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Abstract One of the most difficult challenges of man-

aging product development is identifying the individuals

who need to coordinate closely their interdependencies

during the design process. ‘‘Who should talk to whom?’’

and ‘‘Which interfaces should they talk about?’’ are key

questions that engineering managers must address when

planning and executing product development efforts. In

this paper, I introduce the notion of the affiliation matrix to

map the product architecture onto the organizational

structure and predict potential technical communication

patterns. By comparing potential interactions with actual

communications, engineering managers can uncover

product interfaces and organizational interactions that may

require special managerial action during the design phase

of development processes. This provides an integrated

view of how process, product, and organizational structures

align themselves when developing new products. I illus-

trate the implementation of this approach in a software

development organization, which offers relevant insights

about the challenges associated with managing new soft-

ware development.

Keywords Software development � Product architecture �
Design iterations � Project management

1 Introduction

One of the most important challenges in product develop-

ment is to manage design iterations and change

propagations not only when designing new products but

also when redesigning existing ones (Eppinger et al. 1994;

Clarkson et al. 2004; Eckert et al. 2004; MacCormack et al.

2001, 2006; Cataldo et al. 2006; Chen et al. 2007). Ulti-

mately, this can be done effectively if engineering

managers can identify the individual actors associated with

design iterations and the crucial product interfaces

involved in them. In simpler terms, managers need to be

able to answer two critical questions when planning and

executing development efforts: ‘‘Who should talk to

whom?’’ and ‘‘Which interfaces should they talk about?’’

To address this challenge, this paper provides a structured

and general approach to predicting and managing

potential technical interactions in product development

organizations.1

The basic premise of this paper is that technical orga-

nizational interactions take place to coordinate the critical

interfaces that connect product components (Henderson

and Clark 1990).2 However, identifying and attending the

interfaces between product components that require special

attention to coordinate is a challenging task, even when the

product architecture maps directly onto the organizational

structure (Sosa et al. 2004). (A direct, or one-to-one,

mapping of product and organizational structures is char-

acterized by the mutually exclusive assignment of the

design of each component of the product to one individual

actor or team in the organization.) The managerial chal-

lenge becomes even harder when this mapping is not
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direct, as has been observed in product development pro-

jects in the electronics industry (Morelli et al. 1995). This

is also common in software development projects in which

many individual actors typically contribute to the design

and integration of software components in a flexible

development process (MacCormack et al. 2001; Cataldo

et al. 2006; Sosa et al. 2007a). To tackle this challenge, this

paper suggests a structured way to predict communication

patterns based on the architecture of the product and the

assignment of design tasks to people in the development

organization. The approach introduced in this paper is

general not only because it applies to the development of

either hardware or software products but also, and more

importantly, because it is applicable in cases where the

mapping between the product and organizational structures

is not one-to-one. More specifically, I introduce the notion

of the affiliation matrix to capture the involvement of

organizational actors in the design of the various compo-

nents of the product under development (‘‘Who does

what?’’). With the affiliation matrix, engineering managers

can systematically map the product architecture onto the

organizational structure and estimate potential technical

communication patterns that would need to take place to

coordinate critical interfaces between product components.

Improving product development efforts typically starts

by documenting design tasks and their information

requirements (Eppinger et al. 1994; Browning 2001). By

examining the task structure of the process, managers can

uncover the interdependent activities that are more likely to

generate design iterations. To that end, the design structure

matrix (DSM) is a matrix-based analytical tool introduced

by Steward (1981) and used by Eppinger and his colleagues

to represent and organize design tasks in complex product

development projects (Eppinger et al. 1994). In the product

domain, a matrix representation has also been used to rep-

resent hardware and software products as networks of

interconnected components (Pimmler and Eppinger 1994;

Sosa et al. 2003, 2007a, b; Sharman and Yassine 2004;

MacCormack et al. 2006; Lai and Gershenson 2006).

Finally, in the organizational domain, development orga-

nizations have been considered as social networks of

interacting actors that integrate their efforts to develop new

products and services (Allen 1977; Morelli et al. 1995; Sosa

et al. 2004; Cataldo et al. 2006; Olson et al. 2006). There-

fore, product development systems can be considered as a

network of design tasks (process architecture) carried out by

a social network of developers (organizational architecture)

to develop products comprised of interdependent compo-

nents (product architecture). These three dimensions

influence one another significantly, and understanding the

way they interrelate is crucial to improving product devel-

opment systems (Eppinger and Salminen 2001; Sosa et al.

2004). Moreover, to manage design iterations effectively, it

is crucial to understand how interdependent design tasks

and interdependent product components ultimately deter-

mine the technical communication patterns of the

organization, which is what this paper aims to do.

Research in engineering design has also investigated the

drivers of design change propagation. This stream of

research has analyzed the architecture of complex products

to predict how the change in one part of the product may

result in changes in other parts (Clarkson et al. 2004; Jarratt

et al. 2005). This paper also complements this line of

research by emphasizing that to manage change propaga-

tion effectively it is necessary not only to understand ‘‘the

state of the design and the connectivity between the parts of

the design’’ (Eckert et al. 2004, p. 20) but also how design

changes could propagate into the organizational structure

and impact the technical communication patterns among

the development actors involved.

The organizational literature recognizes the challenge

faced by organizations when attempting to coordinate the

links between the components of the system they develop

(Allen 1977; Henderson and Clark 1990; Mihm et al. 2003)

and has proposed some strategies to improve the coordi-

nation associated with developing interdependent

components (Sanchez and Mahoney 1996; Baldwin and

Clark 2000; Terwiesch et al. 2002). However, this stream

of work provides little specific guidance to predicting

technical communication patterns based on the architecture

of the systems under development. An important exception

to this stream of research is presented by Sosa et al. (2004),

which studied the misalignment of the product and orga-

nizational structures associated with the development of a

large commercial aircraft engine. This paper extends their

work by providing a general and structured approach to

study product and organizational architectures that do not

map directly to each other as observed in software devel-

opment efforts. Another exception to this stream of work

comes from engineering design and it is provided by Cat-

aldo et al. (2006) which suggest an approach (similar to the

one presented here) to computing coordination require-

ments and comparing them with actual coordination

mechanisms. This paper, however, differs from Cataldo

et al. (2006) in four important aspects: (1) This paper

provides detailed mathematical justification, based on

matrix algebra, for the expressions that allow us to deter-

mine systematically potential communication patterns

based on the product architecture and the organizational

affiliation of design engineers; (2) This paper acknowl-

edges that the comparison of potential and actual

organizational interactions is approximate and therefore

corrects for any systematic redundancies built in our

approach; (3) The analyses in this paper focuses on iden-

tifying mismatches of potential and actual communication

patterns which are potentially indicative of coordination
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issues that managers might want to attend to. In contrast,

Cataldo et al. (2006) focus their analysis on testing the

impact that aligning coordination requirements with actual

coordination mechanisms have on design task perfor-

mance; (4) This paper uses data collection methods that

differ significantly from the empirical methods used by

Cataldo et al. (2006), which relies primarily on analyzing

‘‘modification requests’’ data in a distributed software

development organization. In that sense, both papers

complement each other by providing alternative data col-

lection mechanisms which managers could consider when

implementing their efforts to improve coordination in

software development organizations.

From a methodological viewpoint, this work builds on

research in social networks that uses the notion of affilia-

tion networks to study the relationship between individuals

when they are affiliated with certain groups or events

(Wasserman and Faust 1994). The membership of indi-

viduals to events, groups or other collectivities has been

important in organizational research because these affilia-

tions significantly influence the social identity of the

individuals involved (Simmel 1955). Past research has also

recognized that various types of networks exist within

organizations due to interactions of systems, knowledge,

tasks, and organizational units, and therefore properties can

be measured in terms of any of these networks or combi-

nation of them (Carley 2002, p.10). The notion of

affiliation networks formed by both social actors and social

events has been represented in alternative ways, including

affiliation matrices (also called incidence matrices),

bipartite graphs, and hypergraphs (Seidman 1981). These

representations have been used in engineering design to

search for optimal ways to explore alternative strategies for

decomposing complex design problems into more man-

ageable sub-problems, which can ultimately lead to

improved management of design iterations (Michelena

et al. 1995, 1997; Chen et al. 2005, 2007), yet these

methods do not evaluate the organizational implications of

various problem decomposition alternatives.

This paper makes three important contributions to the

engineering design literature. First, it operationalizes a

general and structured approach to align product and

organizational architectures with the use of the affiliation

matrix. Because the affiliation matrix captures the level of

involvement of organizational actors in the design of

product components, it can be used systematically to esti-

mate technical communication patterns during the planning

and execution of product development efforts. Second, this

paper illustrates and validates this structured approach by

implementing it in a real software development setting.

Doing this resulted in the identification of product inter-

faces and organizational interactions that required special

managerial action in the organization studied. Third, this

paper examines the interplay of process, product, and

organizational structures in the same development organi-

zation. This provides us with an integrated view of how

these separate but related perspectives align themselves

when developing new products.

The structure of this paper is as follows: in the sub-

sequent section, I present the research motivation by

examining the task structure of the development organi-

zation studied. Then, I introduce the research approach

and illustrate it with a simple numerical example. An

industry example from software development is detailed

in the subsequent section. Finally, after discussing the

empirical results, I conclude the paper with a project

management framework that aligns process, product, and

organizational structures for better management of design

iterations.

2 Research motivation: examining the process

structure

Although there are substantial benefits associated with

documenting and analyzing the structure of the processes

organizations carry out when developing new products

(Browning and Ramasesh 2007), it is important to realize

that engineering managers need to go beyond the process

domain into the product and organizational views in order

to manage design iterations effectively. Next, I examine the

information requirements of the development activities

carried out in the software organization studied in this

paper and illustrate the need to instantiate such a devel-

opment process with the architecture of a particular product

under development. This, in turn, determines the potential

communication patterns of the organization during the

completion of the most iterative set of development tasks.

The task structure of the development process used by

the software firm I studied is represented in the design

structure matrix shown in Fig. 1. This DSM representation

captures their development process, internally documented

in a multi-page process flow diagram. The matrix shown in

Fig. 1 is a square matrix, the rows and columns of which

are identically labelled with the development tasks, and an

off-diagonal mark, (i,j), indicates that to complete task i

(labelling row i) information from the task in column j is

needed. The blocks along the diagonal of such a DSM

highlight the groups of tasks that are executed together (in

parallel, sequentially, and/or iteratively) within each phase.

As evident from Fig. 1, an important contribution of a

DSM representation is the simple and explicit depiction of

complex processes where sets of iterative activities (i.e.,

design iterations) can be highlighted. The figure shows

three sets of planned interdependent tasks: (1) software

architecture definition; (2) software release planning; and
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(3) design and integration of software features.3 Yet, to

effectively manage these planned design iterations one

must examine how this process view is implemented for a

given product with a specific organizational structure.

Figure 2 takes a closer look at the most iterative set of

development tasks in the process documented in Fig. 1.

The efficient completion of this group of planned highly

iterative set of activities depends on both the specific

product and organizational structures involved in the pro-

cess. For example, the actual communication patterns

associated with the tasks ‘‘Do unit testing’’, ‘‘Integrate code

into product’’, and ‘‘Test integration of PS’’ (tasks 22, 23

and 24, respectively) were significantly different depending

on the type of product under development:4 For some

legacy products the design and integration of proposed

solutions (i.e., product components) would involve a small

set of developers while designing and integrating compo-

nents for a novel product such as the one studied in this

paper involved more than half of the developers available

in the organization. In addition, the organizational inter-

actions associated with these design tasks largely depended

not only on the inherent characteristics of the components

to be designed, tested, and integrated, but also on the

connectivity of those components with other components

in the product. Hence, if managers are to be able to facil-

itate the completion of iterative set of design activities (as

the ones shown in Fig. 2), they need to understand how the

product components that instantiate these design tasks link

to one another (the product architecture) as well as who the

people responsible for contributing to the design of those

product components are (the affiliation of people to the

components’ design). Next, I introduce a structured

approach to address this challenge.

3 Predicting and managing technical interactions

In order to improve the management of planned design

iterations that typically occur in the design phase of

product development processes, this paper introduces a

five-step approach structured in two phases (see Fig. 3).

The first phase (steps 1, 2, and 3) focuses on predicting

potential technical interactions based on the architecture of

the product and the affiliation (or involvement) of devel-

opers in the design tasks of each product component. The

second phase (steps 4 and 5) focuses on validating the

potential interactions identified in the first phase by com-

paring them against actual interactions, which, in turn,

provides important insights to improve the management of

technical interactions. Fundamental to this approach is the

introduction of the affiliation matrix (in step 2) to capture

the design task involvement of the organization, which

permits the alignment of product and organizational

structures that do not map one-to-one.

Fig. 1 Software development process at the organization studied

3 Note that Fig. 1 distinguishes unintended feedback interdependen-

cies that could occur from the ‘‘design and integration’’ phase to

either ‘‘release planning’’, ‘‘software architecture definition’’, or

‘‘software feature definition’’ phases. Because these interdependen-

cies are unintended (or unplanned) they are not considered when

identifying planned design iterations. This DSM also distinguishes

the feedback interdependencies associated with process improvement

because they are not part of planned design iterations either.
4 The process illustrated in Figs. 1 and 2 was used for developing

both legacy and novel software applications.
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3.1 Predicting potential technical interactions

The basic assumption behind this first phase of the

approach is that design interfaces between product com-

ponents generate coordination requirements among the

people involved in their design. This phase focuses on

predicting the set of interactions that could potentially take

place to coordinate the design interfaces of the product

being developed. These potential interactions are likely to

differ somewhat from the actual technical interactions that

occur in the organization, which is why the results of this

phase are validated by comparing them against the actual

interaction patterns in the second phase of the approach.

Predicting potential technical interactions can be done in

three steps.

3.1.1 Capture the product architecture

The n components that form the product and the interfaces

among them are identified by interviewing systems archi-

tects. The product data are then documented into a product

architecture matrix (P). Pn,n is a square matrix, the rows

and columns of which are identically labeled with the n

components of the product. A non-zero, off-diagonal cell,

pij, in this matrix indicates that component i imposes design

constraints on component j. Note that this convention to

represent design interfaces between components is opposite

to the convention used in previous related work in which

the components that impose constraints on other compo-

nents are used to label the columns of the product

architecture matrix (Sosa et al. 2003, 2007b, MacCormack

et al. 2006). In this paper, I use the opposite convention

because it facilitates the mapping of a matrix representation

to a block diagram representation commonly used in soft-

ware development (Sangal et al. 2005, Sosa et al. 2007a).5

In addition, I assume that the directionality of the com-

munication patterns follow the same direction as the

directionality of design constraints (Sosa et al. 2004). Even

though organizational communications are likely to be

symmetric (i.e., in a dyad an actor seeks information while

the other one provides information), information-seeking

behavior (which is the type of organizational relationship

we are aiming to predict) is typically determined by the

directionality of design constraints (Eppinger et al. 1994;

Sosa et al. 2007c). Nonetheless, for cases in which design

constraints are used to predict symmetric organizational

relationships, then the product architecture matrix can be

symmetrized. Regardless of the convention used, the key

point at this step is to capture the dependency structure of

the product so that the corresponding communication pat-

terns can be determined.

3.1.2 Capture the affiliation network: the affiliation

matrix (A)

In order to capture the involvement of people in the design

of product components systematically, it is important to

recognize that development actors and product components

form an affiliation network because developers are affili-

ated with (i.e., involved in the design of) product

components (Wasserman and Faust 1994). This type of

affiliation network is captured by asking the m develop-

ment actors about their level of involvement in the design

of each of the n product components (Alternatively, one

could also ask engineering managers about the level of

involvement of each of the m available developers in the

design of the n product components). This information is

documented in the affiliation matrix (A). Am,n is a rectan-

gular matrix in which m rows are labeled with the

development actors and n columns are labeled with the

product components. Cell aij indicates the degree of

Fig. 2 ‘‘Design and

Integration’’ tasks of the

software development process

studied

Fig. 3 A structured approach to predict and validate technical

interactions

5 When using block diagrams to represent the structure of software

products, components that serve others as platforms to build upon are

typically placed at the bottom of the diagram.
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involvement of actor i in the design of component j. Note

that for consistency the columns of A are sequenced fol-

lowing the same order as in the product architecture matrix

(P). As for the order of the rows, one can sequence people

following the formal organizational structure in which

developers are organized into groups so that group mem-

bers are sequenced together.

Before describing how to use the affiliation and the

product architecture matrices to determine potential orga-

nizational interactions, I will first examine the properties of

the affiliation matrix, A. To do this, let us consider a binary

affiliation matrix in which aij = 1 if developer i is involved

in the design of component j, otherwise aij = 0. In this

case, the row marginal totals of A, aiþ ¼
P

j aij; are equal

to the number of components to which developer i con-

tributes to the design of. (As a result, a row where the total

marginal is equal to zero indicates that such a developer

does not contribute to the design of any product compo-

nent.) Similarly, the column marginal totals of A,

aþj¼
P

i aij; are equal to the number of people that con-

tribute to the design of component j and therefore a column

whose marginal total is equal to zero has no developers

contributing to the design of such a component.

Affiliation networks are considered two-mode networks

because they consist of a set of actors and a set of events

(or, in our case, a set of components) instead of a set of

elements (of the same kind) with links between them

(Wassserman and Faust 1994). However, we are typically

interested in the one-mode networks embedded in the

affiliation networks, that is, the communication network of

people in the development organization and/or the design

dependency structure of the product under development.

Fortunately, the information contained in the affiliation

matrix itself sheds some light on these one-mode network

structures. With the affiliation matrix we can determine

‘‘component-related ties’’ between people based on their

involvement in the design of product components, and

similarly, we can determine ‘‘organizational links’’

between components based on the people involved in their

design.

First, let us compare the columns of the affiliation

matrix to determine the number of developers that any pair

of product components has in common. To that end, two

components that share the same developers will have 1’s in

the same rows. That is, aik = ail = 1 so that developer i

contributes to the design of both components k and l.

Counting the number of times that such an equality occurs

for all the developers (i = 1, …, m) results in the number

of developers involved in the design of both components k

and l (pkl). Hence, pkl ¼
Pm

i¼1 aik � ail:

Clearly, if components k and l do not share any devel-

opers then pkl = 0 (which is the minimum possible value)

and, if all the developers contribute to the design of these

two components, then pkl = m (which is the maximum

possible value). Now, we can define the common-contrib-

utor product matrix (Pcommon-contributor) as a function of the

affiliation matrix (A) as follows

Pcommon�contributor ¼ AT A: ð1Þ

This is a square, valued, symmetric matrix of size n in

which non-zero off-diagonal cells indicate the number of

developers that any pair of components shares. The

diagonal cells indicate the number of developers who

contribute to the design of each component. Also, because

the columns of the affiliation matrix are originally

sequenced in the same order as the product architecture

matrix (P), then the Pcommon-contributor preserves the same

label sequencing of P.

In a similar fashion, we can use the affiliation matrix (A)

to determine the number of common components to whose

design any pair of developers contributes. In such a case,

we are interested in comparing the rows of the affiliation

matrix so that aik = ajk = 1 if both developers i and j

contribute to the design of component k. Hence, we can

define the common-component potential interaction matrix

(Tcommon-component) as follows

Tcommon�component ¼ AAT : ð2Þ

This is a square, valued, symmetric matrix of size m, in

which non-zero off-diagonal cells indicate the number of

components to which a pair of developers contributes. The

diagonal of such a matrix captures the number of

components to which each developer makes a design

contribution. Because people who contribute to the design

of the same components are likely to exchange technical

information related to the intrinsic design of such

components, I call this matrix the common-component

potential interaction matrix (Tcommon-component). Note that

this matrix does not capture the potential interactions that

would need to take place to coordinate the actual product

interfaces documented in the product interface matrix (P)

captured in the previous step. I tackle this challenge in the

next step.

For illustration purposes, let us consider a simple

organization with six developers developing a four-com-

ponent product. Figure 4 shows the hypothetical affiliation

matrix that captures how the six developers are affiliated

with the design of each of the four product components.

Figure 4 also shows how the affiliation matrix determines

the potential interactions that could occur between any pair

of developers due to the contribution they make to common

components. In this example, person 2 could potentially

interact with person 5 and person 6 because they all con-

tribute to the design of component C.

It is important to emphasize that A uniquely determines

both Pcommon-contributor and Tcommon-component, but the

52 Res Eng Design (2008) 19:47–70
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reverse is not true. Generally, the two latter matrices can be

generated by a number of different affiliation matrices

(Breiger 1991), so it is not possible to reconstruct the ori-

ginal affiliation matrix from either Pcommon-contributor or

Tcommon-component. This is because when considering these

single-mode matrices one loses information about the

affiliation network. That is, in the Pcommon-contributor matrix

one loses identity of the people that contribute to the linked

components, and in the Tcommon-component matrix one loses

information about the components co-designed by any pair

of actors. In addition, because the information captured in

the Pcommon-contributor and Tcommon-component corresponds to

pairs of components (which share the same developers) or

pairs of developers (who contribute to the same compo-

nents) respectively, one cannot infer any properties of

subgroups larger than pairs from these one-mode network

matrices (Breiger 1991; Wasserman and Faust 1994). For

example, by examining Tcommon-component one can say that a

pair of developers contributes to the design of certain

number of components; however we cannot say that three

or more developers contribute to the same set of compo-

nents. To do so, we would need to examine the affiliation

matrix (A).

3.1.3 Determine potential organizational architectural

interactions

I define architectural interactions as those that need to take

place to coordinate identified product interfaces. To

determine the set of potential architectural interactions

between developers i and j we need to examine the entries

of both the affiliation matrix (A) and the product archi-

tecture matrix (P). More specifically, developer i would

look for technical information from developer j (tij [ 0) if

component k designed by developer i (aik [ 0) depends on

component l (pkl [ 0) which is designed by developer j

(ajl [ 0). Hence, (tij [ 0), if (aik [ 0) and (pkl [ 0) and

(ajl [ 0). Moreover, if we consider A and P to be binary

matrices, then we are interested in the number of times that

developers i and j need to coordinate product interfaces

between components to which they contribute. That is, we

are interested in adding the number of times that aik =

pkl = ajl = 1 for developers i and j. Formally,

tij ¼
Xn

k¼1

Xn

l¼1

aikpklalj: ð3Þ

Now, I can formally define the potential architectural

interaction matrix (Tarchitectural) to record the number of

design interfaces in which each pair of developers would

potentially need to interact. This matrix is, as might be

expected, a function of both the affiliation matrix (A) and

the product architecture matrix (P). Hence,

Tarchitectural ¼ APAT : ð4Þ

This matrix is a square, valued matrix of size m. Note

that this matrix is not symmetric if P is not symmetric,

which is typically the case in software products. A non-

zero cell, tij, indicates that developer i could potentially

provide information to developer j because they are

involved in the design of product components that share

design interfaces. As for the diagonal elements of this

matrix, they indicate the number of interdependent

components with which a developer is involved.

Note that if one substitutes P by the identity matrix, I, in

Eq. (4), then one obtains the common-component interac-

tion matrix, Tcommon-component, which captures the potential

organizational interactions that could take place among

developers contributing to the same set of components

without considering the interdependencies among compo-

nents. As a result, to obtain the total set of potential

technical interactions we simply add Tarchitectural and

Tcommon-component.

To illustrate the rationale behind Eq. (4), let us extend

the simple numerical example introduced in Fig. 4. Fig-

ure 5 shows the product architecture matrix (P) of the

four-component product with six design interfaces,

designed by an organization with six developers whose

involvement in the design of each component is captured

by the affiliation matrix (A). The product A P produces a

rectangular matrix in which non-zero cells capture the

number of components with which developer i is involved,

imposing design constraints on component j. For example,

person 2 is involved in the design of two components that

impose design constraints on component A (such compo-

nents are components B and C). Then, to obtain the

potential architectural interaction matrix one must multiply

Fig. 4 Predicting common-component potential interactions
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this matrix by AT. Again, because we are using binary

matrices, the cells in the resulting matrix capture the

number of design interfaces that two developers potentially

need to be able to coordinate. For example, person 2 has

three design interfaces that he or she would potentially

need to coordinate with person 6. More specifically, per-

son 2 might need to provide design information to person 6

about three product interfaces. Those interfaces are the two

design interfaces from components B and C to component

A (because person 2 is involved in the design of compo-

nents B and C and person 6 is involved in design of

component A), and the interface from component B to

component C (because person 2 is involved in the design

of component B and person 6 is involved in the design of

component C). Of course, some of these potential inter-

actions might not take place either because the same

person is involved in the design of the two interdependent

components (e.g., person 2 is involved in the design of

both components B and C, which share design interfaces in

both directions) or because there is another pair of actors

involved in those interfaces who are indeed coordinating

such an interface. That is, in the same way that there is a

potential interaction from person 2 to person 6 to deal with

the interface from component B to component A, there are

two other potential interactions that could take place to

deal with such an interface. Those are the potential inter-

actions between person 2 and person 1, and between

person 2 and person 3.

Note that Eq. (4) allows us to determine ‘‘who should

potentially seek technical information from whom?’’ to

address direct dependencies between product components.

However, such an expression could be slightly modified to

predict the set of interdependent actors associated with

indirect design interfaces. Because design changes tend to

propagate beyond adjacent components (Clarkson et al.

2004; MacCormack et al. 2006; Sosa et al. 2007b), man-

agers may be interested in determining who should seek

information from whom to handle indirect interfaces

between product components. For example, the system in

Fig. 5 contains an indirect interface from component D to

component B through component C. To determine the pairs

of actors that could potentially handle such an indirect

interface we can simply substitute P for P2 in Eq. (4)

because the non-zero cells of the square of a binary product

architecture matrix documents the pairs of components that

are linked through at least one intermediary component

(i.e., product interface chains of length 2). Doing so, we

find that person 4 could seek information from person 2 to

handle the indirect interface from components D to B.

Similarly, we could use P3 to predict potential interactions

associated with product interface chains of length 3 and so

on. Nonetheless, the intention at this phase of the approach

is simply to identify all possible potential interactions that

could take place to address the identified direct product

interfaces, given certain design task involvement in the

organization captured in the affiliation matrix. Next, I

compare potential interactions against actual interactions to

test the validity of this approach.

Validating potential technical interactions In order to test

the predictive power of the approach described in the three

Fig. 5 A structured approach to

predict potential architectural

interactions
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steps above it is important to compare the set of potential

technical interactions between development actors against

the actual technical interactions that take place during the

development effort. This not only allows us to determine

when a ‘‘match’’ of potential and actual interaction occurs,

but more importantly it also allows us to uncover ‘‘mis-

matched’’ interactions, which are defined by the lack of

overlap of potential and actual technical interactions. There

are two types of mismatched interactions: (1) unpredicted

interactions, which occur when an actual interaction is not

predicted by a potential interaction, and (2) unattended

interactions, which occur when a potential interactions

does not correspond to an actual interaction. Hence, to

identify matched and mismatched interactions two addi-

tional steps need to be carried out.

3.1.4 Capture actual organizational interactions

By surveying the m development actors involved in the

development of the product, their actual product-related

interactions (or the actual intentions to interact) are cap-

tured and documented onto a square (person to person)

actual communication matrix (Cm,m). To be consistent with

the convention used in steps 2 and 3, the sequence of the

rows and columns of this matrix is identical to the sequence

of rows in the affiliation matrix. In addition, to be consis-

tent with the convention used in the product architecture

matrix, the rows of the actual communication matrix (C)

are labeled with the ‘‘providers’’ of product-related infor-

mation while the columns are labeled with the ‘‘recipients’’

of information. Hence, cell cij indicates that actor j reports

actual interactions with actor i (i.e., actor j ‘‘goes to’’ actor i

to request product-related information).

3.1.5 Compare potential and actual interactions

In general, by overlaying binary versions of a potential

interaction matrix and the actual communication matrix,

one can systematically identify the set of potential mis-

matched interactions in the comparison matrix that

emerges from such a comparison. However, we would need

to perform different comparisons to determine the two

types of mismatched interactions of interest.

Identifying unpredicted interactions Because unpredicted

interactions are defined as those actual interactions that

take place even though there are no potential interactions

associated with them, it is important to compare actual

interactions with all possible potential interactions identi-

fied. Hence, by overlaying the total potential interaction

matrix (T = Tcommon-component + Tarchitectural) and the

actual communication matrix (C), one can systematically

document not only unpredicted interactions but also mat-

ched interactions in the preliminary comparison matrix.

Figure 6 shows how the binary version of the total set of

potential interactions maps onto the actual interactions in

our hypothetical numerical example. The preliminary

comparison matrix shows that the interactions from person

3 to person 2 and from person 2 to person 4 (both inter-

actions labeled ‘‘O’’) are unpredicted by the architecture of

the product and the design task involvement of the orga-

nization. Uncovering this type of mismatch is important for

managers because their existence indicates that there might

be unidentified product interfaces about which developers

are interacting. Unpredicted interactions could also be the

result of the ‘‘unofficial’’ involvement of some developers

in the design of other components not assigned to them and

therefore not captured in the affiliation matrix. The pre-

liminary comparison matrix also shows a set of six cells

(labeled ‘‘#’’), in which the paired developers involved

share both potential and actual interactions. Finally, there is

a significantly high proportion of potential interactions that

are not attended by actual interactions (labeled ‘‘X’’).

Which of these are truly potential unattended interactions?

That is the question I address next.

Identifying truly potential unattended interactions I

define truly potential unattended interactions as the subset

of unattended potential interactions associated with product

interfaces whose corresponding potential interactions are

all unmatched by actual interactions. To identify the set of

truly potential unattended interactions, we first filter out

common-component potential interactions because we are

interested in identifying the absolute minimum set of

potential interactions that needs to take place to coordinate

the identified set of product interfaces. First remember that,

by definition, common-component potential interactions

Fig. 6 Comparing potential and actual technical interactions
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are not associated with any of the product interfaces, so we

do not consider them when identifying truly potential

unattended interactions.6 Next, we filter out ‘‘redundant

interactions’’ associated with each product interface iden-

tified. I define redundant interactions as those that do not

necessarily take place because other people are already

coordinating the product interface that generates such

potential interactions. There are two types of redundant

interactions: (1) common-contributor redundant interac-

tions, which are potential interactions associated with

product interfaces that have one or more people involved in

the design of both interdependent components; and (2)

common-partner redundant interactions, which are poten-

tial interactions associated with product interfaces in which

at least one potential interaction is matched by an actual

interaction.

Figure 7 illustrates how to identify systematically the

two types of redundant interaction in order to obtain the

truly potential unattended interactions in our hypothetical

example. First, using the affiliation matrix we can identify

the pairs of components that share developers involved in

both interdependent components (‘‘common-contributor

components’’). Such a matrix is the common-contributor

product matrix (Pcommon-contributor) defined in Eq. (1). Fig-

ure 7 shows that components A and C and components B

and C have person 6 and person 2 as ‘‘common contribu-

tors’’ respectively. Note that the potential interactions

associated with the interfaces corresponding with non-zero

cells in the common-contribution matrix are common-

contributor redundant interactions. To determine the com-

mon-partner redundant interactions, we must subtract the

common-contributor interfaces from the product architec-

ture matrix (P) to obtain a subset of interfaces whose

potential interactions are either common partner redundant

interactions or truly potential unattended interactions.

Hence, the preliminary set of potential unattended inter-

faces are defined by the following expression

P�AT A
� �þ ð5Þ

where the [•]+ operator ensures that only the positive cells

of the resultant matrix contained within brackets are con-

sidered potential unattended interfaces. In the example

shown in Fig. 7, there are only three preliminary potential

unattended interfaces between components D and C, D and

A, and B and A, respectively.

To determine the common-partner redundant interac-

tions, the potential interactions associated with each

preliminary potential unattended interface are compared to

the actual organizational interactions, similar to the method

shown in Fig. 6. For example, the potential unattended

interface from component D to component C shown in

Fig. 7 generates three potential interactions (from person 4

to person 2, to person 5, and to person 6. Yet, the latter one

is the only potential interactions matched by an actual

interaction. This makes the other two potential interactions

common-partner redundant interactions. In general, we

obtain a comparison matrix for each preliminary potential

unattended interface. If such a comparison matrix contains

at least one ‘‘matched’’ interaction, the potential interactions

are common-partner redundant interactions because there is

at least one pair of people that could coordinate such a

product interface. Otherwise, the preliminary potential

unattended interface is indeed a potential unattended

product interface and its corresponding potential interac-

tions are truly potential unattended interactions. Figure 7

shows that the potential interactions associated with the first

two preliminary potential unattended interfaces are com-

mon-partner redundant interactions, while the interface

from component B to A has three potential interactions that

are truly potential unattended interactions. Note that these

three potential interactions are neither common-contributor

redundant interactions nor common-partner redundant

interactions and as a result are truly potential unattended

technical interactions. I have kept on using the term

‘‘potential’’ to refer to both unattended interfaces and

unattended interactions because there might be alternative

coordination mechanisms, such as interface standardization,

that would not require the use of actual organizational

interactions to handle these interfaces. Yet, this approach

aims to help managers identify the subset of product inter-

faces that have higher risk of being overlooked in case there

is no alternative mechanisms put in place to handle them.

Finally, Fig. 8 shows the final comparison matrix, which

does not contain any redundant potential interactions. Out

of the eight actual interactions, six were matched by

potential interactions and two were unpredicted interac-

tions. Interestingly, only three out of a total of 15 potential

unattended interactions (see Fig. 6) were truly potential

unattended interactions.

3.2 Managing technical interactions

If the approach described above indeed predicts systemat-

ically potential technical interactions, engineering

managers could proactively select a subset of potential

interactions to coordinate a subset of product interfaces that

would be likely to change during the (re)design of a

6 If we were to determine the truly potential unattended ‘‘common-

component’’ interactions, we could do so by comparing the Tpure-

common-component matrix and the actual communication matrix (C),

where the entry Tpure-common-component (i,j) = 1 if Tcommon-component (i,j)
[ 0 and Tarchitectural (i,j) =0. Such a comparison would yield the

common-component potential interactions that were unattended by

actual interactions.
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product. This is certainly relevant in software development

because of the additive and flexible manner in which

software products are developed (MacCormack et al. 2001;

Sosa et al. 2007a). This is also important in the rapid

redesign of hardware products in which some components

are modified or added to an existing product architecture

(Chen et al. 2007).

To illustrate how potential interactions can be managed

proactively, let us consider again the example in Fig. 5,

‘‘Who should talk to whom if component B is redesigned?’’

(For simplicity I will assume that there are no architectural

changes, that is, product components interfaces may

change but they will not appear or disappear.) Using Eq.

(4) with the same hypothetical affiliation matrix as before,

Fig. 9 shows the potential interactions associated with the

interfaces of component B. The top of Fig. 9 shows the

potential interactions associated with all the interfaces of

component B while the bottom shows the potential inter-

actions associated with two subsets of interfaces separately.

These two subsets correspond to the interfaces of compo-

nent B with components A and C, respectively. The strong

message that emerges from Fig. 9 is that person 2 needs to

coordinate some of (or perhaps all) the interfaces of com-

ponent B. Certainly, person 2 would need to coordinate

with either person 1, 3, and/or 6 on the interface between

components B and A. In addition, the bi-directional inter-

face between components B and C could be handled

entirely by person 2 (because she or he is involved in the

design of these two components) or by having person 2

interacting with persons 5 and 6.

This approach does not provide a prescriptive recom-

mendation about which product interface to facilitate;

however, it systematically predicts the subset of potential

organizational interactions from which to choose to fulfill

product architectural requirements. By combining these

Fig. 7 Identifying truly potential unattended interactions

Fig. 8 Final comparison matrix
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coordination requirements based on the product architec-

ture and design task involvement with other organizational

requirements, such as individual design capability and

individual workload, engineering managers can decide how

to assign responsibilities and coordination mechanisms to

ensure that critical interfaces are dealt with. As mentioned,

some of those coordination mechanisms can be interface

standardization. That is, some potential interactions might

not require any actual organizational interactions because

the corresponding product interfaces are standardized

somehow. Moreover, by examining the number of potential

interactions associated with certain product interfaces

managers would be able to decide which interfaces to

standardize in order to remove the need for managing

certain organizational interactions. Finally, it is important

to emphasize that this use of potential interactions is rel-

evant if the predictive power of the approach described in

the first phase of the approach (steps 1, 2, and 3) is sig-

nificant when applied to a real setting. The next section

provides empirical evidence that this may well be the case.

4 A software development example

I illustrate the implementation of the approach described

above in the context of the development of a new software

application. The hosting firm is a mature public European

company and one of the leaders in the market for a specific

type of application for business customers. The firm’s

portfolio of development projects included seven distinct

software applications. At the time of data collection, the

firm was allocating about 60% of its development resour-

ces to the development of one radically new product, an

effort that had started within the previous 12 months. The

product comprised 34 interdependent modules and the

development organization included 66 people, many of

whom contributed to the conception and design imple-

mentation of the 34 modules of the product. Two important

factors informed the selection of this project. First, the firm

was interested in examining their process, product, and

organizational structures to accelerate the development of

the product studied. Second, the architecture of the product

studied and the development organizational structure did

not map directly to each other. This provided an ideal

opportunity to test the validity of the structured approach

detailed earlier. In addition, it is important to emphasize

that understanding software development is valuable for

two reasons: (1) complex products contain both software

and hardware subsystems with software-related compo-

nents playing increasingly important functional roles in

product performance; (2) software development is some-

what different than hardware development because it is

Fig. 9 Managing potential

interactions to handle redesign

of component B
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typically faster, more flexible, and the mapping between

the product architecture and the organizational structure is

not one-to-one.

I implemented the structured approach described in the

previous section in five steps (see Fig. 10). First, the soft-

ware architecture was documented. Then, affiliation

matrices were constructed to capture various levels of design

involvement of the development actors. In step 3, potential

interaction matrices were determined based on the product

architecture and the affiliation matrices. Next, I documented

the actual technical communication patterns in the devel-

opment organization. Finally, by comparing potential and

actual interactions, comparison matrices were created and

matched and mismatched interactions were identified.

4.1 Step 1: Capturing the software architecture

After a long concept development phase, during which the

firm assessed its market needs and technological opportu-

nities, the architecture of the product to be analysed in this

study was established. The product comprised 34 modules,

the detailed design of which would address all the func-

tional requirements of the product. System architects had

also identified how each of these modules would depend on

the others. With this information, a 34 9 34 product

architecture binary matrix was constructed, where the

off-diagonal marks (i,j) indicate that to design the module in

column j, designers ‘‘need to know about’’ the module

in row i. Such a convention facilitates the mapping of a

matrix representation to a block diagram representation

commonly used in software development. Note that because

of the highly asymmetric nature of interdependences in

software products, I used a partitioning algorithm (instead

of a clustering algorithm) to identify the highly interde-

pendent modules in the product (Sangal et al. 2005; Sosa

et al. 2007a). The product architecture matrix captures the

directionality of the dependencies between product modules

because system architects documented their dependency

structure by explicitly considering their directionality so

that ‘‘[developers] responsible for implementing and testing

the specifications of module j should also find out about the

specifications of module i.’’For example, because product

modules included in groups 5 and 6 (shown in Fig. 11)

depended on most of the components included in group 1,

managers were expecting developers of the former groups

to seek technical information from developers involved in

the design implementation of the components included in

group 1.

In sum, I built a partitioned product architecture matrix

to capture the dependency structure of the 34 modules that

formed the software product studied. Figure 11 shows how

the 34 modules of the product are organized into six groups

of components. System engineers identified 250 critical

design interfaces among the 34 modules. Although all the

interfaces needed careful attention to ensure that the

modules integrated well and the entire software application

fulfilled its functional requirements, some interfaces posed

significant managerial challenges due to the iterative con-

straints they would impose on some of the components.

These interfaces are shaded in Fig. 11. In addition, the

product architecture matrix highlights sub-system bound-

aries to show whether design interfaces occur with other

components within the group or across group boundaries.

In addition, Fig. 11 shows both a matrix representation and

a block diagram of the product studied.

Fig. 10 Five steps to predict

and validate technical

interactions
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4.2 Step 2: Capturing the design task involvement

of the organization

The development organization studied was formed by 66

people organized into 11 functional groups distributed in

three different sites in Europe. Eight groups were dedicated

to software development (i.e., programming), six of which

were mainly responsible for the design of the 34 modules

of the product studied. The other three groups provided

support to the rest of the organization in areas such as

quality assurance, system architecture design and technical

marketing, and technical documentation and IT support. A

comprehensive web survey among all the 66 people

involved in the development organization was distributed

to capture not only their level of involvement in the design

of the components of the product studied but also their

product-related interactions with all the other people in the

development organization. The web survey was completed

by 59 respondents resulting in an 89% overall response

rate. The survey was part of a comprehensive study that

related the workload and the formal and informal organi-

zational structure of this organization. Responses were

missing from a few people on vacation during the data

collection period or members of the support group whose

input to the development process was less relevant.

Moreover, the response rate among people involved in

programming and testing activities was over 95%.

As part of the web survey questionnaire, respondents

were asked to rate their level of involvement in the con-

ception and implementation design of each of the 34

product modules. The six-point scale used to capture their

level of involvement included the values ‘‘Not involved’’,

‘‘Barely involved’’, ‘‘Somewhat involved’’, ‘‘Involved’’,

‘‘Very involved’’, and ‘‘Strongly involved’’. I documented

these data in a valued affiliation matrix. The columns of the

affiliation matrix are labelled identically to the 34 columns

of the product architecture matrix (see step 1 above) while

the rows of the affiliation matrix are labelled with the 59

development actors that filled out the web survey. Hence,

cell (i,j) in this matrix indicates the level of involvement of

the person in row i in the conception and design imple-

mentation of the software module in column j. Finally,

binary affiliation matrices were built for the following two

cases: (1) design involvement rated as ‘‘strongly involved’’

only; (2) design involvement rated at least as ‘‘barely

involved’’. Figure 12 shows the two binary affiliation

matrices for these two cases respectively.

4.3 Step 3: Determining potential organizational

interactions

Using the affiliation matrix, as indicated in Eq. (2), one can

determine the potential interactions that could take place

among developers involved in the design of the same

components (i.e., potential common-component interac-

tions). Using the two binary affiliation matrices built in

step 2, I obtained 212 and 2124 potential common-com-

ponent interactions for strong-only and all-levels of design

involvement respectively. By combining the product

architecture matrix and the affiliation matrices, as indicated

in Eq. (4), one can determine the total number of interfaces

between product modules on which any pair of developers

need potentially to coordinate (i.e., potential architectural

interactions). Hence, for the case of strong-only design

involvement, the potential architectural interaction matrix

captures 594 potential interactions. Such a matrix has a

density of 17%. For all-levels design involvement, the

potential architectural interaction matrix shows 2,306

potential interactions, which results in a communication

network density of 67% (Fig. 13).

4.4 Step 4: Capturing the formal and informal

development organizational structure

As described in step 2, the actual formal and informal

organizational structures were captured by surveying

almost all members of the development organization

studied. The data were documented into an actual

Fig. 11 Software product

architecture studied
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communication matrix where off-diagonal marks (i,j)

indicate how often the person in column j went (or intended

to go) to person in row i to request product-related infor-

mation during the last year. Note that the sequencing of the

rows and columns of this matrix is identical to the sequence

used in the rows of the affiliation matrices (as well as the

sequencing obtained in the potential interaction matrices).

Figure 14 shows the actual technical communication pat-

terns associated with the development of the product

studied in a 59 9 59 organizational communication matrix.

Respondents reported 511 product-related interactions in

which actor j ‘‘went to (or intended to go to)’’ actor i for

product-related information. This results in a communica-

tion network density of 15%. Figure 14 also shows the

formal structure of the development organization into 11

functional groups. Note that the actual communication

matrix highlights group boundaries with boxes along the

diagonal so that interactions within boundaries (enclosed

by those boxes) are distinguished from interactions across

organizational groups.

Fig. 12 Affiliation matrices in

the organization studied

Fig. 13 Potential architectural

interactions matrices
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4.5 Step 5: Comparing actual and potential interactions

As described in the previous section, two distinct com-

parisons are needed to identify matched and mismatched

interactions. The first comparison is focused on identifying

unpredicted technical interactions while the second is used

to uncover truly potential unattended interactions.

Remember that unpredicted interactions are those that take

place between development actors, even though they are

not involved in the design of components that share

interfaces with the other actors’ components, while truly

potential unattended interactions are those that correspond

to pairs of developers who are expected to interact because

the components they design are interdependent, and no one

else in the organization addresses such interdependences.

Before describing how I identified mismatched interac-

tions, it is important to mention two singularities in the

organizational data collected. First, one of the respondents

from the first development group (see Fig. 14) filled out

completely the questions relevant to building the affiliation

matrices; however, he or she did not manage to fill out the

portion of the survey regarding the reporting of product-

related interactions. As a result the column corresponding

to this person is artificially empty in the actual communi-

cation matrix shown in Fig. 14. This column is therefore

excluded from the comparison analysis described below,

but the row corresponding to this person is kept in the

analysis because it captures all the interactions from other

members of the organization who requested technical

information from this person. Second, the ‘‘managers and

system architects’’ group (see Fig. 14) included two

‘‘technical marketing’’ managers who were ‘‘strongly

involved’’ (from a marketing viewpoint) in the conceptu-

alization and specification of over 75% of the product

modules, however they were not expected to be involved in

the design implementation of any of the product modules.

This resulted in significantly (yet ‘‘artificially’’) dense rows

in the affiliation matrix corresponding to these two tech-

nical marketing managers. As explained below, this will be

an important factor to consider when identifying truly

potential unattended interactions.

4.5.1 Identifying unpredicted interactions

To identify unpredicted interactions it is important to

compare actual interactions with all potential interactions

to rule out as far as possible any reasons that would justify

the existence of actual product-related interactions. As a

result, I compare actual organizational interactions with all

the potential interactions for ‘‘all-levels’’ of design

involvement (see Fig. 15). Note that the potential interac-

tion matrix used combines both common-component and

architectural potential interactions as determined by Eqs.

(2) and (4) respectively. In this case, the total potential

interaction matrix shows a high communication density of

68% (2315 potential interactions) because any two people

who are at least ‘‘barely involved’’ in the design of any of

the 34 modules would need to interact with other actors if

their components share interfaces or if they are involved in

the design of the same components. Yet, even after con-

trolling for such a possibility, I still found, 71 unpredicted

interactions (i.e., 14% of the actual interactions were un-

predicted by the architecture of the product). These

interactions took place between people who interacted (or

planned to interact), even though they did not contribute to

the design of the same components, nor did the components

they designed share technical interfaces. This comparison

also yields the set of potentially matched interactions,

because I am assuming that even being ‘‘barely involved’’

in the design of a component provides enough justification

Fig. 14 Actual communication matrix

Fig. 15 Identifying matched and unpredicted interactions
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for two interdependent actors to have technical organiza-

tional interaction. As a result, a total of 440 actual

interactions were matched by potential interactions. Yet,

the main objective of this comparison is to uncover the

actual interactions that took place even though there were

no technical reasons captured in both the product archi-

tecture and ‘‘all-levels’’ affiliation matrix to do so. In the

next section I will discuss the organizational factors asso-

ciated with the 71 unpredicted interactions uncovered here,

but before doing so let us identify the other type of mis-

matched interactions.

4.5.2 Identifying truly potential unattended interactions

To identify the interactions that are truly potentially unat-

tended, one needs to compare actual interactions with the

minimum set of potential interactions that are expected to

be truly necessary in the design process to coordinate the set

of product interfaces identified. I started this comparison by

considering the set of potential interactions among devel-

opers who are ‘‘strongly involved’’ in the design of the

product components. Yet, in order to obtain the final set of

truly potential unattended interactions, it is imperative to

filter out potentially ‘‘redundant interactions’’ associated

with each product interface identified. Hence, the underly-

ing objective of this comparison is to identify the product

interfaces whose potential interactions are not redundant

interactions. Remember that a product interface may have

several potential interactions associated with it because

there might be several actors strongly involved in the design

of the two components connected by such an interface. As a

result some of these potential interactions may well be

redundant interactions. As mentioned in the previous sec-

tion, there are two types of redundant interactions: (1)

potential interactions associated with an interface connect-

ing two components that have at least one person strongly

involved in the design of both components (common-con-

tributor redundant interactions); and (2) potential

interactions associated with an interface of which at least

one of those potential interactions is matched by an actual

interaction (common-partner redundant interactions).

Following the approach described in the previous sec-

tion, to systematically identify truly potential unattended

interactions I first filtered out the ‘‘common-contributor’’

redundant interactions using Eq. (1) with the ‘‘strong-only’’

affiliation matrix shown in Fig. 12, and then, filtered out

‘‘common-partner’’ redundant interactions. Interestingly,

when doing this, the comparison yielded no truly potential

unattended interactions. Does this mean that all the

potential unattended interactions identified were redundant

interactions? Very unlikely. Because the original ‘‘strong-

only’’ affiliation matrix captured the involvement of the

two ‘‘technical marketing’’ managers who were strongly

involved in the specification of over 75% of the software

modules but would not contribute to their design imple-

mentation, it was not realistic to assume that the potential

interactions associated with them qualified as redundant

interactions. As a result, it was necessary to revise the

‘‘strong-only’’ affiliation matrix by removing the entries in

the rows corresponding to these two ‘‘technical marketing’’

managers. Note that this is not an issue with any other

member of the organization because none else could report

‘‘strong involvement’’ in the design of a component with-

out actually being involved in its design implementation.

Finally, after revising the ‘‘strong-only’’ affiliation

matrix, I was able to identify the truly potential unattended

interactions (see Fig. 16). First, I filtered out the ‘‘common-

contributor’’ redundant interactions. Using Eq. (1) with the

‘‘revised’’ affiliation matrix, I identified 72 product inter-

faces (out of 250 product interfaces captured in the product

architecture matrix) that had the same group of people

strongly involved in the corresponding pair of interdepen-

dent components (see Fig. 16). That yielded a set of 178

product interfaces which were examined one by one, as

illustrated in Fig. 7, to determine which of them would be

associated with common-partner redundant interactions.

The result of this exercise yielded 38 product interfaces

which generated 100 potential interactions that were not

matched by actual interactions (i.e., 100 truly potential

unattended interactions). (Remember that those product

interfaces, whose totality of potential interactions are not

matched by actual interactions, are defined as potential

unattended product interfaces, and those potential

(unmatched) interactions are truly potential unattended

interactions.) Identifying this set of potentially unattended

interfaces is important because engineering managers can

check whether they were intentionally unattended (because

other coordination mechanisms, such as interface stan-

dardization, were associated with them) or they were

indeed unintentionally unattended by the organization, in

which case managerial action would need to follow.

The aggregated results of the two comparisons are

documented in a final comparison matrix shown in Fig. 17.

The cells with an ‘‘X’’ indicate truly unattended potential

interactions, the cells with an ‘‘O’’ show the unpredicted

interactions, and the cells with an ‘‘#’’ mark matched

interactions.

5 Analysis and discussion of results

An important benefit of implementing the structured

approach described in this paper is that it provides a sys-

tematic way to identify potential mismatches between

product and organizational architectures in cases where
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their structures do not map one-to-one. Identifying these

mismatches in a systematic way can help managers steer

their attention to areas within the product and the organi-

zation that may require special managerial action. More

specifically, I found that only 14% of the 511 actual

product-related interactions were unpredicted by potential

interactions, while 29% of the 348 potential unattended

interactions identified were truly potentially unattended.

Moreover, in order to determine truly potential unattended

interactions, I had to identify the product interfaces that

were not associated with actual organizational interactions.

In particular, of the 250 product interfaces identified by

system architects, 15% of them had not been matched by

actual interactions of people significantly involved in the

design of such interdependent software modules.

Analyzing the final comparison matrix further allows us

to test whether unattended and unpredicted interactions are

concentrated in a few actors or are distributed throughout

the development network. Fig. 18 shows a reordered final

comparison matrix that clusters the 11 functional groups of

the organization into three major groups according to their

type of involvement in the product studied. First, the

technical group, formed by the 31 members of the six

development groups and the 11 members of the quality

assurance group. These are the groups that are responsible

for design, testing, and integration (i.e., programming, bug

fixing, and product integration) of new (or redesigned)

software modules of the products under development.

Hence, they were expected to concentrate the majority of

the technical interactions associated with the design

Fig. 16 Identifying truly potential unattended interactions

Fig. 17 Final comparison

matrix
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implementation of the product studied. Second, the man-

agers group, formed by the people who did not have a

technical responsibility on the design implementation and

testing of the product studied, yet have managerial

responsibilities in the definition of the software modules

(and their interfaces) to be implemented. This group

included the seven managers of the organization including

the director of the development organization, two technical

marketing managers, two product line managers, and two

system architects. Finally, the non-related group, formed

by the seven members of the special projects groups and

the three members of the documentation and IT support

group. This group was not expected to have any significant

interactions related with the conceptualization or design

implementation of the product studied.

Table 1 shows how matched and mismatched interac-

tions are distributed across the three groups defined above.

First, note that 86% of the actual product-related commu-

nications were associated with potential interactions with a

statistically significant large proportion of matched inter-

actions occurring among members of the technical and

managers groups.7 Although it is not surprising to see that

actual interactions were highly correlated with the exis-

tence of potential interactions, the benefit of identifying

matched interaction is that when doing so, one can uncover

unpredicted interactions. Table 1 shows that a statistically

significant large proportion of unpredicted interactions

occurred between people in the technical group, which

suggests that technical interactions occurred for reasons

that were not captured by either the architecture of the

product or the affiliation network of the organization.8

Table 1 also shows that 92% of the truly potential unat-

tended interactions occurred within the technical group,

which suggests that potentially unattended product inter-

faces are likely to be associated with lack of interaction

among technical people in the organization that were

supposed to be significantly involved in the design imple-

mentation of the product.

More generally, because mismatched interactions reveal

important information about potentially unattended iden-

tified product interfaces as well as unanticipated technical

interactions, the results reported in Table 1 suggest that it

is particularly valuable to applying the structured approach

presented in this paper to the group of technical people that

are supposed to be directly involved in the iterative design

activities of the product under development. Accordingly,

it is important to examine further how mismatched inter-

actions are distributed within the technical group in order

to understand the driving forces behind their occurrence.

5.1 Factors associated with potentially unattended

and unpredicted interactions

I found that truly potential unattended interactions were

significantly concentrated in a small group of actors.

Ninety-one percent of the 92 truly potential unattended

interactions within the technical group were associated

with nine actors. This is good news for managers because

Fig. 18 Reordered final

comparison matrix

7 To test statistically the significance of the difference between the

proportions of matched interactions (within technical and managers

group versus non-related group), I carried out a chi-square test over

the 440 matched interactions. The expected values were determined

by the probability that a matched interaction would randomly occur

between technical and manager actors instead of with non-related

actors. Such probabilities were defined by the available set of possible

interactions in these two categories. The test resulted in a v2 of 136.9,

which is clearly greater than the critical value of v2(0.99, 1) = 6.63.

8 To test the significance of this result, a chi-square test was carried

out over the 71 unpredicted interactions. This test resulted in a v2 of

13.2, which is greater than the critical value of v2(0.99, 1) = 6.63.

Res Eng Design (2008) 19:47–70 65

123



they can focus their attention on a small set of actors to

minimize the risk of overlooking critical product inter-

faces. Interestingly, 100% of these potentially unattended

interactions occurred across group boundaries, which

confirms the importance of carefully identifying and

managing cross-boundary interfaces; these suffer from

communication barriers imposed by organizational

boundaries between development groups which typically

hinder the attention that needs to be paid to technical in-

terdependencies (Sosa et al. 2004). As mentioned before,

an important benefit of the suggested approach to identi-

fying truly potential unattended interactions is that it

requires the identification of product interfaces that are not

matched by actual interactions. I found that 38 product

interfaces (out of 250) were not attended by actual inter-

actions. Figure 19 shows these potentially unattended

product interfaces, of which 27 (or 71%) involved com-

ponents from subsystem ‘‘group 4’’, which clustered a set

of particularly novel software modules that were subse-

quently highlighted for special attention during the detailed

design phase.

Certainly, potentially unattended product interfaces can

be coordinated in many different ways. In addition to actual

interactions between the people significantly involved

in the design implementation of these interdependent

components, alternative coordination mechanisms available

for organizations include: interface standardization, indirect

interactions through intermediary actors (either within the

technical group or with other members of the organization),

and interface coordination through actual interactions

between people with lower level of design task involvement.

In the product studied, interface standardization was less

likely to play an important role at this stage of the devel-

opment process because the architecture of the product was

based on functional components to be designed and imple-

mented. I also tested for the possibility that actors with lower

levels of design involvement would coordinate some of

these potentially unattended interfaces and found that over

21% of the 38 potential unattended interfaces could have not

been handled by other actors with lower levels of involve-

ment in the design of these components. More generally, it is

worth emphasizing that the value of identifying potentially

unattended interfaces is to ‘‘raise a flag’’ around a subset of

product interfaces that have higher risk of being overlooked

by the organization so that managers investigate whether

they are intentionally or unintentionally unattended.

As for the unpredicted interactions within the technical

group, three people (one developer and two members of the

quality group) were involved in 92% of them. There are

two distinct explanations for this: either the product

architecture matrix did not capture some important inter-

faces that motivated these unpredicted interactions or the

affiliation matrix did not capture the involvement of these

people in some design activities associated with some

product components. In this case, the empirical evidence

suggests that the second explanation is the most plausible

one. These three development actors did not report any

level of involvement in the design of any of the compo-

nents of the product studied (i.e., their corresponding rows

in the affiliation matrix were empty for all levels of

involvement) because they were supposed to be involved in

the design and testing activities of other products in the

firm’s portfolio. However, the member of the development

group in question was likely to be involved in technical

discussions about the product studied with other developers

in his group because he was considered ‘‘expert’’ in some

of the technologies relevant for the product studied, and

Table 1 Overall distribution of

technical interactions
Counts of matched

interactions

Counts of unpredicted

interactions

Counts of truly potential

unattended interactions

Interactions within

technical group

248 (56%) 49 (69%) 92 (92%)

Interactions with

managers group

162 (37%) 9 (13%) 8 (8%)

Interactions with non-

related group

30 (7%) 13 (18%) 0 (0%)

Total 440 71 100

Fig. 19 Potentially unattended product interfaces
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this was reflected in his actual communication patterns. As

for the two quality assurance engineers, they were likely to

be involved in some ‘‘testing’’ tasks associated with the

product studied to help cover the excess demand for quality

related activities associated with this product development

effort. After understanding the main reasons behind the

unpredicted interactions with these three people, the other

unpredicted interactions became candidates to be investi-

gated by engineering managers to find out whether they

were related to any previously unidentified product inter-

face not captured in the original product architecture

matrix.

It is worth highlighting the fact that the predictive power

of our approach to determine and validate potential inter-

actions depends significantly on the accuracy of the data

collected. Certainly, measurement errors in any of the

matrices can systematically generate mismatched interac-

tions. As a result, managers should first double check that

the systematic occurrence of mismatched interactions is not

simply the result of systematic errors during the data col-

lection. Fortunately, the codified nature of software

products and the increasing use of information technology

to manage software development projects may help

reducing inaccuracies in the data collected.

6 Managerial and academic implications

This research has important implications for both managers

and academics. Research in engineering design has sug-

gested that the identification of design iterations is essential

to managing them effectively (Eppinger et al. 1994; Eckert

et al. 2004). In this paper I argue that to manage planned

design iterations, it is essential for engineering managers to

identify the set of actors who need to interact and the

interfaces they need to interact about. This is particularly

relevant in software development in which design and

integration activities take place concurrently as products

are built. This paper presents a structured approach to this

challenge. Moreover, the systematic implementation of this

approach to small ‘‘portions’’ of the product and within the

relevant technical group in the development organization

can help managers to manage design iterations at a more

granular level because they can identify systematically the

potential interactions that need to take place to address a

subset of product interfaces. Because ‘‘potential interac-

tions’’ represent the set of interactions that could

potentially coordinate a set of product interfaces, managers

must select and facilitate the subset of the potential inter-

actions that would address those interfaces effectively.

Figure 20 illustrates how, by bringing together the

process, product, and organizational views, managers can

effectively facilitate the management of design iterations

associated with a subset of product components. Figure 20

starts with a representation of the development process in

which its main iterative phases are highlighted, including

the ‘‘design integration’’ phase in which most of the

planned design iterations take place. To manage those

iterations effectively, managers capture the architecture of

the specific product whose product components are to be

designed, tested, and integrated. For illustration purposes,

let us assume that managers are interested in facilitating the

design iterations associated with designing, testing, and

integrating the product components of the particularly

novel subsystem ‘‘group 4’’. As a result, the product

architecture shown in Fig. 20 only shows the interfaces

(both within and across subsystem boundaries) associated

with the product components of subsystem ‘‘group 4’’. By

combining the affiliation matrix and the product architec-

ture matrix, managers can predict the set of potential

interactions that would need to take place between the

technical people of the development organization who

significantly contribute to the design, test, and integration

of the software modules whose interfaces are highlighted in

the product architecture matrix. Based on the results dis-

cussed in the previous section, I have resized both the

affiliation matrix and the potential interaction matrix to

consider interactions within the development and quality

assurance groups only (i.e., the technical group). The

potential interaction matrix provides managers with the set

of people and technical interactions from which to choose

to coordinate the identified product interfaces effectively.

Moreover, the top half of Fig. 21 shows the potential

interactions, some of which, would be needed to coordinate

the interfaces between components within the ‘‘group 4’’

subsystem. On the other hand, the bottom half of Fig. 21

shows the potential interactions, some of which, would be

needed to coordinate the interfaces between the compo-

nents of ‘‘group 4’’ and components in other subsystems.

Note that most of the within-subsystem boundary interfaces

can be handled by members of two development groups

(labeled as G4 and G6 in Fig. 21) while to coordinate the

set of cross-boundary interfaces developers from five of the

six development groups would potentially be involved as

well as a couple of members of the quality assurance

group. Having considered these potential interaction pat-

terns, then it is up to engineering managers to establish the

appropriate coordination mechanisms to facilitate the

management of such product interfaces.

As illustrated in Fig. 20, to implement a project man-

agement framework like this, it is essential to document

both the product architecture and the design task affiliation

of the organization. With product architecture and affilia-

tion matrices, a project management tool can be

implemented to automate the systematic prediction and

management of potential interactions. The automation of
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the structured approach introduced in this paper would

allow for the rapid evaluation of the organizational impact

of changes in either the architecture of the product or the

affiliation network of the organization.

In practical terms, this paper highlights the importance

of capturing both the connectivity of product components

and the involvement of developers in the design of those

components. Doing so is facilitated in software

Fig. 20 Aligning process,

product, and organizational

views in software development

Fig. 21 Facilitating potential

technical interactions
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development due to the highly codified nature of software

products. This paper has shown how the software archi-

tecture can be documented based on functional components

of the product, however after product components are

implemented into ‘‘pieces’’ of source code, the source code

itself can be used to capture the architecture of the product

being implemented and maintained (Refer to Sangal et al.

2005; MacCormack et al. 2006; Sosa et al. 2007a for

examples of how to document software architectures based

on source code). Once a product architecture matrix is

constructed, then engineering managers and developers can

easily determine which other components are likely to be

affected if a group of components are to be changed. Then,

with the affiliation matrix managers and developers can

also identify which people to contact to coordinate any

particular interface between the focal component and any

other components. Again, this sort of project management

framework is particularly relevant in software development

where products are developed in an additive fashion and

product changes are implemented over an established

product architecture that is relatively easy to document.

More generally, the approach presented in this paper

allows engineering managers to identify potential mis-

matches between actual and potential interactions. This is

important because mismatched interactions offer important

guidance to engineering managers to update product (or

process) information when new interfaces are uncovered by

unpredicted interactions, and to reorganize development

actors to attend interfaces that could otherwise be over-

looked. Although the approach has been illustrated in an

in-depth case study in a software development organiza-

tion, additional validation in other types of technical

organizations would be required before generalizing the

results presented here. From a theoretical viewpoint, the

implications of this approach rest on the analytical usage of

the affiliation matrix (in its binary and valued forms) to

explore alternatives ways to cluster organizational groups

to minimize tension across organizational boundaries.
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