether these structural

differences occur across all of the products tested and

whether they produce differences in the GED.

The GED for each of the products was calculated as the

distance between the current functional model and its

small-world, Bernoulli random, or tree-like equivalent.6

The results of the GED computations are shown in Table 2.

Median values are reported because a Shapiro–Wilk test of

normality showed that none of the GED distributions were

normal ðp\:05Þ: Since the data do not follow a normal

distribution, the Kruskal–Wallis test is used to compare the

GEDs between the groups.

Hypothesis 1 states that the transformation cost is lower

for optimal products. This hypothesis is tested by com-

paring the GED between the Biological and Engineered

Groups. First, the hypothesis is tested by comparing the

median values of the GED as reported in Table 2. The

median value test considers variance in GED wherein the

artificiality of the product is the source of variance. It can

be concluded that the median GED in the Biological Group

ðn1 ¼ 10Þ is statistically significantly lower than in the

Engineered Group ðn2 ¼ 20Þ; as shown in Table 3. Thus,

nature’s designs can be said to be more flexible to change

than engineered products. The second test compares the

6 For 30 product models, 1000 GED analyses per product required

about 3 days of compute time on a dual-CPU Dell Precision T7500

with 16 GB of RAM.
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individual values of GED between products in the bio-

logical (n1 ¼ 10;000) and engineered (n2 ¼ 20;000)

groups. This statistical test takes into consideration vari-

ance in GED due to the artificiality of the product (engi-

neered or biological) and in the range of designs to which a

product could be transformed. The conclusion is the same

ðp\:001Þ: Figure 7 shows the distribution of median GED

values, and Fig. 8 shows the distribution of all the GED

values to support the preceding statistical results.

Hypothesis 2 states that products having tree or small-

world functional model structures will have a lower

transformation cost than products not having these struc-

tures. Nearly all of the products in the Biological Group,

except the sparrow FWMAV, had a local and global

clustering coefficient of 0. A signed rank test of the SWI

for the sparrow FWMAV rejects the null hypothesis that

the median SWI B1 (p ¼ :00126631), confirming that its

SWI satisfies the sufficient test for small-world networks

(Humphries et al. 2006). Therefore, all of the biological

systems have tree or small-world structures. According to

the prior results, the items in the Biological Group have a

lower GED than the items in the Engineered Group. It is

therefore possible to confirm Hypothesis 2 when compar-

ing biological systems to engineered products.

Hypothesis 2 is further tested by comparing the GED

between products having tree or small-world functional

Table 1 Graph properties of products

Nodes Edges CC-WS CC In-degree Out-degree CPL SWI

Biological Group

Abscission 7 24 0 0 1.71 1.71 1.85 0

Armadillo armor 10 26 0 0 1.30 1.30 3.11111 0

Automobile air bag 12 30 0 0 1.25 1.25 4.71429 0

Chemical sensor 9 22 0 0 1.22 1.22 3.19355 0

Housefly 11 34 0 0 1.55 1.55 14.4835 0

Lexus� SC430 convertible roof 12 26 0 0 1.08 1.08 2.06667 0

Microassembly abscission 8 24 0 0 1.50 1.50 2.44 0

Puffer fish 12 32 0 0 1.33 1.33 3.45455 0

Retractable stadium roof 10 26 0 0 1.30 1.30 3.11111 0

Sparrow FWMAV 8 18 0.271 0.273 1.13 1.13 2.31034 0.990722

Engineered Group

Bench vise 5 16 0 0 1.60 1.60 1.63636 0

Brother� sewing machine 11 70 0.279 0.350 3.18 3.18 2.18072 1.8205

Crest� toothbrush 10 28 0.145 0.200 1.40 1.40 2.14634 0.786823

Delta� jigsaw 14 34 0 0 1.21 1.21 3.39063 0

Delta� nail gun 9 18 0 0 1.00 1.00 4.26667 0

DeWALT� sander 12 48 0.448 0.308 2.00 2.00 3.07843 2.29857

Digger the DogTM 13 44 0.256 0.214 1.69 1.69 6.39394 0.674474

Drill 15 56 0.0456 0.0732 1.87 1.87 4.225 0.215213

Enviro-Energies� wind tunnel 15 42 0.117 0.0909 1.40 1.40 4.15652 0.517549

Genie� garage door opener 11 52 0.357 0.214 2.36 2.36 2.17105 2.40102

Juice extractor 12 34 0 0 1.42 1.42 3.88889 0

Lawn mower 12 44 0 0 1.83 1.83 2.68 0

Mixer 10 32 0.150 0.130 1.60 1.60 2.59091 0.701912

Piezoelectric shoe heel impact harvester 17 50 0.0213 0.0732 1.47 1.47 3.83523 0.113865

Rice cooker 9 30 0.176 0.167 1.67 1.67 3.64706 0.481692

Seiko� kinetic watch 16 50 0.100 0.231 1.56 1.56 4.10294 0.461636

Shop Vac� 10 34 0.117 0.150 1.70 1.70 3.0 0.452423

Solar yard light 5 10 0.450 0.500 1.00 1.00 1.76923 0.719441

Stapler 12 32 0 0 1.33 1.33 3.34568 0

Supermax� hair dryer 9 30 0 0 1.67 1.67 3.34783 0

CC-WS Watts–Strogatz local clustering coefficient, CC global clustering coefficient, CPL characteristic path length, SWI small-world index
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model structures and those without these structures. Seven

products in the Engineered Group had a local and global

clustering coefficient of 0. This implies that they have tree-

like structures. Three engineered products satisfied the

condition for a small-world network: the DeWALT sander,

the Genie garage door opener, and the Brother sewing

machine. A signed rank test of the SWI distributions for

these three products rejected the null hypothesis that the

median SWI B1 (p\:001), confirming that their SWI

satisfies the sufficient test for small-world net-

works (Humphries et al. 2006). Figures 3 and 4 show two

products having a SWI[1 or\1, respectively, for some

small-world graph equivalents, but a statistical tendency

toward the results described. For all other engineered

products having nonzero values of SWI, signed rank tests

failed to reject the null hypothesis that the median value of

SWI B1 (p[ :1).

Based upon the discussion in Sect. 2 regarding parsi-

monious functional model structures for products, this set

of ten engineered products may be thought of as having

parsimonious knowledge structures. If these 10 engineered

products (n1 ¼ 10) have parsimonious knowledge struc-

tures, then, according to Hypothesis 2, their transformation

costs should be lower than the other engineered (n2 ¼ 10)

ones. It is not possible to reject the null hypothesis of

Hypothesis 1 between the tree or small-world structure

engineered products and the other engineered products

(small-world p ¼ :496, Bernoulli, p ¼ :910, tree-like

p ¼ :762) when comparing the median values of GED. The

same statistical test comparing individual values of GED

between tree or small-world structure engineered products

(n1 ¼ 10;000) and non-tree or small-world structure engi-

neered products (n2 ¼ 10;000) confirms (p\:001) that tree

or small-world structure engineered products have a lower

GED (small-world mean rank = 9298.11; Bernoulli mean

rank = 9781.51; tree-like mean rank = 9593.11) (small-

world mean rank = 10,702.89; Bernoulli mean

rank = 10,219.49; tree-like mean rank = 10,407.89) than

non-tree or small-world structure engineered products.

Thus, Hypothesis 2 can be confirmed for the engineered

products when random variation in the target designs is

considered, but the statistical test lacks sufficient power

when the source of variance is the type of engineered

product, e.g., solar yard light or juice extractor. Finally, the

tree or small-world structure engineered products are

compared against the Biological Group. Since all of the

0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

PDF

Fig. 3 Histogram and calculated probability distribution function of

SWI values for Genie� opener
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Fig. 4 Histogram and calculated probability distribution function of

SWI values for Digger the DogTM

Fig. 5 Tree-like structure of abscission (Nagel et al. 2008a)
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items in this set have tree or small-world structure struc-

tures, the null hypothesis of Hypothesis 2 should not be

rejected. They should all have similarly low GEDs. It is not

possible to reject the null hypothesis of Hypothesis 1

between the tree or small-world structure engineered

products and the Biological Group (small-world p ¼ :075,

Bernoulli, p ¼ :052, tree-like p ¼ :052) when comparing

the median values of GED. However, since the p values are

approaching .05, it is possible that with more samples, it

would be confirmed that products in the Biological Group

have a lower GED than tree or small-world structure

engineered products. The mean ranks of the Biological

Group (small-world mean rank = 8.15; Bernoulli mean

rank = 7.95; tree-like mean rank = 7.95) are lower than

the mean ranks of the Engineered Group (small-world

mean rank = 12.85; Bernoulli mean rank = 13.05; tree-

like mean rank = 13.05). However, the individual GEDs

of the Biological Group (small-world mean

rank = 8001.43; Bernoulli mean rank = 7745.41; tree-like

mean rank = 7753.66) are lower than the GED for the

optimal engineered products (small-world mean

rank = 11,999.57; Bernoulli mean rank = 12,255.29; tree-

like mean rank = 12,247.34) for all types of target graphs

(p\:001). Since the GED in the Biological Group is lower

than even the tree or small-world structure products in the

Engineered Group, the structure of the functional models in

the Biological Group is the most flexible to change in the

analyzed dataset. These results state that having a tree or

small-world structure is a sufficient basis to judge a

knowledge structure as being optimal only when compar-

ing engineered products, and possibly only when compar-

ing products within a particular class. There are

characteristics of products in the Biological Group that

make their GED lower than products in the Engineered

Group. The next section discusses some of these charac-

teristics and the ensuing design guidelines.

Overall, the results confirm Hypotheses 1 and 2. The

GED of the Biological Group is lower than the GED of the

Engineered Group. It was confirmed that all items in the

Biological Group had a tree or small-world structure. The

GED of tree or small-world structure products in the

Engineered Group is lower than the GED of non-tree or

small-world structure engineered products. These results

suggest that transformation cost is an important criterion of

the optimality of a product.

6 Discussion

6.1 Summary

The premise of this paper is that the underlying knowl-

edge structure of designs has real consequences, which

include its technological progress potential (Dong and

Sarkar 2015) and, as studied in this paper, its potential for

change by transformation. The hypothesis tested in this

Fig. 6 Graph structure of a drill (Stone 2014)
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paper is that the structure of the functional model of a

product can lock-in a design by influencing the cost of

transformation. The article operationalizes the cost of

transformation using the GED. By comparing the GEDs

of biological systems and their analogously designed

engineered products, which are assumed to be optimal, to

those of engineered products, the results confirmed that

the biological systems had a statistically significantly

Table 2 Graph edit distance

between source model and

target graphs having the given

structural properties, small-

world, Bernoulli random, or

tree-like

Model Small-world Bernoulli Tree-like

Biological Group

Abscission 7.25 6.75 5

Armadillo armor 9.25 6.75 5.75

Automobile air bag 11.25 8 7

Chemical sensor 8.25 6 5.25

Housefly 10.75 9.25 7.25

Lexus� SC430 convertible roof 10.25 6.75 6.25

Microassembly abscission 8 6.75 5.25

Puffer fish 11.25 8.5 7

Retractable stadium roof 9.25 7 5.75

Sparrow FWMAV 7 4.75 4.25

Engineered Group

Bench vise 5.75 4.75 3.75

Brother� sewing machine 15.25 18.75 12

Crest� toothbrush 9.5 7.75 6.25

Delta� jigsaw 12.75 9 7.75

Delta� nail gun 7.5 4.75 4.5

DeWALT� sander 13.75 13.5 9.75

Digger the DogTM 13.25 11.75 9.25

Drill 16 15 11.25

Enviro-energies� wind tunnel 14.5 11 9.25

Genie� garage door opener 13.5 14.5 9.75

Juice extractor 11.75 9.25 7.5

Lawn mower 13 12 9

Mixer 10 8.75 6.75

Piezoelectric shoe heel impact harvester 16.75 13 10.75

Rice cooker 9.5 8.75 6.5

Seiko� kinetic watch 16.25 13.5 10.5

Shop Vac� 11 9.75 7.5

Solar yard light 3.75 2.5 2.25

Stapler 10.25 8.25 7

Supermax� hair dryer 9.25 8.25 6.25

Table 3 Nonparametric tests of differences between medians of

graph edit distances

Structure Group Mean rank p value v2

Small-world Biological 10.55 .029 4.750

Engineered 17.98 – –

Bernoulli Biological 9.45 .008 7.113

Engineered 18.53 – –

Tree-like Biological 9.90 .014 6.087

Engineered 18.30 – –

0 5 10 15 20
GED0
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10

Engineered

Biological

Fig. 7 Distribution of median GED values
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lower GED than the engineered ones. engineered products

having tree or small-world functional model structures

had a lower GED than non-tree or small-world engineered

products. These results imply that even though two

products can achieve the same intended purpose, one can

be more flexible than the other in relation to design

innovation by transformation due to differences in the

structure of their underlying functional models. The

structure locks-in function and flow choices and the

resulting component choices that are possible. Based upon

these results, a tentative hypothesis is that products hav-

ing tree-like or small-world-like functional architectures

will progress faster than those with other functional

architecture topologies.

For the engineered products that had tree or small-world

functional models, that their corresponding GEDs were

nonzero and higher than the median suggests that even

products having parsimonious knowledge structures have

some inbuilt inefficiencies. An examination of these

functional models showed that inefficiencies are caused by

transitive loops between various functions, as these loops

do not appear in the Biological Group. Given the relation

between increasing node and edge count and increasing

GED, the results also imply that engineers should aim to

reduce the total number of distinct functions and flows to

the minimally necessary and sufficient set.

The comparison between the functional models in the

Engineered Group and the Biological Group provides

design principles to simplify functional models. The design

principles are:

1. Eliminate transitive loops between various functions

(e.g., use an open-loop controller rather than a closed-

loop controller where possible7).

2. Minimize the total number of distinct functions or

flows by:

(a) Combining n functions or flows into n� m

functions or flows where 1�m\n (e.g., locat-

ing pins guide a work piece and combine the

functions of couple and stabilize).

(b) Eliminating a function or flow (e.g., electric

motors, as compared to internal combustion

engines, can produce full torque over a wide

range of operating speed, thereby eliminating

some transmission elements; additive manufac-

turing is based upon the principle of eliminating

functions associated with the removal of mate-

rial from a work product).

3. Minimize repetition of functions and flows.

The latter two design principles should be expected:

Economy in function and flow is highly desirable.

The first design principle illustrates inefficiencies built

into engineered products. As other researchers have already

illustrated about biological products (Vincent et al. 2006),

variety in function is produced by hierarchical and recur-

sive manipulations of materials at larger sizes. In engi-

neered systems, variety in function is achieved by the

replication of functions and the instantiation of new func-

tions. In so doing, transitive loops are produced, as flows of

energy and material are passed to another component that

repeats a prior function. Transitive loops have the follow-

ing form: edges 1 ! 2 and 2 ! 3 transitively connect

1 ! 3. Designers should, if possible, transform the struc-

ture such that unnecessary relations are eliminated by the

transitive loop. For example, suppose the function structure

contains the transitive loop, evident in the Convert ?
Controlmagnitude_Actuate ? Controlmagnitude_Regulate

? Convert flow of energy—mechanical–translational loop

of Fig. 6. The desired structure could eliminate the Con-

trolmagnitude_Regulate ? Convert edge by using an

open-loop controller, if appropriate.

Simpler functional architectures should lead to less

complex component configurations (Mathieson et al. 2011)

and improved upgradeability (Umeda et al. 2005). The

complexity of a functional architecture is not the only

determinant of the complexity of the resulting physical

architecture though. Performance requirements also influ-

ence the physical complexity (Peterson et al. 2012). These

results imply as a design policy that designers should strive

to reduce the complexity of the underlying functional

architecture for a product because the functional architec-

ture will impose a cost on future design changes.

6.2 Further applications

The method presented in this paper aims to discover the

properties of the structure of functional models as a way to

quantify their transformability into another structure. The

5 10 15 20
GED0

500

1000

1500

2000
Engineered
Biological

Fig. 8 Distribution of GED values

7 An open-loop controller is simpler to implement than a closed-loop

controller since it does not require a feedback mechanism, i.e., no

control signal flow and no transitive loops of energy flow between

functions such as control magnitude and channel.
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method of GED, though, could be generalized to quantify

the difference (or similarity) between the structures of

functional models. In this sense, this paper shares the same

line of thinking as research in discovering the structure of

large repositories of designed objects as a way to transfer

knowledge between designs having similar underlying

structures (Fu et al. 2013). While at the moment it is not

known whether engineered objects and systems might have

regular patterns, understanding the consequences of the

knowledge structures of designs, that is, their genotype

structure, rather than their physical architectures, their

phenotype, may yield new techniques to optimize designs

starting from their functional description.

In addition, the method of calculating the GED provides

an objective, knowledge-based method to measure the

difference between designs at the level of their functional

model. This has application in the problem of measuring

the creativity of designs. Creativity is normally assessed by

several factors but novelty relative to other designs in its

‘class’ is a recurrent criterion. The GED can be applied to

measure the degree of transformation necessary to modify

the functional model of one design to another; novel

designs are further away from the others because they have

different underlying knowledge structures. In addition, the

GED between a proposed design’s functional model and an

optimal equivalent can yield one other important and

underlooked creativity metric: economy.

6.3 Limitations and improvements

Given the dataset, the empirical analyses should be char-

acterized as exploratory since the primary focus in this

paper is to introduce and begin to develop a new and

potentially impactful concept of functional lock-in based

on the transformation cost of functional models of prod-

ucts. The important question is whether the results occur

due to a bias in the dataset rather than due to intrinsic

differences between biological systems and engineered

products. There are good reasons to believe that the results

do not occur solely due to the choice of products (the

dataset itself). Firstly, the dataset was obtained through a

careful literature review of peer-reviewed, published

research in which authors have provided a functional

model according to the functional basis. Given a bias to

publish positive results, it is likely that those functional

models represent ‘best-in-class’ products. As a conse-

quence, they may not represent the true population of

biological systems or engineered products. Nonetheless, as

long as the products in both sets are ‘best-in-class’, then the

comparison between the sets remains fair. It is useful to

note that many of the engineered products have been in

production for a very long period of time; for example, the

sewing machine was invented in the sixteenth century. It is

therefore likely that the engineered products have had

sufficient time to be significantly improved, if not opti-

mized, making them a useful comparison to the biological

systems. Secondly, a very large number of random equiv-

alent target models (potential functional models for the

products) were generated to sample a broad transformation

space and thereby obtain a median GED, rather than a

single point value. Finally, the functional models in both

sets are not too dissimilar in size. As shown in Table 1, the

products in both sets have a similar number of

nodes/functions (two-sample t test p ¼ :1977) but the

engineered products have more edges/flows (two-sample t

test p ¼ :0188). However, the optimal engineered products

did not have significantly fewer nodes (p ¼ :1890) or edges

(p ¼ :5118) than the non-optimal engineered products.

Therefore, the slight difference in number of edges in the

engineered products can only partially explain the results.

What would be true is that had more complicated engi-

neered products been included, such that there were an

order of magnitude more edges, then the results would have

certainly been skewed against the engineered products. As

stated previously, the number of nodes in any graph is

restricted to the maximum number of unique functions in

the functional basis. Therefore, the patterns observed are

not simple consequences of a sampling bias introduced by

using functional models arising from different databases.

Ideally, it would be preferable to study the transforma-

tion of a single product for which the intended purpose has

not changed over a long period of time, but the functional

model has changed. An example of such a product is a mass

data storage device. These devices have transformed from

paper-based punch cards to optical disks to transistor-based

solid-state memory chips. Examining the rate of improve-

ment within each generation of device and across each

generation of device and their correlation to the GED of the

corresponding devices would provide further empirical data

on the constraints imposed by a knowledge structure on the

rate of improvement of a product. As well, a more sophis-

ticated design grammar could be applied to describe the

engineering changes made to these devices over time.

An important limitation in the method for calculating

the GED is that the cost of node and edge operations is set

to unity multiplied by a distance metric based upon the

Levenshtein edit distance between the source and target

labels of the nodes and edges. The true cost should be

established through empirical data on the actual cost of

adding, deleting, and substituting functions and flows. Such

data should be available from R&D data and would form a

substantial part of empirical research in forecasting the

long-term trajectory and costs of design innovation by

transformation.

The grammar for the transformation operations could be

improved. In the present model, transformations consist of

218 Res Eng Design (2017) 28:203–221

123



random node insertion or deletion, edge insertion or dele-

tion, and node or edge substitution. Instead, a design

grammar could be defined to operate at the level of func-

tions (nodes) and flows (edges). At the moment, most

design grammars operate directly at the level of the phys-

ical instantiation of the product. The grammar may either

use shapes, i.e., shape grammars, or symbols to define

elements and operations which, when recursively applied,

lead to a more complex, compound element. In the situa-

tion of a functional model, a grammar would define the

appropriate set of transformations to nodes (functions) and

edges (flows), while respecting appropriate physics-based

constraints. For example, it would possible to substitute the

nodes and edges associated with importing energy–human

channel–import (energy–human) channel–guide (energy–

human) support–secure (energy–human) convert (energy–

mechanical–translational) with the nodes and edges import

(energy–electrical) channel–transfer–transmit (energy–

electrical) convert (energy–mechanical–translational).

Certain edge substitutions would not be possible, such as

substituting a flow of energy–electrical with a flow of

energy–hydraulic. In addition, each of these transforma-

tions could be assigned a different cost based upon

empirical data on the type and cost of the components

associated with the transformations. Developing the design

grammar for the allowable transformations and their cost of

implementation would present important empirical

research in elaborating upon this fundamental model.

7 Conclusion

This paper claims that the structure of a product’s knowl-

edge constrains the ability to transform the design. The

functional architecture locks-in commitments to a set of

functions and flows due to the structure of the connections

between functions and flows. To test the claim, the paper

compared the GEDs of biological systems and engineered

products, on the assumption that biological systems were

optimal. The results conclude that the GED of optimal

products is lower than their non-optimal counterparts. The

paper further compared engineered products having parsi-

monious functional architecture structures to their non-

parsimonious engineered counterparts and concluded that

the GEDs for the engineered products having parsimonious

functional architecture structures were lower. The engi-

neered products having tree or small-world functional

model structures could therefore be described as having a

more optimal functional architecture than the other engi-

neered products. The results point to the general claim that

the cost of transformation of optimal products is lower than

their non-optimal counterparts and the functional lock-in is

weaker. This article begins to illustrate how the structure of

knowledge underlying a product can constrain its rate of

improvement, and thereby serve as a way to forecast

potential rates of improvement. This constraint occurs

regardless of the physical architecture. The implication is

that a fully integrated system architecture in which the

underlying functional architecture is separable is preferable

to a modularized system in which there is significant

overlap in functional architecture between the sub-systems.

The fundamental hypothesis is that as the topology of the

functional architecture of a product approaches optimality,

the cost of design innovation by transformation decreases.

Further empirical validation of this hypothesis would pro-

vide a powerful basis for both the redesign of engineered

products and the estimation of rates of improvement. More

broadly, the paper proposes minimum transformation cost

as a property of an optimal design.
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Appendix: A* algorithm for graph edit distance

Algorithm 1 A* ALGORITHM TO COMPUTE
MINIMUM EDIT DISTANCE [24]
1: Input: Non-empty graphs g1 = (V1, E1, μ1, ν1) and g2 =

(V2, E2, μ2, ν2) where V1 = {u1, . . . , u|V1|} and V2 =
{u2, . . . , u|V2|}

2: Output: Minimum cost edit path S from g1 to g2
3:
4: S ← null
5: S ← Insert substitution {u1 → w} for each vertex w ∈ V2
6: S ← Insert deletion {u1 → }
7: loop
8: Remove pmin = arg min

p∈S
{g(p) + h(p)} from S

9: if pmin is a complete edit path then
10: Return pmin as the solution
11: else
12: Let pmin = {u1 → vi1 , . . . , uk → vik}
13: if k < |V1| then
14: For each w ∈ V2\{vi1 , . . . , vik}, insert pmin ∪

{uk+1 → w} into S
15: Insert pmin ∪ {uk+1 → } into S
16: else
17: Insert pmin ∪ w∈V2\{vi1 ,...,vik

}{ → w}
18: end if
19: end if
20: end loop
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