
ORIGINAL PAPER

Optimizing time–cost trade-offs in product development projects
with a multi-objective evolutionary algorithm

Christoph Meier1 • Ali A. Yassine2 • Tyson R. Browning3 • Ulrich Walter1

Received: 9 July 2015 / Revised: 12 January 2016 / Accepted: 28 February 2016 / Published online: 16 March 2016

� Springer-Verlag London 2016

Abstract Time–cost trade-offs arise when organizations

seek the fastest product development (PD) process subject

to a predefined budget, or the lowest-cost PD process

within a given project deadline. Most of the engineering

and project management literature has addressed this trade-

off problem solely in terms of crashing—options to trade

cost for time at the individual activity level—and using

acyclical networks. Previously (Meier et al. in IEEE Trans

Eng Manag 62(2):237–255, 2015), we presented a rich

model of the iterative (cyclical) PD process that accounts

for crashing, overlapping, and stochastic activity durations

and iterations. In this paper, we (1) propose an optimization

strategy for the model based on a multi-objective evolu-

tionary algorithm, called e-MOEA, which identifies the

Pareto set of best time–cost trade-off solutions, and (2)

demonstrate the approach using an automotive case study.

We find that, in addition to crashing, activity overlapping,

process architecture, and work policy provide further

managerial levers for addressing the time–cost trade-off

problem. In particular, managerial work policies guide

process cost and duration into particular subsets of the

Pareto-optimal solutions. No work policy appeared to be

superior to the others in both the cost and duration

dimensions; instead, a time–cost trade-off arises due to the

choice of work policy. We conclude that it is essential for

managers to consider all of the key factors in combination

when planning and executing PD projects.

Keywords Time–cost trade-off � Product development �
Project management � Iteration � Crashing � Overlapping �
Work policy � Optimization � Genetic algorithm

1 Introduction

The management of product development (PD) projects

requires addressing many time–cost trade-off problems.

Although project time–cost trade-offs have been addressed

extensively in the project management literature, this

research focused on an approach called crashing (options to

trade time and cost at the individual activity level) (Tavares

et al. 2002), with only a small number of papers looking

beyond to the network-level effects of activity overlapping

(e.g., Roemer et al. 2000; Roemer and Ahmadi 2004).

Moreover, all of this work presumed acyclical networks,

whereas PD projects are iterative/cyclical (e.g., Kline 1985;

Cooper 1993; Smith and Eppinger 1997; Browning and

Yassine 2016).

In another paper (Meier et al. 2015), we introduced a

rich model of the PD process as a cyclical network of

activities linked by a variety of inputs and outputs, each

modeled with particular characteristics pertaining to the

flow of information and/or work products they represent.

This model allowed us to explore the effects of crashing,

overlapping, rework, and process structure, and it extended

our insight into the effects of managerial actions on PD

project performance (especially time–cost outcomes) at

Electronic supplementary material The online version of this
article (doi:10.1007/s00163-016-0222-7) contains supplementary
material, which is available to authorized users.

& Ali A. Yassine

ay11@aub.edu.lb

1 Institute of Astronautics, Technische Universität München,

85748 Garching, Germany

2 Department of Industrial Engineering and Management,

American University of Beirut, Beirut, Lebanon

3 Neeley School of Business, Texas Christian University,

TCU Box 298530, Fort Worth, TX, USA

123

Res Eng Design (2016) 27:347–366

DOI 10.1007/s00163-016-0222-7

http://dx.doi.org/10.1007/s00163-016-0222-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-016-0222-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-016-0222-7&domain=pdf

both the activity and the overall process levels. The model

revealed that varying the managerial policies toward

crashing, overlapping, and rework has drastic effects on

project time and cost. While we were able to identify the

model’s general behaviors with a set of artificial test

problems, the natural next steps are to (1) optimize the

model and (2) apply it to an industrial case. Those are the

two contributions of this paper. First, we develop a multi-

objective evolutionary algorithm (MOEA) to optimize the

model. This MOEA requires several special considerations

in order to apply it to a complex PD process. We discuss

these challenges and their solutions. Second, we apply the

MOEA to an industrial example, the development process

for an automobile hood at a large automotive company. We

discuss the results and their implications for managers—in

particular, the impact of work policy (i.e., managerial

decisions about when to start activities, including rework)

on process duration and cost. We demonstrate that time–

cost trade-offs also emerge due to the choice of work

policy. Thus, this paper contributes a new optimization

procedure for a complex PD process model that accounts

for activity overlapping, crashing, and rework, and it

increases its validity with a demonstration of its application

to an industrial process.

The paper is organized as follows. The next section

provides background and literature review. Section 3 gives

a brief overview of the model, about which readers can find

fuller details elsewhere (Meier et al. 2015). Section 4

describes the new MOEA, and Sect. 5 presents the auto-

motive hood application and its results. The paper con-

cludes in Sect. 6 with a summary of insights and a

discussion of limitations and future work.

2 Background

2.1 Related models: simulation and optimization

Many models and techniques have been proposed in the

literature to assist managers in planning and controlling PD

projects more effectively (Krishnan and Ulrich 2001;

Browning and Ramasesh 2007). The design structure

matrix (DSM) is one such modeling method that provides a

means of representing a complex system (such as a pro-

cess) based on its constituent elements (activities) and their

relationships (Eppinger and Browning 2012). The DSM

imparts a significant capability to visualize, analyze, and

manage activity iterations, and DSM-based models show

promising results in managing complex PD processes

(Browning 2001; Yassine and Braha 2003). However, the

DSM literature to date focuses on either simulating a par-

ticular DSM sequence (e.g., Browning and Eppinger 2002)

or optimizing the sequence of DSM elements based on a

specific objective (e.g., Meier et al. 2007; Shaja and Sud-

hakar 2010). Meier et al. (2007) proposed a binary DSM-

based procedure using a specialized genetic algorithm to

find an optimized sequence for a set of design activities.

They showed that the optimality of a solution depends on

the objective used for DSM rearrangement. In an activity

sequencing context, these objectives vary from reducing

iteration/feedback, increasing concurrency, and reducing

lead time and cost to some combination of these.

Recent literature has pointed out the potential and suc-

cess of simulation techniques for managing development

processes (Karniel and Reich 2009). Adler et al. (1995)

used discrete event simulation (DES) to study performance

in companies pursing multiple, concurrent, non-unique PD

projects. The simulation allowed them to identify bottle-

neck activities and several development process charac-

teristics. Baldwin et al. (1999) also used DES to manage

the design process in building construction projects.

Finally, Browning and Eppinger (2002) and many others

(e.g., Cho and Eppinger 2005; Huang and Chen 2006;

Lévárdy and Browning 2009) used Monte Carlo DES based

on a DSM representation of development projects. These

models revealed several interesting process characteristics

and performance measures, including expected project

duration, cost, and risk and their drivers. Although these

models mainly aimed to determine process duration and

cost for a given process architecture (i.e., task arrange-

ment), some (e.g., Zhuang and Yassine 2004; Abdelsalam

and Bao 2007) also sought to optimize the architecture by

comparing the time and cost of various architectures.

However, none of these allowed for time–cost trade-off

analysis.

The time–cost trade-off problem (TCTP) has been

studied extensively in the project scheduling literature

(Deckro et al. 1995; Brucker et al. 1999; Hartmann and

Briskorn 2010). The TCTP has been treated either as an

activity crashing problem, where activities can be short-

ened (crashed) at additional costs, or as a special case of a

multi-mode scheduling problem, where activities can be

assigned to different resources at different costs. The latter

is referred to as the discrete TCTP (DTCTP) (De et al.

1995). There exist two versions of the DTCTP: deadline

(DTCTP-D) and budget (DTCTP-B). While in the deadline

problem the total cost is minimized within a given dead-

line, the DTCTP-B is concerned with minimizing the

project duration without exceeding a given budget (Van-

houcke 2015). The stochastic version of the TCTP, which

assumes uncertainty in activity duration and cost, was also

addressed and referred to as the STCTP (Cohen et al. 2007;

Bruni et al. 2015). Stochastic programming, robust opti-

mization, parametric programming, and meta-heuristics are

the main optimization approaches used for modeling

uncertainty in the STCTP (Herroelen and Leus 2005).

348 Res Eng Design (2016) 27:347–366

123

Although this literature is relevant to our proposed model,

it lacks fundamental aspects characterizing PD scheduling

problems, which are the centerpiece of our model. These

aspects include rework potential of activities (i.e., cyclical

project networks), process architecture, and work policy.

Furthermore, the result of a DTCTP optimization is just

one robust schedule but not the entire set of Pareto-optimal

solutions, which is provided by our proposed model (Co-

hen et al. 2007; Hazır et al. 2011, 2015).

2.2 Multi-objective optimization problems

Some research on the time–cost trade-off in PD project

management has recognized the increase in costs due to

overlapping as a function of additional rework, as well as

the increase in costs due to crashing as a function of the

amount of extra resource assignments to an activity

(Browning and Ramasesh 2007). For example, Roemer

et al. (2000) analyzed the time–cost trade-off due to

overlapping and bridged the gap between the literature on

overlapping and crashing by demonstrating the benefits of

jointly applying both strategies (Roemer and Ahmadi

2004). Along similar lines, Berthaut et al. (2014) presented

a linear integer optimization model for the resource-con-

strained project scheduling problem with overlapping

modes. Time–cost trade-offs between project duration and

overlapping costs are discussed. Their model highlights the

importance of interaction between resource constraints and

overlapping modes and suggests the relevance of jointly

considering them. Finally, Gerk and Qassim (2008) con-

sidered a mixed-integer linear programming model for the

acceleration of projects, employing the simultaneous

crashing, overlapping, and substitution of project activities.

Application of the model to industrial case studies high-

lighted the practicality of using a combination of acceler-

ation strategies in project management. Nevertheless, the

models used in these publications did not account for

iteration and uncertainty in task duration and cost, which

significantly increases the complexity of the time–cost

trade-off calculations.

The multi-objective nature of most real-world problems

has raised recent interest in the study of simultaneous

optimization of multiple, competing objective functions

(e.g., Deb 2009; Fujita et al. 1998; Poloni et al. 2000;

Coverstone-Carroll et al. 2000; Coello et al. 2007). Unlike

in single-objective optimization problems, a single, best

solution with respect to all objectives usually does not exist

for a multi-objective optimization problem. Instead, one

seeks to identify the set of best trade-offs, which consists of

elements that are superior to others in at least one of the

objectives (e.g., time or cost), while inferior with respect to

the others. This set is commonly known as the Pareto-op-

timal set (or non-dominated solutions) because it resides in

a region of the search space called the Pareto frontier

(Pareto front for short). Other solutions in the search space

are called dominated solutions. Figure 1a provides a visual

example of a Pareto front for the minimization of two

objectives, y1 and y2. The curve on the lower left of the

feasible search space indicates the Pareto front. Solutions B

and C reside on the Pareto front and cannot be dominated by

any other feasible point, while point A is dominated by

many of the points (such as B) on the Pareto front. Another

important multi-objective concept is e-dominance, which

reduces the cardinality of the Pareto region by decomposing

the objective space into multiple hyper-boxes (Laumanns

et al. 2002; Helbig and Pateva 1994). Spanning a length of ei
in the ith objective, each hyper-box can contain at most one

solution. Therefore, the number of solutions in the e-Pareto

front increases with decreasing e. Figure 1b visualizes e-
dominance for two objectives (cost and duration).

Among the variety of evolutionary algorithms in the

literature, genetic algorithms (GAs) (Goldberg 1989) have

received the most attention. Originally developed to solve

single-objective problems, GAs have been extended by

multi-objective operators. Their massive parallel search

approach qualifies them to handle multi-objective problems

extraordinarily well, because the entire Pareto set (rather

than a single Pareto point) can be quickly approximated in

a single run. Other meta-heuristics such as ant algorithms

(Doerner 2008) and particle swarm algorithms (Coello

et al. 2004) have also been enriched by multi-objective

versions. However, a general superiority of one approach

over the others cannot be claimed due to the ‘‘no free

lunch’’ theorems (Wolpert and Macready 1997).

Although multi-objective GAs (MOGAs) retain many of

the features of single-objective GAs, the former must be

specially designed to ensure (1) the preservation of diver-

sity and (2) the proper definition of a convergence criterion

(Laumanns et al. 2002; Kumar and Rockett 2002). Most

MOGA designs, especially those proposed in the 1980s and

1990s, do not account for both preservation of diversity and

convergence to the true Pareto front, but merely cope with

one or the other.

Goldberg (1989) suggested the use of Pareto ranking

and selection in combination with a niching mechanism to

move a population toward the Pareto front. Fonseca and

Fleming (1998) proposed the MOGA; Srinivas and Deb

(1994), the non-dominated sorting GA (NSGA); Deb et al.

(2002), the NSGA-2; and Zitzler et al. (2002), the strength

of Pareto evolutionary algorithm (SPEA) and SPEA2. All

of these approaches focused on a good distribution of

solutions without ensuring convergence to the Pareto front.

On the other hand, Rudolph and Agapie (2000) and Hanne

(1999) developed multi-objective evolutionary algorithms

(MOEAs) that guarantee at least some solutions belonging

to the global Pareto front. As opposed to the former

Res Eng Design (2016) 27:347–366 349

123

MOGAs, however, both of these algorithms fail to maintain

a good distribution of identified solutions, resulting in

incomplete coverage of the efficient frontier (Laumanns

et al. 2002).

More recent approaches have attempted to address both

diversity and convergence. Laumanns et al. (2002) intro-

duced an archiving strategy based on e-dominance that they

claimed guarantees convergence toward the Pareto front as

well as a good solution spread. Based on the idea of

applying e-dominance to MOEAs, Deb et al. (2003) pro-

posed further enhancements to Laumanns et al.’s approach.

In this paper, we apply an e-MOEA to the PD project

time–cost trade-off problem because of the encouraging

results in (Deb et al. 2005) and its use of the e-dominance

criterion, which enables it to cope with noisy fitness

functions (like a simulation) in a better way than most other

MOEAs.

3 The PD process model and simulation

We base our optimization study on a rich model of time–

cost trade-offs in PD processes that addresses both intra-

and inter-activity effects. This section provides a brief

overview of the model; full details are available in a

companion paper (Meier et al. 2015). The model enables

explorations of two foundational concepts, process archi-

tecture and work policy, which we will review first.

3.1 Process architecture and work policy

The model treats a PD process as a network of nA activities

and their dependencies, modeled in DSM M in a sequence

given by vector S. Six DSM layers capture various attri-

butes of the dependencies, which are as follows:

• m1,ij (i = j), the probability of activity j causing rework

for activity i;

• m2,ij (i = j), the fraction of activity i that must be

redone if rework occurs;

• m3,ij (i = j), the percentage of activity i required to be

done before its final output is available for j;

• m4,ij (i = j), the percentage of j that can occur without

penalty before it requires complete input from i;

• m5,ij (i = j), the percentage of i that can occur without

penalty before it can produce any preliminary output

for j; and

• m6,ij (i = j), the percentage of j that can occur without

penalty before it must receive preliminary information

from i.

Each S will result in some of the dependencies

appearing below the diagonal in the DSM (feed-forward)

and others appearing above (feedback). Changing S causes

various dependencies to change from feed-forward to

feedback or vice versa, thus changing whether a particular

input to an activity comes from an upstream or downstream

activity. Therefore, varying S manipulates the process

architecture (Browning and Eppinger 2002; Eppinger and

Browning 2012).

A work policy is a set of rules about when to start

and stop activities (Browning and Eppinger 2002). It

can include rules for crashing and overlapping activities

and for waiting on inputs versus proceeding based on

assumptions about missing inputs. We investigate the

five work policies identified by Meier et al. (2015),

designated P1–P5 and summarized in Table 1. Policy P1

Fig. 1 Illustration of Pareto-optimal solutions. a Illustration of Pareto-optimal solutions (points B and C) in a search space. b Illustration of e-
dominance

350 Res Eng Design (2016) 27:347–366

123

was adopted from Browning and Eppinger (2002) and

can be regarded as a conservative policy, because it

limits the amount of activity concurrency by allowing

only independent activities in M1 (i.e., activities for

which m1,ij = 0) that are also adjacent in S to work

simultaneously. P2 also permits non-adjacent activities

in S to work concurrently, thereby getting more work

done earlier, albeit sometimes at a greater risk of having

to be reworked. P3 adds crashing and overlapping

options to P2. To analyze the impact of additional rules

for the timing of rework, we defined a more sequential,

rework-deferring policy, P4, and a more concurrency-

oriented policy, P5. P4 presumes that it is beneficial to

delay rework if any of an activity’s predecessors (in S)

have not yet finished (see Table 1), because these pre-

decessors might deliver new results that could cause

further rework. Delaying the activity’s start until the

completion of all of its predecessors obviates this

problem, but this policy wastes time if an activity’s

predecessors do not in fact alter its inputs. Hence, P5

relaxes this inhibition, allowing an activity to proceed

despite ongoing rework by its predecessors. This policy

would be expected to decrease process duration even

further while increasing rework and cost.

3.2 Activity cost and duration

Respectively, ci and ti represent the base cost and duration

of activity i. The cost and duration with learning curve and

rework impact in iteration ki are then as follows:

~ci kið Þ ¼ cili kið Þm2;ij ð1Þ
~ti kið Þ ¼ tili kið Þm2;ij ð2Þ

where m2,ij is the rework impact and li(ki) is the learning

curve effect, modeled as a percentage of the activity’s

original duration. Three additional effects may alter the

cost and duration of activity i in iteration ki: crashing

(DcCi kið Þ and DtCi kið Þ), overlapping (DcOi kið Þ and DtOi kið Þ), and

rework (DcRi kið Þ and DtRi kið Þ). We explain these terms

below. Putting these terms together yields the following:

ci kið Þ ¼ ~ci kið Þ þ DcOi kið Þ þ DcCi kið Þ þ DcRi kið Þ ð3Þ

ti kið Þ ¼ ~ti kið Þ þ DtOi kið Þ þ DtCi kið Þ þ DtRi kið Þ ð4Þ

3.3 Activity overlapping

We use the term overlapping to refer to situations of ‘‘ar-

tificial’’ concurrency, where an activity begins before the

Table 1 Summary of work policies studied (Meier et al. 2015)

P1 Most conservative; limits activity concurrency to that specified in planned order of activities; no crashing or overlapping
P2 Increases “natural concurrency” by identifying all opportunities to start activities as early as possible; no crashing or overlapping
P3 P2 with allowance for crashing and overlapping (“artificial concurrency”)
P4 P3 with delay of activity rework until all of its predecessors are finished with known rework
P5 Most aggressive; P3 with performance of activity rework even if its predecessors are unfinished

Rule P1 P2 P3 P4 P5 Rule P1 P2 P3 P4 P5

Adjacent, independent activities in the activity
sequence (S) may be executed concurrently:

An activity may be crashed:

Non-adjacent activities in S may be executed
concurrently:

Adjacent activities (in S) may be
overlapped:

Activities may begin with assumptions about
any inputs from downstream (in S) activities:

Downstream rework is deferred until the
completion of any rework by all
predecessors (in S):

Activities must wait for all inputs from
upstream activities (in S), even if reworking
(except where overlapping is allowed):

Activities must wait for all inputs from
upstream activities (in S), unless that input
is from a reworking activity:

Upstream rework is accomplished immediately
(prioritized and preemptive):

Res Eng Design (2016) 27:347–366 351

123

completion of a predecessor activity upon which it

depends. (Natural concurrency may also exist when two

independent activities proceed in parallel without penalty.)

In PD projects, many of the dependencies are determined

by information flow, yet many activities may start without

all of their inputs by making assumptions instead. In cyclic

processes, the source of an activity’s input may be a

downstream activity providing feedback. Thus, process

architecture will affect the efficacy of work policies for

overlapping.

As the amount of overlap increases between any two

sequentially dependent activities, predecessor activity i and

successor (dependent) activity j, the overall duration

decreases, but coordination costs and the likelihood of

feedback from j causing rework for i increase (Krishnan

et al. 1997). As shown in Fig. 2, the final output from the

kith iteration of i occurs at Tfi kið Þ, but the kjth iteration of

activity j prefers input at T
sj kjð Þ. Overlap implies that

T
sj kjð Þ\Tfi kið Þ. Although this reduces the overall time span,

T
fj kjð Þ � Tsi kið Þ, it may elongate j by rework time Dt

Oj kjð Þ,

because j began with only preliminary inputs or assump-

tions about the output from i. The amount of overlap

depends on the point in time when i delivers output to j,

T
Dij ki;kjð Þ � Tfi kið Þ, and the point in time when j receives that

input from i, T
Rij ki;kjð Þ � T

sj kjð Þ.

Some of an activity’s final outputs may be available

before the entire activity is finished, and some of an

activity’s required inputs may not be needed until it is

underway. The final output of activity i for activity j is

available at T
Aij ki;kjð Þ � Tfi kið Þ, and activity j needs that input

at T
Nij ki;kjð Þ � Tsi kið Þ. The model captures these parameters

using m3,ij and m4,ij, respectively, such that: T
Aij ki;kjð Þ ¼

Tsi kið Þ þ ~ti kið Þm3;ij and T
Nij ki;kjð Þ ¼ Tsi kið Þ þ ~ti kið Þm4;ij. In a

pure finish-to-start relationship, m3 = 1 and m4 = 0. An

overlapped downstream activity j might also be able to

begin with only preliminary information from activity i—

within limits. The lower bound for T
Dij ki;kjð Þ is the point in

time specified by the percentage of activity i required to be

completed before its preliminary output is available

for j. This percentage is recorded in m5,ij, and

Tsi kið Þ þ ~ti kið Þm5;ij � T
Dij ki;kjð Þ. Any rework due to incom-

plete predecessor information is assigned to activity j if

T
Dij ki;kjð Þ 2 Tsi kið Þ þ ~ti kið Þm5;ij; TAij ki;kjð Þ

h i
. The upper bound

for T
Rij ki;kjð Þ is the point in time representing the percentage

of activity j that can occur before it can benefit from any

preliminary input from i. This percentage is recorded in

m6,ij, so T
Rij kjð Þ � T

sj kjð Þ þ ~tj kj
� �

m6;ij, and j is penalized

with rework if T
Rij ki;kjð Þ 2 T

Nij ki;kjð Þ; Tsj kjð Þ
h

þ~tj kj
� �

m6;ij�.
Thus, m3,ij is the percentage of activity i required to be

done before its final output is available for j, m4,ij is the

percentage of j that can occur without penalty before it

requires complete input from i, m5,ij is the percentage of i

that can occur without penalty before it can produce any

preliminary output for j, and m6,ij is the percentage of j that

can occur without penalty before it must receive prelimi-

nary information from i. These bounds allow us to compute

T
Dij ki;kjð Þ and T

Rij ki;kjð Þ in any iteration. Then, t
Oij ki;kjð Þ rep-

resents the entire overlapping duration between activities i

and j, and t0
Oij ki;kjð Þ is the subset of t

Oij ki;kjð Þ that causes

rework for activity j due to an imperfect information flow

(i.e., when j has to begin with preliminary inputs):

t
Oij ki;kjð Þ ¼ min Tfi kið Þ; Tfj kjð Þ

n o
� max Tsi kið Þ;Tsj kjð Þ

n o
ð5Þ

Fig. 2 Example of overlapping

two activities, displaying most

of the overlapping parameters

(Meier et al. 2015)

352 Res Eng Design (2016) 27:347–366

123

An overlapping function (here, a linear one, although it

need not be) determines the amount of rework for activity j

caused by overlapping with i:

hij t0
Oij ki;kjð Þ

� �
¼ aijt

0
Oij ki;kjð Þ ð7Þ

where aij[0 is a rework scaling factor. A typical value is

a = 0.5, which implies that the duration of the rework due

to overlapping requires half of the duration of the

overlapping.

If two or more predecessors overlap with activity j and

deliver their information to it at the same time, then some

of the rework is assumed to be redundant and therefore

reduced by hj ¼ e�bjPj depending on the number of over-

lapped predecessors (i [Pj) and a cumulative rework factor

bj C 0. A typical value is bj = 0.5, which in the (base)

case of |Pj| = 1 implies that only about 60 % of the

cumulative overlapping duration is considered for the

computation of overlapping-related rework. Increasing bj
decreases the cumulative rework from a given number of

predecessors. Because the maximal pairwise rework

between j and any i [Pj is the minimal amount of cumu-

lative rework, î 2 Pj is defined as the predecessor with

maximal rework time, such that ĥij t0
Oij ki;kjð Þ

� �
¼

max hij t0
Oij ki;kjð Þ

� �
j8i 2 Pj

� �
. Hence, the overall cumula-

tive change in duration for a downstream activity j due to

overlapping is given in Eq. (8), and the associated cost

increase is proportional to its increase in duration as shown

in Eq. (9).

Dt
Oj kjð Þ ¼ ĥij t0

Oij ki;kjð Þ

� �
þ hi �

X
8p2Pj;p6¼î

hij t0
Oij ki;kjð Þ

� �0
@

1
A

ð8Þ

Dc
Oj kjð Þ ¼

cj kj
� �

tj kj
� � Dt

Oj kjð Þ ð9Þ

Thus, the model represents the effects of overlapping

with an overlapping function (hij), a rework scaling factor

(aij), and any constraints on particular activity overlaps

(governed by m3–m6), which determine the points in time

in which information is delivered (TD) and received (TR).

These times are used to determine Dt
Oj kjð Þ and Dc

Oj kjð Þ for

each iteration of each activity.

3.4 Activity crashing

ri kið Þ 2 0; r̂i½ � is the crashing intensity of activity i in iter-

ation ki, where r̂i 2 0; 1½ Þ is the maximum crashing inten-

sity allowed. Crashing intensity specifies the minimum

activity duration (as a percentage of its regular duration)

achievable through the use of crashing. Crashing the kith

iteration of activity i reduces its duration by:

DtCi kið Þ ¼ �ri kið Þ ~ti kið Þ þ DtOi kið Þ
� 	

ð10Þ

but also increases its cost as a function of the crashing

intensity:

DcCi kið Þ ¼ ~ci kið Þ þ DcOi kið Þ
� �

Ri ri kið Þð Þ ð11Þ

where ~ci kið Þ is the cost considering learning and rework

impact (Eq. 1), DcOi kið Þ is the cost due to any overlapping

(Eq. 9), and in the continuous case:

Ri ri kið Þð Þ ¼ 1 � ri kið Þð Þ�ci�1

100
ð12Þ

where ci C 0 is a factor representing the return on crashing

efforts for activity i.

The costs of crashing may differ between original and

reworked activities. While irrelevant in acyclic processes,

where activities are not reworked, in cyclic processes,

crashing costs depend on the type of payment mode:

(A) Set-up resource cost (e.g., setting up a facility or

model) must be paid once per full instance of the

activity (initial execution or full iteration, but not for

partial rework).

(B) One-time resource cost (e.g., purchasing a new tool)

applies only to the initial execution of the activity

and adds no further costs to successive iterations.

(C) Proportional resource cost (e.g., staff) must be paid

continuously over the activity’s duration in any

iteration.

t0
Oij ki;kjð Þ ¼

min T
Aij ki;kjð Þ; Tfj kjð Þ

n o
� max Tsi kið Þ; TNij ki;kjð Þ

n o
; if activity j is not yet active

0; if activity j is already active

(
ð6Þ

Res Eng Design (2016) 27:347–366 353

123

3.5 Partial rework of activities

Activity overlapping may also generate partial rework for

an activity, which we distinguish from regular rework.

Partial rework handles the situation when a downstream

activity j delivers its output to an upstream activity i after

the latest point in time when activity i needed it:

T
Dji kj;kið Þ[m6;ji � ~ti kið Þ (see Fig. 2). This situation typically

emerges if T
fj kjð Þ\Tfi kið Þ and m1,ij with j[i holds, which

occurs only in iterative processes, such as in the case of

iterative overlapping (Krishnan et al. 1997; Browning and

Eppinger 2002). In this event, only the duration T
Dij ki;kjð Þ �

T
Nij ki;kjð Þ of activity i must be reworked, because it con-

stitutes the time span between information delivery and the

lower bound for information needed (see Fig. 3).

Partial rework modifies the cost and duration of activity

i by DcRi kið Þ and DtRi kið Þ as shown in Eqs. (3) and (4). If

activity i is partially reworked for the zth time, caused by

an activity j, then the change in duration due to partial

rework is given by the following:

DtRi kið Þ;z ¼ li kið Þm2;ij T
Dji kj;kið Þ � T

Nij ki;kjð Þ

 �

ð13Þ

The cost implications depend on the crashing payment

mode. For modes A and B,

DcRi kið Þ;z¼
li kið Þm2;ij T

Dji kj;kið Þ�T
Nij ki;kjð Þ

 �

Tfi kið Þ�TSi kið Þ
~ci kið ÞþDcOi kið Þ
� �

ð14Þ

and for mode C:

DcRi kið Þ;z ¼
li kið Þm2;ij T

Dji kj;kið Þ � T
Nij ki;kjð Þ

 �

Tfi kið Þ � TSi kið Þ

~ci kið Þ þ DcOi kið Þ þ DcCi kið Þ
� �

ð15Þ

Generally, an activity i might be partially reworked nR,i
times until it is completely reworked—i.e., until ki changes.

Once an activity has been partially reworked, its finish time

must be updated. The point in time for the information

input that provoked the latest partial rework is designated

by TsR;iðkiÞ . Hence, the overall changes in cost and duration

due to all partial reworks of activity i are given by the

following equations (shown for crashing modes A and B

only):

DtRi kið Þ ¼
XnR;i
z¼1

li kið Þm2;ij T
Dji kj;kið Þ � T

Nij ki;kjð Þ

 �

; if z ¼ 1

li kið Þm2;ij T
Dji kj;kið Þ � TSR;i kið Þ

 �
; if z[1

8><
>:

ð16Þ

3.6 Simulation analysis

We adopted a modified form of Browning and Eppinger’s

(2002) published algorithm for a Monte Carlo DES of a

cyclical project network. Summarized briefly, the proce-

dure works as follows (see Fig. 4). First, using work policy

rules, the algorithm determines the subset of activities

eligible for work. It then advances time and tracks cost

until reaching a pertinent time event, TE, such as one of

those shown in Figs. 2, 3. Next, it checks (probabilistically)

for any rework caused by feedbacks from any completed

activities. When all activities and rework are finished, a

single run is complete, providing an overall duration andFig. 3 Illustration of singular partial rework for upstream activity

i (Meier et al. 2015)

DcRi kið Þ ¼
XnR;i
z¼1

li kið Þm2;ij T
Dji kj;kið Þ � T

Nij ki;kjð Þ

 �

Tfi kið Þ � Tsi kið Þ
~ciðkiÞ þ DcoiðkiÞ
� �

; if z ¼ 1

li kið Þm2;ij T
Dji kj;kið Þ � T

Nij ki;kjð Þ

 �

Tfi kið Þ � Tsi kið Þ
~ciðkiÞ þ DcoiðkiÞ þ

Xz�1

l¼1

DcRiðkiÞ;z

 !
; if z[1

8>>>>>>><
>>>>>>>:

ð17Þ

354 Res Eng Design (2016) 27:347–366

123

cost for the project. By conducting many runs, the simu-

lation allows exploration of the frequency distribution (and

thus the mean and other parameters) of cost and duration

outcomes for any combination of process architecture and

work policy. The number of runs required to yield a

stable output distribution must be confirmed for each case.

We used several validation techniques recommended by

Sargent (1999) during the model and simulation’s devel-

opment, and elsewhere (Meier et al. 2015; Meier 2011), we

investigated the simulation’s performance on a gamut of

generated test problems. Overall validity compares favor-

ably with that of other PD process models and simulations

reported in the literature (Smith and Morrow 1999).

4 Optimizing the model with an adapted e-MOEA

The model and simulation presented in the previous section

have already been developed in prior works. The contri-

bution of this paper is twofold: the presentation of an

optimization procedure tailored to this type of problem

(this section) and the validation of the model with a real-

istic, industrial case study (next section). As noted previ-

ously in Sect. 2.2, we develop and apply an e-MOEA to

find the Pareto-optimal set of solutions.

4.1 Flow of the e-MOEA

Figure 5 summarizes the overall flow of our e-MOEA

design, which is tailored to the previously described time–

cost model. In contrast to most MOGAs, which process the

entire population through discrete steps, our version of the

e-MOEA is a steady-state evolutionary algorithm (EA)—

meaning that, to speed up computation, it processes only a

portion of the population in each generation, and each

offspring is compared with the parent population immedi-

ately after its creation.

Initially, the e-MOEA randomly generates a certain

number of chromosomes, each of which are evaluated for

fitness in terms of process cost and duration. All chromo-

somes are then split up into two distinct populations.

Unlike conventional GA designs, the e-MOEA maintains

two coevolving populations during its execution, a parent

population, P, and an archive population, A. While P is

allowed to contain both dominated and non-dominated

chromosomes, A contains only non-e-dominated

chromosomes.

Applying the e-dominance criterion to A provides two

major benefits (Deb et al. 2005). First, the cardinality of the

Pareto region is reduced because e-dominance decomposes

the objective space into multiple hyper-boxes. Second, the

e-dominance approach makes the e-MOEA interactive with

a decision-maker. However, e-dominance has the disad-

vantage that e must be set manually or adaptively, and

setting e inappropriately could result in archiving poor

solutions. In the worst case, A would contain only one

solution that e-dominates all other solutions.

Provided with the two population sets, the e-MOEA

proceeds as follows. According to a selection method for

P and A (described later in Sect. 4.4), one chromosome is

picked out of P and one out of A. These two chromosomes

then undergo the ordinary GA mechanisms of crossover

and mutation to create a new chromosome (offspring). We

adapt the original e-MOEA to our model and simulation by

adding two further mechanisms. First, we incorporate an

efficient repair mechanism to address firm predecessor

constraints in the activity sequence. Second, to reduce

computational intensity in the simulated determination of

fitness, we proceed only with unique offspring. In the final

step of the e-MOEA, acceptance procedures decide if the

offspring replaces any members of P and/or A (Deb et al.

2005).

Determine
active

activities

Calculate
event

duration

Check for
rework

Any
activities

left?
End of run

Fig. 4 Event graph for a single simulation run

Fig. 5 Tailored e-MOEA flowchart

Res Eng Design (2016) 27:347–366 355

123

The overall procedure iterates until any predefined

convergence criterion is met, at which point the archive

population is expected to contain the Pareto-optimal solu-

tion. Defining an appropriate convergence criterion has

always been a problem in the design of MOGAs (Lau-

manns et al. 2002; Kumar and Rockett 2002), and no

unique solution has yet been proposed. Since we presume

no prior knowledge about the Pareto front, we assume that

the e-MOEA converges when both the absolute number of

Pareto solutions remains constant for a certain number of

generations and the change in the optimization objectives

(duration and cost) does not exceed a predefined threshold

(e.g., 5 % of all Pareto solutions) during this period.

4.2 GA components

With the flow of our tailored e-MOEA established, we now

present the problem-specific set-up of its components. Out

of the various model parameters, Table 2 shows the vari-

ables that are treated as decision variables to be optimized.

The parameters o
Dij ki;kjð Þ and o

Rij ki;kjð Þ determine the

amount (duration) of overlapping and related values such

as the resulting rework duration, as explained in Sect. 3.

4.2.1 Encoding of activity sequence

S represents a permutation, which is generally represented

in a chromosome with integers, although Bean (1994)

proposed a random key encoding scheme based on real

numbers and pointed out its benefits for combinatorial

problems. We adopt random keys to encode S, treating all

optimization parameters as real numbers that can be easily

transformed into binary strings with a chosen degree of

precision. Typically, the real numbers are used as ascend-

ing sorting keys to encode a permutation. These numbers

are initially determined randomly and change only under

the influence of mutation and crossover. Accordingly, a

permutation of length l consists of a vector P ¼
ðr1; r2; . . .; rlÞ with ri [[0,1]. Considering the surjective

function r : Sl ! Sl with Sl ¼ 0; 1; . . .; l� 1f g, random

keys are sorted in ascending order:

rrð1Þ � rrð2Þ � � � � � rrðlÞ. A permutation is then encoded by

rð1Þ; rð2Þ; . . .; rðlÞð Þ. This formalism describes that the

key positions within P are ordered according to their

absolute value. As an example, consider the chromosome

and corresponding encoding shown in Fig. 6. Each gene

represents an activity, such that the first segment of a

chromosome represents a sequence of activities, S.

Theoretically, a key could be generated several times,

although the chance is reduced when using sufficient pre-

cision for the keys. In this case, a left–right strategy could

be used to ensure feasibility. That is, for identical keys

(numbers), the key which is further to the left in the

chromosome is smaller. Here, each random key is assigned

to one distinct gene and consists of 32 bits. Hence, the real

number of the key is determined by transforming the binary

string to a decimal number divided by 232.

4.2.2 Encoding of overlapping

Basically, we want the GA to identify the best overlapping

intensity between activities in each iteration. The over-

lapping intensity is a floating point number between 0 and

1. To encode it with bits, we do the same as with the

random keys; that is, if we have 8-bit encoding, we

transform the 8-bit string into a decimal number and divide

it by 28. This is done for any overlapping intensity between

two activities for all possible iterations.

The overlapping intensity between activities i and j may

differ depending on their iteration number, so o
Dij ki;kjð Þ and

o
Rij ki;kjð Þ cannot be encoded in a single bit. Instead, we have

to encode these values for all possible combinations of ki

and kj. Overall, (k̂i þ 1)(k̂i þ 1) combinations exist and

must be included in the chromosome. Hence, each com-

bination is binary-encoded through a bit number of any

length, nB, depending on the precision required by the user.

An 8-bit encoding (nB = 8) providing 256 discrete

Table 2 Optimization parameters (decision variables)

The activity sequence in the DSM (governing process architecture) S

The crashing intensity for each activity i and every iteration ki ri(ki)

The percentage of activity i’s duration when it delivers the output in the kith iteration for activity j in the kjth iteration o
Dij ki ;kjð Þ

The percentage of activity j’s duration when it receives the output in the kith iteration from activity i in the kith iteration o
Rij ki ;kjð Þ

Fig. 6 Chromosome

representation example

356 Res Eng Design (2016) 27:347–366

123

intervals between 0 and 100 % overlapping seems suffi-

cient in practice. To reduce computational effort, we only

encode values with o
Dij ki;kjð Þ\1 and o

Rij ki;kjð Þ[0.

The second segment of the chromosome is established

by initially identifying the relationships in M3 and M5 that

meet the aforementioned requirements. Then, we generate

an 8-bit number for each (ki, kj) pair, as depicted in Fig. 7,

and append it to the existing chromosome. To decode the

overlapping segment, each of its nB-bit blocks is trans-

formed to an integer value u in the interval [0, 2nB � 1],

yielding a value in the interval

m3;ij � u
2nB�1

m3;ij � m4;ij

� �
;m3;ij

� 	
for o

Dij ki;kjð Þ and in the

interval m5;ij þ u
2nB�1

m6;ij � m5;ij

� �
;m6;ij

� 	
for o

Rij ki;kjð Þ;
which represents the third segment.

4.2.3 Encoding of crashing

The fourth and last segment of the chromosome addresses

crashing. We encode the crashing value of activity i in any

of its iterations (up to k̂i) using nB-bit numbers as well. For

evaluation, these bit numbers are transformed to an integer

value u 2 0; 2nB � 1½ � to generate crashing intensities

ri kið Þ ¼ r̂i
u

2nB�1
. Aggregating the four different segments of

our data structure so far, we obtain the encoding

scheme for a chromosome illustrated in Fig. 8.

4.3 Fitness function

We use time–cost simulation results as the fitness function,

although this approach has two major drawbacks. First,

evaluating the fitness of each chromosome in a population

via simulation is time-consuming. Second, a stochastic

simulation provides a ‘‘noisy’’ fitness function because its

output may vary slightly each time with identical inputs

(e.g., due to stochastic activity durations and iterations). A

noisy fitness function will potentially assign different

fitness values to identical chromosomes, leading to varying

Pareto fronts over successive runs of the e-MOEA. More-

over, identical chromosomes could become competitors in

the population of a single e-MOEA run due to their dif-

ferent fitness values, allowing them both to take up space in

the archive population. In the worst case, the population

could consist of multiple instances of the same chromo-

some with different fitness values. However, we employ

two mechanisms to prevent these problems.

The first mechanism is part of the MOEA design: the e-
dominance criterion. If cost and duration outcomes for two

identical chromosomes differ by less than e, then both

chromosomes compete for the same hyper-box and one of

the two will be discarded, thus ensuring the uniqueness of

the other. Nevertheless, the difference between simulation

outcomes could exceed e, particularly if e is chosen too

small. Therefore, the stopping criteria for the number of

simulation runs must be coordinated with the choice of e. If

this scenario occurs frequently, then the diversity in the

archive, and thus the number of potential Pareto-optimal

solutions, decreases. Fortunately, we can easily avoid this

case by extending the e-MOEA with an operator prior to

the fitness evaluation (see Fig. 5) to verify the uniqueness

of the offspring by comparing its data structure with all

members of P and A. Obviously, computational time will

increase (since, theoretically, no offspring could be pro-

duced for numerous generations), but we nevertheless

emphasize the incorporation of this additional mechanism

to ensure diversity.

4.4 GA mechanics

4.4.1 Selection and acceptance procedures

The e-MOEA maintains two distinct populations, each

requiring a selection operator, and each chromosome has

two fitness values, cost and duration. Thus, chromosome

selection requires two objective domination checks. We

adopt Deb et al.’s (2003) selection procedures for the basic

e-MOEA, described as follows. Within the parent popula-

tion, P, chromosomes are selected according to a tourna-

ment selection strategy. During tournament selection, a

certain number of chromosomes, depending on the size of

the tournament, s, are randomly picked. Generally, the best-

fit chromosome wins the tournament with a given proba-

bility and overcomes the selection phase. If the tournament

contains non-e-dominated chromosomes (i.e., e-Pareto

optimal), then we select one randomly. Previous research

(Goldberg et al. 1991, Goldberg and Deb 1991) found that

s = 4 performed best on artificial functions. Within A, we

just select a chromosome randomly without using a selec-

tion operator, because all solutions are Pareto optimal.

Fig. 7 Illustration of overlapping encoding

Res Eng Design (2016) 27:347–366 357

123

The e-MOEA features two acceptance procedures that

determine whether the offspring replace any member in

P and/or A. If the offspring dominates one or more ran-

domly chosen chromosomes in P, then the dominated

member(s) of P are replaced by the offspring. If any

member of P dominates the offspring, then it is not

accepted. The acceptance procedure for A is more complex,

and the reader may refer to the detailed description pro-

vided by Deb et al. (2003). In principle, this procedure is

similar to the acceptance strategy for P but based on e-
dominance checks.

4.4.2 Crossover

Instead of using a single crossover operator on the entire

chromosome at once, we apply a separate crossover oper-

ator to each segment. This is motivated by the great length

of a chromosome (easily comprising several thousand bits)

and its time-consuming evaluation via simulation. Apply-

ing multiple crossover operations leads to a more intense

mixing of the genes, increasing the search speed of the e-
MOEA. While such a strategy risks premature conver-

gence, the computational advantage outweighs any smaller

disadvantage in solution quality.

Knjazew (2002) empirically investigated different

crossover operators on artificial test functions and claimed

superiority for the single-point crossover (Goldberg 1989)

over the popular two-point and uniform crossovers. Mainly

for this reason, we also incorporated the single-point

crossover, which generally works as follows. First, two

chromosomes out of the mating pool (i.e., the population

after selection) are chosen randomly and undergo crossover

with a probability, pc. Then, a crossover site is chosen

randomly, and both chromosomes are sliced at the site into

two segments. Finally, the offspring gets two segments

from different chromosomes. Figure 9 demonstrates how

Fig. 8 Illustration of

chromosome encoding

358 Res Eng Design (2016) 27:347–366

123

the crossover works when applied separately to each of the

four sections of our chromosomes.

4.4.3 Mutation

As with crossover, we apply mutation to each of the four

chromosome segments separately, assuming a certain

mutation probability, pm, which is typically set to a low

value. For this purpose, a simple bit-swap mutation

(Goldberg 1989)—i.e., swapping a single bit of the corre-

sponding segment—is sufficient.

4.4.4 Predecessor feasibility

To ensure feasible activity sequences after crossover and

mutation, we must address predecessor constraints. M4 and

M6 record firm predecessor constraints: Activity j cannot

begin before its predecessor i if it requires all input infor-

mation from i—i.e., if m4,ij = m6,ij = 0, assuming

i\ j. Since m6,ij provides an upper bound on m4,ij,

m6,ij = 0 is sufficient to indicate firm predecessor con-

straints. As random key encoding of the activity sequence

prevents duplicate chromosomes, an additional, efficient

repair mechanism is required to transform any activity

sequence into a precedent-feasible one. A straightforward

repair strategy would be to iterate crossover or mutation

until all constraints are satisfied. However, depending on

the number of constraints, the discrepancy between the

immense number of possible permutations (nA!) and the

number of feasible solutions could be very large and thus

time-consuming. Therefore, we handle the enforcement of

predecessor constraints in another way as follows.

Generally, predecessor conflicts do not occur between

activities that can be executed concurrently. Assuming we

start with an empty activity sequence at time T0, we can

calculate the set of potentially parallel activities at T0

based on M6 and subsequently pick an activity out of this

set according to a deterministic strategy. For instance, we

could scan the (potentially infeasible) activity list of the

chromosome from left to right and select the activity

number which first matches any activity number in the set

of potentially parallel activities. Then, the chosen activity

is appended to the end of the feasible activity list and all

of its relationships within the network of activities are

temporarily deleted. By repeating this procedure until all

activities have been assigned to a spot in the activity

sequence, we will never violate any predecessor con-

straints. Meier (2011) describes the repair mechanism in

detail and includes its simple algorithm.

As an example, consider the DSM in Fig. 10 repre-

senting M6 and an infeasible activity sequence to the right

of it. The M6 DSM indicates firm precedence relationships

between activities with a ‘‘0’’—e.g., activity 1 must pre-

cede activity 3, and activity 2 must precede activities 3 and

Fig. 9 Demonstration of

crossover

Res Eng Design (2016) 27:347–366 359

123

5. Hence, the sequence {3–1–4–2–5–6} is infeasible.

Applying the repair algorithm leads to the following

results. Activities 1 and 2 do not depend on any other

activities in the set and thus comprise the initial set of

parallel activities. The first value in this set which also

occurs in the infeasible sequence is {1}. Thus, the first

value of the feasible schedule list must be 1. After deleting

the row and column for activity 1 in M6, the next iteration

of the algorithm begins, detecting a new set of parallel

activities: {2}. In this set, activity 2 is the earliest one in the

infeasible sequence, so it becomes the next activity in the

feasible sequence. The row and column for activity 2 are

deleted and a new loop starts. Repeating all steps of the

algorithm until convergence, we obtain the precedent-fea-

sible sequence {1, 2, 3, 4, 5, 6}.

5 Application: automobile hood development
process

We applied the simulation–optimization model to an

automotive hood development process. The case study

data, based on Zambito (2000) and Yassine et al. (2000),

are realistic but disguised to protect company proprietary

information. An automobile hood is composed of several

individual components. Its development process comprises

43 activities connected via 232 relationships and includes

the development not only of the hood components but also

of the tooling for assembly and stamping (see activity list

and data in Table 3). Also worth mentioning is the

occurrence of several verification and validation activities

with the potential to cause feedback loops.

The entire set of data for the hood case study is available

in Meier (2011) and also in the Appendix (ESM). The

activities referring to the development of tooling (activities

26–28) as well as activity 32 can be regarded as the most

influential activities. Besides their above-average cost and

duration, they feature only minor improvement effects

through learning (high values in vector L), thus making

their rework expensive and long-lasting (see Table 3).

According to M6 (see Appendix of ESM), almost all

activities succeeding activity 16 are subject to predecessor

constraints. Thus, we expect only marginal differences in

process time and cost from the limited degrees of freedom

to vary the process architecture.

5.1 Crashing and overlapping

Crashing for the hood process is not completely staff-dri-

ven. Instead, some of the aforementioned influential

activities may be crashed through the purchase of addi-

tional machinery, albeit at a very high price. The max

number of iterations per activity was capped at five. This

number was determined to be reasonable through sensi-

tivity analysis (Meier 2011).

M5 and M6 (see Appendix of ESM) indicate that the

possibilities to overlap are actually rather limited in this

case. Activities 16–43 require input of essentially final

information from their predecessors to begin execution.

Therefore, the corresponding cells in M6 feature low val-

ues, while M5 values are high, suggesting that overlapping

will be low. In contrast, the early activities 1-15 are less

constrained, thus permitting a considerable amount of

overlapping between a few activity pairs. Overall, how-

ever, we do not expect a great impact of overlapping on the

Pareto front for this case study. The rework penalty for

overlapping was calculated according to the linear over-

lapping function [Eq. (8)] and set to aij ¼ m1;ij � m2;ij—i.e.,

between 0.05 and 0.25.

5.2 MOEA and simulation parameters

We found that sufficiently stable simulation outputs (for

the average cost and duration fitness values of these

chromosomes) could be obtained within 1800 simulation

runs. Regarding the optimization parameters, although

additional constraints (e.g., zero values in M6) reduce the

size of the feasible search space, they also increase the

Fig. 10 Preserving predecessor feasibility

360 Res Eng Design (2016) 27:347–366

123

Table 3 Activity data for the hood development process (t
^

i, �ti, and t̂i correspond to the ‘‘best’’, ‘‘most likely’’, and ‘‘worst’’ value estimates)

Activities Time (days) Costs ($k) L

ID Name t
^

i
�ti t̂i c

^

i
�ci ĉi

1 Strategies for product, mkt, mfg, supply, design, and reusability confirmed
(Est. PDL)

0 0 0 0 0 0 –

2 Select power train lineup 0 0 0 0 0 0 –

3 Select materials for all system components 13.5 15 16.5 10 11.3 12.4 0.75

4 Freeze proportions and selected hard points 54 60 66 41 45 49.5 0.75

5 Verify that hard points and structural joint designs are compatible
w/program targets

36 40 44 27 30 33 0.75

6 Approve master sections 36 40 44 41 45 49.5 0.85

7 Develop initial design concept (preliminary CAD model) 36 40 44 68 75 82.5 0.10

8 Estimate blank size 0.9 1 1.1 0.7 0.75 0.8 0.10

9 Estimate efforts 0.9 1 1.1 4.1 4.5 4.9 0.10

10 Develop initial attachment scheme 4.5 5 5.5 3.4 3.8 4.13 0.50

11 Estimate latch loads 4.5 5 5.5 20 22.5 24.8 0.10

12 Cheat outer panel surface 9 10 11 10 11.3 12.4 0.50

13 Define hinge concept 18 20 22 20 22.5 24.8 0.50

14 Get prelim. mfg and asy feas. (form, holes, hem, weld patterns, mastic
locations, adhesive)

4.5 5 5.5 3.4 3.75 4.13 0.50

15 Perform cost analysis (variable and investment) 1.8 2 2.2 16 18 19.8 0.50

16 Perform swing study 1.8 2 2.2 2 2.3 2.5 0.75

17 Theme approval for interior and exterior appearances (prelim surf
available)

13.5 15 16.5 20 22.5 24.8 0.10

18 Marketing commits to net revenue; initial ordering guide 4.5 5 5.5 8.4 9.4 10.3 0.10

19 Program DVPs and FMEAs complete 9 10 11 10 11.3 12.4 0.75

20 Approved theme refined for craftsmanship execution (consistent w/PA
objectives)

13.5 15 16.5 30 33.8 37.1 0.10

21 PDN 0—interior and exterior Class 1A surfaces transferred to engineering
(±0.5 mm)

2.7 3 3.3 4.1 4.5 5 0.10

22 Conduct cube review and get surface buyoff 18 20 22 54 60 66 0.25

23 Verify mfg and asy feas. (form, holes, hem, weld patterns, mastic
locations, adhesive)

9 10 11 64 71 78 0.75

24 Evaluate functional performance (analytically) 13.5 15 16.5 81 90 99 0.50

25 PDN 1—release system design intent level concept to manufacturing 18 20 22 122 135 149 0.50

26 Develop stamping tooling 378 420 462 2835 3150 3465 0.90

27 Develop hemming tooling (if applicable) 57.6 64 70.4 475 528 581 0.75

28 Develop assembly tooling 90 100 110 810 900 990 0.75

29 PDN 2—last Class 1 surface verified and released for major formed parts 18 20 22 176 195 215 0.50

30 PDN 3—final math 1, 2, and 3 data released 18 20 22 189 210 231 0.50

31 CAD files reflect pre-CP verification changes 18 20 22 203 225 248 0.75

32 Make ‘‘like production’’ part and asy tools/ergonomics/process sheets (to
extent feasible)

72 80 88 864 960 1056 0.75

33 First CPs available for tuning and durability testing 4.5 5 5.5 57.3 63.8 70.1 1.00

34 Complete CMM analysis of all end items and subassemblies 9 10 11 122 135 149 0.10

35 Perform DV tests (physical) 18 20 22 257 285 314 0.10

36 Verify manufacturing and assembly process capability 4.5 5 5.5 67.5 75 82.5 0.10

37 Complete prelim. ESO for: CP durability testing 13.5 15 16.5 213 236 260 0.10

38 Complete prelim. ESO for: initial set of road tests completed 27 30 33 446 495 545 0.10

39 Complete prelim. ESO for: known changes from CP containable for 1 PP 4.5 5 5.5 77.6 86.3 94.9 0.10

40 Complete prelim. ESO for: design is J1 level—no further changes except
No-Blds

4.5 5 5.5 81 90 99 0.10

41 Supplier commitment to support 1 PP w/PSW parts 2.7 3 3.3 50.6 56.3 61.9 0.10

42 Complete prelim. ESO for: Eng. confidence that objectives will be met
declared

2.7 3 3.3 52.7 58.5 64.4 0.10

43 Readiness to proceed to tool tryout (TTO), 1 PP and Job #1 9 10 11 182 203 223 0.10

Res Eng Design (2016) 27:347–366 361

123

probability of generating redundant solutions (due to our

repair mechanism). Thus, we had to use a fairly large

number of generations for the e-MOEA (while holding

population size constant). We let the e-MOEA run with

10,000 8-bit encoded chromosomes for up to 15,000 gen-

erations, simulating the fitness of each chromosome 1800

times per generation.1

5.3 Optimization results

Figure 11 shows the Pareto fronts along with 10,000 ran-

domly generated solutions (i.e. initial population of chro-

mosomes for the e-MOEA), which roughly approximate

the solution space, for each of the five work policies. The

figure shows the time–cost differences between random

and Pareto-optimal (by tracing the lower-left boundary of

the contours) solutions for the various work policies. This

figure also emphasizes the impact of work policy rules and

crashing/overlapping on process duration and cost. For

instance, P1 has more variation with respect to duration (i.e.

wider duration range), whereas P3, P4, and P5 tend to be

relatively robust in duration but much more variable in

cost. We also note that Policy 2 is dominated by policies 3,

4, and 5 and has the least leverage (i.e., duration and cost

variance). Finally, when we compare the hood case results

with the theoretically approximated solution spaces shown

in Fig. 12 (Meier et al. 2015), we can see that the hood

development process is in agreement with the general trend

for artificial processes (depicted in Fig. 12).2

To examine the Pareto front (of Fig. 11) in more

detail, we decomposed it into three sectors, as shown in

Fig. 13: sector 1 includes the cheapest but slowest pro-

cesses, generated exclusively by work policy P1; sector 2

contains Pareto solutions produced by P3 and P4; and

sector 3 features the collectively fastest processes with

the highest cost (generated entirely by P5). P2 is domi-

nated by P3–P5. The evaluation of certain process

parameters for each sector is presented in Table 4. Fig-

ure 13 provides PD mangers with clear guidelines for

which work policy to use given a specific priority for

process duration or cost. That is, cost-sensitive mangers

can use policies 1, 3, and 4, while duration-sensitive

ones can use P5.

Figure 13 features an interesting discontinuity in the

Pareto front with respect to cost between sectors 1 and 2.

This discontinuity is not the result of different feedback

densities or longer feedback cycles (distance to the DSM

diagonal). Rather, it is due to the work policy rule

regarding the parallel execution of non-adjacent activities.

Whereas P2–P5 allow the simultaneous execution of non-

adjacent activities, P1 does not. Thus, the processes in

sectors 2 and 3 (obtained through the application of P3–P5)

exhibited more parallelism and consequently a higher

number of costly reworks. The actual amount of rework

depends not only on the process architecture (e.g., number

of feedbacks and their locations) but also on the work

policy.

Finally, we explored the sensitivity of the Pareto front

to the model’s complexity (i.e., the inclusion of process

architecture, overlapping, and crashing parameters). These

effects are clear in Fig. 14, which plots the overall Pareto

front (for all work policies) for the hood process assuming

work policy P3 and using different aspects of model

sophistication (i.e. architecture, crashing, and overlap-

ping). Using individual managerial levers (architecture,

overlapping, and crashing) independently does not tra-

verse the full solution space (Pareto front) compared to

the more sophisticated model inclusive of all model ele-

ments simultaneously. These results demonstrate the need

for a sophisticated model that accounts for all of these

features of realistic processes. A comparison of the sta-

tistical summary measures for architecture, crashing, and

overlapping curves is also shown in the lower part of

Fig. 14. It is evident from this summary table that process

architecture is not the greatest lever for cost and duration

due to the high amount of firm predecessor constraints,

which limit the generation of distinct process architec-

tures. Instead, modifications of the individual crashing

intensities have the greatest effect on process lead time

and cost in this hood development process. (The same

analysis was performed for P4 and P5, yielding similar

conclusions to P3.)

Fig. 11 Random solutions and the Pareto front for the hood process

using work policies P1–P5 (this figure includes crashing and

overlapping)

1 The entire GA run time for the case study took around 15 min on a

workstation equipped with Intel i7 quad-core CPU and 16 GB RAM.
2 However, the exact values of time and cost differ in both figures due

to the difference in activity durations (and rework probabilities and

impacts) between the hood development process and the artificial

processes.

362 Res Eng Design (2016) 27:347–366

123

6 Conclusion

The time–cost trade-off problem for PD processes consti-

tutes a problem of great practical relevance, because PD

processes involve an enormous amount of expensive

resources employed over a long period of time. Conse-

quently, managers are anxious to minimize cost and

duration simultaneously. Past research (primarily based on

crashing an acyclical process) pointed out that cost-re-

ducing strategies extend process duration and time-cutting

methods increase cost. A trade-off problem thus arises,

making efficient process planning mandatory to avoid

schedule and cost overruns. In fact, the literature on the

time–cost trade-off problem extensively studied the effects

of time- and cost-reducing methods and even proposed

optimization strategies to identify the set of best trade-offs.

But literature to date lacked in analyzing the impact of

iterations on these time-/cost-minimizing strategies and on

the time–cost solutions themselves—although iteration is

pervasive in PD processes and greatly affects time and cost.

This research gap was the motivation for this paper: to

find the most efficient set of trade-offs while considering

many aspects at once: crashing, overlapping, cyclical pro-

cess architecture, and work policy. For this purpose, we

used a new PD process model that accounts for feedbacks

in the process and jointly considers the process parameters

influencing time and cost. We tailored an optimization

technique, an e-MOEA, to this problem and found the

Pareto front solutions for a PD process. We applied the new

simulation–optimization model to an industrial case study

to explore the effects of several work policies.

First, the time–cost simulation–optimization model

presented in this paper highlights the need for a

sophisticated process model in real-world development

processes. Assuming different levels of model com-

plexity (i.e., different work policies along with process

architecture, with and without overlapping, and crash-

ing), the corresponding Pareto fronts for the case study

development process showed substantial differences in

duration and cost. This supports our claim that the

combined consideration of several fundamental process

parameters for modeling, simulation, and subsequent

optimization is pivotal to gaining ‘‘globally’’ Pareto-

optimal processes.

Furthermore, the work policies can result in different

outcomes for process cost and duration. Interestingly, no

work policy appeared to be superior to the others in both

the cost and duration dimensions. Instead, a time–cost

trade-off arises due to the choice of work policy. Therefore,

Cost ($k)

D
ur

at
io

n
(d

ay
s)

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800
P1 60fb

P1 40fb

P1 20fb

P2

P4

P5

Stylized Pareto front
No feedbacks
(all policies)

Fig. 12 The theoretically

approximated objective spaces

from Meier et al. (2015)

400

800

1200

9000 11000 13000 15000 17000 19000

Du
ra

�o
n

[d
ay

s]

Cost [$k]

Work Policy 1

Work Policy 3

Work Policy 4

Work Policy 5

Sector 1

Sector 2

Sector 3

Fig. 13 Overall Pareto front for the hood process using work policies

P1–P5. Note that P2 is dominated by P3–P5

Res Eng Design (2016) 27:347–366 363

123

we suggest extending the time–cost trade-off problem by a

further managerial lever (beside crashing, overlapping, and

process architecture), namely work policy. The substantial

time–cost differences for the work policies should motivate

engineering managers to appreciate the impact of this

managerial instrument.

Despite its relative sophistication, however, the pro-

posed model does not account for specific resource con-

straints (only general ones in terms of cost). Specific

resources such as staff, machinery, or facilities—just to

name a few—must be assigned to PD activities, are typi-

cally limited, and typically cause holdups during process

execution. Hence, we suggest extending the model by

accounting for specific resource constraints and studying

their impact on the Pareto front and the efficacy of crashing

and overlapping.

In addition to cost and duration, technical performance or

quality is another dimension to be considered for PD pro-

jects (Liberatore and Pollack-Johnson 2009). We encourage

extension of the model, simulation, and optimization with

measures of technical performance of the product to be

developed. Obviously, quality is expected to increase with a

growing number of iterations in the process, and the current

model accounts for iterations, albeit only in a probabilistic

sense. Thus, we indirectly considered quality issues. How-

ever, there remains opportunity to incorporate quality-

Table 4 Selected process parameters for the three disjoint sectors of the Pareto front

Parameter Sector 1 Sector 2 Sector 3

Dominating work policy P1 P3 P5

Average number of feedback marks in the DSM 65.4 63.8 77.7

Average distance of a feedback mark to the DSM diagonal 7.16 6.94 9.04

Weighted average distance of a feedback mark to the DSM diagonal (feedback probability times

distance to diagonal)

1.92 1.88 2.34

Average number of reworks 59.3 155.3 158.9

Average number of partial reworks 51.3 60.2 81.2

Average crashing intensity (1st iteration) for any activity (min: 0, max: 0.15) 0 0.07 0.08

Average crashing intensity (1st iteration) for critical activities 26, 27, 28, and 32 (min: 0, max: 0.21) 0 0.05 0.09

Average crashing intensity (1st iteration) for most critical activity 26 (min: 0, max: 0.25) 0 0.07 0.18

Average intensity for overlapping available (1st iteration) between two activities (min: 0.86, max: 1.0) 0 0.92 0.93

Average overlapping intensity (1st iteration) between two activities (min: 0, max: 0.2) 0 0.09 0.11

0

200

400

600

800

1000

1200

9000 11000 13000 15000 17000

Du
ra

�o
n

[d
ay

s]

Cost [$k]

Overall Pareto-front
Only architecture
Only overlapping
Only crashing

Min Max Mean* Std Dev Min Max Avg Std Dev
714 851 753 43 11471 11766 11606 99
554 744 649 64 11525 17171 12922 1746
714 774 758 20 11422 11569 11488 48

* all means are sta�s�cally different at 5% confidence level
Fixed architecture only overlapping

P3
Dura�on Cost

Only architecture
Fixed architecture only crashing

Fig. 14 Comparison of the

overall Pareto front (all work

policies) for the hood process

with the Pareto fronts assuming

work policy P3 for different

aspects of model sophistication

364 Res Eng Design (2016) 27:347–366

123

related parameters explicitly in the model, perhaps along

the lines of Lévárdy and Browning (2009).

Finally, we recommend further research on closed-form

analysis for an approximation of time and cost for cyclic

processes (e.g., Nasr et al. 2015). A realistic proxy could be

used as a deterministic objective function for the multi-ob-

jective optimization and is essential for very large problem

sets involving several hundred or thousand activities. Other-

wise, using simulation as objective functions for large prob-

lem sets would require a high computational effort; GAs are

very slow and they may hinder the production process if a high

fidelity model is used. However, research toward closed-form

solutions is very challenging, and we are not sanguine about its

success for arbitrary processes. Nevertheless, the potential

benefits of a closed form are worth trying, and our optimized

simulation model in this paper helped to identify the most

salient characteristics on which to focus in seeking a simpli-

fied, closed-form approximation. Particularly, process archi-

tecture, crashing, and overlapping intensities, in addition to

work policy decisions, are necessary components of any

realistic and practical PD process model.

Acknowledgment The first author would like to thank the Bavarian

Science Foundation. The second author is grateful for support from

the University Research Board (URB) program at the American

University of Beirut. The third author is grateful for support from the

Neeley Summer Research Award Program from the Neeley School of

Business at TCU.

References

Abdelsalam HME, Bao HP (2007) Re-sequencing of design processes

with activity stochastic time and cost: an optimization-simula-

tion approach. J Mech Des 129(2):150–157

Adler P, Mandelbaum A, Nguyen V, Schwerer E (1995) From project

to process management: an empirically-based framework for

analyzing product development time. Manag Sci 41(3):458–484

Baldwin AN, Austin S, Hassan TM, Thorpe A (1999) Modelling

information flow during the conceptual and schematic stages of

building design. Constr Manag Econ 17:155–167

Bean JC (1994) Genetic algorithms and random keys for sequencing

and optimization. J Comput 6(2):154–160

Berthaut F, Pellerin R, Perrier N, Hajji A (2014) Time-cost trade-offs

in resource-constraint project scheduling problems with over-

lapping modes. Int J Proj Organ Manag 6(3):215–236

Browning TR (2001) Applying the design structure matrix to system

decomposition and integration problems: a review and new

directions. IEEE Trans Eng Manag 48(3):292–306

Browning TR, Eppinger SD (2002) Modeling impacts of process

architecture on cost and schedule risk in product development.

IEEE Trans Eng Manage 49(4):428–442

Browning TR, Ramasesh RV (2007) A survey of activity network-

based process models for managing product development

projects. Prod Oper Manag 16(2):217–240

Browning TR, Yassine AA (2016) Managing a portfolio of product

development projects under resource constraints. Decis Sci

(forthcoming)

Brucker P, Drexl A, Mohring R, Neumann K, Pesch E (1999)

Resource-constrained project scheduling: notation, classification,

models, and methods. Eur J Oper Res 112:3–41

Bruni ME, Beraldi P, Guerriero F (2015) The stochastic resource-

constrained project scheduling problem. In: Schwindt C, Zim-

mermann J (eds) Handbook on project management and

scheduling, vol 2. Springer, Berlin, pp 811–835

Cho S-H, Eppinger SD (2005) A simulation-based process model for

managing complex design projects. IEEE Trans Eng Manage

52(3):316–328

Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple

objectives with particle swarm optimization. Evol Comput IEEE

Trans 8(3):256-279

Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary

algorithms for solving multi-objective problems, vol 242.

Kluwer Academic, New York

Cohen I, Golany B, Shtub A (2007) The stochastic time–cost tradeoff

problem: a robust optimization approach. Networks 49(2):175–188

Cooper KG (1993) The rework cycle: benchmarks for the project

manager. Proj Manag J 24(1):17–21

Coverstone-Carroll V, Hartmann JW, Mason WJ (2000) Optimal

multi-objective low-thrust spacecraft trajectories. Comput Meth-

ods Appl Mech Eng 186(2–4):387–402

De P, Dunne EJ, Ghosh JB, Wells CE (1995) The discrete time-cost

trade off problem revisited. Eur J Oper Res 81:225–238

Deb K (2009) Multi-objective optimization using evolutionary

algorithms. Wiley, Chichester

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol

Comput 6(2):182–197

Deb K, Mohan M, Mishra S (2003) Towards a quick computation of

well-spread pareto-optimal solutions. In: Evolutionary multi-

criterion optimization. Second international conference, EMO

2003, pp 222–236

Deb K, Mohan M, Mishra S (2005) Evaluating the e-domination based

multi-objective evolutionary algorithm for a quick computation of

Pareto-optimal solutions. Evol Comput 13(4):501–525

Deckro RF, Hebert JE, Verdini WA, Grimsrud PH, Venkateshwar S

(1995) Nonlinear time/cost tradeoff models in project manage-

ment. Comput Ind Eng 28(2):219–229

Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C (2008)

Nature-inspired metaheuristics for multiobjective activity crash-

ing. Omega 36(6):1019–1037

Eppinger SD, Browning TR (2012) Design structure matrix methods

and applications. MIT Press, Cambridge

Fonseca CM, Fleming PJ (1998) Multiobjective optimization and

multiple constraint handling with evolutionary algorithms-part1:

a unified formulation. IEEE Trans Syst Man Cybernet Part A

Syst Hum 28(1):26–37

Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H (1998) Multi-

objective optimal design of automotive engine using genetic

algorithms. In: Proceedings of 1998 ASME design engineering

technical conferences

Gerk JEV, Qassim RY (2008) Project acceleration via activity crashing,

overlapping, and substitution. IEEE Trans Eng Manag 55(4):590–601

Goldberg DE (1989) Genetic algorithms in search, optimization, and

machine learning. Addison-Wesley, New York

Goldberg DE, Deb K (1991) A comparative analysis of selection

schemes used in genetic algorithms. In: Foundations of genetic

algorithms, vol 1, pp 69–93

Goldberg DE, Deb K, Thierens D (1991) Toward a better under-

standing of mixing in genetic algorithms. In: Proceedings of the

4th international conference on genetic algorithms

Hanne T (1999) On the convergence of multiobjective evolutionary

algorithms. Eur J Oper Res 117(3):553–564

Res Eng Design (2016) 27:347–366 365

123

Hartmann S, Briskorn D (2010) A survey of variants and extensions

of the resource-constrained project scheduling problem. Eur J

Oper Res 207(1):1–14

Hazır Ö, Erel E, Günalay Y (2011) Robust optimization models for

the discrete time/cost trade-off problem. Int J Prod Econ

130(1):87–95

Hazır Ö, Haouari M, Erel E (2015) Robust optimization for the

discrete time-cost tradeoff problem with cost uncertainty. In:

Schwindt C, Zimmermann J (eds) Handbook on project

management and scheduling, vol 2. Springer, Berlin, pp 865–874

Helbig S, Pateva D (1994) On several concepts for e-efficiency. OR

Spektrum 16(3):179–186

Herroelen W, Leus R (2005) Project scheduling under uncertainty:

survey and research potentials. Eur J Oper Res 165:289–306

Huang E, Chen S-JG (2006) Estimation of project completion time

and factors analysis for concurrent engineering project manage-

ment: a simulation approach. Concurr Eng 14(4):329–341

Karniel A, Reich Y (2009) From DSM based planning to design

process simulation: a review of process scheme verification

issues. IEEE Trans Eng Manag 56(4):636–649

Kline SJ (1985) Innovation is not a linear process. Res Manag

28(2):36–45

Knjazew D (2002) OmeGA: a competent genetic algorithm for

solving permutation and scheduling problems. Kluwer Academic

Publishers Group, Norwell

Krishnan V, Ulrich KT (2001) Product development decisions: a

review of the literature. Manag Sci 47(1):1–21

Krishnan V, Eppinger SD, Whitney DE (1997) A model-based

framework to overlap product development activities. Manag Sci

43(4):437–451

Kumar R, Rockett P (2002) Improved sampling of the pareto-front in

multiobjective genetic optimizations by steady-state evolution: a

pareto converging genetic algorithm. Evol Comput

10(3):283–314

Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining

convergence and diversity in evolutionary multiobjective opti-

mization. Evol Comput 10(3):263–282

Lévárdy V, Browning TR (2009) An adaptive process model to

support product development project management. IEEE Trans

Eng Manag 56(4):600–620

Liberatore MJ, Pollack-Johnson B (2009). Quality, time, and cost

tradeoffs in project management decision making. In: Portland

international conference on management of engineering &

technology, 2009. PICMET 2009, pp 1323–1329

Meier C (2011) Time-cost tradeoffs in product development pro-

cesses, Doktor-Ingenieurs (Dr.-Ing.) thesis, Technische Univer-

sität München, Munich, Germany

Meier C, Yassine AA, Browning TR (2007) Design process

sequencing with competent genetic algorithms. J Mech Des

129(6):566–585

Meier C, Browning TR, Yassine AA, Walter U (2015) The cost of

speed: work policies for crashing and overlapping in product

development projects. IEEE Trans Eng Manag 62(2):237–255

Nasr W, Yassine A, Abou Kasm O (2015) An analytical approach to

estimate the expected duration and variance for iterative product

development projects. Res Eng Des 27(1):55–71

Poloni C, Giurgevich A, Onesti L, Pediroda V (2000) Hybridization

of a multi-objective genetic algorithm, a neural network and a

classical optimizer for complex design problems in fluid

dynamics. Comput Methods Appl Mech Eng 186(2–4):403–420

Roemer TA, Ahmadi R (2004) Concurrent crashing and overlapping

in product development. Oper Res 52(4):606–622

Roemer TA, Ahmadi R, Wang RH (2000) Time-cost trade-offs in

overlapped product development. Oper Res 48(6):858–865

Rudolph G, Agapie A (2000) Convergence properties of some multi-

objective evolutionary algorithms. In: Congress on evolutionary

computation (CEC 2000), pp 1010–1016

Sargent RG (1999) Validation and verification of simulation models.

In: Winter simulation conference, Phoenix, AZ, 5–8 Dec

Shaja AS, Sudhakar K (2010) Optimized sequencing of analysis

components in multidisciplinary systems. Res Eng Des

21(3):173–187

Smith RP, Eppinger SD (1997) Identifying controlling features of

engineering design iteration. Manag Sci 43(3):276–293

Smith RP, Morrow JA (1999) Product development process model-

ing. Des Stud 20(3):237–261

Srinivas N, Deb K (1994) Multiobjective optimization using

nondominated sorting in genetic algorithms. Evol Comput

2(3):221–248

Tavares VL, Ferreira JA, Coelho JS (2002) A comparative morpho-

logic analysis of benchmark sets of project networks. Int J

Project Manag 20(6):475–485

Vanhoucke M (2015) Generalized discrete time-cost tradeoff prob-

lems. In: Schwindt C, Zimmermann J (eds) Handbook on project

management and scheduling, vol 1. Springer, Berlin, pp 639–658

Wolpert DH, Macready WG (1997) No free lunch theorems for

search. IEEE Trans Evol Comput 1(1):67–82

Yassine A, Braha D (2003) Complex concurrent engineering and the

design structure matrix method. Concurr Eng Res Appl

11(3):165–176

Yassine A, Whitney D, Lavine J, Zambito T (2000) Do-it-right-first-

time (DRFT) approach to DSM restructuring. In: ASME

international design engineering technical conferences (Design

theory & methodology conference), Baltimore, MD, 10–13 Sept

Zambito T (2000) Using the design structure matrix to structure

automotive hood system development. Master’s thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA

Zhuang M, Yassine AA (2004) Task scheduling of parallel develop-

ment projects using genetic algorithms. In: ASME international

design engineering technical conferences. (Design automation

conference), Salt Lake City, Sept 28–Oct 2

Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the

strength pareto evolutionary algorithm for multiobjective opti-

mization. In: Evolutionary methods for design, optimisation, and

control, Barcelona, Spain, pp 19–26

366 Res Eng Design (2016) 27:347–366

123

	Optimizing time--cost trade-offs in product development projects with a multi-objective evolutionary algorithm
	Abstract
	Introduction
	Background
	Related models: simulation and optimization
	Multi-objective optimization problems

	The PD process model and simulation
	Process architecture and work policy
	Activity cost and duration
	Activity overlapping
	Activity crashing
	Partial rework of activities
	Simulation analysis

	Optimizing the model with an adapted epsilon -MOEA
	Flow of the epsilon -MOEA
	GA components
	Encoding of activity sequence
	Encoding of overlapping
	Encoding of crashing

	Fitness function
	GA mechanics
	Selection and acceptance procedures
	Crossover
	Mutation
	Predecessor feasibility

	Application: automobile hood development process
	Crashing and overlapping
	MOEA and simulation parameters
	Optimization results

	Conclusion
	Acknowledgment
	References

