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Abstract This paper presents a quantitative method for

analysing process models of designing independently of the

specific design domain. The method uses the situated

function–behaviour–structure framework as the basis for a

simulation model of a designer acting according to these

models. The results of these simulations are sequences of

design issues that are analysed using cumulative occur-

rence graphs with associated quantitative measures. The

paper illustrates the approach by analysing and comparing

three models of designing from different domains: Pahl and

Beitz’ model of engineering design, the rational unified

process of software design and a model of design for six

sigma in service design. The quantitative results indicate

some commonalities across the different models. These

commonalities are related to the start of cognitive effort

spent on design issues, the continuity of the cognitive effort

throughout the design process and the constancy of the

speed with which design issues are generated.

Keywords Design models � Design process � Function–
behaviour–structure (FBS) ontology � Engineering design �
Software design � Service design

1 Introduction

Designing is a complex activity that has attracted a sig-

nificant amount of attention from different research do-

mains, trying to demystify its manifold processes. One of

the biggest challenges is to define designing as a unique

activity while it is used in a vast range of domains such as

engineering, software, graphical interfaces and electronics,

to name a few. Understanding the commonalities amongst

different expressions of designing is a foundational step in

developing a universal understanding of design (Asimow

1962; Lawson 1980; Cross 1982; Dym 1994; Visser 2009).

We hypothesize that designing is an act that is inde-

pendent of the domain of its application, in the sense that

different domains have the same understanding of this act

even if they use different terms to describe it. This paper

presents an approach to testing this hypothesis based on

analysing and comparing models of designing from dif-

ferent domains. There have been similar efforts in the past.

For example, in 1998 an international workshop organized

by Grabowski et al. (1998) brought together design theor-

ists from different disciplines, aiming to build a unified or

universal design theory. Discussions concentrated on

finding out whether differences between the models were

caused by different concepts or just by different terms for

the same concept. Such discussions have continued until

today (Sim and Duffy 2003; Frey and Dym 2006; Boon and

Knuuttila 2009; Vermaas 2009, 2014; Eder 2012;

Chakrabarti and Blessing 2014; Lindemann 2014).

Approaches to extracting commonalities across different

models of designing have been limited to qualitative ana-

lyses. In this paper, we propose a quantitative approach to

analysing and comparing models of designing. It is based

on simulations of the design process using the domain-

independent function–behaviour–structure (FBS) ontology

and its derivative, the situated FBS framework. The

simulation models are constructed by mapping the models

of designing onto the 20 processes defined in the situated

FBS framework and aggregating them to the six design

issues of requirement issues, function issues, expected
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behaviour issues, structure behaviour issues, structure is-

sues and description issues. The cumulative occurrence of

the six design issues over the course of a simulation is

analysed in terms of their first occurrence (representing the

start of cognitive effort spent on design issues), their con-

tinuity (characterizing the cognitive effort spent on design

issues towards the end of designing), their linearity (rep-

resenting the constancy of the speed with which design

issues are produced) and their slope (representing the rate

at which design issues are produced). The quantitative

approach presented in this paper is applied to Pahl and

Beitz’ model of engineering design, the rational unified

process of software design and the design for six sigma

model of service design.

This paper is structured as follows: Sect. 2 presents the

three models of designing that will be used to demonstrate

the approach and outlines their common overall process

structure qualitatively. Section 3 develops a simulation

model for these domain-specific models of designing based

on the steps contained within them. Section 4 presents the

results derived from running the simulation for each of the

three models of designing. Section 5 describes the com-

monalities found, and Sect. 6 discusses some conclusions

that can be drawn from the results. Appendices include the

situated FBS framework and the mappings between the

three models and the FBS design issues.

2 Three domain-specific models of designing

Domain-specific models differ from each other mostly in

the concepts they use for describing the respective artefacts

to be designed. These models commonly represent de-

signing as a phase-based activity (Tate and Nordlund 1996)

where the state of the design gradually progresses from

abstract to concrete. We chose three phase-based models of

designing from disparate design domains as a basis for our

analyses: engineering design, software design and service

design.

Engineering design is a design discipline with a long

tradition in developing models of designing. One of the

most detailed and established models in this discipline is

Pahl and Beitz’ (2007) systematic approach, which was

first published in its German edition in 1977. It describes

designing as a sequence of four phases: (1) task clarifica-

tion, (2) conceptual design, (3) embodiment design and (4)

detail design. Task clarification is concerned with collect-

ing, formulating and documenting the requirements of the

product to be designed. Conceptual design aims to identify

the basic principles and outline of a design solution (or

concept). Embodiment design then elaborates the design

into a layout that satisfies various technical and economic

criteria. Detail design finalizes the design and prepares

production documents. Each of the four phases comprises a

sequence of activities that may be executed iteratively.

After every phase, a ‘‘decision-making step’’ is performed

to assess the results of the phase and decide whether the

subsequent phase can be started or whether the phase needs

to reiterate. Here, ‘‘[t]he smallest possible iteration loop is

desirable’’ (ibid, p. 129). Pahl and Beitz do not explicitly

exclude iterations across different phases. On the other

hand, the ‘‘phase-based’’ character of the systematic ap-

proach clearly favours a ‘‘waterfall’’ view where iterations

are to occur only within a phase (Tate and Nordlund 1996;

Unger and Eppinger 2011). Table 1 shows the phases of

Pahl and Beitz’ systematic approach and the activities as-

sociated with each phase.

The discipline of software design has also brought about

several models of designing. Here, one of the most widely

used models is the rational unified process (RUP).

Although it was primarily developed as a commercial

product, its basic concepts outlined by Kruchten (2004)

form a publicly available and highly cited model of de-

signing. RUP defines the following phases for software

design processes: (1) inception, (2) elaboration, (3) con-

struction and (4) transition. Inception deals with under-

standing the requirements and defining the scope of the

design. Elaboration specifies and prototypes the main fea-

tures and architecture of the software design solution.

Construction elaborates this solution by developing the

complete set of features and implementing all the compo-

nents of the software. Transition focuses on verifying de-

sign quality, manufacturing and delivering the software to

the user. Kruchten (2004) suggests this four-phase process

be executed iteratively. He also suggests that the specific

activities within each phase are to be configured depending

on the needs of the individual design project. On the other

hand, he describes ‘‘typical iteration plans’’ (ibid, Chap-

ter 16) that can be viewed as a representative sequence of

activities that is likely to cover most instances of software

design processes. Table 2 summarizes the phases and ac-

tivities in such a ‘‘typical’’ configuration of RUP.1

Service design is a more recent discipline with few

existing process models. One of them is design for six

sigma (DFSS), which has been used to describe both de-

signing products and designing services (or processes). One

of the many variants of DFSS that is specific to designing

services is the identify–conceptualize–optimize–validate

(ICOV) model presented by El-Haik and Roy (2005). We

will refer to this model as DFSS–ICOV in this paper. It

1 For the inception phase we use the workflow defined for the

requirements discipline and omit the design project management

activities that are included in Kruchten’s ‘‘typical’’ Inception phase.

We view these management activities as beyond the scope of a model

of designing. For the Transition phase, where there are no ‘‘typical’’

activities defined, we use Kruchten’s deployment workflow.
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proposes the following phases: (1) identify, (2) conceptu-

alize, (3) optimize and (4) validate. The identify phase

collects and analyses the requirements for the service to be

designed, by listening to both the ‘‘voice of the customer’’

and the ‘‘voice of the business’’. The conceptualize phase

determines the technical requirements and basic compo-

nents of the service. The optimize phase aims to configure

the service in a way to achieve the best possible perfor-

mance. The validate phase tests and refines the service and

prepares its launch. At the end of every phase in DFSS–

ICOV, there is a review to decide whether to proceed to the

next phase or whether to rework some decisions. Table 3

shows the phases and activities described in this model.

While there are obvious domain-specific differences

between the three models, we can already extract a first

commonality: all three models use four sequential phases

with similar goals, Table 4. As designing proceeds through

the four phases, its focus ultimately shifts from the design

problem (phase 1) to the design solution (phase 4), with

two intermediate stages: one stage (phase 2) generates a list

of general concepts that have the potential of being used as

starting points for synthesis of variations (‘‘concept struc-

ture’’). The other stage (phase 3) turns these general con-

cepts into specific solutions with respect to formulated

goals, constraints or resources (‘‘solution structure’’). This

general four-phase model is consistent with the widely held

understanding of designing as a progression from the ab-

stract to the concrete (Roozenburg and Cross 1991; Welch

and Dixon 1994; Hubka and Eder 1996).

Despite these commonalities, there is also a significant

difference between the three models: while the number of

activities in the systematic approach (29) and RUP (35) is

Table 1 Pahl and Beitz’ (2007)

systematic approach
Phases Activities

1. Task

clarification

1.1 Define basic market demands

1.2 Define attractiveness demands of the market segment

1.3 Document customer-specific technical performance requirements

1.4 Refine and extend the requirements using the checklist and scenario planning

1.5 Determine demands and wishes

2. Conceptual

design

2.1 Abstract to identify the essential problems

2.2 Establish function structures: overall function—subfunctions

2.3 Search for working principles that fulfil the subfunctions

2.4 Combine working principles into working structures

2.5 Select suitable combinations

2.6 Firm up into principle solution variants

2.7 Evaluate variants against technical and economic criteria

3. Embodiment

design

3.1 Identify embodiment-determining requirements

3.2 Produce scale drawings of spatial constraints

3.3 Identify embodiment-determining main function carriers

3.4 Develop preliminary layouts and form designs for the embodiment-determining

main function carriers

3.5 Select suitable preliminary layouts

3.6 Develop preliminary layouts and form designs for the remaining main function

carriers

3.7 Search for solutions to auxiliary functions

3.8 Develop detailed layouts and form designs for the main function carriers ensuring

compatibility with the auxiliary function carriers

3.9 Develop detailed layouts and form designs for the auxiliary function carriers and

complete the overall layouts

3.10 Evaluate against technical and economic criteria

3.11 Optimize and complete form designs

3.12 Check for errors and disturbing factors

3.13 Prepare preliminary parts lists and production documents

4. Detail design 4.1 Finalize details; complete detail drawings

4.2 Integrate into overall layout drawings, assembly drawings and parts lists

4.3 Complete production documents with production, assembly, transport and

operating instructions

4.4 Check all documents for standards, completeness and correctness
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quite similar, the number of activities in DFSS–ICOV (7) is

much smaller. This raises doubts about the usefulness of

choosing DFSS–ICOV for comparison against the other

models of designing. In Sect. 3.2, we show that DFSS–

ICOV will become more fine-grained after applying the

FBS coding scheme to become more comparable against

the other models of designing. In addition, Sect. 3.3 will

show that the measures we use for analysing and com-

paring different models are independent of the number of

activities or steps described within a model.

3 Developing a simulation model

Models of designing are generally understood as guidelines

to be used by designers when tackling a design task. If we

Table 2 Kruchten’s (2004)

rational unified process
Phases Activities

1. Inception 1.1 Analyse the problem

1.2 Understand stakeholder needs

1.3 Define the system

1.4 Manage the scope of the system

1.5 Refine the system definition

2. Elaboration 2.1 Decide which use cases and scenarios will drive the development of the architecture

2.2 Understand this driver in detail and inspect the results

2.3 Reconsider use cases and risks

2.4 Prototype the user interface

2.5 Find obvious classes, do initial subsystem partitioning, and look at use cases in detail

2.6 Refine and homogenize classes and identify architecturally significant ones; inspect

results

2.7 Consider the low-level package partitioning

2.8 Adjust to the implementation environment, decide the design of the key scenarios,

and define formal class interfaces; inspect results

2.9 Consider concurrency and distribution of the architecture

2.10 Inspect the architectural design

2.11 Consider the physical packaging of the architecture

2.12 Plan the integration

2.13 Plan integration tests and system tests

2.14 Implement the classes and integrate

2.15 Integrate the implemented parts

2.16 Assess the executable architecture

3. Construction 3.1 Plan system-level integration

3.2 Plan and design system-level test

3.3 Refine use-case realizations

3.4 Plan and design integration tests at the subsystem and system levels

3.5 Develop code and test unit

3.6 Plan and implement unit test

3.7 Test unit within a subsystem

3.8 Integrate a subsystem

3.9 Test a subsystem

3.10 Release a subsystem

3.11 Integrate the system

3.12 Test integration

3.13 Test the system

4. Transition 4.1 Plan deployment

4.2 Develop support material

4.3 Produce deployment unit

4.4 Beta test product
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can describe the activities of a designer who follows the

guidelines provided by a specific model, we can simulate

the design process represented in the model. This section

presents how such a simulation model can be produced in

two steps: generalizing the concepts and terms used by a

specific model of designing into FBS design issues and

mapping the model onto the situated FBS framework.

3.1 Generalising model-specific concepts into FBS

design issues

Each of the three models of designing describes sequences

of activities within the four design phases. The models

differ not only in the number of these activities, but also in

the terms and concepts they use to describe the output of

every activity. For a more detailed analysis, we need to

map the specific concepts used in the models onto a uni-

form, generic coding schema. One such schema is the FBS

design issue schema that has previously been used for

analysing design protocols (Gero and McNeill 1998; Kan

and Gero 2005). It consists of six design issues: require-

ments, function, expected behaviour, behaviour derived

from structure (or, shorthand, structure behaviour), struc-

ture and description.

Requirements include all expressions of customer or

market needs, demands, wishes and constraints that are

explicitly provided to the designers at the outset of a design

task. For example, requirement issues include ‘‘technical

performance requirements […] articulated by the cus-

tomer’’ (Pahl and Beitz 2007, p. 150), ‘‘stakeholder re-

quests’’ (Kruchten 2004, p. 166) and ‘‘customer needs and

wants’’ (El-Haik and Roy 2005, p. 84).

Function includes teleological representations that can

cover any expression related to potential purposes of the

artefact. These representations may be flow based or state

based (Chittaro and Kumar 1998). Unlike requirement is-

sues, function issues are not directly provided to the de-

signer; they are generated by the designer based on

interpretations of requirement issues. Function issues in the

systematic approach include ‘‘the intended input/output

relationship of a system’’ (Pahl and Beitz 2007, p. 31) and

some examples of needs related to safety, aesthetics or

economic properties. Function issues in RUP include the

notion of a use case as a ‘‘sequence of actions a system

performs that yields an observable result of value to a

particular actor’’ (Kruchten 2004, p. 98), and some ‘‘non-

functional requirements’’ that ‘‘deliver the desired quality

to the end user’’ (ibid, p. 159). Function issues in DFSS–

ICOV include ‘‘service and process functional require-

ments’’ that are derived from those requirements provided

by the customer (El-Haik and Roy 2005, p. 87).

Expected behaviour includes attributes that describe the

artefact’s expected interaction with the environment. They

can be used as guidance and measurable assessment criteria

for potential design solutions. Expected behaviour issues in

the systematic approach include ‘‘physical effects’’ de-

scribing the ‘‘working principles’’ of the interactions be-

tween different parts of the design object (Pahl and Beitz

2007, p. 40), as well as ‘‘technical, economic and safety

criteria’’ used for design evaluation (ibid, p. 193).

Similarly, expected behaviour issues in RUP are captured

by the ‘‘design model’’ that ‘‘consists of a set of col-

laborations of model elements that provide the behaviour

of the system’’ (Kruchten 2004, p. 177), and ‘‘measurable

testing goals’’ (ibid, p. 253) that are often subsumed in

‘‘nonfunctional requirements’’. Expected behaviour issues

in DFSS–ICOV include ‘‘CTSs (critical-to-satisfaction re-

quirements, also known as big Ys)’’ (El-Haik and Roy

2005, p. 33) and some ‘‘functional requirements’’ such as

the (expected) ‘‘service time’’ (ibid, p. 96). CTSs are

considered expected behaviour (rather than function) be-

cause they specify measurable objectives with ‘‘acceptable

performance levels’’ (Yang and El-Haik 2003).

Table 3 El-Haik and Roy’s (2005) identify–conceptualize–opti-

mize–validate model (design for six sigma)

Phases Activities

1. Identify 1.1 Idea creation

1.2 Voice of the customer and business

2. Conceptualize 2.1 Concept development

2.2 Preliminary design

3. Optimize 3.1 Design optimization

4. Validate 4.1 Verification

4.2 Launch readiness

Table 4 Common goals of the individual phases in Pahl and Beitz’ systematic approach, Kruchten’s RUP, and El-Haik and Roy’s DFSS–ICOV

Phase Systematic approach RUP DFSS–ICOV Overall goal

1 Task clarification Inception Identify Understanding and defining the design problem

2 Conceptual design Elaboration Conceptualize Generating a concept structure

3 Embodiment design Construction Optimize Generating a solution structure

4 Detail design Transition Validate Finalizing and delivering the design solution
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Structure behaviour (or ‘‘behaviour derived from

structure’’) includes those attributes of the artefact that are

measured, calculated or derived from the observation of a

specific design solution and its interaction with the envi-

ronment. Instances of structure behaviour must be of the

same type as instances of expected behaviour, so as to

allow for the comparison and evaluation of design solu-

tions. As a result, structure behaviour issues cover the same

notions in the three models of designing as outlined for

expected behaviour issues.

Structure includes the components of an artefact and

their relationships. They can appear either as a ‘‘concept

structure’’ or as a ‘‘solution structure’’, which are the out-

puts of phases 2 and 3 in Table 1. The former includes Pahl

and Beitz’ (2007, p. 40) ‘‘working surfaces’’ and ‘‘working

materials’’, Kruchten’s (2004, p. 174) ‘‘classes and sub-

systems’’ and El-Haik and Roy’s (2005, p. 6) ‘‘design pa-

rameters’’. The latter includes Pahl and Beitz’ (2007,

p. 227) ‘‘layout’’ and ‘‘form’’, Kruchten’s (2004, p. 256)

‘‘code’’ and El-Haik and Roy’s (2005, p. 7) ‘‘detail

designs’’.

Description includes any form of design-related repre-

sentations produced by a designer, at any stage of the design

process. The descriptions presented in the systematic ap-

proach include sketches, CAD models, requirements lists,

physical prototypes, calculations and other documentation

produced by mechanical engineers. Descriptions in RUP

include storyboards, UML models, code files, test plans and

other representations produced by software designers. De-

scriptions in DFSS–ICOV include house of quality dia-

grams, FMEA worksheets, process maps and concept

selection matrices, among many others.

3.2 Mapping the models of designing

onto the situated FBS framework

Every activity described in the three models of designing is

concerned with generating one or more design issues.

These activities may be mapped onto the eight fundamental

processes defined in the FBS framework (Gero 1990), la-

belled 1–8 in Fig. 1:

1. Formulation transforms requirements into functions

(R ? F) and functions into expected behaviour

(F ? Be).

2. Synthesis transforms expected behaviour into structure

(Be ? S).

3. Analysis transforms structure into structure behaviour

(S ? Bs).

4. Evaluation compares expected behaviour with struc-

ture behaviour (Be $ Bs).

5. Documentation transforms structure into a description

(S ? D).

6. Reformulation type 1 transforms structure into new

structure (S ? S0).
7. Reformulation type 2 transforms structure into new

expected behaviour (S ? Be0).
8. Reformulation type 3 transforms structure into new

function (S ? F0 via Be).

For simulating the design process, however, these pro-

cesses are still too coarse-grained as they do not include the

situation in which they are performed. A more detailed

view is provided by the situated FBS (sFBS) framework

(see Appendix 1) that represents designing as the interac-

tion of a designer with the design situation (Gero and

Kannengiesser 2004). This framework defines 20 discrete

processes that include a number of cognitive and physical

activities, such as the interpretation of requirement lists and

design representations, the reflection on current or past

design experiences, the decision-making regarding the

current design state space and physical actions including

sketching, calculating and documenting.

Mapping the activities described in a model of designing

onto the sFBS framework allows considering the designer’s

situated interactions in the simulation model. At the same

time, the basic representation of designing in terms of the

six design issues is maintained. This is because the results

of executing the 20 processes are specialized classes of

design issues that can be aggregated back to the original six

categories. The aggregation of the 20 sFBS processes to the

six FBS design issues is shown in Table 5.

The mappings onto the sFBS framework require some

interpretation of each model of designing in terms of ele-

mentary steps and the logical sequences of these steps. The

three models presented in Sect. 2 provide sufficient

elaboration and illustration to support this interpretation for

most of their defined activities. Take the first activity,

Fig. 1 The FBS framework
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‘‘Define basic market demands’’, described within Pahl and

Beitz’ design phase of task clarification. This activity re-

quires as input the interpretation of a ‘‘development order’’

or ‘‘product proposal’’ that contains the product’s desired

‘‘functionality and performance’’, which in the FBS design

issue system is a requirement issue (interpreted by process

1 in the sFBS framework). Next, ‘‘basic market demands’’,

such as ‘‘suitable for tropical conditions’’ and

‘‘P[ 20 kW’’ (Pahl and Beitz 2007, p. 147), are

constructed by the designer as ‘‘implicit requirements, i.e.

they are not articulated by the customer’’ (ibid, p. 150). We

map these market demands onto function and expected

behaviour issues (constructed by processes 4 and 5). They

are compiled in a ‘‘requirements list’’ and ‘‘Quality Func-

tion Deployment (QFD)’’ diagrams (ibid, p. 145) that

represent description issues (produced by processes 18 and

17). As shown in Table 6, these mappings result in five

elementary design steps, each of which produces one de-

sign issue, and their logical sequence (more detailed

comments for each of the mappings in the three models of

designing can be found in Appendices 2, 3 and 4).

This method of coding and mapping was applied to all

three models of designing, which was done in consensus

between the two authors of this paper who are experts in

FBS coding. The systematic approach has 87 mappings,

RUP has 100 mappings, and DFSS–ICOV has 41

mappings.

The three sets of mappings of elementary steps can be

viewed as a basis for simulation models that need to be

complemented with assumptions regarding:

1. The number of occurrences of every elementary step,

and

2. the number of iterations within a design phase (we

assume that no cross-phase iterations will occur, given

the ‘‘waterfall’’ nature of the models).

The first of these assumptions cannot be made without

knowledge of specific instances of designing including

knowledge about the novelty and complexity of the design

task. Staying on the model level rather than the instance

level, our working assumption is that every elementary step

occurs only once within the same iteration. This assump-

tion is used for each of the three models and will be re-

visited in the discussion of results.

The second assumption is similarly based on task- and

designer-specific knowledge that is not available at this

general level. However, in the case of RUP, Kruchten

(2004, p. 133) states that there are three typical scenarios

Table 5 The results of each of the 20 sFBS processes (labelled based

on the sFBS framework shown in Appendix 1) are aggregated to the

six FBS design issues

sFBS process FBS design issue

1 R

2 R

3 R

4 F

5 Be or Bsa

6 S

7 F

8 Be

9 S

10 Be

11 S

12 D

13 S

14 Bs

15 –b

16 F

17 D

18 D

19 Be or Bsa

20 F

a Depending on whether the behaviour produced in these processes is

interpreted as expected/desired or ‘‘actual’’/emerging
b This process produces no design issue

Table 6 The steps involved in Pahl and Beitz’ activity of ‘‘Define basic market demands’’ and their mappings onto the FBS design issue system

and the sFBS framework

Design

step

Pahl and Beitz’ description Process in sFBS (label) FBS design issue

1 Receive ‘‘development order’’ or ‘‘product

proposal’’

Interpret functional requirements (1) Requirement

2 Identify basic market demands Construct functions not explicitly stated (4) Function

3 Construct expected behaviours not explicitly stated (5) Expected

behaviour

4 Produce QFD diagrams and requirements list Produce external representations of function (18) Description

5 Produce external representations of expected behaviour

(17)
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regarding the number of iterations for each of the four

phases within RUP (phase 1: inception; phase 2: elabora-

tion; phase 3: construction; phase 4: transition; see

Table 4). These scenarios are shown in Table 7. They ac-

count for various influences on the design process, in-

cluding task-related, technical, organizational, personal,

market-related and other factors.

For the systematic approach and DFSS–ICOV, no con-

crete scenarios are detailed in the literature. Based on the

high-level structural similarity of our three models (as

shown in Sect. 2), an initial working assumption is that the

scenarios in Table 7 will be used across all three models.

We will revisit this assumption in the discussion of results.

Applying the three generic scenarios to each model of

designing produces the data sets shown in Table 8. The

number of steps for each model is calculated based on

multiplying the number of elementary steps in each phase

according to the number of iterations defined for the

specific scenario. For example, DFSS–ICOV for scenario 1

has:

12 0 iterations for the 12 elementary steps of phase 1ð Þ
þ 34 1 iteration for the 17 elementary steps of phase 2ð Þ
þ 10 1 iteration for the 5 elementary steps of phase 3ð Þ
þ 14 1 iteration for the 7 elementary steps of phase 4ð Þ

¼ 70 steps in total:

3.3 Quantitative analysis

Having pre-processed the models of designing as se-

quences of steps, each of which produces an FBS design

issue, allows applying cumulative occurrence analysis

(Gero et al. 2014). This analysis has previously been

applied to coded design protocols where designing is rep-

resented as a sequence of segments each producing one

ontological design issue (Kannengiesser et al. 2013). The

cumulative occurrence c of design issue x at design step n

is defined as c ¼
Pn

i¼1 xi where xi equals 1 if design step

i is coded as x and 0 if design step i is not coded as

x. Plotting the results of this equation on a graph with the

design steps n on the horizontal axis and the cumulative

occurrence c on the vertical axis will visualize the occur-

rence of the design issues. Figure 2 shows a general rep-

resentation of such a graph.

Drawing on Gero et al. (2014), four measures are used

for analysing the cumulative occurrence-based representa-

tions of the different models of designing:

• First occurrence at start: This measure indicates

whether design issues first occur near the start of

designing or at a later stage.

• Continuity: This measure indicates whether design

issues occur throughout designing or only up to a

certain point.

• Linearity: This measure indicates whether the speed at

which design issues are generated (or the cognitive

effort expended on these design issues) is constant. It is

measured using the coefficient of determination (R2)

that indicates linear fit and ranges from 0 to 1. As a

threshold for linear fit, we set the commonly used value

of 0.95; i.e. if R2 is at least 0.95, the graph is considered

linear.

• Slope: This measure represents the rate at which design

issues are generated. It is calculated only for graphs that

are found to be linear.

The two measures of continuity and first occurrence at

start are direct characterizations of cumulative occurrence,

both available from a qualitative assessment of the graph.

They can tell us whether a design issue is focused on from

the very start of the design process and whether it is con-

tinuously focused on throughout the design activity, re-

spectively. The measures of slope and linearity have been

Table 7 The number of phase iterations in three typical scenarios of

RUP (Kruchten 2004, p. 133)

Scenario 1 (S1) Scenario 2 (S2) Scenario 3 (S3)

Phase 1 0 1 1

Phase 2 1 2 3

Phase 3 1 2 3

Phase 4 1 1 2

Table 8 The number of steps produced by applying the three sce-

narios to each model of designing

Systematic approach RUP DFSS–ICOV

Scenario 1 (S1) 154 185 70

Scenario 2 (S2) 235 278 103

Scenario 3 (S3) 302 363 132

Fig. 2 Graphical representation of the cumulative occurrence of

design issues across design steps
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derived using a grounded theory approach, through a pro-

cess of discovery by looking at the results of preliminary

simulation runs where some design issue graphs appeared

to be linear.

All of these measures are independent of the number of

design steps. This allows comparing models of designing

that have different levels of detail and different numbers of

iterations. We pose only one restriction on calculating

slope and linearity to ensure sufficient statistical sig-

nificance: that the number of occurrences per design issue

is at least 10.

4 Simulation results

In this section, we present the measures we derived from

analysing the three models of designing. These measures

are presented in Tables 9, 10, 11, 12, 13 and 14. In addi-

tion, to allow readers to carry out their own qualitative

assessments, we also provide the raw data in the form of

graphs representing the cumulative occurrence of design

issues for scenario S2. These graphs are shown in Figs. 3, 4

and 5. The vertical lines in these figures separate the four

phases in each model. They help in locating the occurrence

of design issues within the respective model of designing,

which is useful for deriving the measures of ‘‘first occur-

rence at start’’ and ‘‘continuity’’.

As a first observation, we note that there are no or only

small differences among the three scenarios within each

model of designing. All qualitative measures (first occur-

rence at start, continuity, and linearity) are the same for S1,

S2 and S3 of each model. Differences in slope are not

significant across the three scenarios.

When comparing the three models of designing with

each other, we can make the following observations:

• First occurrence at start: In all three models, require-

ment issues, function issues, expected behaviour issues

and description issues occur at the start (or in phase 1)

of the design process. And in all three models, structure

behaviour issues and structure issues occur later (in

phase 2).

• Continuity: The cumulative occurrence of requirement

issues, function issues and expected behaviour issues is

discontinuous in all three models. Structure behaviour

Table 9 Requirement issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1a – – Yes No –

S2 0.038 0.966 Yes No Yes

S3 0.036 0.977 Yes No Yes

RUPa

S1, S2, S3 – – Yes No –

DFSS–ICOVa

S1, S2, S3 – – Yes No –

a No statistical results produced due to small dataset (\10 data points)

Table 10 Function issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1 – 0.924 Yes No No

S2 – 0.947 Yes No No

S3 – 0.948 Yes No No

RUP

S1 – 0.810 Yes No No

S2 – 0.860 Yes No No

S3 – 0.874 Yes No No

DFSS–ICOV

S1a – – Yes No –

S2 – 0.806 Yes No No

S3 – 0.820 Yes No No

a No statistical results produced due to small dataset (\10 data points)

Res Eng Design (2015) 26:253–275 261

123



Table 11 Expected behaviour

issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1 – 0.899 Yes No No

S2 – 0.924 Yes No No

S3 – 0.915 Yes No No

RUP

S1 0.157 0.978 Yes No Yes

S2 0.154 0.981 Yes No Yes

S3 0.153 0.981 Yes No Yes

DFSS–ICOV

S1a – – Yes No –

S2 – 0.889 Yes No No

S3 – 0.888 Yes No No

a No statistical results produced due to small dataset (\10 data points)

Table 12 Structure behaviour

issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1b 0.065 0.959 No Yes Yes

S2b 0.065 0.982 No Yes Yes

S3b 0.065 0.989 No Yes Yes

RUP

S1b 0.127 0.972 No Yes Yes

S2b 0.121 0.978 No Yes Yes

S3b 0.120 0.980 No Yes Yes

DFSS–ICOV

S1a – – No Yes –

S2a – – No Yes –

S3b – 0.919 No Yes No

a No statistical results produced due to small dataset (\10 data points)
b The initial design steps of the protocol are ignored in slope and linearity calculations to take into account

that the first occurrence is not at the start

Table 13 Structure issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1a 0.422 0.977 No Yes Yes

S2a 0.418 0.978 No Yes Yes

S3a 0.419 0.979 No Yes Yes

RUP

S1a 0.394 0.997 No Yes Yes

S2a 0.390 0.999 No Yes Yes

S3a 0.386 0.999 No Yes Yes

DFSS–ICOV

S1a 0.342 0.967 No Yes Yes

S2a 0.384 0.994 No Yes Yes

S3a 0.376 0.996 No Yes Yes

a The initial design steps of the protocol are ignored in slope and linearity calculations to take into account

that the first occurrence is not at the start
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issues, structure issues and description issues are

continuous in all three models.

• Linearity: The cumulative occurrence of function

issues in all three models is nonlinear, whereas the

cumulative occurrence of structure issues and descrip-

tion issues in all three models is linear. For expected

behaviour issues and structure behaviour issues, the

results are inconsistent across the models.

• Slope: Slopes could not be compared for requirement

issues (insufficient data), function issues (no linear

graphs) and expected behaviour issues (linearity only

for RUP). The slopes for other design issues were

compared using one-way ANOVA tests, resulting in

commonalities being found for neither structure be-

haviour issues (F2,4 = 319.341, p\ 0.05), structure

issues (F2,6 = 11.889, p\ 0.05) nor description issues

(F2,6 = 220.841, p\ 0.05).

5 Discussion of results

The results can be discussed in terms of the commonalities

found across the three models of designing and in terms of

the assumptions underlying the simulation models.

Table 14 Description issues
Model of designing Slope R2 First occurrence at start Continuity Linearity

Sys. App.

S1 0.196 0.968 Yes Yes Yes

S2 0.198 0.972 Yes Yes Yes

S3 0.192 0.976 Yes Yes Yes

RUP

S1a 0.251 0.991 Yes Yes Yes

S2a 0.241 0.996 Yes Yes Yes

S3a 0.243 0.997 Yes Yes Yes

DFSS–ICOV

S1 0.34 0.979 Yes Yes Yes

S2 0.316 0.984 Yes Yes Yes

S3 0.325 0.984 Yes Yes Yes

a The initial design steps of the protocol are ignored in slope and linearity calculations to take into account

that the first occurrence is not at the start

Fig. 3 Cumulative occurrence

of design issues in the

systematic approach (for the

‘‘typical’’ scenario S2)
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5.1 Identifying commonalities across the three

models of designing

Our analysis has uncovered a number of commonalities

among the three models of designing, independent of the

number of iterations in each model (see Sect. 5.2 for an

explanation of why they are independent). Table 15 sum-

marizes our findings, using ‘‘?’’ and ‘‘-’’ symbols, to

indicate the existence of a commonality: ‘‘?’’ indicates

commonalities as specified on top of the table, while ‘‘-’’

indicates commonalities as the negation of what is speci-

fied on top. These ‘‘negative commonalities’’ can only be

Fig. 4 Cumulative occurrence

of design issues in the rational

unified process (for the

‘‘typical’’ scenario S2)

Fig. 5 Cumulative occurrence

of design issues in DFSS–ICOV

(for the ‘‘typical’’ scenario S2)

264 Res Eng Design (2015) 26:253–275

123



derived from binary measures such as ‘‘first occurrence at

start’’; the negations of the other measures are too broad to

allow similar inverse conclusions. Empty spaces in the

table mean that there is no commonality.

Commonalities regarding the first occurrence of design

issues near the start were found for all design issues. While

requirements issues, function issues, expected behaviour

issues and description issues occur near the start, structure

behaviour issues and structure issues occur later. Com-

monalities regarding the continuity of the graph were found

for structure behaviour issues, structure issues and de-

scription issues. The commonality of linearity was identi-

fied for structure issues and description issues. There are no

commonalities regarding slope.

Some of the commonalities are consistent with the

general goals of each of the four phases of the models, as

introduced in Sect. 2. In the three models, requirement

issues, function issues, expected behaviour issues and de-

scription issues start occurring in phase 1 as they are

needed to define and document the design problem. The

occurrence of these issues, except for description issues

that continue to occur until the end, tends to diminish later

as the focus of designing shifts towards possible design

solutions. Structure issues and structure behaviour issues

start occurring later and continue to occur until the final

design solution is determined, validated and documented.

The existence of linearity of structure and description is-

sues in all three models of designing is the most surprising

outcome of our analysis. It implies that during designing, a

uniform cognitive effort is expended on these issues, which

has not been explicitly stated in previous work. Yet, the

amount of cognitive effort differs as suggested by non-

existence of a common slope for structure and description

issues across different models of designing.

5.2 Revisiting assumptions for the simulation

models

The results of applying our approach shed some light on

the validity of the assumptions used for constructing the

simulation models (see Sect. 3.2).

Our first assumption was that every design step occurs

only once within the same iteration. In common design

practice, this assumption is not realistic, because incom-

plete knowledge and design complexity often require re-

peating the same or similar design activities multiple times

(Wynn et al. 2007). However, these task- and designer-

specific variables cannot be taken into account for ana-

lysing models of designing that are independent of par-

ticular instances. Therefore, the validity of the one-

execution-per-step assumption must be based on its use-

fulness in analysing and comparing different models rather

than its relation to the practice of designing. Increasing the

number of executions per step, uniformly across all steps of

a model, would not lead to changes in the four measures

except for changed values for slopes. Even if the number of

executions can vary for different steps in a model, only the

shape of the graph would be affected in terms of its lin-

earity or nonlinearity, not a change from one shape to

another. As a result, our assumption of one execution per

step seems to be a useful and valid choice.

Our second assumption was related to the number of

iterations of the different phases within a model of de-

signing. We took Kruchten’s (2004) three ‘‘typical’’ sce-

narios for RUP, each of which defines different numbers of

iterations for the four phases, and applied them to the other

models. The results show that the behaviour of the cumu-

lative occurrence graphs in all three models of designing

did not vary for the different scenarios. We might therefore

simplify the assumption to include only one simple sce-

nario where there are no iterations for any of the four

phases. This would also facilitate the application of our

approach to models that cannot be mapped onto the four-

phase process structure. For example, the VDI-2221 model

(VDI 1985) has seven phases, and some variants of DFSS

such as define–measure–analyse–design–verify (DMADV)

and identify–define–design–optimize–validate (IDDOV)

have five phases.

6 Conclusion

This paper proposed a quantitative approach for the ana-

lysis of domain-specific models of designing. Its applica-

tion to three models of designing demonstrates its

applicability to domains as different as engineering,

Table 15 Summary of

commonalities
Design issue First occurrence at start Continuity Linearity Common slope

Requirement ?

Function ?

Expected behaviour ?

Structure behaviour - ?

Structure - ? ?

Description ? ? ?
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software and service design. Based on its ontological

foundations, the approach allows comparisons between

models from different design domains. The comparison of

the models analysed in this paper shows that there are some

strong commonalities that provide support for the hy-

pothesis that designing is an act that is independent of the

domain of its application. This may have important im-

plications for design education: If designing is foundational

and is shown to be domain independent and different to

science and humanities, then consideration should be given

to teaching design in parallel with science and humanities.

The work presented in this paper should be regarded as

preliminary, both in terms of the method used and the

findings regarding commonalities across design domains.

The method presented is limited to the descriptive ca-

pacities of the FBS ontology. We have used this ontology

since many researchers have already used it as a coding

scheme for representing design processes in various do-

mains. Other design ontologies could be used for coding

models of designing if they have the capacity to provide a

coding scheme for design processes. However, to the best

of our knowledge, no other ontological coding scheme

exists with similar domain independence as the FBS coding

scheme. Further research in the analysis method is there-

fore more likely to focus on the particular measures used,

including their definition and completeness. Graphs other

than those based on cumulative occurrence may be used

with different associated measures.

The findings of our comparisons of engineering, soft-

ware and service design are limited by the choice of models

of designing. We chose the systematic approach, RUP and

DFSS–ICOV because of their popularity and their detailed

level of description. Yet, it remains to be tested if analysing

other models in the same domain produce similar results. A

difficulty here is that many domain-specific models of

designing are quite coarse-grained and cannot be easily

represented in sufficient detail as needed for the proposed

simulation model and associated statistical analyses.

The results presented in this paper provide a starting

point for future research. For example, they could be

compared with empirical research, as there are many pro-

tocol studies available using the same FBS design issue

scheme. Such comparisons would provide the basis to ex-

amine differences between models of designing and de-

signing as practised.
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Appendix 1: The situated FBS framework

See Fig. 6.

The external world contains objects and representations

in the environment of the designer.

The interpreted world contains experiences, percepts

and concepts produced by the designer’s interactions with

the external world.

The expected world contains the designer’s hypotheses,

goals and expected results of actions.

Explanation of symbols

Fei Expected function

Fi Interpreted function

Fe External function

FRe Requirement on function

Bei Expected behaviour

Bi Interpreted behaviour

Be External behaviour

BRe Requirement on behaviour

Sei Expected structure

Si Interpreted structure

Se External structure

SRe Requirement on structure

Fig. 6 The situated FBS framework
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Appendix 2: Pahl and Beitz’ systematic approach

See Tables 16, 17, 18 and 19.

Table 16 Phase 1: Task clarification (numbers refer to sFBS process labels; page numbers refer to Pahl and Beitz 2007)

Activity Design

issue

sFBS

step

Comments

1.1 Define basic market demands R 1 A ‘‘task description’’ is given in the external world, describing the product’s

desired ‘‘functionality and performance’’ (p. 145)

F, Be 4, 5 Generated internally: ‘‘Basic requirements are always implicit requirements, i.e.

they are not articulated by the customer’’ (p. 150)

Can be related to F and B in new product development

D, D 18, 17 All requirements are compiled as a requirements list that is produced in the

external world

1.2 Define attractiveness demands

of the market segment

F, Be 4, 5 Generated internally: ‘‘Attractiveness requirements are again implicit

requirements’’ (p. 151)

Can be related to F and B in new product development

D, D 18, 17 All requirements are compiled as a requirements list that is produced in the

external world

1.3 Document customer-specific

technical performance requirements

R 2 Given in the external world: ‘‘Technical performance requirements are explicit

requirements. They are articulated by the customer and can usually be specified

precisely’’ (pp. 150)

‘‘performance’’ corresponds to B; see also the examples on p. 151

D 17 All requirements are compiled as a requirements list that is produced in the

external world

1.4 Refine and extend the requirements

using the checklist and scenario

planning

F, Be,

Be

4, 5, 10 These requirements are internally developed; no specific guidance from external

world

D, D 18, 17 All requirements are compiled as a requirements list that is produced in the

external world

1.5 Determine demands and wishes F, Be 7, 8 Distinction between demands and wishes is about formulating a design state

space (focussing)

D, D 18, 17 Demands/wishes distinction is included in the requirements list in the external

world: see example on p. 154

Table 17 Phase 2: Conceptual design (numbers refer to sFBS process labels; page numbers refer to Pahl and Beitz 2007)

Activity Design

issue

sFBS

step

Comments

2.1 Abstract to identify the

essential problems

F 20 Related to F based on the external requirements list: ‘‘Here the task is to

analyse the requirements list with respect to the required function and

essential constraints in order to confirm and refine the crux of the

problem’’ (p. 164) ‘‘[…] the final formulation can be derived in a way

that does not prejudice the solution, i.e. is solution-neutral, and at the

same time turns it into a function’’ (p. 165)

2.2 Establish function structures:

overall function—subfunctions

F 4 Internal generation of new (sub-) functions

F 7 Prioritization of functions: ‘‘It is useful to start by determining the main

flow in a technical system […]. The auxiliary flows should only be

considered later’’ (p. 171) ‘‘The search for solutions […] then focuses on

the subfunctions that are essential for the solution and on which the

solutions of other subfunctions depend […]’’ (p. 181)
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Table 17 continued

Activity Design

issue

sFBS

step

Comments

2.3 Search for working principles

that fulfil the subfunctions

‘‘Only the combination of the physical effect with the geometric and

material characteristics […] allows the principle of the solution to

emerge. This interrelationship is called the working principle […]’’ (p.

40)

Be 10 Involves generating physical effects (B) based on subfunctions (F)

S 6 Involves generating working surfaces (S) and types of materials (S), both

can be expressed as S variables

Be, S, D, D,

S, Be, Bs,

Be

8, 9, 12, 17,

13, 19, 14,

5

May involve incrementally focusing on B and S, producing, interpreting

and analysing external S: ‘‘[…] the stepwise generation of working

principles, through the search for physical effects and the subsequent

form design features, is often integrated mentally by producing sketches

of solutions. This is because designers think more in configurations and

representation of principles than in physical equations’’ (p. 189)

R 19, 3 Involves interpreting relevant behaviours in the requirements list (B) and, if

available, structure (SRe): ‘‘[Extensive solution fields] should be reduced

as soon as feasible working principles emerge by checking against the

demands in the requirements list’’ (p. 189)

2.4 Combine working principles

into working structures

‘‘The combination of several working principles results in the working

structure of a solution’’ (p. 40)

Be 10 Involves creating sets of working principles ‘‘to fulfil the overall function’’

(p. 184)

S 6 Involves creating sets of working surfaces (S) and types of materials (S)

2.5 Select suitable combinations Be, S 8, 9 ‘‘Selection’’ here corresponds to focussing on B and S

2.6 Firm up into principle

solution variants

Be, S 10, 11 Involves generating more information about the working principles,

through additional variables and some values for B and S: ‘‘The most

important properties of the proposed combination of principles must first

be given a much more concrete qualitative, and often also a rough

quantitative, definition’’ (p. 190) ‘‘The fulfilment of the technical function

alone does not complete the task of designers […]. […] In addition, the

solution of technical tasks imposes certain constraints or requirements

resulting from ergonomics, production methods, transport facilities, the

intended operation, etc. […]’’ (p. 43) ‘‘It is advisable to consider these

guidelines [a list of general constraints] even during the conceptual

phase’’ (p. 44)

D, D 12, 17 Produces models and sketches (S) and calculations and tests/simulations

(B) in the external world (p. 190)

2.7 Evaluate variants against

technical and economic criteria

Be 19 ‘‘Identifying evaluation criteria’’ (p. 192) involves interpretation of external

B: ‘‘This step is based, first of all, on the requirements list’’ (p. 192)

Be, Be 5, 8 Involves generating and focussing on additional B using general checklist

(p. 193)

Be 8 ‘‘Weighting the evaluation criteria’’ (p. 194) corresponds to focussing on B

S 13 ‘‘Compiling parameters’’ (p. 194) involves gathering data from the results

of step 2.6: ‘‘Whatever quantitative information is available at this stage

should also be included. Such quantitative data generally result from the

step we have called ‘firming up into principle solution variants’’’ (p. 194)

Bs 14 ‘‘Assessing values’’ uses ratings such as ‘‘the 0–4 scale proposed in VDI

Guideline 2225’’ (p. 195); ‘‘Determining overall value’’ is ‘‘a matter of

simple addition’’ (p. 197)

– 15 ‘‘Comparing concept variants’’ (p. 197)

S, S, F, F 6, 9, 16, 7 May involve generating and focussing on new solutions, through ‘‘transfer

of better subsolutions from other variants’’ (p.198), and deriving and

focussing on additional functions through fault-tree analysis (see example

in Fig. 10.7, p. 525)
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Table 18 Phase 3: Embodiment design (numbers refer to sFBS process labels; page numbers refer to Pahl and Beitz 2007)

Activity Design

issue

sFBS

step

Comments

3.1 Identify embodiment-determining requirements F, Be,

R, F,

Be, S

20, 19,

3, 7,

8, 9

Involves interpretation of the requirements list in the

external world, and selection (focussing): ‘‘Starting with

the principle solution, and using the requirements list, the

first step is to identify those requirements that have a

crucial bearing on the embodiment design’’ (p. 228)

3.2 Produce scale drawings of spatial constraints D 12 Involves creation of external S

3.3 Identify embodiment-determining main function carriers S 9 Involves selection (focussing) of S in terms of ‘‘the overall

embodiment-determining main function carriers’’ (p. 228)

3.4 Develop preliminary layouts and form designs for the

embodiment-determining main function carriers

S 11 Involves developing S in terms of the ‘‘general arrangement,

component shapes and materials’’ (p. 230)

D 12 Involves producing external representations of S: ‘‘The

representation of the spatial constraints and the

embodiment is now generally obtained by creating a full

3-D digital model’’ (p. 231)

3.5 Select suitable preliminary layouts S 11 This selection is part of the B-to-S transformation

3.6 Develop preliminary layouts and form designs for the

remaining main function carriers

S 9 Involves focussing on ‘‘the remaining main function

carriers’’ (p. 230)

S 11 Involves developing S for these function carriers

D 12 Involves producing external representations of S: ‘‘The

representation of the spatial constraints and the

embodiment is now generally obtained by creating a full

3-D digital model’’ (p. 231)

3.7 Search for solutions to auxiliary functions S 9 Involves focussing in terms of selecting, ‘‘where possible,

[…] known solutions’’ (p. 230)

S 6 May involve generating ‘‘special solutions, using the

procedures already described in Sect. 3.2 [including

creativity techniques such as brainstorming, synectics etc.]

and Chapter 6’’ (p. 230)

3.8 Develop detailed layouts and form designs for the main

function carriers ensuring compatibility with the auxiliary

function carriers

S 11 Involves developing S for the main function carriers

D 12 Involves producing external representations of S: ‘‘The

representation of the spatial constraints and the

embodiment is now generally obtained by creating a full

3-D digital model’’ (p. 231)

3.9 Develop detailed layouts and form designs for the

auxiliary function carriers and complete the overall layouts

S 11 Involves developing S for the auxiliary function carriers

D 12 Involves producing external representations of S: ‘‘The

representation of the spatial constraints and the

embodiment is now generally obtained by creating a full

3-D digital model’’ (p. 231)

3.10 Evaluate against technical and economic criteria S, Bs 13, 14,

15

Must involve interpretation of the external model, and

analysis and comparison

3.11 Optimize and complete form designs S 11 Involves changing S ‘‘by eliminating the weak spots’’ (p.

231)

D 12 Involves producing external representations of S: ‘‘The

representation of the spatial constraints and the

embodiment is now generally obtained by creating a full

3-D digital model’’ (p. 231)

3.12 Check for errors and disturbing factors S, Bs 13, 14,

15

Must involve interpretation of the external model, and

analysis and comparison

S, S, S 13, 6,

9

May involve generating and focussing on new S as a result

of fault-tree analysis (p. 526)

3.13 Prepare preliminary parts lists and production

documents

D 12 Creates documentation (S) in the external world
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Appendix 3: Rational unified process

See Tables 20, 21, 22 and 23.

Table 19 Phase 4: Detail design (numbers refer to sFBS process labels; page numbers refer to Pahl and Beitz 2007)

Activity Design

issue

sFBS

step

Comments

4.1 Finalize details; complete detail drawings S 11 Involves optimization of S by selecting ‘‘the most suitable materials

[…], at cost-effectiveness and at ease of production, with due attention

being paid to standards […]’’ (p. 437)

D 12 Involves generating S in the external world, ‘‘comprising the detailed

drawing of components, and the detailed optimisation of shapes,

materials, surfaces, tolerances and fits’’ (p. 437)

4.2 Integrate into overall layout drawings,

assembly drawings and parts lists

D 12 Involves a re-representation of external S

4.3 Complete production documents with

production, assembly, transport and operating

instructions

D 12 Involves a re-representation of external S

4.4 Check all documents for standards,

completeness and correctness

S, Bs 13,

14,

15

Must involve interpretation of the external documents, and analysis and

comparison

Table 20 Phase 1: Inception (numbers refer to sFBS process labels; page numbers refer to Kruchten 2004)

Activity Design

issue

sFBS

step

Comments

1.1 Analyse the problem R 1 We assume some expression of a need to initiate designing

F, Be 4, 5 Involves generating internal F and B, through ‘‘gain[ing] agreement on a statement of the

problem we are trying to solve’’ (p. 164) and ‘‘identify[ing] the boundaries and constraints of

the system’’ (p. 164)

1.2 Understand

stakeholder needs

R, R 1, 2 Involves eliciting external requirements on F and B, through ‘‘gather[ing] stakeholder requests

and […] obtaining a clear understanding of the real needs of the users and stakeholders of the

system’’ (p. 166)

1.3 Define the system F 4 Involves generating F by ‘‘establish[ing] the set of system features to be considered for delivery’’

(p. 166)

D 18 Involves producing external F ‘‘to set realistic expectations with the stakeholders on what

features will be delivered’’ (p. 166)

1.4 Manage the scope of

the system

F, Be 7, 8 Involves selecting or focussing on expected F and B

D, D 18, 17 Involves producing external F and B as ‘‘requirements attributes’’ (p. 166)

1.5 Refine the system

definition

F, Be 4, 10 Involves generating F and B, through establishing ‘‘the functionality of the system […] and other

important requirements, such as nonfunctional requirements, design constraints, and so forth’’

(p. 166)

D, D 18, 17 Involves producing external F and B, ‘‘to come to an agreement with the customer’’ (p. 166)
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Table 21 Phase 2: Elaboration (numbers refer to sFBS process labels; page numbers refer to Kruchten 2004)

Activity Design

issue

sFBS

step

Comments

2.1 Decide which use cases and scenarios will drive the

development of the architecture

F 20 Involves interpreting external F, by ‘‘discussing an initial use-

case view’’ (p. 251)

F 7 Involves ‘‘determin[ing] which use cases and scenarios

should be focused on in this iteration’’ (p. 251)

2.2 Understand this driver in detail and inspect the results F 4 Involves detailing and ‘‘restructur[ing] the use-case model as

a whole’’

D 18 Involves producing external F as ‘‘use-case model and

supplementary specification’’ to be ‘‘reviewed and

approved’’ (p. 251)

2.3 Reconsider use cases and risks F 20 Involves interpreting external F by ‘‘revisit[ing] the use-case

view’’

F 7 Involves focussing by ‘‘select[ing] the set of use cases and

scenarios to be analyzed, designed, and implemented in the

current iteration’’ (p. 251)

2.4 Prototype the user interface D 18 Involves producing external F by ‘‘build[ing] a user-interface

prototype to get feedback from prospective users’’ (p. 252);

F, F 20, 7 We presume that this feedback may lead to a reformulation of

F

2.5 Find obvious classes, do initial subsystem partitioning,

and look at use cases in detail

Be 10 Involves generating expected B based on expected F by

‘‘identif[ying] the analysis mechanisms that constitute

common solutions to common problems during analysis’’

(p. 252)

S 6 Involves generating S by ‘‘start[ing] finding classes or objects

for this iteration’s use cases or scenarios’’ (p. 252)

D, D 17, 12 Involves producing external B and S as a ‘‘software

architecture document’’ (p. 252)

2.6 Refine and homogenize classes and identify

architecturally significant ones; inspect results

S 11 Involves synthesizing S by ‘‘refin[ing] the classes identified’’

(p. 252)

S 9 Involves focussing on S by ‘‘identif[ying] a number of classes

that should be considered architecturally significant’’ (p.

252)

D 12 Involves producing external S by ‘‘includ[ing the

architecturally significant classes] in the logical view

(Artifact: Software Architecture Document)’’ (p. 252)

2.7 Consider the low-level package partitioning S 11 Involves synthesizing S by ‘‘organiz[ing] some of the classes

into design packages’’ (p. 252)

2.8 Adjust to the implementation environment, decide the

design of the key scenarios, and define formal class

interfaces; inspect results

Be, S 5, 6 Involves generating B and S as constraints imposed by ‘‘the

implementation environment’’ (p. 253)

Be, S 8, 9 Involves focusing on B and S to provide ‘‘detailed

requirements that are then put on each object’’ (p. 253)

S 11 Involves synthesizing S by ‘‘merg[ing the detailed

requirements] into consistent and formal interfaces on their

classes’’ (p. 253)

D, D 17, 12 Involves producing external B and S by ‘‘updat[ing] the

logical view accordingly’’ (p. 253)

2.9 Consider concurrency and distribution of the

architecture

S 11 Involves synthesizing S based on ‘‘the collaborating objects

in interaction diagrams’’ (p. 253)

2.10 Inspect the architectural design S, Bs 13, 14,

15

Likely to involve interpreting external S, and deriving and

evaluating B

2.11 Consider the physical packaging of the architecture Be, S 5, 6 Involves generating B and S by ‘‘defin[ing] the

implementation view’’ (p. 253)
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Table 21 continued

Activity Design

issue

sFBS

step

Comments

2.12 Plan the integration F 7 Involves focussing on F by ‘‘stud[ying] the use cases that are

to be implemented in this iteration’’ (p. 253)

S 9 Involves focussing on S by ‘‘defin[ing] the order in which

subsystems should be implemented’’ (p. 253)

2.13 Plan integration tests and system tests Be 10 Involves generating expected B based on expected F by

‘‘plan[ning] the system tests and the integration tests,

selecting measurable testing goals [which] could be

expressed in terms of the ability to execute a use-case

scenario with a certain response time or under specified

load’’ (p. 253)

D 17 Involves producing external B as a ‘‘test plan’’ (p. 254)

2.14 Implement the classes and integrate S, D, S,

Bs

11, 12,

13,

14,

15

Involves synthesizing and externalizing S, then interpreting it

and deriving and evaluating B, by ‘‘cod[ing] and unit-

test[ing] the classes identified in the architectural design’’

(p. 254)

2.15 Integrate the implemented parts S, D, S,

Bs

11, 12,

13,

14,

15

Involves synthesizing and externalizing S, then interpreting it

and deriving and evaluating B, by ‘‘integrat[ing] the

subsystems into an executable architectural prototype [and

then testing it]’’ (p. 254)

2.16 Assess the executable architecture S, D, S,

Bs

11, 12,

13,

14,

15

Involves synthesizing and externalizing S, then interpreting it

and deriving and evaluating B, as ‘‘[o]nce the whole system

[…] has been integrated, the System Tester tests the

system’’ (p. 254)

Table 22 Phase 3: Construction (numbers refer to sFBS process labels; page numbers refer to Kruchten 2004)

Activity Design

issue

sFBS step Comments

3.1 Plan system-level integration S 9 Involves focussing on S by selecting ‘‘the order in which subsystems are to be

put together to form a working and testable configuration’’ (p. 255)

D 12 Involves producing external S as ‘‘documented in the Build Plan’’ p. 256)

3.2 Plan and design system-level test Be 10 Involves generating expected B, presumably based on expected F (the use-case

scenarios)

Be 5 Involves generating B from ‘‘preceding iterations, which could be modified to

be reused’’ (p. 256)

D 17 Involves producing external B as ‘‘test scripts’’ (p. 256)

3.3 Refine use-case realizations S 11 Involves synthesizing S by ‘‘refin[ing] the classes identified in previous

iterations’’ (p. 256)

S 6 May involve generating S, as ‘‘[c]lasses may need to be added’’ (p. 256)

S 9 May involve focussing on S, as ‘‘[c]hanges to classes may require a change in

subsystem partitioning’’ (p. 256)

3.4 Plan and design integration tests at

the subsystem and system levels

Be 19 Involves interpreting external B as the ‘‘Test Plan’’ (p. 256)

F, Be 7, 8 Involves focussing on F and B: ‘‘The Designer identifies the functionality that

will be tested together and the stubs and drivers that must be developed to

support the integration tests’’ (p. 256)

Be 10 Involves generating B, presumably based on expected F and B (‘‘based on the

input from the Test Designer’’, p. 256) by ‘‘develop[ing] the stubs and

drivers’’ (p. 256)

3.5 Develop code and test unit S, D, S,

Bs

11, 12,

13, 14,

15

Involves synthesizing and externalizing S, then interpreting it and deriving and

evaluating B, by ‘‘implement[ing] the classes in the Implementation Model

[and fixing] defects’’ (p. 256)

S, Be 9, 8 May involve reformulation of S and B in terms of ‘‘design changes based on

discoveries made in implementation’’ (p. 256)

272 Res Eng Design (2015) 26:253–275

123



Appendix 4: DFSS–ICOV

See Tables 24, 25, 26 and 27.

Table 22 continued

Activity Design

issue

sFBS step Comments

3.6 Plan and implement unit test Be 10 Involves generating expected B, presumably based on expected F

3.7 Test unit within a subsystem S, Bs 13, 14, 15 Involves interpreting external S and deriving and evaluating B

3.8 Integrate a subsystem S, D 11, 12 Involves synthesizing S and producing external S by ‘‘bringing together

completed and stubbed classes that constitute a build’’ (p. 257)

3.9 Test a subsystem S, Bs 13, 14, 15 Involves interpreting external S and deriving and evaluating B

D 17 Involves producing external B by ‘‘log[ging] the defects for arbitration to

decide when they are to be fixed’’ (p. 257)

3.10 Release a subsystem D 12 Involves producing external S by ‘‘releas[ing] the tested version of the

subsystem […] into an area where it becomes visible, and usable, for system-

level integration’’ (p. 257)

3.11 Integrate the system S, D 11, 12 Involves synthesizing S and producing external S by ‘‘add[ing] subsystems and

creat[ing] a build that is handed over to the Integration Testers’’ (p. 257)

3.12 Test integration S, Bs 13, 14, 15 Involves interpreting external S and deriving and evaluating B

D 17 Involves producing external B by ‘‘log[ging] the defects’’ (p. 257)

3.13 Test the system S, Bs 13, 14, 15 Involves interpreting external S and deriving and evaluating B

Table 23 Phase 4: Transition (numbers refer to sFBS process labels; page numbers refer to Kruchten 2004)

Activity Design

issue

sFBS

step

Comments

4.1 Plan deployment D 17 Involves producing external B as the ‘‘beta test program’’ (p. 242)

4.2 Develop support

material

D, D 18, 17 Involves producing external F and B by providing ‘‘information that will be required by the end user

to install, operate, use, and maintain the delivered system’’ (p. 242)

4.3 Produce

deployment unit

D 12 Involves producing external S as the final software (p. 242)

4.4 Beta test product S, Bs 13, 14,

15

Involves interpreting external S and deriving and evaluating B

Table 24 Phase 1: Identify (numbers refer to sFBS process labels; page numbers refer to El-Haik and Roy 2005)

Activity Design

issue

sFBS

step

Comments

1.1 Idea creation R 1 We assume some expression of a need to initiate designing

F, F 4, 7 Involves generating and focussing on F, by creating ‘‘a market vision, with an assessment of

marketplace advantages’’ (p. 83)

1.2 Voice of the customer

and business

R, R 1, 2 Involves interpreting F and B, by ‘‘obtain[ing] customer needs and wants (p. 84)

F, Be 4, 5 Involves generating F and B, by ‘‘identify[ing] and fill[ing] gaps in customer-provided

requirements’’, by ‘‘establish[ing] metrics for CTSs’’, ‘‘quantify[ing] CTSs’’ and by

‘‘align[ing] with business objectives’’ (p. 84)

Be 10 Involves deriving B from F, by ‘‘translat[ing] the VOC to CTSs’’ (p. 84)

F, Be 7, 8 Involves focussing on F and B, by ‘‘conduct[ing] risk assessment’’ (p. 84) and performing a

Kano analysis (p. 118)

D, D 18, 17 Involves externalizing F and B, by producing ‘‘a list of the voice of the customer (VOC)’’ (p.

84) and a HOQ 1 (p. 386)
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