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Abstract In this paper, we introduce the system opera-

tional dependency analysis methodology. Its purpose is to

assess the effect of dependencies between components in a

monolithic complex system, or between systems in a sys-

tem-of-systems, and to support design decision making.

We propose a parametric model of the behavior of the

system. This approach results in a simple, intuitive model,

whose parameters give a direct insight into the causes of

observed, and possibly emergent, behavior. Using the

proposed method, designers, and decision makers can

quickly analyze and explore the behavior of complex sys-

tems and evaluate different architecture under various

working conditions. Thus, the system operational depen-

dency analysis method supports educated decision making

both in the design and in the update process of systems

architecture, without the need to execute extensive simu-

lations. In particular, in the phase of concept generation

and selection, the information given by the method can be

used to identify promising architectures to be further tested

and improved, while discarding architectures that do not

show the required level of global features. Application of

the proposed method to a small example is used to

demonstrate both the validation of the parametric model,

and the capabilities of the method for system analysis,

design and architecture.

Keywords Dependencies � Design � Behavioral analysis �
System architecture � Operability � Risk � System-of-

systems

List of symbols

Oi Operability of node i

Oi
C Global term of operability of node i due to criticality

of dependency

Oi
S Global term of operability of node i due to strength

of dependency

Oij
C Term of operability of node i due to criticality of

dependency from node j

Oij
S Term of operability of node i due to strength of

dependency from node j

SEi Self-effectiveness of node i

Wk Weight for the term based on criticality of

dependency in multiple dependencies

aij Parameter associated to the strength of dependency

(SOD) between node i and node j

bij Parameter associated to the criticality of dependency

(COD) between node i and node j

cij Parameter associated to the impact of dependency

(IOD) between node i and node j

1 Introduction

As technology keeps evolving, problems in systems engi-

neering are growing increasingly big and complex. Tradi-

tional systems engineering methods are not always

suitable when designing and architecting systems, and need

to be supported by novel methodology, capable of

addressing the new challenges. This is particularly true in

the context of Systems-of-Systems (SoS), where the con-

stituent systems have, at least in part, operational and

managerial independence (Maier 1998; Sage and Cuppan

2001). Moreover, the behavior of most systems designed
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and developed nowadays cannot always be directly eval-

uated based only on the behavior of the individual systems

or subsystems. In this paper, we define complex systems as

entities where interactions between the parts have a fun-

damental impact on the global behavior, and the effect of

dependencies is difficult to ascertain by simple inspection

during design (Mane et al. 2011; Nai Fovino and Masera

2006; Hsu et al. 2009). Throughout this paper, we will use

the term systems to refer to this class of complex systems.

The traditional systems engineering approach often comes

short in managing such features. Dependencies between

systems are dealt with by means of computationally

expensive simulations, complex parametric models whose

support functions lack intuitive meaning that may ease

their use, or analytical tools that add qualitative traits to

data that are sometimes already qualitative, thus decreasing

the fidelity of the results. Therefore, new tools and methods

are required, to analyze and quantify properties of the

system as a whole, and to include considerations about

possible emergent behavior when designing or updating

complex systems (Dahmann and Smith 2012).

In systems engineering, the first step required to perform

the desired analysis involves determining metrics that

describe the features and the behavior of the system. When

dealing with complex systems, however, metrics related to

individual systems do not directly translate to an assess-

ment of the overall behavior. Many authors recognize the

importance of holistic high-level metrics (Rhodes et al.

2009; de Weck et al. 2012) and acknowledge the need to

include thorough analysis of the impact of dependencies

between components in the process of designing, archi-

tecting, and planning updates of systems and SoS.

To address some of the limitations of traditional systems

engineering when dealing with complex systems, we

developed a methodology called systems operational

dependency analysis (SODA). SODA is based on previous

work by Haimes and Jiang (2001), Haimes et al. (2005),

Garvey and Pinto (2009, 2012) and Garvey et al. (2014),

with the goal of analyzing operational dependencies

between systems, and assessing the impact of such

dependencies on the overall behavior of the system or SoS.

We model the system as a directed dependency network,

where nodes represent the component systems (or subsys-

tems) and the capabilities that the whole entity is required

to achieve. The edges connecting the nodes represent the

operational dependencies between the constituent parts. An

operational dependency means that a certain system needs

input (data, material, and/or energy) from another system

in order to reach its full operability. Each dependency is

modeled with three parameters, one accounting for the

strength of the dependency, and two accounting for the

criticality of the dependency. The use of a parametric

model of the system behavior yields multiple advantages:

First of all, the parameters have an intuitive meaning,

directly related to the features of the dependency. Thus,

they give direct insight into the causes of observed, and

possibly emergent, behavior. Parameters also support

informed decision making in design and update of systems

and SoS architecture, reducing the amount of simulation

required. Moreover, parameters may come from various

sources, including experiments, expert evaluation, and

historical data.

The goal of this paper is to develop a framework to

support decision in systems design and architecture. With

SODA, we compute the operability of each system as a

function of its own internal status, and of the operability of

the other systems in the network, based on the topology,

and on the features of the dependency. By this way, we can

evaluate the impact and propagation of failures and dis-

ruptions from the nominal operability, and the effect of

architectural design decisions on the global behavior.

Based on these results, the user can quantify various met-

rics of interest, for example, robustness and resilience.

Using SODA, designers and decision makers can quickly

analyze the operational behavior of complex systems and

SoS, and evaluate different architectures under several

working conditions. The user can compare architectures

based on metrics of interest, trade-off between competing

desired features, identify the most promising architectures,

as well as the causes of the observed behavior, and discard

architectures that lack the requested features. This way, in

the early design process, promising architectures can be

kept into consideration, and improved based on the infor-

mation given by the model parameters and the observed

behavior, thus supporting the process of concept selection.

After describing the methodology and the meaning of

the parameters of the model, we show the steps required to

apply the method, and examples of analysis and synthesis

with SODA on a synthetic Naval Warfare Scenario SoS.

2 Related work and prior research

2.1 Dependencies and behavioral models

Current practice uses various approaches to model and

analyze complex behavior due to dependencies. Response

Surface Methodology (Box and Wilson 1951) models the

relationship between input and output variables with a

polynomial. This methodology was widely modified and

improved for years (Khuri and Mukhopadhyay 2010), and

evolved into Robust Parameter Design (Taguchi 1986).

These techniques result in detailed modeling of systems

behavior, but the parameters of this model do not have

intuitive meaning (they represent a function, but are not

directly related to features of the dependencies), therefore

54 Res Eng Design (2017) 28:53–69

123



extensive simulation is required for analysis, and the design

space exploration is executed by generating and analyzing

all possible designs. Bayesian Networks (Pearl 1988;

Moullec et al. 2013) deal with probabilistic dependencies

between nodes in an acyclic network and are suitable to

analyze interdependencies. However, the regression anal-

ysis required to identify the correct conditional probabili-

ties is computationally (or experimentally) expensive and

may require excessive time in the case of large networks.

Also, these methods give another very detailed model of

the systems behavior, but they do not readily provide

information on the root cause of observed behavior, so that

improvement of given architectures, and trade space

exploration is not well informed. To overcome these lim-

itations and to deal with the complexity of large systems,

other network-based methods have been proposed, with the

goal of facilitating the understanding of systems architec-

tural features. Some of these are specific to a particular

class of problems. For example, the generalized informa-

tion network analysis (GINA) method models the flow of

information in aerospace systems for communication and

sensing (Shaw et al. 2001), with the goal of assessing cost,

capability, and performance. A common framework used

in systems engineering to deal with dependencies is the

Design Structure Matrix (DSM) methodology. Analogous

to adjacency matrix in graph theory, DSM is used to model

and analyze system structural features and dependencies

(Browning 2001; Eppinger and Browning 2012). DSM uses

both metrics from graph theory, for example, betweenness

centrality, and ad hoc algorithms for clustering systems and

support organization in system development. DSM has

been extended to multiple domain, with the Multiple

Domain Matrix (MDM) methodology (Maurer and Linde-

mann 2008), and successfully applied by Bartolomei et al.

(2012) to Engineering Systems. Engineering Systems

Multiple Domain Matrix (ES-MDM) constitutes a con-

ceptual framework to model interactions between systems,

functions, objectives, and activities, for application of

DSM analysis methods. SODA approach models the

behavior of complex systems with a low number of

parameters, having an intuitive meaning related to the

physical systems. Therefore, it can give useful insights in

the early stage of design, and identification of critical

systems, without requiring extensive simulations. As a

parametric model, SODA can be used in conjunction with

existing frameworks for system analysis. For example,

SODA adds more insights into the impact of the depen-

dencies between systems in the operational and functional

domain and can therefore be used in conjunction with DSM

and ES-MDM framework. DSM and ES-MDM support

SODA users in deciding the adequate set of nodes required

to model the system behavior, and constitute a valid tool to

represent matrices of SODA parameters and to identify

clusters in SODA networks. SODA can identify criticalities

inside and among clusters and suggest ways to shape the

dependencies, and improve operational architectures.

2.2 Trade space exploration and architecture

generation

Trade space exploration has been addressed by multiple

authors. McManus et al. (2004) introduced a framework

that allow for rapid architecture selection in the conceptual

design phase. However, the qualitative considerations on

risk and utility are based on classical systems engineering

methodology and do not account for some complex fea-

tures, for example, operational dependencies. Other authors

include dependencies between variables in conceptual

design (Nunez et al. 2012), or in change propagation

(Hamraz et al. 2012), but only as a qualitative flow, or very

simple model of binary or qualitative interdependencies

(Augustine et al. 2012), or with probabilistic assessments

requiring many simulations (Clarkson et al. 2004). SODA

is a valid alternative to existing parametric models or to

simulation-based models. While keeping the parametric

model quite simple, SODA accounts for quantitative partial

dependencies and can be used to improve existing frame-

works for architecture selection and change propagation

analysis. An advantage of this quantitative model is that it

gives insight into the causes of the observed behavior, thus

allowing for informed architecture generation and therefore

improved trade space exploration.

2.3 Criticality and risk analysis

Similar approaches, involving extensive simulations, or

qualitative assessment and binary dependencies, are used to

identify critical nodes in interdependent networks (Rinaldi

et al. 2001; Sosa 2008; Zio and Sansavini 2011; Nguyen

et al. 2013), and to support decision in risk management

(Gaonkar and Viswanadham 2007; Fang and Marle 2012).

Besides giving a simple model of the behavior of complex

networks in case of failure, SODA addresses other limita-

tions of this current approach to failure and risk analysis.

First of all, in current practice, failure modes are often

considered only at the end of the design process. Kurtoglu

et al. (2010) underlined the need to consider functional

failures in the early design process, though the methodol-

ogy they propose relies on simulations, which require

previous knowledge of possible architectures. We propose

an alternative approach, to similarly consider failures in

early design, and to evaluate the impact of system archi-

tecture on operability, while reducing the need for simu-

lations. SODA allows the designer to include the impact of

dependencies and identify root causes of the observed

global behavior, when failures occur, at the beginning of
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the design process, replacing simulations with a parametric

model of the behavior. Therefore, with SODA the designer

can include considerations about risk when selecting the

most promising architectures. Methods like Fault Tree

Analysis (FTA) (Watson 1961; Mearns 1965) and Failure

Mode and Effect Analysis (FMEA) (United States

Department of Defense 1949) have limitations when

dealing with multiple complex failures, and use ordinal

scale (FMEA) or binary faults (FTA), while SODA deals

with the analysis of the effect of system failures, including

partial failures, and is able to model details of the inter-

actions, including multiple failures and cascading effects.

3 Systems operational dependency analysis

In this section, we provide a general description of the

systems operational dependency analysis (SODA) model,

SODA parameters, model formulation, and basics of

SODA analysis, introducing the novel concepts and ideas

related to SODA. The next section offers a thorough

description of how to use and apply the concepts described

in this section. SODA is a method to analyze the result of

possible cascading effect of dependencies between systems

on the overall operability, in case of disruptions. The

method is based on previous work by Garvey and Pinto

(2009, 2012), Garvey et al. 2014), who proposed functional

dependency network Analysis (FDNA), a 2-parameters

model of dependencies between capabilities. This method

is derived from the Leontief-based Input/Output model for

infrastructures (Haimes and Jiang 2001; Haimes et al.

2005). Haimes proposed the use of a simple linear model of

dependencies to analyze production and services in

infrastructures. FDNA is a 2-parameter piecewise linear

model of dependencies between capabilities. The parame-

ters have intuitive meaning, and the method is used to

analyze the impact of failures on the desired capabilities in

complex systems. While FDNA results in a good input/

output model for capabilities, adding value to a simple

linear model, direct application of FDNA to model the

behavior of complex systems and the impact of depen-

dencies showed some limitations, which restricted its use to

support decision making in systems architecture. We

appreciate the power of a simple parametric model, and we

kept the idea of separating the impact of a one-to-one

dependency into a critical zone, where very low input is

available, and a non-critical zone, where high input is

available. However, since FDNA has been developed to

deal with capabilities, it does not consider the influence of

the internal status of a system. Also, it does not include

stochasticity, and it fails to model some example of

behavior that we observed in various applications. For

example, FDNA cannot model dependencies where the

criticality is rapidly absorbed as a result of a small increase

in the input. Additionally, when multiple dependencies

occur, FDNA can model only substitute inputs (OR-like).

To address these limitations, building on FDNA and its

previous application, and based on results from agent-

based model (ABM) simulations of problems from differ-

ent fields of application (e.g., warfare scenarios, GPS-based

autonomous flocking of vehicles, space exploration archi-

tectures), we propose the SODA model. SODA is a 3-pa-

rameter piecewise linear model, suitable to analyze system

dependencies, including partial dependencies, and their

effect on system behavior. We recognize that the features

of complex systems and the computational cost needed to

perform analysis of these systems require analytical

methods to keep some inherently qualitative aspect.

However, one of the goals of SODA is to keep these

qualitative features to a minimum. For this reason, SODA

parametric model trades a more detailed behavioral anal-

ysis off for a quantitative representation of the systems

behavior. In Sect. 1, we underlined how the parameters of

SODA model may be evaluated via parametric regression

analysis from experimental or historical data, but also be

estimated—if such data are not available—by expert

assessment. Tools are under development to support the

latter; however, we suggest expert evaluation to be kept at

a minimum, in order to reduce the possible introduction of

subjectivity into the model. We also recommend per-

forming sensitivity analysis to evaluate the possible impact

of errors in the evaluation of the parameters of SODA

model.

We validated the model through agent-based model

(ABM) simulations, executed through the Discrete Agent

Framework (Chow et al. 2012; Mour et al. 2013), and

successfully applied the methodology to aerospace sys-

tems. This publication is mainly focused on the method-

ology, which is described in detail. The synthetic case

study described in Sect. 5 is a small example of application

of SODA analysis, and it is part of a larger study for a

Naval Warfare Scenario. Future publications, focused on

specific applications, will cover larger applications of

SODA to a variety of problems, belonging to different

fields.

3.1 Operational dependencies

In SODA, we model the architecture of complex systems

and SoS as a directed operational network (Fig. 1). The

nodes represent either the component systems or the

capability to be acquired. Accordingly, the links represent

the operational dependencies between the systems or

between the capabilities.

In SODA, each node is characterized by its internal

health status, or self-effectiveness (SE), ranging between 0
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(system not working at all) and 100 (system having max-

imum performance). Each link is characterized by three

parameters: strength of dependency (SOD), criticality of

dependency (COD), and impact of dependency (IOD) that

affect the behavior of the whole system-of-systems in

different ways. These parameters, described in detail in the

next section, can come from expert judgment and evalua-

tion, and they yield a direct insight into the cause of the

observed behavior. On the other hand, the parameters of

the model can be computed based on historical data, or

through a limited number of simulations and experiments.

SODA is used to evaluate the effect of topology and of

possible degraded functioning of one or more systems on

the operability of each system in the network. The analysis

can be a deterministic evaluation of a single instance of the

system status or a stochastic analysis of the overall

behavior. In the deterministic analysis, given the SE of

each system, and the properties of each dependency, SODA

quantifies the operability Oi of each node, according to the

model described in Sect. 3.3. The operability of a node,

ranging between 0 and 100, is defined as the level at which

the system is currently operating, or the level at which the

desired capability is being currently achieved. Operability

of a hypothetical system is related to performance by

means of a given function, as shown in Fig. 2. It is thus

related to the value or utility that the system is achieving

(however, a value function may include other desired

variables than operability). When designing the operational

network, the user must also define the relationship between

performance and operability. An example of the entire

procedure is described in Sects. 4 and 5. The operability of

nodes of interest is used to analyze and evaluate properties

of the overall system, such as robustness, resilience, risk.

In the stochastic version of SODA, the SE of each

system follows a probability distribution. Consequently,

the operability of each node is also probabilistic. Different

from the deterministic version, this type of analysis deals

with the overall behavior of the system, rather than with a

single instance.

SODA can thus be used to identify the most critical

nodes and dependencies in the network, in terms of impact

on the operability, under different disruptive conditions.

Designers can compare different architectures and use

metrics based on operability, to quantify robustness and

resilience of complex systems, and the risk of each archi-

tectural design in terms of impact of disruptions. These

metrics may be defined based on the specific application

and on the desired analysis. In this paper, we use the dif-

ference between 100 and the resulting value of operability

following disruption (expected value in case of stochastic

analysis) as a measure of the robustness of the architecture

to the disruption. If we add flexibility to the architecture, by

applying rules that allow the architecture to be reshaped in

case of disruption (e.g., a system can support a disrupted

system), we use the difference between the value of

operability when actions are taken to counteract the effect

of disruption and the original value of operability following

the disruption as a measure of the resilience of the archi-

tecture (i.e., the capability to recover part of the loss in

operability).

3.2 Parameters of the model

Each dependency between two systems is represented with

three parameters. Experiments and simulations on real

applications showed that this model is more accurate than

other models of the same family (Haimes and Jiang 2001;

Haimes et al. 2005; Garvey and Pinto 2012), yet still

simple enough to guarantee fast analysis of a high number

of architectures. The low number of parameters, and their

intuitive meaning, make them both suitable to be assessed

by knowledgeable designers and to be used to drive deci-

sion making in complex systems architectural design.

3.2.1 Strength of dependency

Strength of dependency accounts for how much the

behavior of a system depends on the behavior of a feeder

system. SOD is the predominant factor when the feeder has

a high level of operability (SOD zone in Fig. 3). The

parameter for SOD, aij, ranges between 0 and 1 and is

defined as the fraction of operability of node j that is

depending on the operability of node i. The rest of the

N1

N3

Feeders Receiver

N2

SE1

SE2
SE3

SOD13, COD13, IOD13

SOD23, COD23, IOD23

Fig. 1 Synthetic SODA network. N node, SOD strength of depen-

dency, COD criticality of dependency, IOD impact of dependency, SE

self-effectiveness

Operability 
(Effectiveness) Performance 

(based on the 
specific system)

minimum 
performance

0
maximum 
performance

100

Fig. 2 Performance and operability. The minimum or worst possible

performance corresponds to operability equal to 0. The maximum or

best possible performance corresponds to operability equal to 100
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operability of node j is dependent on its SE. aij is the slope

of the line with triangles in Fig. 3.

3.2.2 Criticality of dependency

Criticality of dependency is one of the two parameters that

quantify how the functionality of a system degrades when a

feeder system is experiencing a major failure. COD is the

predominant factor when the feeder has a low level of

operability (COD zone in Fig. 3). The parameter for COD,

bij, ranges between 0 and 100 and is defined as the maxi-

mum loss in operability of node j, that is, the drop in the

operability level of node j, when node i has operability

equal to 0. In Fig. 3, bij is the difference between 100 and

the intercept of the line with squares with the y-axis. We

underline that this definition is slightly different from the

one given by Garvey and Pinto (2009, 2012) for FDNA.

With the new definition, high bij corresponds to high

criticality.

3.2.3 Impact of dependency

In the definition of FDNA (Garvey and Pinto 2009, 2012;

Guariniello and DeLaurentis 2013a), the slope of the

function relating the operability of nodes i and j in the COD

zone was always equal to 1. This meant that, starting from

the minimum operability of node j (for low levels of

operability of node i), in the COD zone this operability Oj

would depend solely on the operability of node i, without

any contributions by the SE of node j. Results from ABM

simulations showed that, starting from the baseline corre-

sponding to operability of node i equal to 0, the operability

of node j can increase faster than the increase in operability

of node i. The critical dependency can thus have a lower

impact and be restricted to a smaller zone. A small width of

the critical zone models a dependency that may be highly

critical, i.e., resulting in a large loss of operability if the

input is completely disrupted, but that requires just a small

level of operability of the feeder node to achieve high level

of operability of the receiver node. Simple linear models

and FDNA piecewise linear model fail to capture this

feature—which we found to be very common in many

systems dependencies—resulting in larger modeling error

(Fig. 4). Due to this observation, we introduce a parameter

for the Impact of Dependency, cij. It ranges between 1 and

100 and is defined as 100 divided by the slope of the COD-

dependent function (line with squares in Fig. 3). The

resulting support function can model a wider spectrum of

dependencies than FDNA (e.g., it can model dependencies

that exhibit an input/output behavior similar to a step

function). Other models, for example, nonlinear functions,

or larger polynomials, may result in a better behavioral

model of complex one-to-one dependencies than SODA,

but will also increase both the computational cost of the

analysis, and the complexity of the model setup.

3.3 The model: dependency from a single system

Based on the parameters described in the previous sections,

we model the operability Oj of node j, depending only on

node i, according to the following equations.

The operability of root nodes, i.e., nodes that are not

dependent by any other node, is equal to their SE:

Oi ¼ SEi ð1Þ

The operability of a node j, depending only on one

feeder node i, is computed as the minimum of two terms

(black stars in Fig. 3), one depending on the SOD, one

depending on the COD:

Oj ¼ min OS
j ;O

C
j

� �
ð2Þ

The term depending on the SOD is computed based on

the operability of the feeder, and the SE of node j:

OS
j ¼ aijOi þ 1 � aij

� �
SEj ð3Þ

The term in the critical zone is computed based on COD,

IOD, and the operability of the feeder:

OC
j ¼ 100

cij
Oi þ 100 � bij

� �
ð4Þ

3.4 The model: dependency from multiple systems

When a node is dependent on more than one node, the

equations of SODA are slightly modified. Following the

formulation by Garvey and Pinto (2009, 2012) for FDNA,

we compute the operability term depending on SOD as the

Fig. 3 Operability due to single dependency of system j from system

i. SEj = 100. Line with triangles term due to SOD (here, 0.4). Line

with squares term due to COD (here, 80). Stars: Oj as a function of Oi.

Criticality is prevalent for Oi\ 25
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average of the corresponding terms for each dependency.

We compute the operability term depending on COD as the

minimum of the corresponding terms for each dependency,

thus reflecting the intuitive idea of the overall impact of a

critical dependency.

However, the use of this formulation results in a pos-

sible non-zero operability of a node even when all the

feeders have 0 operability (Fig. 4, left). ABM simulations

showed that there are cases of dependency from multiple

nodes when operability of a node may decrease to 0 when

all the feeders have 0 operability. To keep a simple model

of one-to-one dependencies, we modeled this effect by

applying a multiplicative weight W to the parameter that

models the COD. For each feeder of the node under con-

sideration, the weight is the average of the operability

resulting from other feeders and has an exponent k ranging

between 0 and 1 (in the case presented in this paper, we

assumed a value of 0.1 for the exponent). With the multi-

plicative weight, the parameter modeling the COD repre-

sents the loss in operability resulting from the total loss of

one feeder when all other feeders are working properly.

The exponent models how large the impact of other feeders

in the critical zone is. An exponent of 0 models an ‘‘OR-

like’’ dependency, where each dependency of a node j from

a node i results in a certain level of operability, without

accounting for dependencies of node j from other nodes.

An exponent of 1 models an ‘‘AND-like’’ dependency,

where the operability resulting from the dependency of j on

i degrades to 0 if j is not receiving adequate input from its

other feeder nodes. Intermediate non-zero exponents model

different levels of impact of other feeders in the critical

zone. Multiple dependencies are then modeled as follows.

The operability of root nodes, i.e., nodes that are not

dependent by any other node, is equal to their SE:

Oi ¼ SEi ð5Þ

The operability of node j, depending on multiple feed-

ers, is computed as the minimum of two terms, one

depending on the SODs and another depending on the

CODs:

Oj ¼ min OS
j ;O

C
j

� �
ð6Þ

The term depending on the SODs is the average of SOD-

based terms, computed based on the operability of each of

the n feeders, and the SE of node j:

OS
j ¼

1

n

Xn
i¼1

OS
ij ð7Þ

OS
ij ¼ aijOi þ 1 � aij

� �
SEj ð8Þ

The term in the critical zone is the minimum of terms

based on COD, IOD, and the operability of each of the n

feeders:

OC
j ¼ min OC

1j;O
C
2j; . . .;O

C
nj

� �
ð9Þ

Fig. 4 Example of dependency of detection from ship and helicopter

radar in a Naval Warfare Scenario. Left FDNA model modified to

consider internal status of systems. The 2-parameter model does not

capture the high increase in detection capability caused by slight

increase in helicopter radar capability. Also, without corrective

weight (k = 0), the zone where the operability of both feeders is low

is dominated by the most critical node (helicopter), and FDNA fails to

model this behavior. Right SODA model better captures the input/

output relationship, and with the corrective weight (k = 0.1), it better

models the combined effect of multiple dependencies
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OC
ij ¼

100

cij
Oi þWk

i 100 � bij
� �

ð10Þ

If the network has cycles, a variant of the same equa-

tions can be used. They constitute a set of nonlinear

equations, whose solution can be found iteratively, using

the SE of each node as initial condition for the operability.

Stopping criteria include number of iterations, or change in

operability with respect to the previous iteration. However,

in this paper, the scope is limited to acyclic networks.

3.5 Deterministic analysis

The simplest analysis that can be performed with SODA

method is a single-point, deterministic analysis. Values for

the SE of each system, i.e., their possible degraded status,

are fed into the equations, to compute the actual operability

of each system.

This kind of analysis can be thought of as a way to

answer what if questions: for example, if the user is

interested in the impact of a specific system on the overall

behavior of the whole entity, values ranging between 0 and

100 can be assigned to the SE of the system under con-

sideration, and the subsequent operability of each of the

other systems can be computed through SODA, and listed

in tables or plotted in graphic format. Another example

may involve partial failures in several systems, so as to

evaluate the combined effect of multiple failures.

Deterministic analysis gives good insight into the

influence of dependencies into the operational network.

The user can identify the most critical nodes under speci-

fied conditions, i.e., the nodes that most affect the oper-

ability of other nodes. Some of the results may show

unexpected behavior, for instance possible reduction of the

impact of failures, due to the particular topology. The user

can compare different architectures, based on their

response to failures and accidents. It must be noted that the

results of this analysis also depend on the output of interest:

for example, a node might be critical on the operability of a

low-interest node, while having a small impact over nodes

of interest. Stochastic analysis better catches details about

the overall impact of disruptions on the operability.

3.6 Stochastic analysis

A more realistic understanding of the systems behavior as a

function of the dependencies between components can be

achieved by means of a stochastic analysis with SODA. In

stochastic analysis, a probability density function of the

SE, rather than a single instance, is used. The corre-

sponding output is a probability density function for the

operability of each of the component systems, accounting

for all the SOD, COD, and IOD values as well as the

overall effect of topology. This behavior is condensed in a

few probability distributions of interest instead of long

tables, as with the deterministic analysis. In particular, the

expected value of the operability of a system gives a

measure of the robustness of such a system to failures of

the feeders, while the variance of the operability evaluates

the sensitivity of the system to failures of the feeders. Such

outputs show behavioral patterns and features of a whole

architecture and thus are valuable in design activities. For

example, given the expected distribution of SE of the

component systems over time (including aging, minor

failures, major accidents), and a threshold for the minimum

operability to be achieved by some system of interest, the

user can compute the probability that these systems are

operating above the given threshold, as time goes by. The

user can then compare alternate architectures, identify their

critical systems, and explain the role of topology in the

observed criticality.

Based on SODA equations, an analytic expression for

the expected value and variance of the operability can be

derived (operability is a piecewise linear combination of

the SE). However, due to the possible high number of

nodes in the network, and since SODA is computationally

inexpensive (Table 1), Monte Carlo simulation appears to

be the best choice to perform this type of analysis.

Stochastic analysis, similarly to deterministic analysis, can

be used to analyze the combined effect of multiple failures.

Since SODA formulation for multiple dependencies

(Sect. 3.4) does not explicitly treat the correlation between

systems feeding the same node, the PDFs of the self-ef-

fectiveness of these systems are statistically independent in

the model. We suggest two ways to address correlation.

The user can choose input for the Monte Carlo simulation

from statistically dependent PDFs. A more accurate alter-

native is to model the correlation between the systems:

since the internal status of the systems is correlated, it

means that part of their operability depends on a common

cause, which can be explicitly modeled in SODA with a

node feeding the correlated systems.

3.7 Synthesis and architectural design updates

Whereas SODA analysis allows for comparison between

various architectural designs, and for trade-off between

competing features, the intuitiveness of the parameters

used in SODA model can support decision making in

design updates.

Since the parameters give insights into the causes of the

observed behavior, they also suggest possible ways to

effectively improve this behavior on an already existing

architecture and allow for evaluation of the impact of

architectural changes, and modified dependencies.
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4 SODA problem setup

In this section, we list and describe the steps required to

apply SODA analysis, and provide guidelines to the use of

SODA. The baseline ideas, nomenclature, and mathemat-

ical formulation of SODA modeling have been introduced

in Sect. 3. These concepts are applied in this section to

illustrate a step-by-step description of SODA modeling,

analysis, and synthesis.

4.1 Step 1: operational dependencies

The first step necessary to apply SODA is the conversion of

the requirements and the systems involved into a network

of operational dependencies. It must be underlined that the

topology of this network will depend not only on the

desired or required topology of interactions between the

systems (exchange of information, matter, energy), but also

on the desired output from the analysis. The network of

operational dependencies will include nodes representing

the systems that are assigned to perform a task, and nodes

representing capabilities that the user is interested in

quantifying. SODA is a model of the operational domain;

therefore, the flow between systems is generalized in terms

of operability. System Engineering methods for functional

allocation can be used to perform this step (INCOSE 2015).

Functional Modeling method (Stone and Wood 2000;

Hutcheson et al. 2007) has the advantage of identifying

possible failure modes (Tumer and Stone 2003; Stone et al.

2005) that can also be used as a basis for analysis of the

impact of disruptions with SODA.

Alternative architectures may have different systems to

perform the required function, different network topology,

or different features of the dependencies.

4.2 Step 2: self-effectiveness and operability

The second step in the problem setup is the definition of the

internal status, that will be represented by the SE of each

system, and of the performance, that will be represented by

the operability of each node. Both SE and operability are

normalized between 0 (worst case) and 100 (best case).

Multi-dimensional performance is represented by different

capability nodes (and associated systems). The measure of

internal status and performance, to be associated respec-

tively with SE and operability, can be evaluated by experts,

or computed from historical data, experiments, or

simulations.

4.3 Step 3: dependency parameters (aij, bij, cij)

At this point, to be able to model the overall behavior

through SODA, we need to determine the parameters of

each dependency. In their FDNA formulation (Garvey and

Pinto 2009, 2012), Garvey and Pinto describe a way to

evaluate aij as the fraction of operability of a node

depending on its feeder, but accounting for a virtual

baseline operability of the system, when the feeders are not

giving any input, and there is no criticality. Then they

suggest to evaluate bij as the actual operability that a sys-

tem achieves, when the feeders are not giving any input.

The parameters for the dependencies can be effectively

evaluated by experts, based on these definitions and on the

equations of SODA, if the users have a good understanding

of the impact of each of these parameters on the operability

dependency between a feeder node and a receiver node.

Figure 5 shows the effect of aij on a single dependency of

node Nj from node Ni, when bij is equal to 95, cij is equal to

10, and aij increases from the left plot to the right plot.

Each plot in the figure represents the operability Oj as a

function of the operability Oi. As the SOD grows larger and

larger, the operability of node Nj is increasingly dependent

on that of node Ni, and less dependent on its SE.

Figure 6 shows the effect of bij on a single dependency

of node Nj from node Ni, when aij is equal to 0.5, cij is

equal to 40, and bij increases from the left plot to the right

plot. Each plot in the figure represents the operability Oj as

a function of the operability Oi. As the COD grows larger

and larger, the critical zone (low values of Oi) increases in

size, and the loss due to criticality gets bigger.

Figure 7 shows the effect of cij on a single dependency

of node Nj from node Ni, when aij is equal to 0.5, bij is

equal to 95, and cij increases from the left plot to the right

plot. Each plot in the figure represents the operability Oj as

a function of the operability Oi. As the IOD grows larger

and larger, the critical zone (low values of Oi) gets bigger,

Table 1 Computational cost of

SODA analysis
Number of nodes Avg. number of edges (100 runs) Avg. time (s) Max time (s)

100 2484 0.0125 0.0143

500 62,361 0.887 0.922

1000 249,687 6.625 6.804

2000 999,785 61.41 67.82

Time to perform analysis of a single instance of the operational network, with variable number of nodes and

edges. Processor Intel Core i3-2350 M 2.3 Ghz, 4 Gb DDR3 RAM
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having impact even at high values of Oi, especially when

SEj is high.

The combination of the three parameters, and of multi-

ple dependencies, results in a model of the systems

behavior, according to SODA equations. The process can

be reversed, and historical data, or results from simulation

may be used to evaluate, by means of regression analysis,

the parameters of the SODA structure that best fits the

results. These parameters may then be used to perform

more comprehensive analysis, without the need to execute

full simulation. Therefore, if the user has historical data or

a good knowledge of one-to-one dependency behavior, the

parameters that model the global behavior can be computed

with a cost of the same order of magnitude as the cost of

other parametric models (e.g., Response Surface Method-

ology), that is generally lower than the cost of performing

simulations. If data are not available, Design of Experi-

ments techniques can be applied, so that a low number of

simulation is used to identify the parameters of the model.

In this case, the cost to compute the parameters is at most

the same as simulation-based models (e.g., Bayesian Net-

works), while the cost of the analysis is very low (Table 1).

Since SODA is a parametric model, it trades detail off for

low cost, and for the advantage of having a representation

capable of giving insight into the reason of observed

results. The level of detail of SODA analysis will depend

on the level of detail of available data or simulations. For

the early design phase, we suggest to use simple models,

which will be able to identify more and less promising

architectures. For later design phases, or for update of

existing architectures, more data will be available to sup-

port accurate parametric regression.

Fig. 5 Operability of node Nj in function of the operability of node Ni for different values of aij. Left aij = 0.15 (Oj is most dependent on SEj).

Center aij = 0.5 (Oj is equally dependent on SEj and Oi). Right aij = 0.85 (Oj is most dependent on Oi)

Fig. 6 Operability of node Nj in function of the operability of node Ni

for different values of bij. Left bij = 25 (criticality does not occur

because of low SOD). Center bij = 60 (criticality occurs, but the loss

is not visible when SEj is small). Right bij = 95 (criticality occurs,

and the loss is big, yet it is not visible when SEj = 0)

Fig. 7 Operability of node Nj in function of the operability of node Ni

for different values of cij. Left cij = 10. Center cij = 33.3 (criticality

occurs over a wider range of Oi). Right cij = 100 (criticality occurs

over a wider range of Oi, and it is the predominant factor for high

values of SEj)
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4.4 Step 4: analysis

Once the SODA network, with the relative parameters, is

available, the user can perform the required analysis. In

step 1, systems and capabilities of interest were included in

the network. The user may now decide to perform deter-

ministic analysis, setting up points of interest (each one

being a set of SE for each node, corresponding to a specific

failure), and use the results to evaluate the impact of dif-

ferent failures, including multiple failures, and to identify

the critical systems and dependencies. Otherwise, the user

may use models of failure probability in individual systems

to perform stochastic analysis and analyze the behavior of

the whole entity, and the main features of the impact of

failures and functional dependencies. Metrics of interest,

representing, for example, the robustness, and resilience of

the entire system can be built based on the results of

deterministic or stochastic analysis (systems operability),

and their evolution over time.

4.5 Step 5: synthesis

SODA allows for fast analysis of the effect of various

failures scenarios on systems behavior and capabilities, as

well as comparison of architectures, and possible trade-offs

between competing metrics (reliability, resilience, capa-

bilities, cost). In addition, the parameters of the SODA

model for operational dependencies give insight not only

on the effect of the operational dependencies between the

systems, but also on some of the reasons why an observed

behavior occurs. Based on the relationship between some

of the parameters, the topology of the network, and the

observed results, the designer can decide the appropriate

actions needed to improve the architecture (increase

redundancy, add, or delete paths between node pairs, invest

money to increase the robustness of critical nodes, etc.).

New architectures can be generated based on these obser-

vations and analyzed again by means of SODA. This

process can be iterated to improve architectures.

5 Case study: a small naval warfare scenario

In this section, we show results of the application of SODA

for risk analysis of a small Naval Warfare scenario SoS.

The scenario is comprised of an MH-60 helicopter, a ship

equipped with detection and weapon systems, and an

adversary boat approaching the coast. The helicopter and

the ship can perform detection of the boat, and the ship can

also engage the adversary. We are interested in time

required to detect the adversary, and time required to

engage it. We follow the steps described in the previous

section.

5.1 Step 1: operational dependencies

The first step in SODA is the conversion of the require-

ments and the systems involved into a network of opera-

tional dependency. As noted in Sect. 4.1, the topology of

this network depends not only on the desired or required

topology of interactions between the systems (exchange of

information, matter, energy), but also on the desired output

from the analysis: in this case, two nodes will represent the

capability of detection, and the capability of engagement,

respectively. We use the intermediate node representing

the capability of detection because we are interested in

modeling the effect of the dependency of detection time

from the operability of the detection systems. If the user is

interested in different outputs, the nodes of the functional

network can be changed accordingly. Three more nodes

will represent the helicopter’s detection system, the ship’s

detection system, and the ship’s weapon systems. The

resulting architecture is shown in Fig. 8. Alternative

architectures may involve different systems to perform the

required function, different network topology, or different

features of the dependencies. As noted in Sect. 3.6, we may

decide to model the correlation between operability of

some systems explicitly. For example, the operability of

the ship’s radar and weapon systems is likely to exhibit

some degree of correlation, since the systems are on the

same ship (if the ship is damaged, both systems will be

disrupted). For more accurate results, we could add one

node, representing, for example, the ship hull, feeding both

the ship’s radar and the ship’s weapon system. This node

would have a simultaneous impact on the operability of the

systems aboard the ship.

5.2 Step 2: self-effectiveness and operability

The second step in the problem setup is the definition of the

internal status that will be represented by the SE of each

systems, and of the performance, that will be represented

by the operability of each node. In this case, we use sim-

plifying assumptions for detection and weapon systems:

they operate within a fixed range, and their SE is a measure

of the probability to correctly detect or engage the adver-

sary if it is within the operative range. The operability of

N1

N5

N2

N3

N4

Fig. 8 The small naval warfare operational dependencies. N1 ship’s

radar, N2 helicopter’s radar, N3 detection of the adversary, N4 ship’s

weapon system, N5 engagement of the adversary
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such nodes corresponds to their SE, since they are root

nodes (they do not have feeder nodes).

The operability of the detection capability node is a

measure of the time required to perform detection of the

adversary boat, normalized between 0 (longest time nec-

essary to detect the adversary. In this case, it is the maxi-

mum allowed mission time, before the adversary reaches

the coast) and 100 (minimum time required to detect the

adversary).

The operability of the engagement capability node is a

measure of the time required to engage the boat, normal-

ized between 0 and 100, similarly to what we did for the

operability of the detection capability.

5.3 Step 3: dependency parameters (aij, bij, cij)

At this point, to be able to model the Naval Warfare SoS

behavior through SODA, we need to evaluate the param-

eters of each dependency. These can be effectively evalu-

ated by experts, assuming that a good description of the

meaning of each parameter is familiar to the user. Based on

the concepts described in the previous sections and repre-

sented in Figs. 3, 5, 6 and 7, experts can select values of the

parameters resulting in appropriate curves for each

dependency. However, relying only on expert opinion can

be prone to error. In this case (especially when adequate

information about the systems is not available), we suggest

to perform sensitivity analysis to identify possible large

errors resulting from a wrong choice of parameters. If

historical data or some simulation results are available, the

user can perform a regression to identify the appropriate

values for the parametric model. All these approaches

require less computational time than required to run

extensive simulations of the behavior of the complex sys-

tem. In the worst case, to obtain a high level of detail, the

user will perform the same amount of simulation required

in Response Surface Methodology or Bayesian Networks.

In this example, since data from a real problem were not

yet available, we ran simulations with an ABM and used

the results to perform regression and retrieve the required

parameters, and to validate the SODA model. If this

approach is chosen, design of experiment can help to

reduce the amount of simulation required to obtain enough

data to build the SODA model.

5.3.1 ABM and validation

We developed an agent-based model for the small Naval

Warfare SoS, including an adversary boat moving toward

the coast (and performing escape maneuvers in case of

detection), a helicopter capable of detecting the adversary,

hovering over it, and communicating its position to the

ship, and a ship capable of detecting and engaging the

adversary.

We used the Discrete Agent Framework ABM to per-

form a full-factorial design of experiments, with eleven

discrete levels of SE for each system. Due to the uncer-

tainties modeled in the ABM, we ran 10,000 instances per

each design point. The results, comprising the time

required to detect and engage the enemy in various work-

ing conditions of radars and weaponry, were used to

determine the parameters of the SODA model, with a

parametric regression (least square error between the

results from the simulation, and results of a model having

the SODA structure). A three-dimensional representation

of part of the multi-dimensional fitting is shown in Fig. 4.

The following matrices show the parameters identified for

the Naval Warfare Scenario SoS:

SOD ¼

0 0 0:28 0 0

0 0 0:88 0 0

0 0 0 0 1

0 0 0 0 0:89

0 0 0 0 0

2
66664

3
77775

COD ¼

0 0 9:03 0 0

0 0 85:7 0 0

0 0 0 0 100

0 0 0 0 39:7
0 0 0 0 0

2
66664

3
77775

IOD ¼

0 0 100 0 0

0 0 57:6 0 0

0 0 0 0 100

0 0 0 0 52:1
0 0 0 0 0

2
66664

3
77775

The use of an ABM to validate the SODA model con-

firmed the need for a third parameter (cij) to be added to the

original parameters derived from FDNA (aij and bij) to

describe the operational dependencies. In FDNA, systems

behavior in the region where the feeder nodes are highly

disrupted is not well modeled, with errors of 15 % or more

in the computed operability. This happens because of the

lack of consideration for the effect of other feeders in

multiple dependencies, and because FDNA imposes a slope

of 1 on the critical portion of the input/output model. To

model multiple dependencies in the region of high dis-

ruption of the feeders, we found out that including a weight

in the operability term depending on criticality (Eq. 10)

results in a better model of the systems behavior, capable

of modeling OR-like and AND-like multiple dependencies.

5.4 Step 4: example of analysis

Based on the identified model, we performed analysis of

criticality and reliability of the SoS. First of all, we
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performed a deterministic analysis, imposing a minor

(operability degraded to 80 %) and a major (operability

degraded to 20 %) disruption to one system at a time, to

identify the systems that have the highest impact on the

overall operability.

In this case, a measure of the overall behavior is given

by the operability of nodes 3 and 5. For this problem, we

used the loss in operability of the detection and engage-

ment capability as measure of the robustness of the archi-

tecture. The loss in operability of the required capabilities

is also used to rank the systems by criticality, with high

loss corresponding to high criticality. Results (Table 2)

indicate that this SoS is robust to failures in the ship radar,

and even to limited failures in the ship weapon system,

while the helicopter radar is the most critical system for

detection, with consequent heavy impact on the adversary

engagement.

In this kind of analysis, SODA has three advantages

over traditional methodologies:

• For very large networks, analysis can be performed in

very short time (Table 1).

• It constitutes a more accurate model than other

piecewise linear models (Haimes Input/Output model,

and FDNA), capturing effects and behavior that other

model would disregard.

• Systems can be ranked based on their impact on the

desired behavior, accounting for partial failures and

disruption. Traditional approaches, that model only on/

off status, would identify the impact of the ship weapon

system as the most critical. However, this system is

critical only when the failure is total, since it is the only

weapon system. Under different circumstances, the

helicopter radar is more critical to both detection and

engagement capabilities.

An example of stochastic analysis is shown in Fig. 9.

The SE of radars and weapon system has uniform proba-

bility density between 0 and 100. Monte Carlo simulation

(20,000 runs) gives the probability density of the

operability of detection and engagement. Basic metrics

related to robustness and sensitivity to failures are shown in

Table 3, assuming a threshold of 360 s for detection, and

600 s for engagement. In this case, we use the expected

value of operability and the percentage of successful

instances following disruption as a measure of robustness

of the architecture to the disruption. We use the standard

deviation of the operability as a measure of sensitivity to

the disruption.

In this kind of analysis, SODA has three advantages

over traditional methodologies:

• For very large networks, SODA can be used to perform

computationally inexpensive Monte Carlo simulation,

based on known or realistic probability density func-

tions of the SE of each system.

• The use of standard density functions, such as Gaussian

or Beta, is not required.

• The global behavior, accounting for the impact of all

dependencies, as well as the SE of each system, can be

modeled and analyzed with SODA. Based on these

results (and their evolution over time), measures of

Table 2 Impact of systems failures on detection and engagement of

the adversary

Failed system O3 (detection) (%) O5 (engagement) (%)

Minor disruption

Ship radar 97.17 97.17

Helicopter radar 91.25 91.25

Ship weapons 100 91.06

Major disruption

Ship radar 88.70 88.70

Helicopter radar 49.03 49.03

Ship weapons 100 64.25

Fig. 9 Probability density of detection and engagement operability

when the SE of radars and weapon systems has uniform density

between 0 and 100. Right dotted line operability corresponding to

detection time of 360 s. Left dotted line operability corresponding to

engagement time of 600 s

Table 3 Basic metrics from stochastic analysis: expected value of

operability (robustness), standard deviation of operability (sensitivity

to failure), percentage of successful instances (robustness)

Robustness Sensitivity r(Oi)

% instances above threshold E(Oi)

Detection (N3) 52.8 %

within 360 s

66 21.2

Engagement (N5) 64.6 %

within 600 s

56.2 18.4
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robustness, resilience, and sensitivity can be computed

and used to support design of the network evolution.

5.5 Step 5: example of synthesis. Improving

the architecture

Deterministic analysis showed that the most critical system

in the network is the helicopter radar. The parameters show

that this system is independent from other systems, and the

dependency of the detection from this system has very high

strength, criticality, and impact. Furthermore, the detection

capability has the highest criticality and impact on the

capability of engagement of the adversary.

Stochastic analysis confirms these findings. Figures 10,

11 and 12, and Table 4 show the resulting probability

density for detection and engagement, when the ship

detection systems, the helicopter detection system, and the

weapon systems have a low-valued internal status, here

modeled with a Beta(2,11) density function.

Given the analysis performed in this simple case, pos-

sible improvement of the architectures may involve:

• Increasing the robustness of the helicopter radar.

• Supporting the helicopter radar with other systems.

• Decreasing the impact of the helicopter radar on the

desired capabilities.

Table 5 shows the results of an option of redundancy of

the radar (that increases the robustness), and an option of a

support from an external system aboard the ship, capable of

stepping in for the helicopter radar, in case of degraded

capability, at the cost of a slight loss of SE in the other

systems of the ship. We use the difference between the

expected operability when actions are taken and the

expected operability of the original disrupted system as a

measure of the resilience of the architecture (capability to

Fig. 10 Probability density of the operability of each system when

the ship detection system is disrupted. The other systems keep a high

level of operability. SE1 = Beta(2,11), SE2 = Beta(11,2),

SE4 = Beta(11,2)

Fig. 11 Probability density of the operability of each system when

the helicopter detection system is disrupted. The operability relative

to the desired capabilities is highly impacted. SE1 = Beta(11,2),

SE2 = Beta(2,11), SE4 = Beta(11,2)

Fig. 12 Probability density of the operability of each system, when

the ship weapon system is disrupted. SE1 = Beta(11,2), SE2 = -

Beta(11,2), SE4 = Beta(2,11)

Table 4 Expected value and standard deviation of the operability of

detection (O3) and engagement (O5), when one system is weak (SE

modeled with a Beta(2,11) function)

Weak system E(O3) r(O3) E(O5) r(O5)

Ship radar 81.31 4.43 80.29 4.56

Helicopter radar 40.12 15.1 40.12 15.1

Ship weapons 91.09 4.44 57.73 4.85

Table 5 Expected value and standard deviation of the operability of

detection (O3) and engagement (O5), when actions are taken to reduce

the impact of helicopter’s radar failure

E(O3) r(O3) E(O5) r(O5)

Original system 40.12 15.1 40.12 15.1

External support 69.87 5.20 69.69 5.17

Redundant radar 68.63 5.16 68.47 5.12
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counteract the negative impact of disruption, and partially

recover from the loss in operability).

The different architectures, that are modeled with dif-

ferent parameters than the original one, show an increased

robustness to failures of the helicopter radar. The synthesis

of these new architectures must be traded off with cost and,

in the case of the external support, the ship must have the

required flexibility.

5.6 Additional applications

Thanks to the concepts of SE and operability and to the

normalization of parameters, SODA can be used in many

different fields. Applications that have been tested and used

to identify the weakness and limitations of previous para-

metric modeling applied to systems include cyber-security

of complex networks, analysis of an on-orbit satellite ser-

vicing system-of-systems, and analysis for Solar System

Exploration and for navigation satellites (Guariniello and

DeLaurentis 2013b, c, 2014a, b; Wang et al. 2014). More

complex analysis built upon this methodology involves the

evolution of operability over time, based on the evolution

of SE, and on possible minor and major disruption.

6 Conclusion, contributions, and future work

Building upon the Leontief-based Input/Output method

originally proposed by Haimes, and the FDNA method

proposed by Garvey and Pinto, we developed a method for

analysis of the impact of functional dependencies between

elements in a system, or systems in a SoS. The SODA

methodology allows users to model the behavior of a

complex system at a relatively high level of abstraction,

based on a small number of input parameters whose values

can be supported by limited simulation. The more tradi-

tional simulation-based approach suffers in this setting,

because the amount of components and dependencies

involved requires computationally expensive simulations

or experiments. Furthermore, in methods like Response

Surface Methodology, the modeling parameters often lack

an intuitive meaning, so that it is not always possible to

readily identify the root causes of the observed behavior.

On the opposite extreme, some traditional models are quite

simple and often fail to capture relevant behaviors of

complex systems.

While SODA representation is less detailed than tradi-

tional physics-based or agent-based simulations, it provides

multiple advantages and improvements:

• SODA has a very low computational cost; therefore, it

is useful to quickly analyze a large number of instances

of an architecture, and to generate design guidance for a

complex system with multiple interdependencies.

• SODA parameters have an intuitive meaning, thus they

are directly related to the causes of observed, and

possibly emergent, behavior. This is particularly rele-

vant in the case of SoS and complex systems, where the

overall behavior is heavily affected by the dependen-

cies between the component systems, and cannot be

directly inferred by a mere analysis of the behavior of

the individual components. With SODA model, the

user can identify criticalities of the system, and ways to

improve its global behavior.

• SODA parameters may come from a variety of sources,

including expert evaluation, and historical data. This

reduces the amount of simulation required to model

interactions between systems. The three-parameter

model has been validated through comparison with

results of ABM simulations for various applications,

and it models the global behavior of a system with more

detail than previously proposed models (linear Input/

Oputput, FDNA).

• Based on the result of analysis with the SODA model,

metrics can be built to evaluate the robustness and

resilience of a system architecture to disruptions and

failures, accounting for the cascading impact of

dependencies.

• The parametric model supports decision making in

design and update of the systems architecture. SODA

allows for quick analysis and exploration of different

architectures; thus, the design space can be further

explored, keeping and improving the most promising

architectures, and discarding those that do not show an

adequate level of desired features (robustness, reliabil-

ity, resilience).

Being a surrogate model, SODA does not cover all the

possible relationships between systems, and some models

will perform better than SODA for more complex prob-

lems, where an increased level of detail is preferable.

Likewise, when a pure deterministic or probabilistic anal-

ysis is required, and the user has no need to identify the

underlying causes of the observed behavior, Surface

Response Methodology or Bayesian networks can be a

better choice. The identification of SODA parameters has a

complexity which is at most equal to identifying the

parameters of a surface or the conditional probabilities in a

Bayesian network via simulations and experiments, but can

be simplified by assumptions based on knowledge of some

of the input/output relations. However, other methodology

may be preferable (or used together with SODA) in prob-

lems where detailed and accurate modeling is deemed more

important than simplicity, low computational cost, support
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to decision making and management, and complex cas-

cading failures and risk analysis.

A small Naval Warfare SoS has been presented to

demonstrate the application of SODA. More complex

applications involve the analysis of the evolution of oper-

ability over time, and rules to dynamically modify the

network under given circumstances, so as to include the

effect of flexibility on the behavior of the complex system.

Other future improvements include the development of

standardized metrics for desired features in specific appli-

cations, and formal integration of SODA with classic

Systems Engineering methodology.
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