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Abstract The paper presents an analytical method for

finding the expected duration and variance of a product

development (PD) project network. A PD project network

is a stochastic activity network (such as a PERT network)

which allows for probabilistic repetition of activities (i.e.,

activity rework). When rework is allowed, estimating the

process duration and variance becomes difficult. Most

existing literature refers to the use of simulation in such

scenarios; however, few analytical methods exist to solve

this problem. One such method is called the reward Mar-

kov chain (RMC) which only considers sequential activity

networks and which we use as a starting point in our

proposed method. In this paper, we extend the RMC

method to solve mixed networks (i.e., a combination of

parallel and sequential activities) and more complicated

practical issues that may arise in PD environments,

specifically coupled activities and parallel rework.

Keywords Project networks � Product development �
Activity rework � Iteration � Design structure matrix (DSM)

1 Introduction

Product development (PD) is the process of developing

new products and services in order to meet the demand and

expectations of evolving customer needs (Ulrich and

Eppinger 2008). An essential element for the success of PD

projects is to meet customer needs on timely basis

(Takeuchi and Nonaka 1986; Hum and Sim 1996; Majava

et al. 2013). When a target launch date is set for a product,

the company must ensure meeting such deadline or else it

risks losing substantial market share (Hendricks and

Singhal 1997; Herm 2013). Setting a suitable deadline

requires calculating the expected completion time (and

variance) for the PD project. The problem arises not only

because some of these activities have stochastic durations,

but also some activities may be repeated several times due

to the existence of feedback dependencies with the poten-

tial to generate rework; i.e., the repetition of already fin-

ished or completed activities (Browning and Ramasesh

2007; Unger and Eppinger 2009). Feedbacks are a typical

characteristic of any complex design and development

project and a potential source of design iterations, which

can account for one-third to two-thirds of the project

duration and cost (Osborne 1993; Meier et al. 2007). This

fact makes the study of project management in the presence

of iteration, as suggested in this paper, a central issue for

the engineering design community.

When feedback does not exist, well-known techniques

such as CPM, critical path method and PERT, program

evaluation and review technique, are normally used to

determine sufficiently accurate distributions for project

duration (Mantel et al. 2007; Pinto 2012). In the presence

of feedback, simulation techniques have been used for

finding the accurate distribution of a PD project duration

(Browning and Eppinger 2002; Cho and Eppinger 2005;

Abdelsalam and Bao 2006). However, few analytical

techniques have also been proposed such as the reward

Markov chain (Smith and Eppinger 1997) and signal flow

graph (Eppinger et al. 1997) to estimate PD project dura-

tion, but can only tackle limited activity network structures,

specifically sequential networks. The purpose of this paper
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is to find the expected duration and variance of any PD

project network using analytical methods.

We present an approach to efficiently and accurately

calculate the mth moment of the duration of a stochastic

network with feedback. The sources of randomness are the

durations of the individual activities and the probability of

feedback after completing an activity. A design structure

matrix (DSM) representing the dependency or information

flow between activities provides valuable insight when

determining the sequence of activity execution and provides

managerial insights on which activities/teams need to be

grouped or supervised collectively. The objective of this

work is to investigate the duration of a network given the

information flow and rework proportions via a DSM. This

work bridges the literature onDSMand projectmanagement.

The method presented in this paper transforms a project

network with feedback into a traditional project network

(i.e., without feedback) by fitting an approximate proba-

bility distribution to the rework resulting from the initial

completion of every activity. We refer to this approach by

cycle elimination (CE) which results in an acyclical net-

work for which classical project scheduling techniques

such as PERT/CPM can be utilized. The complexity

involved in simulating the resulting simplified network

decreases significantly when compared to the original

network or DSM.

The rest of the paper is organized as follows. In the next

section, a detailed literature review is presented. The pro-

posed base methodology, which is called CE approach, is

discussed in Sect. 3. We investigate a fully sequential

network, where a linear set of equations is presented to

solve for the moments of the network duration. In Sect. 4,

we extend our methodology to allow for mixed networks,

which include a mixture of sequential and parallel activi-

ties. In Sect. 5, we introduce another feature to the method

which considers coupled activities in the network. Sec-

tion 6 relaxes the assumption of sequential rework and

proposes an extension to the base methodology which

allows for parallel rework. A case study is presented in

Sect. 7 to illustrate the proposed methodology. Finally, a

summary discussion, future recommendations and conclu-

sions are presented in Sect. 8.

2 Literature review

As mentioned earlier, product development (PD) project

networks differ from traditional project networks mainly

due to the existence of feedback dependencies with the

potential to generate rework (Browning and Ramasesh

2007). Incorporating rework potential into the project

network makes the task of determining the project duration

difficult (Karniel and Reich 2009). Few analytical and

simulation techniques exist in the literature dealing with

the analysis of iterative projects; however, these techniques

suffer from serious limitations. In this section, we discuss

these approaches and their limitations, but first we start by

introducing the design structure matrix (DSM) as an

alternative approach to compactly represent project

networks.

The design structure matrix (DSM) was developed to

represent networks with feedback (Steward 1981; Brown-

ing 2001; Yassine and Braha 2003). Three types of rela-

tionships are represented in a DSM, parallel, sequential and

coupled (Eppinger et al. 1994; Yassine 2004). Figure 1

shows the network representations versus the DSM repre-

sentations for these three configurations. The ‘‘X’’ mark in

the DSM indicates the presence of a predecessor relation-

ship (arrow in the graph representation) between two dif-

ferent activities. This representation can be extended to an

n� nð Þ matrix, i.e., network with n activities. A DSM with

10 activities is considered in Fig. 2. An ‘‘X’’ at the inter-

section of Column 2 and Row 4 infers a connection

between Activity 2 and Activity 4; specifically, Activity 4

requires input from Activity 2 or Activity 2 is the prede-

cessor of Activity 4. If the activities are executed in the

order they appear in the DSM, then all elements above the

diagonal indicate the possibility of feedback after com-

pleting an activity for the first time. As such, Fig. 2 shows

Activities 1, 2 and 3 as sequential activities, Activities 3

and 4 as parallel activities, Activities 5 and 6 are coupled,

and Activities 7, 8 and 9 as also coupled.

To quantify the possibility of feedback, a rework prob-

ability DSM substitutes an ‘‘X’’ with the probability of

rework. Similarly, a rework proportion DSM substitutes an

‘‘X’’ with the rework impact or the proportion of rework to

Fig. 1 Configurations that

characterize a system (adapted

from Yassine 2004)
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be performed (Browning and Eppinger 2002). The duration

for each activity is usually entered in the diagonal

elements.

Smith and Eppinger (1997) present an approach which

considers a Markovian representation for a sequential PD

network with feedback and solves a modified form of

Gaussian elimination to find the expected duration. Our

proposed approach, in this paper, builds on the sequential

and iterative model of Smith and Eppinger (1997), where

we utilize a similar definition of a stage. A stage in Smith

and Eppinger (1997) corresponds to the nominal-comple-

tion of an activity along with the resulting rework. A

reward Markov chain (RMC) approach is utilized to

determine the expected duration of the network, where

neither parallel work/rework, nor stochastic activity dura-

tions are considered.

Smith and Eppinger (1997) approach works as follows.

Let RI be the remaining duration of the network given that

we just started activity I for the first time, for i ¼ 1; . . .; n:

The approach begins with the final node N and calculates

the expected time to finish the project given that the project

is currently at this node, E rn½ �. The next step excludes the

final node n and calculates E rn�1½ �. Similarly, E ri½ �; is

calculated for i ¼ 1; . . .; n and the expected duration of the

entire network is set to
Pn

i¼1 E ri½ �: This approach assumes

that activity execution is sequential and parallel work is not

allowed. That is, the completion of an activity cannot result

in the immediate rework of two or more activities in par-

allel (i.e., only one activity at a time is reworked), and the

event of reworking a task is mutually exclusive from the

event of reworking any other task. The completion of an

activity for the first time can result in a stream of upstream

activities to be reworked sequentially.

Along similar lines, Eppinger et al. (1997) consider a

deterministic network where signal flow graph (SFG)

analysis is utilized to compute the mean and variance of the

network duration. The base model is represented by a

signal flow network where activities are represented by

nodes. In such a network, the logical relationship at the exit

from a node is an OR relationship. As a result, it is not

possible to model an activity having more than one

immediate predecessor. Extensions which include random

activity durations or parallel rework are also addressed.

Stochastic durations are achieved by allowing an activity to

take on discrete durations with associated probabilities.

Every possible discrete duration, which an activity can

assume, results in an additional network state. Extensions

also allow for parallel rework where combinations of

activities being reworked simultaneously are denoted by

additional states. A path is defined by a sequence of

activities to be executed sequentially where the same

activity can appear more than once. Parallel rework of

activities is also considered in terms of paths where every

path is denoted by a state and assigned a deterministic

duration and a probability.

The signal flow graph (SFG) approach and the reward

Markov chain (RMC) of Smith and Eppinger (1997) are

equivalent and calculate the same expected network dura-

tion (Pinkett 1998). More recent approaches consider

merging the DSM approach with the Graphical Evaluation

Review Technique (GERT), Martinez Leon et al. (2013),

where a framework is also presented to quantify the impact

of looping.

Browning and Eppinger (2002), Cho and Eppinger

(2005) and Abdelsalam and Bao (2006) develop a simu-

lation algorithm to determine the expected duration and

cost for a PD project. Only minor differences exist between

these various DSM simulation models. The core difference

lies in two aspects of the simulation: the sampling of the

activity durations from known distributions and the mod-

eling of the dynamic progress of the project.

Browning and Eppinger (2002) simulation approach

utilizes two inputs: the rework probabilities and propor-

tions (represented by two DSMs). Every iteration within

the simulation identifies the set of active activities as being

the most upstream and not requiring information from any

unfinished upstream activities. The active activity with the

shortest duration is reworked, and the residual work of the

remaining activities is shortened accordingly. The resulting

rework is evaluated (which might trigger rework on com-

pleted upstream activities), and the set of active activities is

updated as well as the proportion of completed work. The

simulation approach assumes that the set of active activities

are adjacent within the DSM sequence. The approach also

requires that all activities which are upstream relative to

the active set of adjacent activities and input information to

the active set have been completed. A drawback for such

an approach is that coupled activities that share information

cannot both be simultaneously part of the set of active

  1 2 3 4 5 6 7 8 9 10 

1 

2 X 

3   X 

4   X   

5   X   X    X         

6       X X 

7 X          X     X   

8 X     X   X 

9             X X 

10 X X   X       X X 

Sequential 
Activities 

Parallel 
Activities 

Coupled 
Activities 

Fig. 2 10 9 10 DSM
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activities. One of the coupled activities has to wait for the

other to be completed.

The simulation approach of Browning and Eppinger

(2002) accounts for the entire state of the network at every

iteration by defining a work vector which identifies the

work remaining for every activity. An advantage of such an

approach is that it accounts for the dependencies between

activities across different stages. Our approach assumes

that the duration of a stage is independent of other stages.

This allows for network decomposition where each stage is

analyzed independently within a network structure. This

significantly reduces the computational complexity of

analyzing the entire network which is mainly a result of the

large number of possible states which identify the state of

the network at any point in time.

Existing approaches to analyzing the resulting stochastic

networks with no feedback include the classical CPM/

PERT and Monte-Carlo simulation approaches (Pinto

2012). In the case study, in this paper, we selected a

Monte-Carlo simulation approach which is relatively

straightforward in a no feedback activity network (Mantel

et al. 2007). Simulating a stochastic network with feedback

as is the case in Browning and Eppinger (2002) is much

more computationally complex where at any point in time

the network is defined by the set of active activities as well

as the residual times of the activities.

Utilizing our proposed approach maintains the prece-

dence relationships within the network which allows a

manager to view the project schedule as an activity net-

work with no feedback. Consequently, this preserves the

advantages of using an activity network in project man-

agement which include easily identifiable milestones,

facilitates the communication of time estimates relating to

start and end dates of stages, among other well-established

advantages of activity network techniques.

3 The proposed cycle elimination (CE) method

This paper investigates the duration of a stochastic and

iterative project network and assumes the following inputs

are provided: (1) the feedback probabilities and rework

proportions via two DSMs; (2) the deterministic activity

duration or the probability distributions of activity durations;

and (3) the sequence of activity execution. Notice that the

sequence of executing activities can either be suggested from

the DSM structure (Yassine and Braha 2003; Yassine 2004),

or from a classical network representation such as an activ-

ity-on-node (AON) representation (Pinto 2012).1

An iterative PD network allows an activity to be

reworked (i.e., repeated) multiple times. We refer to the

process of completing an activity for the first time by the

nominal-execution of the activity. Denote the time to

complete Activity i for the first time (nominal-time of

Activity i) by TI. We make the following assumptions: (1)

If Activity i is an immediate predecessor for Activity j,

then we cannot begin working on Activity j unless the

nominal-execution of Activity i is completed along with

the rework resulting from the nominal-execution of

Activity i; and (2) the rework resulting from the nominal-

execution of an activity can result in a succession of

upstream activities to be reworked where rework is

sequential. Notice that although rework is assumed to be

sequential, the sequence in which the nominal-execution of

the activities occurs is not necessarily sequential.

Assumptions i and ii constitute the basis of our approach

where the nominal-execution of an activity along with the

feedback resulting from the nominal-execution is aug-

mented to form a stage. An important characteristic of a

stage is that its completion does not result in feedback to

other activities or stages. In this section, we present the

steps of the approach in detail on a network where the

nominal-execution of activities is sequential. We extend

our approach, in Sect. 4, to the general case of mixed

networks, where the nominal-execution of activities

includes activities that can be performed in parallel.

3.1 Sequential networks

In this paper, we refer to a network as sequential if the

nominal-execution of the activities is performed sequen-

tially and the order in which activities appear in a DSM

determines the sequence of the nominal-execution of the

activities. Consider a sequential network with n activities

where the nominal-time of Activity I is TI for i ¼ 1; . . .; n,

and the nominal-execution of Activity i can result in

rework in upstream activities. In this paper, we represent

the feedback probabilities and rework proportions by two

(n 9 n) DSMs, DSM1 and DSM2, respectively. We utilize

the commonly used DSM notation where the entries of the

ith column of DSM1 represent the rework probabilities

resulting from the nominal-completion of Activity i. If Pij
is the probability of reworking Activity j after completing

Activity i, then Pij = DSM1(j, i). Similarly, Wij is the

proportion of rework that is required on Activity j after

performing Activity i, Wij = DSM2(j, i). In this work, we

set PII = 0 and WII = 0 for i ¼ 1; . . .n, and we assume any

immediate feedback (i.e., self-iteration) is accounted for by

the probability distribution of the activity. The mean and

standard deviation of the nominal-completion times for

each activity are presented in the diagonal entries of the

1 In many DSM cases, several alternative sequences might be

possible and reasonable, depending on the feedback structure in the

network.
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DSM1 and DSM2 matrices, respectively; i.e., DSM1(i,

i) = E[ti] and DSM2(i,i) = Stdev(ti) for i = 1,…, n.

Define Stage k as the combination of performing the

nominal-execution of Activity k and all the rework result-

ing from the nominal-execution of Activity k before pro-

ceeding to Activity K ? 1, for k ¼ 1; . . .n. If Tk is the time

required to complete Stage k, then:

TK ¼ TK þ RK ; for k ¼ 1; . . .; n: ð1Þ

where Rk is the time required to complete the rework

resulting from Activity k before proceeding to Activity

k þ 1. A six-stage network is represented in Fig. 3 where a

circle node represents the nominal-execution of an activity

with duration, TK, and a square node represents rework

with duration RK, for k ¼ 1; . . .; 6. Stage k requires a square
rework node if there exists at least one nonzero entry above

the diagonal in Column k of the probability DSM. Such a

representation accounts for rework within a stage, and the

moments of the duration of each stage,E Tm
k

� �
for m� 1, are

calculated independently.

Therefore, the mth moment of the duration to complete

Stage k is:

E Tm
k

� �
¼ E Tm

k jno rework
� �

Prob no reworkð Þ

þ
Xk

i¼1

E½Tm
k jreworki�Prob reworkið Þ ð2Þ

where E Tm
k jno rework

� �
and E½Tm

k jreworki� are the mth

moments of the duration of Stage k conditioned on

reworking Activity i. Equation 2 assumes that one activity

is reworked at a time (parallel rework is not allowed) and

the event of reworking an upstream activity is mutually

exclusive from the event of working any other upstream

activity. Consequently, the sum of the non-diagonal entries

in any column of the probability DSM cannot exceed 1.

Let Rij;k be the remaining time required to complete

Stage k given that Activity i has just been reworked and

resulted in further rework in Activity j. At Stage k, the mth

moment of Rm
ij;k is calculated by conditioning on the

probability of having no rework after Activity j is reworked

or conditioning on reworking Activity u after j has been

reworked for u ¼ 1; . . .; k. The mth moment of Rij;k (for

k = 1,…,n; and i, j = 1,…,k) is:

E Rm
ij;k

h i
¼ E Rm

ij;k

� �m
jno rework

h i
Probðno rework)

þ
Xk

u¼1

E Rm
ij;k

� �m
jreworku

h i
Prob reworkuð Þ

¼ E ðWijtjÞm
� �

Probðno reworkÞ

þ
Xk

u¼1

E ðWijtj þ Rju;kÞm
� �

Prob reworkuð Þ:

) E Rm
ij;k

h i
¼ E ðWijtjÞm

� �
1�

Xk

u¼1

Pju

 !

þ
Xk

u¼1

E ðWijtj þ Rju;kÞm
� �

Pju: ð3Þ

Similarly Eq. (2) is expressed as,

E½Tm
k � ¼ E½tmk �Probðno reworkÞ

þ
Xk

u¼1

E ðtk þ Rku;kÞm
� �

Prob reworkuð Þ:

) E½Tm
k � ¼ E½tmk � 1�

Xk

u¼1

Pku

 !

þ
Xk

u¼1

E ðtk þ Rku;kÞm
� �

Pku: ð4Þ

The random variable Rku;k represents the duration of the

rework generated by completing Activity k given that

Activity u is the first upstream activity to be reworked. The

duration Rku;k is incurred with probability Pku where
Pk

u¼1 Pku � 1; and 1�
Pk

u¼1 Pku

� �
is the probability of no

rework after completing Activity k for the first time.

At Stage k, for k ¼ 1; . . .; n, the starting (k 9 k) partition

only, of matrices DSM1 and DSM2, is utilized. Although

the entries of the probability and rework proportion DSMs

are not a function of the stage, it is useful to note that it is

possible to dynamically adjust DSM1 and DSM2 at each

stage. This can be accounted for in Eqs. (3) and (4) by

simply replacing PIJ and WIJ by PIJ;K and WIJ;K, respec-

tively, for all k ¼ 1; . . .; n and i; j ¼ 1; . . .; k. Dynamically

changing the matrices DSM1 and DSM2 might be neces-

sary if the nominal-completion of an activity indirectly

alters the rework probabilities and proportions of upstream

activities.

We summarize the implementation of the CE approach

for a sequential network as follows:

Step 1: If column i of the probability DSM has at least

one nonzero entry above the diagonal, then a square

node is inserted after Activity i in the AON network or

the DSM for i = 1,…,n.

Step 2: Feedback originating from Activity i is elimi-

nated, and Stage i is now composed of a circle node

Fig. 3 Stage network
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representing the nominal-execution of Activity i and a

square node representing the rework resulting from the

nominal-execution of Activity i before proceeding to

subsequent activities.

Step 3: The first two moments of the stage durations,

E½Ti� and E½T2
i �, for i = 1,…,n, are calculated by solving

the system of linear equations in (3) and (4) for m = 1,

2. Note that the mean and variance of the rework nodes

(square nodes) are calculated as E½Ri� ¼ E½Ti� � E½ti�
and VarðRiÞ ¼ VarðTiÞ � VarðtiÞ, respectively, for

i = 1,…,n.

Step 4: The mean and variance of the entire project

network duration are calculated by summing the

expected duration and variance,
Pn

i¼1 E Ti½ � and
Pn

i¼1 Var Ti½ � , respectively, over all stages.

Next, we present the system of linear equations for the

first two moments of the network duration. An algorithm to

efficiently generate a matrix representation of the system of

linear equations to compute the first two moments is pre-

sented in ‘‘Appendix.’’

3.1.1 Calculating the expected duration

The expected duration at Stage K can be calculated using

Eqs. (3) and (4) for m = 1. Equation (3) requires solving a

set of k2 linear equations. For m ¼ 1 and for k ¼ 1; . . .; n,
i; j ¼ 1; . . .; k, Eqs. (3) and (4), respectively, are reduced to,

E½Rij;k� ¼ E½Wijtj� 1�
Xk

u¼1

Pju

 !

þ
Xk

u¼1

E½Wijtj þ Rju;k�Pju

¼ E½Wijtj� þ
Xk

u¼1

E Rju;k

� �
Pju ð5Þ

E½Tk� ¼ E½tk� 1�
Xk

u¼1

Pku

 !

þ
Xk

u¼1

E½tk þ Rku;k�Pku

¼ E tk½ � þ
Xk

u¼1

E½Rku;k�Pku

ð6Þ

At each Stage K, the system of linear Equations in (5)

and (6) is represented by the following compact matrix

representation,

AX1 ¼ b1 ð7Þ

where A is a k2 þ 1Þ � ðk2 þ 1ð Þ square matrix, and X1 and

b1 are ðk2 þ 1Þ � ð1Þ. The first k2 entries of X1 correspond

to the expected rework as denoted by the right-hand-side

expression of Eq. (6). The K2 ? 1 entry of X1 corresponds

to E Tk½ �. We present two algorithms in ‘‘Appendix’’ to

efficiently populate the entries of matrices A and b1,

respectively. The expected duration of the entire sequential

network is sum of the expected durations of all the stages.

The expected network duration is obtained by calculating
Pn

i¼1

E Ti½ �:

3.1.2 Calculating the variance

The variance of the time to complete Stage k is,

Var Tkð Þ ¼ E T2
k

� �
� E2 Tk½ �: ð8Þ

Here we make the assumption that the stage durations are

independent. The variance of the entire network is:

Var Projectð Þ ¼
X

Var Tkð Þ: ð9Þ

The second moment, E T2
k

� �
, at Stage K, is calculated

using Eq. (4) for M = 2 and solving Eq. (3) requires

solving the set of K2 linear equations. For m ¼ 2, Eqs. (3)

and (4), respectively, are,

E½R2
ij;k� ¼ E ðWijtjÞ2

h i
1�

Xk

u¼1

Pju

 !

þ
Xk

u¼1

E ðWijtj þ Rju;kÞ2
h i

Pju

¼ E½ðWijtjÞ2� þ
Xk

u¼1

E 2WijtjRju;k þ R2
ju;k

h i
Pju

ð10Þ

E½T2
k � ¼ E½t2k � 1�

Xk

u¼1

Pku

 !

þ
Xk

u¼1

E ðtk þ Rku;kÞ2
h i

Pku

¼ E½t2k � þ
Xk

u¼1

E 2tkRku;k þ R2
ku;k

h i
Pku

ð11Þ

The following system of linear equations is solved to

obtain the second moment of the duration of Stage k, E½T2
k �:

AX2 ¼ b2; ð12Þ

where A is a k2 þ 1Þ � ðk2 þ 1ð Þ square matrix, and X2

and b2 are ðk2 þ 1Þ � ð1Þ. Notice that the matrix A is

obtained when solving for the expected duration of the

Stage k. The algorithm to obtain b2 is presented in

‘‘Appendix.’’ The k2 þ 1 entry of X corresponds to E½T2
k �.

Note that the activity duration, ti, is a random number

where the first two moments E½ti� and E½t2i � are assumed

to be known.

The k2 þ 1 entry of X2 corresponds to E½T2
k �. The vari-

ance of the duration of the entire network is calculated as

the sum of the variances of all stages. Obviously, the

assumption made here is that the duration of Stage i is

independent of the duration of Stage J, for i; j ¼ 1; . . .n and

i 6¼ j: The variance of the entire network duration is

obtained by calculating
Pn

i¼1 Var Ti½ �: Next, we present an

example to illustrate the stage computations for a sequen-

tial network with rework.
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3.2 Example 1: Sequential network

Consider a sequential network with rework probabilities

and stochastic activity durations. The DSM for the corre-

sponding rework probabilities and proportions is presented

in Fig. 4. The mean and standard deviation for each

activity are presented in the diagonal entries of the rework

probabilities and proportions matrices, respectively, Fig. 4.

Feedback is eliminated by calculating the mean and

variance of the time to complete each of the six stages,

E½Tk� and VarðTkÞ for k = 1, 2,…, 6. As an illustration on

how the algorithm operates, we present the calculations of

the mean of the first four stages: E½T1�, E½T2� E½T3� and
E½T4�. The time to complete Stage 1 is simply T1, since the

nominal-completion of Activity 1 does not result in rework.

This results in E½T1 ¼ E½t1� � ¼ 74: The completion of Stage

2 considers the following DSM partitions, Fig. 5.

Notice that the nominal-completion of Activity 2 does

not result in feedback to Activity 1 which is the only

upstream activity at this stage. The time to complete Stage

2 is simply T2, and E½T2�¼ E½t2� ¼ 20: The expected time

to begin work on Activity 3 for the first time (i.e., nominal-

execution) is E½T1�þE½T2� ¼ 94: Similarly, solving for the

completion time of Stage 3 considers the following DSM

partitions, Fig. 6. The expected time to complete the first

three stages is E½T1�þE½T2� þ E½T3� ¼ 166:

At Stage 4, the following DSM is considered, Fig. 7,

where completing Activity 4 for the first time can result in

rework in Activity 2 which in turn can result in rework in

Activities 3 and 4, Fig. 8.

The nominal-completion of Activity 4 can result in

rework in Activity 2 with probability P42 ¼ 0:31. This is

represented by the following equation,

E½T4� ¼ E½t4� þ P42E½R42;4� ¼ 41þ 0:31� E½R42;4�; ð13Þ

where R42;4 represents the amount of rework required to

complete Stage 4 given that Activity 4 has just been

completed and requested rework from Activity 2.

Reworking Activity 2 can result in further rework in either

Activity 3 or 4, but not both (as depicted by P23 and P24).

Notice that this is a result of the sequential rework

assumption.2 Note that although P35 = 0.29, reworking

Activity 5 is obviously not considered at Stage 4 since the

nominal-execution of Activity 5 has not been initiated.

Reworking Activity 5 is only considered at Stages 5 and 6.

Solving for the expected value of R42;4 requires solving the

following system of 4 equations and 4 unknowns:

E½R42;4� ¼ E½W42t2� þ P23E½R23;4� þ P24E½R24;4�
¼ 0:30� E t2½ � þ 0:32� E½R23;4� þ 0:55� E½R24;4�

ð14Þ

E½R23;4� ¼ E½W23t3 þ P34E½R34;4

¼ 0:27� E½t3� þ 0:23� E½R34;4� ð15Þ

E½R24;4� ¼ E½W24t4� þ P42E½R42;4�
¼ 0:86� E½t4� þ 0:31� E½R42;4� ð16Þ

E½R34;4� ¼ E½W34t4� þ P42E½R42;4�
¼ 0:18� E½t4� þ 0:31� E½R42;4� ð17Þ

This results in a value of E½R42;4� ¼ 39:86. The expected

duration of Stage 4 becomes, E½T4� ¼ 41þ 0:31�
39:86 ¼ 53:36. The expected time to complete Stage 4 and

all the resulting rework before proceeding to Activity 5 for

Rework Probabili�es (DSM1)  Rework Propor�ons (DSM2)
1 2 3 4 5 6 1 2 3 4 5 6 

1 74 0.40 1 37 0.35
2 0.27 20 0.31 2 0.75 10 0.30
3 0.25 0.32 72 0.50 3 0.24 0.27 36 0.48
4 0.55 0.23 41 4 0.86 0.18 20.5 
5 0.29 0.17 36 5 0.72 0.15 18 
6 0.77 59 6 0.61 29.5 

Fig. 4 DSM—Example 1

(DSM1) (DSM2) 

1 2 1 2 
1 74 1 37 
2 0.27 20 2 0.75 10 

Fig. 5 DSM at Stage 2—Example 1

(DSM1) (DSM2)

1 2 3 1 2 3 
1 74 1 37 
2 0.27 20 2 0.75 10 
3 0.25 0.32 72 3 0.24 0.27 36 

Fig. 6 DSM at Stage 3—Example 1

(DSM1) (DSM2)

1 2 3 4 1 2 3 4 
1 74 1 37 
2 0.27 20 0.31 2 0.75 10 0.30
3 0.25 0.32 72 3 0.24 0.27 36 
4 0.55 0.23 41 4 0.86 0.18 20.5 

Fig. 7 DSM at Stage 4—Example 1

2 Setting P24 ¼ 0 (i.e., a purely sequential network where rework is

also sequential), there is no need to make this assumption.
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the first time is E½T1�þE½T2� þ E½T3�þE½T4� ¼ 74þ 20

þ72þ 53:36 ¼ 219:36:

Similarly, the second moment of the duration of Stage 4

can be calculated by the following equation,

E T2
4

� �
¼ E t24

� �
þ P42E R2

42;4

h i
þ P42E½2t4R42;4�

¼ 2101:25þ 0:31� E R2
42;4

h i
þ 0:31 2� 41� 39:86ð Þ

;

ð18Þ

Solving for the second moment of R42;4 requires solving the

following system of 4 equations:

E½R2
42;4� ¼ E½ðW42t2Þ2� þ P23E½2W42t2R23;4� þ P23E R2

23;4

h i

þ P24E½2W42t2R24;4�þP24E½R2
24;4�

ð19Þ

E½R2
23;4� ¼ E½ðW23t3Þ2� þ P34E½2W23t3R34;4�

þ P34E½R2
34;4�

ð20Þ

E½R2
24;4� ¼ E½ðW24t4Þ2� þ P42E½2W24t4R42;4�

þ P42E½R2
24;4�

ð21Þ

E½R2
34;4� ¼ E½ðW34t4Þ2� þ P42E½2W24t4R42;4�

þ P42E½R2
24;4�

ð22Þ

This results in E R2
42;4

h i
¼ 2493:8 and

Var T4ð Þ ¼ E T2
4

� �
� E T4½ �2¼ 1040:5. The variance of the

time to complete Stage 4 and all the resulting rework

before proceeding to Activity 5 for the first time is VarðT1Þ
þ VarEðT2Þ þ VarðT3Þ þ VarðT4Þ ¼ 1369:0 þ 100:0 þ
1296:0þ 1040:5 ¼ 3805:5.

Similarly, we solve for the first two moments of Stages 5

and 6 and we obtain, E½T5� ¼ 64:48, E½T6� ¼ 83:20,

VarðT5Þ ¼ 1980:0; and VarðT6Þ ¼ 3022:9: Adding the

mean and variance at each stage, we obtain the mean and

standard deviation of the entire network as 367.04 and

93.85, respectively. Table 1 summarizes the results of this

example.

For a system where the sequential rework assumption

holds (i.e., activities cannot be reworked in parallel) and

the nominal-execution of activities is performed sequen-

tially, our proposed method provides numerically exact

results for the mean and variance of the network comple-

tion time.

Recent research by Braha and Bar-Yam (2007) has

shown that the underlying network structure of a PD net-

work can provide useful information about its performance.

Additionally, they have also shown that real-world PD

networks indeed deviate from sequential structures; many

of these networks exhibit the ‘‘small world’’ property and

follow a ‘‘scale-free’’ distribution (for the nodal degrees).

Although the sequential work and rework assumption,

made in Sect. 3, is useful to simplify the calculations of the

various moments for project duration, this assumption must

be relaxed to be able to properly capture the underlying

network structure of a PD projects. Accordingly, Sect. 4

considers networks where the nominal-completion of

activities is not necessarily sequential. Section 6 addresses

the complexity involved in relaxing the sequential rework

assumption, and we present approximations to analyze

networks with parallel rework.

4 Solving mixed activity networks

In this section, we consider mixed networks where nomi-

nal-execution of activities is not necessarily sequential.

However, the finish to start relationship between activities

can be inferred from the DSM (as illustrated in Fig. 2) and

easily represented by the commonly used AON represen-

tation. If there is no feedback and the activity durations are

deterministic, then the project’s duration can be calculated

by the critical path method (CPM). In the case of no

feedback but the duration of the activities are stochastic,

PERT can be used or the AON network can be simulated

efficiently to obtain accurate point estimates (Mantel et al.

2007; Pinto 2012). Eliminating feedback from a mixed

Table 1 Stage durations (Example 1)

Stage i Nominal-duration Rework duration Stage duration

E½ti� Var½ti� E½Ri� Var½Ri� E½Ti� Var½Ti�

1 74 1369 0 0 74 1369

2 20 100 0 0 20 100

3 72 1296 0 0 72 1296

4 41 420.25 12.36 620.3 53.36 1040.5

5 36 324 28.48 1655.5 64.48 1979.5

6 59 870.25 24.20 2152.7 83.20 3022.9

Fig. 8 Cycle elimination at Stage 4
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network significantly reduces the complexity involved in

analyzing the network. This serves as a motivation behind

applying the CE approach on a mixed network to obtain an

approximate acyclic AON network (i.e., with no feedback).

Implementing the CE approach on a mixed network is

comparable to the sequential case presented in Sect. 3

where a stage denotes the nominal-execution of an activity

as well as the resulting rework that is performed on

upstream activities before proceeding to subsequent stages.

Again, the duration of Stage k is the time to complete

Activity k for the first time, ti, in addition to the time to

complete the resulting upstream rework, Rk. Also, the

rework resulting from the nominal-execution of an activity

is represented by a square node.

However, in the mixed network case, the completion of

a stage can initiate the nominal-execution of more than one

subsequent stage in accordance to the AON/DSM prece-

dence relationships. The CE approach preserves the

sequence of the nominal activity execution and eliminates

feedback by inserting a square node following an activity

which can result in reworking upstream activities. The

rework associated with the nominal-execution of an

activity is also assumed to be performed sequentially. This

assumption allows us to utilize Eqs. (5) and (6) to calculate

the first moments of the stage durations. Similarly, due to

the sequential rework assumption, Eqs. (10) and (11) are

solved to obtain the second moments of the stage durations.

The CE approach for mixed networks is similar to the

sequential approach, but excludes Step 4 where the mean

and variance of the network duration are obviously not

obtained by simply summing the mean and variance at each

stage. As stated earlier, the motivation behind imple-

menting the CE approach for mixed networks is to trans-

form a network with feedback into a no feedback network.

This is achieved by fitting a distribution to the first two

moments of the rework at each stage. So Step 4 is replaced

by:

Step 4: An approximate probability distribution is fitted

to the first two moments of the rework duration RI, for

i = 1,…,n.

Notice that Step 4 is required if the network is to be

analyzed via Monte-Carlo simulation; otherwise, the CE

approach results in an approximate stochastic network with

no feedback with known mean and variance at every node.3

Obviously, more accurate approximate distributions can be

obtained by fitting higher-order moments which can be

calculated by solving the system of linear equations of (3)

and (4) for m[ 2.

4.1 Example 2: Mixed networks

We consider the probability and rework DSMs of Example

1, but assume that reworking Activity 2 does not result in

rework in Activity 3 and reworking Activity 3 does not

result in rework in Activity 4 (i.e., P23 = W23 = 0 and

P34 = W34 = 0). The resulting probability and rework

proportion DSMs are presented in Fig. 9.

According to the DSM of Fig. 9, Activity 1 is the pre-

decessor for Activities 2 and 3 and Activity 2 is the pre-

decessor for Activity 4. However, Activity 3 does not

require information from Activities 2 and 4. Therefore, the

nominal-execution of Activity 3 can be performed in par-

allel with the nominal-execution of Activity 2 or 4. Fur-

thermore, Activities 3 and 4 are both the predecessors of

Activity 5, and finally Activity 5 is the predecessor of

Activity 6. Figure 10 depicts an AON network which

illustrates the sequence in which the nominal-execution of

the activities is performed according to the DSM model.

According to the DSM of Fig. 9, Activities 4, 5 and 6

have at least one nonzero entry above the diagonal.

Accordingly, the nominal-execution of Activities 4, 5 and 6

can result in feedback. Feedback is eliminated by imple-

menting Step 1 of the CE method where a square node is

inserted after Activities 4, 5 and 6, Fig. 11.

The network is composed of six stages where Stages 4, 5

and 6 have a rework component in addition to the nominal-

execution time. The expected duration of Stages 1, 2 and 3

are 74, 20 and 72, respectively (Fig. 9). At Stage 4, the

DSM of Fig. 9 is partitioned to include the first four

activities resulting in the DSM partition shown in Fig. 12.

Figure 13 illustrates the sequence of feedback that might

(DSM1) (DSM2)

1 2 3 4 5 6 1 2 3 4 5 6 
1 74 0.40 1 37 0.35
2 0.27 20 0.31 2 0.75 10 0.30
3 0.25 72 0.50 3 0.24 36 0.48
4 0.55 41 4 0.86 20.5 
5 0.29 0.17 36 5 0.72 0.15 18 
6 0.77 59 6 0.61 29.5 

Fig. 9 DSM—Example 2

3 In the case study described in Sect. 7, the resultant stochastic

project network is analyzed via Monte-Carlo simulation (Sea 2001;

Davis 2008), where a Lognormal distribution is fitted for the stage

duration with mean and variance E[Tk] and Var(Tk)[Rk
2] for

k = 1,…,n.
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occur when the nominal-execution of Activity 4 is

completed.

At Stage 4, Activity 4 can result in the first-order rework

in Activity 2 which in turn can result in the second-order

rework in Activity 4 and so on. The expected duration for

Stage 4 is calculated using the following equation.

E½T4� ¼ E½t4� þ P42E½R42;4� ¼ 41þ 0:31� E½R42;4�; ð23Þ

Solving for the expected value of R42;4 requires solving the

following system of linear equations.

E½R42;4� ¼ E½W42t2� þ P24E½R24;4�
¼ 0:30� E½t2� þ 0:55� E½R24;4� ð24Þ

E½R24;4� ¼ E½W24t4� þ P42E½R42;4�
¼ 0:86� E½t4� þ 0:31� E½R42;4� ð25Þ

Implementing Step 3 of the CE algorithm, the mean and

variance of the rework resulting from completing Stage 4

are 9.49 and 494, respectively. Similarly at Stage 5, the

DSM is partitioned to include the first five activities only.

Implementing Step 3 of the CE algorithm, the mean and

variance of the rework resulting from completing Stage 5

are 24.61 and 1,219, respectively.

The complete DSM is considered when evaluating the

rework resulting from the nominal-execution of Activity 6.

The sequence of feedback as a result of completing

Activity 6 is illustrated in Fig. 14. It is worth noting that

the nominal-completion of Activity 6 can result in rework

in Activity 1 which in turn can result in rework in Activ-

ities 2 or 3, but not both. Although the nominal-completion

of Activities 2 and 3 can be performed in parallel, the

rework in Activities 2 and 3 (if triggered due to feedback)

cannot be performed in parallel. This is based on the

sequential rework assumption. Implementing Step 3 of the

CE algorithm, the mean and variance of the rework

resulting from completing Stage 6 are 20.28 and 1,417,

respectively.

At Step 3 of the CE algorithm, the mean and variance of

the rework at each stage is added to the corresponding

mean and variance of the nominal-duration. Figure 11

represents the resulting no feedback network with mean

and variance at each stage given in Table 2.

Fig. 10 Sequence of nominal-execution via an AON representation

Fig. 11 Network with rework nodes (Example 2)

(DSM1) (DSM2)

1 2 3 4 1 2 3 4 
1 74 1 37 
2 0.27 20 0.31 2 0.75 10 0.30
3 0.25 72 3 0.24 36 
4 0.55 41 4 0.86 20.5 

Fig. 12 DSM at Stage 4—Example 2

Fig. 13 Rework at Stage 4 (Example 2). Dotted arrows represent

probabilistic feedback/rework

Fig. 14 Rework at Stage 6 (Example 2)
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The CE approach results in an approximate stochastic

network with no feedback with known mean and variance

at every node. Implementing Step 4 of the CE algorithm is

relatively simple since simulating the network in Fig. 11 is

relatively straightforward where the network has two paths,

1–2–4–5–6 and 1–3–5–6, with no feedback.

5 Solving coupled-activity networks

We define coupled activities as a set of activities that are

the predecessors of each other; however, they can be

started together (i.e., there is no obvious execution order).

Note that if the set of activities are nominally sequential as

in Figs. 12 and 13, Activities 2 and 4, then we do not

consider them coupled, but sequential with feedback.

Consider two coupled activities, i and j, where Activity j

appears after Activity i in the DSM. The rework at Stage j

of the CE approach accounts for the rework in Activity i

due to the nominal-completion of Activity j, but the CE

approach does not consider the rework in Activity j due to

the nominal-completion of Activity i. In the case where the

nominal-completion of Activities i and j are performed in

parallel, there is a need to account for the rework in

Activity j due to the nominal-completion of Activity i. To

account for the rework in Activity j, an artificial activity, i0,
is inserted after Activity j in the DSM where completing

Activity i0 results in rework in Activity i with probability of

1. As a result, the rework resulting from Activity i’ cap-

tures the rework generated by completing Activity i and

accounts for reworking Activity j. So the artificial activity,

i’, is inserted after Activity j in the probability and rework

DSMs, and we set Pi0i ¼ Wi0i ¼ 1. The final step is to

replace the rework at Stage i with the rework resulting from

completing the artificial activity, i0.
The purpose behind inserting the dummy activity, i0, is

to capture the rework invoked by reworking Activity i

which also accounts for reworking Activity j. This would

not be possible otherwise since Activity i is considered

upstream relative to Activity j according to the DSM

sequence. The dummy activity achieves this purpose by (1)

appearing after Activity j in the DSM and (2) reworking

100 % of Activity i with certainty, Pi0i ¼ Wi0i ¼ 1: Evalu-

ating the duration of the dummy stage, i0, is equivalent to
revaluating the duration of Stage i where the rework of all

the activities appearing before i0 in the DSM is accounted

for (which now include Activity j).

In the case where n activities are coupled, i.e., the

nominal-completion of the n activities is performed in

parallel and feedback can occur between the n activities, a

similar approach can be implemented where N - 1 artifi-

cial activities are required. Note that the artificial activities

are inserted in the DSM after the coupled block.

5.1 Example 3: Coupled activities in a network

Here we reconsider the probability and rework proportion

DSMs of Example 2 as well as the nominal-execution

sequence, with the added modification of making Activities

2 and 3 coupled. This is implemented by providing P23,

W23, P32 and W32 with positive values. The resulting

probability and rework proportion DSMs are presented in

Fig. 15. Since Activities 2 and 3 are coupled, we insert an

artificial Activity 20 after Activity 3. This is illustrated in

the DSM of Fig. 16.

The rework resulting from Activity 20 captures the

rework generated from the nominal-completion of Activity

2 which also accounts for reworking Activity 3. As a result,

the rework at Stage 3 accounts for the rework in Activity 2

due to completing Activity 3. Also at Stage 20, which fol-

lows Stage 3, the rework in Activity 3 due to the nominal-

completion of Activity 2 is now accounted for. Imple-

menting the CE approach on the DSM of Fig. 16 results in

the stage durations shown in Table 3. The rework resulting

Table 2 Stage durations (Example 2)

Stage i Nominal-duration Rework duration Stage duration

E½ti� Var½ti� E½Ri� Var½Ri� E½Ti� Var½Ti�

1 74 1369 0 0 74 1369

2 20 100 0 0 20 100

3 72 1296 0 0 72 1296

4 41 420 9.49 494 50.49 914

5 36 324 24.61 1219 60.61 1543

6 59 870 20.28 1417 79.28 2287

(DSM1) (DSM2)

1 2 3 4 5 6 1 2 3 4 5 6 
1 74 0.40 1 37 0.35

2 0.27 20 0.54 0.31 2 0.75 10 0.72 0.30
3 0.25 0.32 72 0.50 3 0.24 0.27 36 0.48

4 0.55 41 4 0.86 20.5 
5 0.29 0.17 36 5 0.72 0.15 18 
6 0.77 59 6 0.61 29.5 

Fig. 15 DSM—Example 3
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from completing the artificial Activity 20 replaces the

rework for the nominal-completion of Activity 2.

6 Accounting for parallel rework

The model considered up to this point assumes that rework

generated from the completion of an activity is performed

sequentially. The sequential rework assumption is compa-

rable to the reward Markov chain approach presented by

Smith and Eppinger (1997), where the sum of the off-di-

agonal probabilities in each column of the DSM must be

B1.

For clarity, let P pð Þ denote the probability rework matrix

which allows for parallel rework (i.e., the sum of the off-

diagonal probabilities in a column can exceed 1). For

example, consider the case where Activity k can result in

reworking upstream activities i and j independently. If

P
pð Þ
ki ¼ 0:3 and P

pð Þ
kj ¼ 0:8, then the probability of rework-

ing both activities in parallel after completing Activity k is

P
pð Þ
ki P

pð Þ
kj ¼ 0:24. In such a case, the event of reworking

Activity i and the event of reworking Activity j are not

mutually exclusive events.

Notice that artificial activities can be created to account

for situations where activities are allowed to be executed in

parallel. Adding artificial activities to account for all

combinations of scenarios where activities could be

worked in parallel would significantly increase the com-

putational complexity involved in the system-state

representation, making the analysis computationally pro-

hibitive. This is due to the very large number of states or

artificial activities that would have to be accounted for. For

example, in a situation where eight activities are to be

reworked in parallel, the resulting system–state represen-

tation has 28-1 = 255 states.

We present an approximation approach to reduce the

computational complexity due to parallel rework where we

introduce a priority vector at Stage k, vk; of length k, where

1� vk jð Þ� k. Let vk jð Þ denote the activity with the jth

priority at Stage k for k = 1,…,n and j = 1,…,k. The

activity with the highest priority is vk 1ð Þ, the activity with

the second highest priority is vk 2ð Þ and so forth. The

assumption here is that the activity with the highest pri-

ority, out of the pool of activities being called for parallel

rework, determines the additional rework.

The nominal-completion of an activity can result in the

parallel execution of different rework paths, where a

rework path is defined by a sequence of activities being

reworked in series. Notice that the number of possible

rework paths can be infinite, but a finite subset of paths is

activated for rework [see Eppinger et al. (1997)]. The

probability that a rework path is initiated can be calculated

from the rework probabilities of the activities comprising

the path. Our approach accounts for the random selection

of the set of paths to be reworked in parallel and considers

the duration of the path with the highest priority. This is

achieved as follows. Whenever multiple activities are

called for parallel rework, the approximation only accounts

for the activity with the highest priority. The completion of

the activity with highest priority in turn might activate a

random set of activities for rework where the priority

vector is utilized again to select the next activity to be

reworked. In a similar fashion, the next activity to be

reworked is selected until no further activities are called for

rework. Accordingly, the parallel rework probabilities

along with the priority vector would result in an approxi-

mate sequential probability vector.

Utilizing the prioritization vector, we present a trans-

formation from the parallel rework probability DSM,P pð Þ,
to the sequential rework probabilities. At Stage k, for

i = 1,…,k, u = 1…k and i 6¼ vk uð Þ,

Table 3 Stage durations (Example 3)

Stage i Nominal-duration Rework duration Stage duration

E½ti� Var½ti� E½Ri� Var½Ri� E½Ti� Var½Ti�

1 74 1369 0 0 74 1369

2 20 100 30.53a 492a 50.53 592

3 72 1296 13.46 394 85.46 1690

4 41 420 16.44 1163 57.44 1583

5 36 324 56.66 6012 92.66 6336

6 59 870 35.48 5334 94.48 6204

a Rework duration of 20

(DSM1) (DSM2)

1 2 3 2’ 4 5 6 1 2 3 2’ 4 5 6 
1 74 0.40 1 37 0.35

2 0.27 20 0.54 1 0.31 2 0.75 10 0.72 1 0.30
3 0.25 0.32 72 0.50 3 0.24 0.27 36 0.48

2’ 0 2’ 0 
4 0.55 41 4 0.86 20.5 
5 0.29 0.17 36 5 0.72 0.15 18 
6 0.77 59 6 0.61 29.5 

Fig. 16 DSM with artificial

Activity 20—Example 3
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Pi;vk uð Þ ¼ P
pð Þ
i;vk uð Þ

Yu�1

z¼1;vk zð Þ6¼j

1� P
pð Þ
j;vk zð Þ

� �
ð26Þ

Equations (3) and (4) only consider sequential rework

where the sum of the off-diagonal probabilities in a DSM

column is\1. The transformations in (26) utilize prioriti-

zation in order to utilize Eqs. (3) and (4) for the case where

the sum of the off-diagonal probabilities in a DSM column

is allowed to be[1.

7 Case study

A simulation algorithm is developed in Browning and

Eppinger (2002) to approximate the duration and cost of a

PD network. The inputs to the simulation algorithm include

the rework probability and proportion DSMs, information

on the probability distribution of the activity durations, and

improvement curves (IC) to account for learning factors.

They simulate an actual industrial case of an uninhabited

combat aerial vehicle (UCAV). We utilize inputs presented

in Browning and Eppinger (2002) to illustrate the CE

approach and compare our results to their simulation

algorithm results. The rework probabilities and proportions

as provided by Browning and Eppinger (2002) are pre-

sented in Fig. 17 along with the improvement curves. The

first two moments of the nominal-completion of the 14

activities is provided in Table 4.

The first step is to transform the probability DSM of

Fig. 17 to a sequential probability DSM using Eqs. (26).

The activity prioritization vector,vk, is determined by the

sequence of activity execution as presented by the DSM

where the more upstream the activity, the higher the pri-

ority (i.e., lower numbered activities have a higher prior-

ity). The resulting sequential DSM is presented in Fig. 17.

Consider Column 11 in Fig. 17 to illustrate the imple-

mentation of the probability transformation of Eq. (26).

Activity 11 can cause rework to activities 10, 12 or 14

DSM1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

            0.2           

0.4                     

0.1   0.1       0.3 0.1   

      0.5     

0.4       

0.4 0.4 0.4 0.4 0.4 0.4 0.4 

DSM2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 IC 

                          35% 

            0.1           20% 

0.5                     60% 

                    33% 

0.1   0       0.3 0.1   40% 

                100% 

              35% 

      0.5     100% 

          25% 

0.3       50% 

      75% 

    30% 

  28% 

1

2 0.4

3 0.5

4 0.3 0.5

5 0.4 0.5

6 0.1 0.4

7 0.4 0.4

8 0.5

9 0.4 0.5 0.5 0.5

10 0.1 0.5 0.2 0.1

11 0.5 0.5 0.5 0.5

12 0.4 0.4 0.5 0.5 0.4

13 0.5 0.5 0.4

14 0.3 0.4 0.4 0.4 0.4 0.4

1

2 0.5

3 0.3

4 0.4 0.8

5 0.1 0.1

6 0.1 0.3

7 0.5 0.8

8 0.5

9 0.3 0.3 0.3 0.3

10 0.1 0.5 0.4 0.3

11 0.5 0.5 0.3 0.3

12 0.5 0.3 0.5 0.5 0.5

13 0.9 0.9 0.3

14 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 70% 

Fig. 17 Rework probabilities

and proportions
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depending on the current stage. Activity 10 has the highest

priority, and as a result P11;10 ¼ P
pð Þ
11;10 ¼ 0:4. In the case

where Activity 11 is recalled at a Stage K, for K = 12 or

K = 13, then activities 10 or 12 can be recalled. As a

result, the probability of recalling Activity 12 is

P11;12 ¼ P
pð Þ
11;12 1� P

pð Þ
11;10

� �
¼ 0:24. Similarly, if Activity

11 is reworked at Stage 14, the next resulting activity to be

reworked can be 10, 12, or 14. Since Activity 14 has the

lowest probability, it is reworked with probability

P11;14 ¼ P
pð Þ
11;14 1� P

pð Þ
11;10

� �
1� P

pð Þ
11;12

� �
¼ 0:144.

Notice that according to the UCAV DSM, completing

Activity 14 does not result in any rework. The probability

P11;14 is calculated for completeness in Fig. 18 although

Activity 11 is recalled for rework at Stage 14 with proba-

bility 0. The learning proportions are accounted for by

multiplying the IC with the associated rework proportion.

The activity precedence relationships and AON are infer-

red from the DSM, Fig. 19. The CE approach is imple-

mented, and the resulting mean and variance at each stage

are given in Table 5. Traditional project management

techniques can be used to analyze the obtained network.

We choose spreadsheet Monte-Carlo simulation for our

analysis (Seal 2001; Davis 2008). A relatively straightfor-

ward approach is to simulate the duration of the five pos-

sible paths in the network of Fig. 19 where the probability

distribution of each activity is approximated by a lognor-

mal distribution. At each iteration of the Monte-Carlo

simulation, the network duration is the maximum duration

of the paths. We perform 10,000 iterations and present the

simulated point estimate of the network duration and half-

width in Table 6. The resulting point estimate obtained by

simulating the no feedback network is compared to the

simulation results of Browning and Eppinger (2002) where

the percentage difference is 1.99 %.

8 Summary and concluding remarks

The approach presented in this paper merges the literature

on DSM with classical project management techniques.

The CE approach is introduced to reduce a PD project

stochastic network (i.e., with feedback) to a traditional

Table 4 Activity durations

Activity i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E[ti] 2.3 6.17 3.22 10.5 18.533 10 8.4 6.17 20 12.33 18.53 15.77 32.83 5.25

E[ti
2] 5.35 38.87 10.49 110.79 351.05 100.17 70.91 38.87 400.67 155.46 351.05 249.83 1079.54 27.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1
2 0.4 0 0.2
3 0.5 0 0.4
4 0.18 0.5 0
5 0.17 0.25 0 0.1 0.1 0.3 0.1
6 0.025 0.4 0
7 0.09 0.36 0
8 0.27 0 0.35
9 0.05 0.125 0.3 0.45 0
10 0.03 0.135 0.2 0.045 0 0.4
11 0.067 0.4 0.202 0.5 0
12 0.03 0.027 0.2 0.25 0.24 0
13 0.02 0.3 0.14 0
14 0.01 0.2 0.05 0.11 0.12 0.016 0.08 0.08 0.32 0.1 0.144 0.084 0.36 0

Fig. 18 Probability DSM after

prioritization

Fig. 19 Network with rework nodes (UCAV case study)
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project management network (i.e., with no feedback). The

no feedback network is obtained analytically without

resorting to simulation. The proposed method requires the

user to input the rework probability and proportion DSMs

as well as the calculated first two moments of the duration

of each activity. The first two moments at every stage can

be calculated using the Algorithm presented in the Ap-

pendix.4 An AON with stochastic durations and no feed-

back is obtained where every stage represents a node.

Achieving the stochastic and no feedback network does not

require simulation, and the moments of the stage durations

can be automatically computed based on the DSM rework

probabilities and proportions. Existing approaches to ana-

lyzing the resulting stochastic networks with no feedback

include the classical CPM/PERT approaches and Monte-

Carlo simulation, which is relatively straightforward in no

feedback project networks.

The main source of computational complexity involved

in obtaining the expected duration is to solve a system of

linear equations where the number of equations does not

exceed (k2 ? 1). The complexity to obtain a higher

moment requires an additional system of linear equations

to be solved which does not exceed (k2 ? 1) as well. An

algorithmic approach is presented in the Appendix to

generate the system of linear equations for the first two

moments for any probability and proportion rework DSMs.

It is worth noting again that obtaining the stochastic no

feedback network does not require Monte-Carlo

simulation.

The computations are efficient for networks with \30

activities where the solution can be obtained within sec-

onds. The computational effort increases exponentially as

the number of activities increases. A fully connected 50

activity DSM requires 3.75 min to solve and around

15 min to solve a 100 activity DSM on a core i5 CPU with

6 GB RAM. This paper considers sequential and mixed

networks where every activity and the rework resulting

from completing the activity for the first time denote a

stage. At the stage level, modeling parallel rework can be

computationally extensive. The computational complexity

of reworking activities in parallel is accounted for by pri-

oritizing the activities that need to be reworked simulta-

neously. Prioritization schemes can be as straightforward

as giving priority to the more upstream activities or can

involve a thorough investigation of the looping generated

by each activity. Future work can incorporate more com-

plex looping prioritizations schemes to account for parallel

rework. The authors in Martinez Leon et al. (2013) for

example present a loop criticality index. Future work can

also address dynamically changing PD networks where the

DSM entries are dependent on the stage or on the rework

order.

A main approximation of the CE approach is that the

durations of the stages are independent. The independence

approximation would not work well if the rework at a

certain stage is highly correlated with the rework involved

in different stages. For example, Activities i and j are

reworked at Stage z if and only if they are reworked at

Stage x. An approach to account for high dependency

between stages can take place during the analysis of the

stochastic no feedback network. For example, if simulation

is used to obtain point estimates on the duration of the

resulting stochastic network, then correlation between

stages can be accounted for when generating the associated

random variates.

Another source of error is a consequence of the priority

approximations presented in Sect. 6 to account for parallel

rework. The approximations could provide inaccurate

results in the case where the rework within a stage con-

stitutes several paths to be reworked in parallel where the

durations of the paths are comparable in expected value

and exhibit high variability. In such a case, the stage will

Table 5 Stage durations

Stage i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E[Ti] 2.30 6.17 3.22 11.68 18.53 10.20 8.40 6.37 20.44 12.33 20.50 20.09 33.66 5.25

Var[Ti] 0.06 0.83 0.12 5.10 7.57 0.81 0.35 1.90 3.25 3.36 19.67 35.41 12.79 0.14

Table 6 UCAV case study

results
Expected duration (days) Half-width

CE network simulation 140.87 0.18

Browning and Eppinger’s simulation 138

% Mean Error 1.99 %

4 Although the approach presented only calculates the mean and

variance of the stage duration, the paper starts by presenting the set of

linear equations to calculate the mth moment. Matching higher

moments can lead to more accurate approximating distributions but

can significantly increase the complexity in selecting the approxi-

mating distributions. A PD manager can chose to accept the added

complexity of considering higher moments in return for the added

accuracy.
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have to be investigated independently where an approxi-

mate distribution of the rework duration should be

provided.

Appendix

See Figs. 20, 21 and 22.
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Fig. 20 Algorithm to populate the entries of A
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Fig. 21 Algorithm to populate the entries of b1
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Fig. 22 Algorithm to calculate the elements of b2
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