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Abstract In this paper, a proof is given that in design

methods, the relation between technical functions and their

subfunctions in functional descriptions of technical prod-

ucts cannot be analysed as a formal relation of parthood.

This result holds for design methods in which transforma-

tions of flows of energy, material and signals are accepted

as functions. First, two specific categories of such technical

functions are modelled. Second, the composition relation by

which ordered sets of these functions define other functions

is characterised. Third, it is shown that this composition

relation for technical functions does not meet the basic

postulates of parthood relations as given by mereology, the

theory of parthood. It still may be beneficial to designing to

take subfunctions informally as the parts of the functions

they compose. Yet, the proof shows that when functional

descriptions are formalised for, for instance, the develop-

ment of automated design reasoning tools or for incorpo-

ration in engineering ontologies, the composition relation

for technical functions cannot unconditionally be taken as a

parthood relation.

Keywords Technical functions � Parthood relations �
Functional composition � Functional decomposition �
Modelling of functions � Engineering ontologies

List of symbols

u, w A technical function

/ A token function

U A type function

a, b, c Token flows of energy, material and

signals

I The set of input flows of a token

function

L The set of flows locked in by a set of

token functions

O The set of output flows of a token

function

Comp(/1,…, /n) The token function to which the

n token functions /1,…, /n compose

P(u, w) Part-of relation: u is part of w
PP(u, w) Proper-part-of relation: u is proper

part of w

1 Introduction

Functional descriptions of products form a key element in

many design methods. Specifying the technical functions

of a product that is to be designed belongs to the first steps

towards characterising the product. And decomposing

functions in subfunctions is seen as a technique by which

designers can explore design solutions without being too

early committed to a specific physical layout of the prod-

uct. Design methods define rules for these functional

descriptions, stating how functions are understood and

represented, and laying down how functions are decom-

posed. The paradigmatic example is the method by Pahl

and Beitz (1996), in which technical functions are taken as

transformations of flows of energy, material and signals,

and in which functional decomposition is an analysis of

overall functions in terms of webs of basic functions.
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By their key role and by being relatively well defined,

functional descriptions make good candidates for more

formal descriptions and for automated reasoning. Technical

functions are indeed incorporated in engineering ontologies

(e.g. Kitamura et al. 2005; Garbacz 2006; Arp and Smith

2008; Borgo et al. 2009, 2011; Burek et al. 2009; Goel

et al. 2009). And computer tools for the decomposition of

functions in subfunctions are developed (e.g. Sridharan and

Campbell 2005; Bryant et al. 2006).

This paper supports the formalisation of functional

descriptions by providing elements for modelling technical

functions, and by proving that the relation between func-

tions and their subfunctions cannot formally be taken as

one of parthood.

First, a modelling is given of functions of two specific

categories. This modelling is secondly extended to the

composition relation between subfunctions and functions.

Yet, using this modelling, it is thirdly proved that this

composition relation cannot be analysed as a formal part-

hood relation for functions. According to mereology, the

formal theory of parthood, a relation should at least meet

three postulates for being a parthood relation, and it is

shown that the composition relation for functions fails to

do so. Possibly, it may be beneficial in design methods to

informally understand subfunctions as parts of the func-

tions they compose. This understanding may, for instance,

be helpful because it suggests to designers to consider the

design solutions to subfunctions as parts of the solutions to

the overall functions. Providing propulsion is typically a

subfunction of the overall function of many vehicles, and

the engines that solve this subfunction are typically phys-

ical parts of the vehicles. The proof shows, however, that

when functional descriptions in design methods are for-

malised for engineering ontologies or for automated rea-

soning tools, the composition relation for technical

functions cannot be taken as a parthood relation.

A challenge to any general argument about functional

descriptions is that there is not one unambiguous concept

of function available in engineering (e.g. Erden et al. 2008;

Vermaas 2009b; Van Eck 2010). Design methods define

different rules for understanding and representing func-

tions, and therefore, advance different procedures for

functional decomposition. In the proof given in this paper,

this ambiguity is not accommodated by considering the

different engineering concepts of function separately;

generality is achieved by considering functions of two

specific categories that are arguably instances of functions

on many design methods. The flip side of this strategy

towards generality is that the functions considered in the

proof are somewhat simple from an engineering point of

view.

The results presented in this paper hold in this way for

design methods in which transformations of flows of

energy, material and signals are accepted as functions (e.g.

Hubka and Eder 1988; Keuneke 1991; Lind 1994; Pahl and

Beitz 1996; Sasajima et al. 1996; Modarres and Cheon

1999; Stone and Wood 2000; Chakrabarti and Bligh 2001;

Otto and Wood 2001; Fantoni et al. 2009). And the results

hold for methods in which this representation of functions

is not adopted but for which it can be argued that such

transformations of flows still count as special cases of

functions (e.g. Umeda et al. 1996; Chandrasekaran and

Josephson 2000; Goel et al. 2009).

In Sect. 2, the relation between functions and subfunc-

tions is introduced, and in Sect. 3, it is discussed what it

means to take this relation as a parthood relation. In Sect. 4,

the three basic mereological postulates for parthood rela-

tions are given. Section 5 introduces the specific categories

of functions considered in the proof, and in Sect. 6, the

generality of this proof is analysed. Section 7 is about the

composition of the considered functions. Section 8 defines

parthood relations for these functions, which are measured

against the mereological postulates in Sects. 9 and 10.

Sections 11 and 12 conclude by assessing the proof and by

discussing consequences for design methodology.

2 Functions and subfunctions

The relation between functions and subfunctions in func-

tional descriptions of technical products is in design

methods introduced by the technique of functional

decomposition. Briefly put, and abstracting from differ-

ences between methods, it is a relation between one

function u and an ordered set of other functions u1, u2,…,

un, for which holds that the functions u1, u2,…, un in the

given ordering compose to u. All the functions ui, with

i running from 1 to n, then count as subfunctions of the

composed function u. Decomposition is not unique: there

may exist two or more different sets of ordered functions

that compose to u. But composition is unique: a specific

ordered set of function u1, u2,…, un composes to just one

function u.1

When looking at examples of functional decomposition,

the differences between methods surface, illustrating the

lack of consensus in engineering how to understand and

represent functions. The paradigmatic method is the one by

Pahl and Beitz (1996), in which technical functions are

taken as transformations of flows of energy, material and

signals, and in which functional decomposition is an

analysis of an overall function in terms of a web of basic

functions. A simple example (1996, p. 33) is the

1 One may challenge this last conclusion if one allows that an ordered

set of functions u1, u2,…, un that composes to a function u also

composes to any coarse-grained version of u (e.g. Burek et al. 2009).
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decomposition of the function of packing carpet tiles in a

series of sequentially ordered functions, see Fig. 1.

In addition to sequential orderings, subfunctions may

also be ordered in parallel or in combinations of sequential

and parallel orderings. Stone and Wood (2000), while still

understanding functions as transformations of flows, have

developed algorithms for such functional decompositions.

An example in their approach is a decomposition of the

function of holding liquid and retaining heat (Bryant et al.

2006, fig. 1), where now technical functions can also

involve transformations of hands of users; see Fig. 2.

In both these examples, the ordering of the subfunctions

is explicitly represented by the flows that are output of one

subfunction and input to another. An alternative represen-

tation is adopted in the on-going work by Kitamura and

Mizoguchi on functions and functional decomposition in

the field of engineering ontologies. In that work, functional

decompositions are captured by ‘reverse tree’-like dia-

grams in which the ordering of subfunctions is left implicit.

An example thereof is given in Fig. 3, which is the

decomposition of the function of combining sheets of paper

(a fragment adopted from Ookubo et al. 2007, fig. 3),

which also illustrates that functional decompositions can be

nested. In this example, individual decompositions are

labelled by ways of achievement’s, represented by the little

black squares interlinking the different functions (Kitamura

and Mizoguchi 2003, sec. 4). I return at the end of this

paper to this addition to the description of functional

decompositions when discussing in Sect. 11 ways to cir-

cumvent the proof that the relation between subfunctions

and functions cannot formally be a parthood relation.

3 A parthood relation for functions

In the literature, the composition relation for functions is

sometimes taken as a parthood relation. This character-

isation can be found in design methodology (e.g. Lind

1994, p. 261; Umeda et al. 1996, p. 278), in engineering

ontologies (e.g. Burek et al. 2009, p. 436), and in work that

covers both these domains (e.g. Kitamura et al. 2004,

p. 116). In design methodology, this characterisation may

be taken in a colloquial sense, yet in engineering ontolo-

gies, the relation of parthood is a fundamental one that is

described by mereology, the formal theory of parthood.

This theory gives three basic postulates for any formal

parthood relation, which are described in the next section.

And although it is acknowledged that colloquial parthood

relations need not meet these mereological postulates (Keet

and Artale 2008), they are all three accepted to hold for

formal parthood relations as considered in engineering

ontologies. The proof given in this paper now demonstrates

that these basic mereological postulates are violated by the

composition relation for functions.

It should be emphasised that the parthood relation that is

considered here is one between functions only. Existing

work in engineering ontologies on parthood in relation to

technical functions has been dominated by analyses of

whether functional descriptions of products define a part-

hood relation for products and their components.2 The parts

and the wholes are then themselves not functions, but

structural parts and wholes of products, or temporal parts

and whole of processes associated with products. For

instance, a functional description of a house may single out

a door as a functionally defined structural part of the house,

and a functional description of a door may single out a

handle as a functionally defined structural part of the door.

Central questions in this work are whether these func-

tionally defined structural or temporal parthood relations

meet the postulates of mereology, and how to explain

possible violations. That such violations occur is generally

accepted in mereology. It is, for instance, assumed that the

basic mereological postulate of transitivity (see Eq. 3 in

the next section) is typically not met, as is illustrated in the

literature with the house-door-handle example: although

the door is a functionally defined structural part of the

house and the handle is a functionally defined structural

part of the door, it is argued that the handle need not be

taken as a functionally defined structural part of the house

(e.g. Johansson 2004).

In this paper, the parthood relation considered is one

directly at the level of function, that is, the part is a

function and the whole is a function. So, in terms of the

example, in this paper, part-of relations are considered

between the function of the house, the function of the door

and the function of the handle. This functional parthood

relation is more rarely analysed in the literature but is

finding its way to engineering ontologies (Kitamura et al.

2005; Burek et al. 2009), with some initial indications that

separate 
tiles 

check 
quality 

count 
tiles 

combine 
in lots 

pack 

tiles 
packing 
carpet tiles 

tiles'

decomposition 

Fig. 1 A decomposition of the function of packing carpet tiles

2 A selection of this literature is given by: Winston et al. (1987),

Simons and Dement (1996), Johansson (2004, 2005), Varzi (2005),

Johansson et al. (2005), Vieu (2005), Vieu and Aurnague (2005) and

Garbacz (2007).

Res Eng Design (2013) 24:19–32 21

123



also it may not satisfy the basic postulates of mereology

(Vermaas 2009a, 2010; Vermaas and Garbacz 2009).

4 Mereology and ground mereology

Mereology (Simons 1987; Casati and Varzi 1999; Varzi

2011), the theory of parthood, does not advance one rela-

tion of parthood. It rather defines and analyses different

formalised parthood relations, which are compared with

parthood relations as used in natural and specialised lan-

guages. Mereology thus provides a spectrum of possible

parthood relations (Keet and Artale 2008), for physical

objects, for temporal periods, for social entities, and so on,

similar to how logic provides a spectrum of possible logics

for different cases. Yet, in mereology, it is assumed that

there is a common core to all parthood relations. This

common core is called ground mereology and captured by

simple postulates as given below. This assumption is nor-

mative: well-defined formalised parthood relations, as used

in engineering ontologies, have to meet these postulates or

are meeting them by construction; and when parthood

relations as advanced in natural languages are not meeting

the postulates, this is considered to be problematic and in

need of explanation or mending (as in, e.g. Winston et al.

1987; Johansson 2004, 2005; Varzi 2005).

There are in mereology two distinct concepts of part,

and the postulates of ground mereology depend on the

specific concept adopted. The first is that of proper part by

which an entity is by definition not a (proper) part of itself.

The second concept is just called part and with this concept

an entity is by definition always a part of itself. One can

adopt as primitive either the concept of proper part or the

concept of part and then define the other by means of the

primitive one (see Eq. 5). The first concept of proper part

comes closer to the everyday or engineering concept of

part: it seems wrong to take a car as a part of itself, but

taking the car’s engine as a part of the car seems right,

assuming the car does not consist of only the engine. The

second concept of part in turn deviates from the everyday

or engineering concept of part: a car is by this second

concept a part of itself. It has, however, advantages to

nevertheless choose this second concept of part as primi-

tive, since parthood relations then define logically partial

orderings (Varzi 2011), and in this paper, I adopt this

choice. And as said, when taking this second concept of

part as primitive, the first concept of proper part can be

defined (Eq. 5) to recover the everyday or engineering

concept of part.

Let P(u, u0) represent a part-of relation, which is to be

read as ‘u is a part of u0’, and which thus means that u is

identical to u0 or that u is a proper part of u0. The parthood

relation made up by such part-of relations P(u, u0) counts

as a ground mereology if it meets three postulates: reflex-

ivity, Eq. 1, antisymmetry, Eq. 2, and transitivity, Eq. 3:

P u;uð Þ ð1Þ

P u;u0ð Þ ^ P u0;uð Þð Þ ) u ¼ u0 ð2Þ

P u;u0ð Þ ^ P u0;u00ð Þð Þ ) P u;u00ð Þ ð3Þ

The postulate of reflexivity is, as discussed, somewhat

odd when measured against the way in which the concept

of part is used in everyday language and in engineering, but

unproblematic given that the second concept of part is

chosen as primitive. Antisymmetry is in mereology taken

as unproblematic as well and sometimes even used to
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define identity between entities (e.g. Simons 1987, p. 50). The

postulate of transitivity is, however, object of controversy, as

discussed in the previous section.

Mereology has more postulates, and parthood relations

are categorised by the additional postulates they meet.

Here, I focus on the above minimal postulates of ground

mereology but briefly mention the more special extensional

parthood relations. These relations satisfy a fourth postu-

late called strong supplementation (Simons 1987; Casati

and Varzi 1999; Varzi 2011) and meet the extensionality

condition:

ð9wðPPðw;uÞÞ _ 9wðPPðw;u0ÞÞÞ ) ð8wðPPðw;uÞ
, PPðw;u0ÞÞ ) u ¼ u0Þ ð4Þ

where PP(u, u0) is the proper-part-of relation defined as:

PP u;u0ð Þ ¼ P u;u0ð Þ ^ :P u0;uð Þð Þ ð5Þ

Condition Eq. 4 expresses that two entities u and u0 are

the same when they have exactly the same set of proper

parts.

5 Modelling token and type functions

The proof that the relation between subfunctions and

functions cannot be formally one of parthood consists of

showing that this relation does not meet the three basic

mereological postulates Eqs. 1–3. For this proof, two cat-

egories of functions are introduced. The first category

consists of token functions / modelled as transformations

of tokens of flows, say, flows of energy, material or signals.

With a token, flow is meant a specific flow that occurs only

once. A token flow of electrical energy a, for instance, is a

flow of energy that exists within one specific period in time

and at one specific place in space. A second token flow of

electrical energy a0 may be a flow similar to a by having

the same intensity and duration as a. But when this second

flow a0 occurs in another period or at another place than a,

then a0 is a token flow different to a. A token function /
can now be represented by ordered sets hI, Oi, where

I contains the input token flows to the function / and O its

output token flows. For instance, the token function / =

ha, bi transforms the electrical energy token flow a to the

rotational energy token flow b. The token function /0 =

ha0, b0i, which transforms the electrical energy token flow

a0 to the rotational energy token flow b0, is then another

token function than / = ha, bi as soon as a and a0 are two

different token flows, or b and b0 are two different token

flows.

In engineering, technical functions are typically not

token functions: if a and a0 are two similar token flows and

b and b0 are also two similar token flows, the token func-

tions / = ha, bi and /0 = ha0, b0i are typically taken as

describing one and the same function. For being able to

express this generalisation, a second category of functions

is introduced: that of type functions U. Define types of

flows X as equivalence classes {x, x0, x00,…} of token flows

that are taken to be similar in engineering, say, because

they have the same content, intensity and duration. Two

token functions / = hI, Oi and /0 = hI0, O0i can then be

taken as similar if their input flows in I and I0 are pair-wise

of the same types of flows and if their output flows in O and

O0 are pair-wise of the same types of flows. So, define type

functions U as equivalence classes {/, /0, /00,…} of sim-

ilar token functions / = hI, Oi, /0 = hI0, O0i, and so on. A

type function can then be represented by U = {hI, Oi,hI0,
O0i,…}. Thus, if the token flows of electrical energy a and

a0 are instances of the same type of flows, and if the token

flows of rotational energy b and b0 are instances of the same

type of flows, one has that / = ha, bi and /0 = ha0, b0i are

instances of the same type function, namely the type

function U represented by {ha, bi,ha0, b0i,…}.

Type functions come closer to technical functions that

are regularly considered in engineering yet are still rather

specific. Technical functions are typically defined as

operations with variable input, say, electrical currents

within a certain range of amperage. Type functions are,

however, referring to only transformations that have input

flows of one specific type, say input electrical currents of 2

ampere only.

Token and type functions can be represented by arrows

for flows and boxes for transformations, see Fig. 4. For

token functions, the possibility of this representation is

straightforward; for type functions, it has to be kept in

mind that type functions are represented by token functions

that are instances of the type.

6 The generality of the proof

The choice to focus in this paper on token and type func-

tions is motivated by two considerations. The first is that

the composition of token and type functions can be mod-

elled easily, as is done in the next section. The second is

that token and type functions are specific enough to be
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Fig. 4 Representations of token and type functions
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instances of functions on many design methods. This

implies that if it is shown that the composition relation for

token and type functions cannot formally be taken as a

parthood relation, it is also shown that in design methods

that accept token and type functions, the composition

relation for functions cannot formally be taken as a part-

hood relation.

As acknowledged in the introduction, design meth-

ods, or accounts of function, advance different concepts of

technical function. A number of these methods and

accounts accept the arrow-box representation of functions

as given in Fig. 4 (e.g. Hubka and Eder 1988; Keuneke

1991; Lind 1994; Pahl and Beitz 1996; Sasajima et al.

1996; Modarres and Cheon 1999; Stone and Wood 2000;

Chakrabarti and Bligh 2001; Otto and Wood 2001; Fantoni

et al. 2009). Hence, token and type functions may be taken

as instances of functions in these design methods and

accounts, and it follows that the result of the proof holds

for each of them.

A complication may be that some of these design

methods and accounts impose additional constraints on

functions. A first example is given by Modarres and

Cheon (1999), who explicitly require that the representa-

tions of technical functions satisfy conservation laws as

given by the natural sciences: the input flows listed in

representations as given in Fig. 4 should together have

equal energy as the listed output flows have, should in a

similar way conserve charge, and so on. For instance, a

function by which electrical energy is transformed to

rotational energy with an efficiency of less than 1 should

by Modarres and Cheon always be taken as a function that

transforms electrical energy to rotational energy and to,

say, thermal energy. Keuneke (1991) and Lind (1994)

accept, in contrast, also functions in which the input and

output flows do not match in terms of energy or of any

other conserved quantity.3 For Lind, for instance, creation

of energy is an acceptable description of, say, the function

of a battery.

A second example of additional constraints is given by

design methods in which it is assumed that technical

functions are composed of basic functions consisting of

basic transformations of basic flows (e.g. Pahl and Beitz

1996; Stone and Wood 2000) as defined by libraries as the

one given in (Hirtz et al. 2002). In order to let the proof

given in this paper hold for all methods and accounts that

represent functions by transformations of flows, I assume

that the token functions / = hI, Oi that figure in the proof

(and thus the type functions as well) meet conservation

laws and consist of basic transformations of basic flows.

The token functions figuring in the proof actually consist of

simple transformations of basic flows to other basic flows.

The proof may also hold for design methods in which

the representation of functions by transformations of flows

is not adopted (e.g. Umeda et al. 1996; Chandrasekaran and

Josephson 2000; Goel et al. 2009). The functions consid-

ered in the proof may be accepted as instances of functions

in these methods, or with some additions turned into

instances of functions in the methods. Chandrasekaran

(2005), for instance, does not take functions represented as

transformations of flows as proper functions but neverthe-

less takes transformations as flows as giving information

about functions as defined in the method by Chandrasekaran

and Josephson (2000). By this perspective, the token and

type functions considered in the proof can be interpreted as

functions in the method by Chandrasekaran and Josephson

(2000), such that the proof holds mutatis mutandis for this

method as well. A similar attempt can be made to let the

proof hold for the method by Goel et al. (2009). In this

method, functions are represented by preconditions and

postconditions, including references to the behaviour

that accomplish the transitions from pre- to post-conditions.

One can now argue that the pre- and post-conditions may

consist of the input flows and the output flows that are

transformed, and that then, when adding a reference to the

behaviour that realises the transformation of these flows, the

proof given in this paper can be made to apply to Goel’s

method also.

7 Composition of token functions

Because token functions are modelled as transformations

of token flows, one has a straightforward way to also model

their ordering and composition. To start with the ordering:

the token flows that are shared by token functions represent

the connections between these functions and in this way lay

down their ordering.

Consider two token functions /1 = hI1, O1i and /2 =

hI2, O2i. Because the flows are tokens, the representations

/1 = hI1, O1i and /2 = hI2, O2i of the individual functions

already contain all information about how /1 and /2 are

ordered. There are three cases:

(i) /1 and /2 are ordered in parallel if no token flows are

shared by /1 and /2;

(ii) /1 and /2 are ordered in series if there are token

flows in O1 that are also in I2 or4 if there are flows in

O2 that are also in I1;

3 This tolerance does not imply that the technical phenomena that

realise the functions violate conservation laws; the tolerance is merely

that these laws may be ignored in representations of functions. 4 This is an exclusive or.
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(iii) /1 and /2 are ordered in a loop if there are flows in

O1 that are also in I2 and if there are flows in O2 that

are also in I1.

For instance, the two token functions /1 = ha, {b, c}i
and /2 = hb, {d, e}i are connected in series because the

flow b is output of /1 and input to /2. In Fig. 5, this

ordering is depicted by an arrow-box representation.

Moreover, with this ordering, the functions /1 and /2

amount to a net overall transformation of the token flow

a to the token flows c, d and e. Hence, the token function /
to which /1 and /2 compose is easily identified as the

function represented by ha, {c, d, e}i.
The analysis is still at a point of defining how to model

composition of token functions. A connection with engi-

neering can be made by taking the composition of the token

functions /1 = ha, {b, c}i and /2 = hb, {d, e}i to the

token function / = ha, {c, d, e}i as a simple-minded

functional model of a combustion engine, with a a token

flow of chemical energy, b a token flow of translational

energy, d a token flow of rotational energy, and c and e two

different token flows of thermal energy.

Before generalising this approach to the composition of

n functions, I return for a moment to the modelling of a

single token function /i = hIi, Oii. For an individual token

flow b participating in this token function, one can discern

three cases:

(i) flow b is in Ii only;

(ii) flow b is in Oi only;

(iii) flow b is in both Ii and Oi.

Case (iii) amounts to the flow b being a feedback loop as

in /i = h{a, b}, {b, c}i, see Fig. 6.5 In engineering, such

feedback loops are typically accepted in the modelling of

single functions: if a single token function has other flows

a, c,… that are only in Ii or only in Oi, as in Fig. 6, the

function still has a net input, net output, or both, and the

feedback loop may be a means for controlling the output.

Formally one can also accept the further special case

that all flows involved in a single token function amount to

feedback loops, as in ha, ai and h{k, l}, {k, l}i. Such token

functions have no net input and no net output. Whether

such token functions make sense from an engineering point

of view may be a point of discussion. The token function of

an ideal waste dumping site may be taken as such a

function: all output flows are reabsorbed by being input

flows as well. And a product that is fully sustainable may

be taken as having a token function in which all input flows

are made up by all output flows. Yet, one can also argue

that for being of practical use a product should have a token

function that minimally absorbs a flow, say acoustic energy

for a sound barrier, or that minimally creates a flow, say

electrical energy for a battery.

One can introduce a condition on the modelling of

single token functions that rules out functions with no net

input and no net output. Let L be the set of all token flows

that are feedback loops of a function /i:

L ¼ Ii \ Oi ð6Þ

(Below, Eq. 10, when again considering functional

composition, I define a generalisation of this set L as all

flows that are ‘locked in’ by a set of token functions; for a

single token function, L is the set of flows locked in by that

function.) A condition that avoids functions with no net

input and no net output is then:

Ii [ Oi=L 6¼ [ ð7Þ

Yet, even when accepting this condition, token functions

with no net input and no net output can resurface when

functional composition is modelled, as will become clear

below.

Impossible cases in the modelling of single token

functions are given by flows b that occur more than once in

Ii or more than once in Oi: a token flow b cannot enter or

leave a transformation twice or more often. These cases are

avoided in the modelling by taking Ii and Oi as sets. A

consequence of this choice is that the splitting and merging

of flows has to be modelled as transformations of different

token flow, as in ha, {a0, a00}i and h{a0, a00}, ai, while

expressing separately that a, a0 and a00 are, say, all token

flows of electrical energy, all flows of water or all flows of

signals.

Let us return to the modelling of functional composi-

tion and consider now n token function /1 = hI1, O1i,
/2 = hI2, O2i,…, /n = hIn, Oni. Let Comp(/1, /2,…, /n)

be the token function to which these n token functions

compose. Because the functions {/1, /2,…, /n} are

a 

c

b 

φ1 φ2 e

d

Fig. 5 An ordering and composition of two token functions

c a 

b 

φi

Fig. 6 A feedback loop in a single token function

5 The aspect of time is not included in the modelling of token

functions. This aspect can be added by specifying when token flows

occur, and then it should be noted that flows that form feedback loops,

like the flow b in Fig. 6, become input to the functions concerned at

later moments in time than that they are output.
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transformations of token flows, there is again a limited

number of cases for the occurrence of a specific token flow b:

(i) flow b is in one input set Ii of the functions {/1, /2,…,

/n};

(ii) flow b is in one output set Oj of the functions {/1,

/2,…, /n};

(iii) flow b is in one output set Oi and in one input set Ii of

the functions {/1, /2,…, /n};

(iv) flow b is in one output set Oi and in one input set Ij of

the functions {/1, /2,…, /n} with i = j.

What is impossible is that a token flow b occurs in two

or more different input sets Ii, Ij,…, or in two or more

different output sets Oi, Oj,…; a token flow cannot simul-

taneously be input to two different functions or simulta-

neously be output of two different functions. Conditions on

sets {/1, /2,…, /n} of token functions that compose

another token function are therefore:

Ii \ Ij ¼ [ with i; j ¼ 1; . . .; n; i 6¼ j ð8Þ

Oi \ Oj ¼ [ with i; j ¼ 1; . . .; n; i 6¼ j ð9Þ

In case (i), the flow b represents a flow that is only input

to one of the functions {/1, /2,…, /n} and thus also input to

the composition Comp(/1, /2,…, /n). In case (ii), the flow

b represents a flow that is only output of one of the functions

{/1, /2,…, /n} and thus also output of the composition

Comp(/1, /2,…, /n). In case (iii), the flow b represents a

feedback loop as depicted in Fig. 6 for one of the functions

in {/1, /2,…, /n}, and in case (iv), the flow b represents a

connection, as depicted in Fig. 5, between two different

functions in {/1, /2,…, /n}. Flows that represent loops,

that is, case (iii), are flows that are ‘locked in’ by the

functions {/1, /2,…, /n} and so are flows that represent

connections, that is, case (iv). And as locked-in flows, they

are neither input to nor output of Comp(/1, /2,…, /n). The

input flows to Comp(/1, /2,…, /n) can now be identified as

all input flows to the individual functions in {/1, /2,…, /n}

save those flows that are locked in by the functions {/1,

/2,…, /n}. And in a similar way, the output flows of

Comp(/1, /2,…, /n) can be identified.

Let L be again the set of locked-in flows. For a set of

token functions {/1, /2,…, /n}, L is given by the union:

L ¼ [i;j¼1;...;nIi \ Oj ð10Þ

Hence, the composite function Comp(/1, /2,…, /n) is

represented by:

Compð/1;/2; . . .;/nÞ ¼ [i¼1;...;nIi=L;[i¼1;...;nOi=L
� �

ð11Þ

It may happen that all flows participating in a set of

functions {/1, /2,…, /n} are locked in, creating again the

special case of a token function with no net input and no

net output. Consider, for instance, the composition of the

token functions /1 = h{a, b}, {c, d}i, /2 = h{c, d}, {a,

e}i and /3 = he, bi. The composite function Comp(/1, /2,

/3) is then given by h[, [i, see Fig. 7.

Such composite token functions with no net input and no

net output are again from a formal point of view possible

outcomes of composition. And such composite functions

still arise when one adopts condition Eq. 7 for avoiding

that the single token functions /1, /2,…, /n in the com-

position have no net input and no net output. So, if one also

wants to rule out composite token functions with no net

input and no net output, a generalisation of condition Eq. 7

should be accepted:

[i¼1;...;nIi [ Oi=L 6¼ [ ð12Þ

Composition of type functions is not defined in this paper6;

the parthood relation for token functions is introduced

by means of the composition of token functions, and the

parthood relation for type functions is introduced as a

generalisation of the parthood relation for token functions.

8 Parthood relations for token and type functions

Assume that the relation between token subfunctions

and the token functions they compose defines a parthood

relation P(/0, /) for token functions as generated by the

following sufficient condition:

/ ¼ Compð/1; . . .;/nÞ ) 8/0ð/0 2 f/1; . . .;/ng
) Pð/0;/ÞÞ ð13Þ

The part-of relations obtained by this condition describe

actual states of affairs. That is, P(/0, /) holds only if the

token function /0 is actually a subfunction of the token

function /; it does not imply that /0 is a part of / if /0 is

possibly though not actually, a subfunction of /. So, a

specific token function of transforming electrical energy to

d 

a 

e 

c

φ1 φ2

b 

φ3

Fig. 7 A composite token function with only locked-in flows

6 Attempts to define composition of type functions via composition

of token functions will in general not fix one particular composite

type function. For instance, a composition Comp(U1, U2) with

U1 = {ha, bi,ha0, b0i,…} and U2 = {hb, ci,hb0, c0i,…} may via the

token compositions Comp(ha, bi, hb, ci) = ha, ci and Comp(ha, bi,
hb0, c0i) = h{a, b0}, {b, c0}i lead to the identification of at least two

composite type functions Comp(U1, U2) = {ha, ci, ha0, c0i,…} and

Comp(U1, U2) = {h{a, b0}, {b, c0}i,h{a00, b0 00}, {b00, c0 00}i,…}.
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rotational energy may be a part of another specific function

of transporting people. But this specific part-of relation

need not hold for other pairs of similar token functions.

This generalisation is also in principle not necessary:

there are clearly cases where transforming electrical energy

to rotational energy is actually not a subfunction of

the function of transporting people. When a parthood

relation P(U0, U) is introduced for type functions, this

generalisation is, however, made: a part-of relation P(/0, /)

that holds for two token functions because /0 is actually a

subfunction of / is then extended to other pairs of similar

token functions. This generalisation may be plausible for

some functions: the function of transforming electrical

energy to rotational energy seems to always have

conducting electrical energy as a subfunction. Moreover,

though this generalisation may not be necessary

for all cases, it may nevertheless be possible without

contradiction. Hence, it makes sense to just try it. An

advantage of having this generalisation would be, for

instance, that one collects for designers all potential

(though not actual) compositions and decompositions of

functions by means of part-of relations between type

functions.

Assume therefore that functional composition for token

functions amounts also to a parthood relation for type

functions, and assume that this second parthood relation is

defined by the sufficient condition Eq. 13 and by the fol-

lowing sufficient condition for part-of relations P(U0, U) for

type functions:

ðPð/0;/Þ ^ /0 is of type U0 ^ / is of type UÞ ) PðU0;UÞ
ð14Þ

When it is assumed that the conditions Eqs. 13 and 14

define parthood relations, they cannot be necessary

conditions. As parthood relations, they have to meet the

three postulates Eqs. 1–3 of ground mereology. Two of

these postulates, reflexivity, Eq. 1, and transitivity, Eq. 3,

are generating additional part-of relations, as is

illustrated below, and this implies that Eqs. 13 and 14

are merely sufficient conditions. The remaining postulate,

antisymmetry, Eq. 2, puts in turn constraints on the set of

part-of relations thus generated.

Before introducing cases in which the defined parthood

relations for token and type functions run into trouble, it

can be shown that for two classes of regular cases of

functional composition and decomposition, the postulates

of ground mereology are satisfied. The first class consists

of cases in which a single token function / is related to one

set {/1,…, /n} of token subfunctions, say as in the pack-

ing-carpet-tiles example by Pahl and Beitz (see Fig. 1).

Condition Eq. 13 leads in this case to the following part-of

relations:

Pð/i;/Þ for all i ¼ 1; . . .; n ð15Þ

The postulates of ground mereology add via reflexivity,

Eq. 1, the relations:

Pð/;/Þ and Pð/i;/iÞ for all i ¼ 1; . . .; n ð16Þ

Transitivity, Eq. 3, does not add further part-of

relations: there are no non-trivial sequences P(/, /0) and

P(/0, /00), and for the cases that / = /0 or /0 = /00, the

part-of relations P(/, /00) that the transitivity postulate adds

are already given by Eqs. 15 and 16. Antisymmetry, Eq. 2,

is met because for each non-trivial part-of relation P(/i, /),

there is no reverse part-of relation P(/, /i). So, say, the

token function of counting carpet tiles in Fig. 1 can

formally be taken as a part of the composite token function

of packing those tiles.

The second class consists of cases in which a single type

function U is related to one set {U1, U2,…, Um} of type

subfunctions; the packing-carpet-tiles example can again

be the illustration. It has to be assumed that there are no

other compositions in which these type functions U or {U1,

U2,…, Um} are figuring because violations of ground

mereology can occur when part-of relations originating

from two different compositions of type functions are

combined (see Sect. 10). Consider a single token compo-

sition / = Comp(/1,…, /n) and let {U1, U2,…, Um} be

the set of different type functions that occur in the set {/1,

/2,…, /n} (so one has m B n). There are now two options.

The first is that / is of a type U that is different to the types

in {U1, U2,…, Um}. Application of condition Eq. 14 then

leads to the following part-of relations:

PðUj;UÞ for all j ¼ 1; . . .;m ð17Þ

PðU;UÞ and PðUj;UjÞ for all j ¼ 1; . . .;m ð18Þ

The second option is that / is of a type that is not

different to the types in {U1, U2,…, Um}. If / is, for

instance, of type Uk, the part-of relations become:

PðUj;UkÞ for all j ¼ 1; . . .;m;with j 6¼ k ð19Þ

PðUj;UjÞ for all j ¼ 1; . . .;m ð20Þ

For both options all postulates of ground mereology are

met.

9 Some initial negative results

The above results about parthood relations between func-

tions are positive, but unfortunately they are also the only

positive ones to report. Checking these parthood relations

against additional postulates of mereology or for cases in

which one has more than one composition or decomposi-

tion quickly yields negative results.
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A parthood relation that is stronger than a ground

mereology is the already mentioned extensional mereology

that satisfy a fourth postulate called strong supplementa-

tion. Such an extensional parthood relation meets the fol-

lowing condition phrased in terms of proper-part-of

relations:

ð9wðPPðw;uÞÞ _ 9wðPPðw;u0ÞÞÞ ) ð8wðPPðw;uÞ
, PPðw;u0ÞÞ ) u ¼ u0Þ ð4Þ

This condition expresses that two functions that have the

same proper parts are the same function. Token functions

may satisfy this condition, yet type functions do not.

Consider the following case of three token functions

/1 = ha, bi, /2 = hb, a0i and /3 = ha0, b0i, where a and a0

are instances of the same type of flows and where b and b0

are instances of the same type of flows. The first two

functions compose to the token function / = Comp(/1,

/2) = ha, a0i and the last two compose to /0 = Comp(/2,

/3) = hb, b0i, as is illustrated in Fig. 8. With condition

Eq. 13, one obtains for token functions the part-of

relations:

Pð/1;/Þ; Pð/2;/Þ; Pð/2;/
0Þ and Pð/3;/

0Þ ð21Þ

Since the token functions /1 and /3 are of the same type

U1 = {ha, bi,ha0, b0i,…}, one obtains for type functions the

part-of relations:

PðU1;UÞ; PðU2;UÞ; PðU2;U
0Þ and PðU1;U

0Þ ð22Þ

with U2 = {hb, a0i,…}, U = {ha, a0i,…} and U0 = {hb,

b0i,…}. In terms of proper-part-of relations, one obtains:

PPðU1;UÞ; PPðU2;UÞ; PPðU2;U
0Þ and PPðU1;U

0Þ ð23Þ

The first proper-part-of relation PP(U1, U), for instance,

is obtained with Eq. 5 because one can derive for this

particular case that P(U, U1) does not hold: one does not

have that / = ha, a0i is a part of /1 = ha, bi or that /
= ha, a0i is a part of /3 = ha0, b0i; so, one does not have

P(/, /1) or P(/, /3) for token functions; hence, one does

not have P(U, U1) for type functions. The other proper-

part-of relations in Eq. 23 can be derived by similar

reasoning, and together they prove that the parthood

relation for type functions may violate extensionality, Eq. 4:

the type functions U = {ha, a0i,…} and U0 = {hb, b0i,…}

have the same proper parts but are still different type

functions.

This result is not surprising since it shows that the

ordering of functions in a functional composition matters.

Consider two type functions, the first U1 being the increase

of the temperature of a flow of material with 150� centi-

grade, and the second U2 being the decrease of the tem-

perature of a flow of material with 150� centigrade. These

type functions can be composed by, intuitively, connecting

them in series.7 One has, however, two options: U1 and

then U2 yields the composite type function U of baking the

material flow; U2 and then U1 yields the type function U0 of

refrigerating that flow (Vermaas and Garbacz 2009).

A second result for the parthood relation for type

functions generated by single compositions / = Comp

(/1,…, /n) is more counterintuitive. This result is that a

simple and basic type function can have parts that are in

general not in a sensible way related to the original type

function.

Consider a case with the token flows a, b, c and d, and

the token functions /1 = ha, bi, /2 = hb, ci and /3 = hc,

di. Let a be a flow of electrical energy, b a flow of thermal

energy, c a flow of chemical energy and d a flow of rota-

tional energy. The token function /1 = ha, bi then trans-

forms the token flow a of electrical energy to the token

flow b of thermal energy. This function /1 is a basic

function in (Hirtz et al. 2002), and the same holds for /2

and /3. The functions /1, /2 and /3 compose to the token

function / = Comp(/1, /2, /3) = ha, di, which trans-

forms the token flow a of electrical energy to the token

flow d of rotational energy. Condition Eq. 13 gives the

following part-of relation for token functions:

Pð/2;/Þ ¼ Pðhb; ci; ha; diÞ ð24Þ

In this case, the token flow a is indeed actually

transformed to the token flow d via the intermediate

transformation of flow b to c. Hence, the relation P(/2, /)

makes sense. But when this part-of relation P(/2, /) is

generalised to type functions, the result makes less sense.

With condition Eq. 14, one obtains:

PðU2;UÞ ¼ Pðfhb; ci; . . .g; fha; di; . . .gÞ ð25Þ

which means that the type function U of transforming

electrical energy flows to rotational energy flows has as a

part the type function U2 of transforming thermal energy

flows to chemical energy flows. Abstracting from the

example, the result is thus that any basic type function

U = {ha, di,…} can have many other basic type functions

U2 = {hb, ci,…} as its parts, where the token flows b and

c are flows of types different to the types of flows a and

Fig. 8 /1 is part of /, /2 is part of / and of /0, and /3 is part of /0

7 Formally the connection between U1 and U2 is modelled by token

functions that are instances of U1 and U2 and that have the right

shared token flows.
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d are instances of. This result stands perpendicular to the

view that some of those basic type functions are truly basic

in the sense of that they are not to be taken as decom-

posable into other functions (as in Hirtz et al. 2002).

10 Violating ground mereology

The last result derived in the previous section can be used

to prove that the parthood relation for type functions vio-

lates ground mereology when part-of relations generated

by two compositions of type function are combined (in

Sect. 8, when considering the case of a single composition

of type functions, this combination was avoided). By this

result, the type function U2 = {hb, ci,…} of transforming

thermal energy flows to chemical energy flows may in turn

be taken as having as a part the type function U of trans-

forming electrical energy flows to rotational energy flows,

that is:

PðU;U2Þ ð26Þ

Together with the part-of relation P(U2, U) given in

Eq. 25, this leads to a violation of the postulate of

antisymmetry, Eq. 2: this postulate, applied to Eqs. 25

and 26, requires that U2 is identical to U, which is not the

case.

Equations 25 and 26 can also be derived by means of a

single case. Consider again the second case described in

the previous section with /1 = ha, bi, /2 = hb, ci and

/3 = hc, di. But now assume that /2 is a composite of

three other token functions /4 = hb, a0i, /5 = ha0, d0i and

/6 = hd0, ci, as in Fig. 9. Let the flows a and a0 be flows of

electrical energy of the same type, let b be a flow of

thermal energy, let c be a flow of chemical energy, and let

d and d0 be flows of rotational energy of the same type. The

composition Comp(/4, /5, /6) = hb, ci = /2 gives the

token part-of relation:

Pð/5;/2Þ ¼ Pðha0; d0i; hb; ciÞ ð27Þ

Since /5 is a token function of type U = {ha, di,ha0,
d0i,…} and since /2 is a token function of type U2 = {hb,

ci,…}, one obtains the type part-of relation P(U, U2), as in

Eq. 26. The composition Comp(/1, /2, /3) = ha, di = /
again gives the token part-of relation P(/2, /), as in

Eq. 24, by which one obtains the type part-of relation P(U2,

U), as in Eq. 25.

The parthood relation for token functions can also violate

ground mereology. This can be shown by considering

combinations of token functional compositions simulta-

neously. Take a case with three token functions /1 = ha, bi,
/2 = hc, di and /3 = hd, ci, where the first two functions

compose to the token function /4 = Comp(/1,/2) = h{a,

c}, {b, d}i, and where this composite token function and the

function /3 compose to Comp(/3, /4) = ha, bi = /1, see

Fig. 10. With condition Eq. 13, one obtains:

Pð/1;/4Þ; Pð/2;/4Þ; Pð/3;/1Þ and Pð/4;/1Þ ð28Þ

For letting this set of relations meet the postulates of

reflexivity, Eq. 1, and transitivity, Eq. 3, of ground

mereology, additional parthood relations have to be

added. Yet already with the four relations given in

Eq. 28, a violation of the antisymmetry postulate, Eq. 2,

can be detected: given P(/1, /4) and P(/4, /1), this

postulate requires that /1 = /4, which is not the case.

An engineering example of this final case can be a

functional model of a chemical process in a vessel trans-

forming a liquid a to a liquid b. When pumping the liquid

a into the vessel, a stream of air d has to leave the vessel, to

be collected elsewhere before it streams as c back to the

vessel when the liquid b is pumped out of the vessel.

In terms of the arrow-box representations given in

Figs. 9 and 10, the violations of ground mereology by the

parthood relations for token and type functions may be

interpreted as showing that complex composites of arrows

and boxes do not necessarily represent complex functions.

A parthood relation for composites of arrows and boxes

does not provide a parthood relation for the functions they

represent.

A last observation is that in the proof that the parthood

relation for token functions violates ground mereology, two

functions /2 and /3 are considered that, together, compose

to a function with no net input and no net output. This

composite Comp(/2, /3) is not explicitly considered in the

proof, and when composing functions by hand or by

automated reasoning algorithms, such subsets of functions

that compose to no-input-and-no-output components may

occur and are formally possible. Conditions Eqs. 7 and 12,

for instance, do not rule out the case represented in Fig. 10.

Fig. 9 U is part of U2 and U2 is part of U

Fig. 10 /1 is part of /4 and /4 is part of /1
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11 Assessing the proof

For assessing the proof that the composition relation for

technical functions cannot be taken as a formal parthood

relation, I recap its structure. Mereology provides reflex-

ivity, antisymmetry and transitivity as postulates any for-

mal parthood relation has to meet. For two categories of

functions—token functions and type functions—the com-

position relations are spelled out, and it is then shown that

they do not meet these mereological postulates. The

functions in these categories are specific enough to be

instances of functions on many design methods, in partic-

ular for methods in which functions are taken as transfor-

mations of flows. The result of the proof is in this way

general: it holds for all types of formal parthood relations

since all types of formal parthood relations have to meet

the postulates of reflexivity, antisymmetry and transitivity;

and it holds for all design methods that accept token and

type functions as instances of technical functions.

The generality of the proof is achieved at the expense of

the realism of the modelling of technical functions: the

token and type functions considered in this paper and the

cases used in the proof are not representative to typical

engineering functional descriptions; they may be taken as

‘toy examples’. This observation allows for challenging the

result by requiring a proof that is based on more realistic

functional descriptions. Such a challenge is reasonable

from an engineering point of view, and not easy to meet,

for instance, because it requires the modelling of functional

composition for other categories of technical functions than

token and type functions.

Yet, it is not feasible to challenge the proof by main-

taining that realistic functional descriptions in engineering

concern only single functional compositions or single

decompositions. First, in engineering, more complex cases

are used (see, e.g. Pahl and Beitz 1996, fig. 2.3; Ookubo

et al. 2007, fig. 3, as partly reproduced in Fig. 3 in this

paper). Second, even if only single decompositions are

considered, as seems the rule in the method of Stone and

Wood (2000), then combining part-of relations for type

functions originating from different single decompositions

is sufficient for disproving that the parthood relation for

type functions meets the postulates of mereology, as was

shown in the beginning of Sect. 10.

Arguing that engineering functional decompositions are

limited to only decompositions of functions into finite sets

of basic functions (e.g. Lind 1994; Pahl and Beitz 1996;

Stone and Wood 2000; Keuneke 1991) will also not do: the

functions and functional compositions considered in the

proof are rather simple.

Arguing against the proof by holding that engineers

would typically reject the cases that are considered in the

proof may also not work. One could argue that these cases

are irrational from an engineering perspective: a transfor-

mation of a flow a to a flow d that is decomposed into

transformations of a to b and then of b to a0, as in Fig. 9,

counts as an inefficient detour that typically is avoided in

engineering; a transformation of a flow a to a flow b that is

decomposed into itself and two transformations that cancel

each other seems an even worse waste of resources. Yet,

given that one of the goals of the formalisation of functions

is the creation of computer tools for automated functional

reasoning, these cases become again realistic. Such tools

may generate cases in which functions are combined in a

manner that with hindsight may be taken as irrational or

inefficient. The case as given in Fig. 9 may be generated by

a first step in which the functions /4 = hb, a0i, /5 = ha0,
d0i and /6 = hd0, ci are combined to arrive at /2 =

Comp(/4, /5, /6) = hb, ci, and by a second step in which

the functions /1 = ha, bi and /3 = hc, di are added. When

seen in isolation, both steps seem reasonable explorations.

And the case as given in Fig. 10 may similarly be gener-

ated by a first step in which the functions /1 = ha, bi and

/2 = hc, di are combined to arrive at Comp(/1,

/2) = h{a, c}, {b, d}i, and by a second step in which the

function /3 = hd, ci is added, and both steps seem again

reasonable explorations when taken in isolation. Hence,

automated functional reasoning tools may generate the

cases considered in the proof.

Nevertheless, there are ways of going around the proof,

and one option is to label the composition relation for

functions, say by the technical or physical principle X that

is involved in the functional composition. Such a labelling

makes engineering sense and has already been proposed by

Kitamura and Mizoguchi (2003) since in their account, a

way of achievement is added to each functional decompo-

sition as was discussed in Sect. 2 (see Fig. 3). With such a

labelling, the composition relation for token functions can

be labelled as well, which in turn can be used to introduce

parthood relations PX(/, /0) and PX(U, U0) that are con-

ditional on the label. By now requiring that two part-of

relations PX(/, /0) and PY(/00, /000), or PX(U, U0) and

PY(U00, U000), may not be combined if they are defined

relative to different composition principles X = Y, and by

taking these principles X and Y sufficiently fine-grained,

the cases uses in the proof may be defused. For instance, in

the proof for type functions, Fig. 9, one may label the

composition of the functions /4, /5 and /6 to /2 by a

principle X, and the composition of the functions /1, /2

and /3 to / by another principle Y. And one can do

something similar for the proof for token functions,

Fig. 10. It is another matter whether it indeed can be

defended from an engineering point of view that part-of

relations for technical functions defined relative to different

composition principles may never be combined; yet, logi-

cally, such a requirement does provide a way to go around

30 Res Eng Design (2013) 24:19–32

123



the proof. The result presented in this paper is then that the

composition relations for technical functions and their

subfunctions cannot be taken as defining unconditional

formal parthood relations.

12 Conclusion and discussion

This paper aims at supporting the formalisation of func-

tional descriptions as used in design methods. In Sect. 5, a

modelling is given of technical functions of the two cate-

gories of token and type functions, and in Sect. 7, a mod-

elling is given of the composition of token functions. In

Sect. 10, a proof is presented that the relation between

functions and their subfunctions cannot be taken as a for-

mal parthood relation, that is to say, it cannot be uncon-

ditionally taken as such a parthood relation.

For design methodology in its current state, the conse-

quences of these results are limited. Design methods

advance different concepts of function, and designers may

still use their preferred concept and maintain that sub-

functions are parts of the functions they compose. The

proof, when it applies to the concept of function used,

shows then that this parthood relation should not be taken

as a formal parthood relation but as an informal one for

which, for instance, antisymmetry does not hold. Main-

taining an informal parthood relation for functions may still

be beneficial to designers, since it, as said in the intro-

duction, suggests to designers to consider the design

solutions to subfunctions as structural parts of the solutions

to the overall functions. And that may be a helpful sug-

gestion in designing.

There are, however, consequences for the development

of design methodology. First, if design methodology is

expected to develop to a state in which only one, single

concept of function is advanced, then arguments are needed

to rule out the other concepts that are currently in use in

design methods, and the proof presented in this paper

becomes relevant by providing such arguments. If one can

argue, or simply decide, that the single concept of function

to be adopted in design methodology should be such that

the composition relation for functions is a formal parthood

relation, then one can reject a number of the currently used

concepts of function. Specifically, all concepts by which

functions can be represented as transformations of flows of

energy, material and signals are then ruled out.

Second, if the future state of design methodology is

expected to be one in which functional descriptions are

formalised, or one in which engineering ontologies or

automated formalised reasoning tools standardly support

functional descriptions, then all results presented in this

paper become of use to the field. The modelling of token

and type functions and the modelling of the composition

of token functions provide formalisations of functional

descriptions. And the proof shows that design methodology

runs into contradiction when the relation between sub-

functions and the functions they compose is uncondition-

ally taken as a formal parthood relation.
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