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Abstract In this paper, a design reuse framework with a
function-based design synthesis approach is proposed in
the context of conceptual product development. Previ-
ous researches in design reuse have lacked a compre-
hensive functional base for knowledge representation
and reasoning. The method presented in this paper uses
a function-based product information model and a
multiple objective optimization model to achieve design
reuse. The information model is dependent on a func-
tional core which is the key element vector. It is capable
of modeling product information with sufficient
abstraction, which in turn facilitates intelligent con-
struction of product platforms. The multiple objective
optimization method carries out automated design syn-
thesis and evaluation subject to various design con-
straints. The approach has been applied in the design of
the fan filter unit, a key clean room device. It has
achieved intelligent design reuse in product conceptual
design with significant rapidity and solution variety.

Keywords Design reuse Æ Design synthesis Æ Function Æ
Multi-objective optimization

1 Introduction

Design reuse plays a vital role in product development.
It is an experience-oriented approach and has long been
adopted by designers, consciously or sub-consciously.
According to the statistics in industries, only about 20%
of OEM’s investment is on new design while about 80%
is on the reuse of existing products, with or without
modification (Rezayat 2000). Although direct reuse of
previous design components is not applicable in most

design projects, it is a common practice for a designer to
resort to similar past designs as a starting point, even in
the original design. On the other hand, conceptual de-
sign has been considered as the most important stage in
the whole product development cycle. Using design re-
use methodologies to facilitate product conceptual de-
sign is a notable investigation topic. However,
considerable effort is needed to overcome the difficulties
in the process. It is recognized that the following factors
are vital to the success of design reuse in conceptual
design, namely, (1) methods to handle the complexity
and volatility of the conceptual design knowledge, (2)
fast and robust methods for design synthesis and eval-
uation, and (3) the adaptation to diverse design objec-
tives and constraints.

This paper proposes a function-based design synthe-
sis approach to support conceptual design. The ap-
proach is implemented in an integrated design reuse
framework, which helps to achieve intelligent building of
product structures. The paper is organized into eight
sections. After an overview of the related work in Sect.
1, a design reuse framework is presented in Sect. 2.
Section 3 focuses on the function-based product mod-
eling scheme. Section 4 presents the function analysis
method using neural networks. It also discusses the
mapping from the key characteristics (KCs) to the de-
sign parameters. A design synthesis method using multi-
objective optimization is proposed in Sect. 5. Section 6
illustrates the method with a case study. Sections 7 and 8
present the discussions and conclusions, respectively.

Product information takes various forms and is
subject to changes. To achieve effective design reuse, the
product model must capture the multiple aspects of the
product information. Various generic modeling lan-
guages have been employed in engineering design, such
as the Unified Modeling Language (UML) (Pulm and
Lindemann 2001), the Standard for the Exchange of
Product Model Data (STEP) (Pratt and Anderson 2001;
Szykman et al. 1998), etc. Bobrow et al. (1996) devel-
oped the Compositional Modeling Language (CML) to
support model sharing and interchange between differ-
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ent research groups. CML provides common syntax
with well-defined semantics so that it can model a broad
variety of physical processes and objects. However,
information processing on basis of CML is not
straightforward due to its generic structure. In product
design, it is preferable to focus on the products instead
of the ‘entities’ or ‘physical phenomena’ that are highly
abstract.

Stone and Wood (2000) proposed a function basis
method for product design. They developed a formalized
function representation using functions and flows, as well
as taxonomies. The function basis has been motivated by
several factors, such as the product architecture design,
the storage and transmission of information, creativity in
concept generation, etc. This function basis provides a
comprehensive representation scheme. However, a clear
scenario of reusing the function information has not been
presented, i.e., the use of the function basis with respect
to the proposed motivations has not been illustrated.

A function basis is helpful to establish product
architectures from which the product configurations are
generated. Quantitative and heuristic methods have been
proposed to identify product architectures based on the
product function (McAdams et al. 1999; Zamirowski
and Otto 1999; Stone et al. 2000a, b). However, the
process still relies heavily on human designers. It is
desirable to achieve a more intelligent analysis of
product functions to build the product architecture.

The NIST design repository project is aimed at
developing a computational framework for creating
design repositories (Szykman et al. 1998, 1999, 2001).
This research presents a generic product information
model that is characterized by a formalized function-
flow representation schema. Although the interopera-
bility of the information model and the role of knowl-
edge are emphasized, the research does not provide a
comprehensive solution to design synthesis. Knowledge
reuse is largely restricted to conventional case-based
reasoning (CBR).

In this research, design synthesis is limited to config-
uration design, which refers to the generation of product
structures from the combination of design components.
Mittal and Frayman (1989) defined the general configu-
ration task and proposed methods of problem solving.
The definition of configuration task can help a designer
to formulate the design problem in a simplified form.
However, problem solving may need to be supported by
more efficient computational methods. Yu and Mac-
Callum (1995) proposed a knowledge-based system for
product configuration design and management. Efforts
have been made to (1) capture product structure
knowledge, (2) create product structure using the reason
maintenance system, and (3) maintain configuration
consistency using the inference engine. However, it is
difficult to establish the knowledge base that is required
in this system. Moreover, solutions are created through
the interactions between the designer and the decision
support system. The effectiveness of the method in
solving large combinatorial problems was not validated.

A-Design is an agent-based system that combines
multi-objective optimization with a multi-agent system
for automated design synthesis (Campbell et al. 1999,
2000). It is also capable of accepting changing design
inputs and decision-making based on previous experi-
ence. Such capacities make the system intelligent and
adaptive to the dynamic environment. However, one
limitation of this system is its dependence on the
function parameters (FPs), which relies heavily on the
input–output relations of design variables, usually in
the form of equations. This limits the flexibility to build
the product architectures. Moreover, the design com-
ponents in A-Design were hard-coded in a number of
Lisp files making it difficult to update the relevant
information.

Chakrabarti and Bligh (1996) proposed a compo-
nent-based catalog design method that emphasizes the
representation and abstraction of structural elements to
generate concepts. The authors attempted to abstract
the mechanical components as input–output elements.
Machine design is carried out through composing the
elements based on the input–output specifications using
an exhaustive search. The method is similar to the agent-
based approach. However, it lacks the optimization
scheme that is present in A-Design.

Studying the work presented earlier, there is a com-
mon deficiency in establishing a unified approach to
combine a formalized function representation scheme
with an intelligent design synthesis method that
accommodates various design objectives and design
constraints. This paper proposes an integrated approach
to address the above deficiency.

2 A design reuse framework for conceptual design

This section presents a design reuse process model for
conceptual design. It involves three major processes,
namely, product information modeling, knowledge
extraction, and design synthesis. Figure 1 shows the
system architecture of this model.

In the first process, product information is accumu-
lated by means of product modeling. Product informa-
tion is collected within a virtual space, i.e., a space that
contains a particular category of products. The central
part of the process is a function-based product infor-
mation model, which will be elaborated in Sect. 3.

The next process is knowledge extraction. Here,
information collected in the first process is analyzed
using predefined algorithms. In particular, a product
platform is constructed using neural networks; correla-
tion between the KCs and the platform components are
established using the quality function deployment
(QFD) method.

The design synthesis deals with the design-by-reuse
process. Initially, a design task is put forth as a list of
design requirements, which are in turn interpreted as
design specifications. These specifications serve as
objectives and constraints for solution synthesis. Final
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solutions can thus be put forth by combining and reus-
ing existing product components.

Following this process model, Sects. 3–5 discuss the
steps in detail. To demonstrate the processes, a fan filter
unit (FFU) is used as the design case throughout this
paper. The FFU is the key device in the clean room
products. It draws in air from outdoor space, removes
the unwanted particles, and supplies clean and laminar
airflow continuously into a clean room. Figure 2 illus-
trates the structure of a horizontally mounted FFU. The
performance requirements of the FFU are rigorous and
diverse with respect to different applications. In addi-
tion, a customer may have individual demands, such as a
special size or a specific material. Therefore, the FFU
manufacturers have to be able to provide customizable,
low-cost products, while conforming to various industry
standards. Traditionally, the FFU design is largely
dependent on a designer’s expertise, with the support of
computer-based or paper-based design catalog. In
comparison with the method presented in this research,
this traditional method lacks a formalized design reuse
foundation. Automated development of solution alter-
natives at the early design stage is rare; let alone a sys-
tematic estimation of the design superiority.

3 Function-based product modeling

3.1 Function-based product information model

In this research, the product information model is de-
fined as a triple p(pat, pkc, pref), where pat contains a few
general attributes of a product, such as a product model,
manufacturer, etc., pkc defines a set of KCs, and pref
contains the reference to four predefined information
facets. The structure of the information model is shown
in Fig. 3.

The KCs are qualitative or quantitative customer
requirements that are translated to support engineering
specifications for product design (Rezayat 2000). They
are used to limit the scope of the problem by focusing on
a few crucial business or customer factors. In this
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research, the KCs of a product refer to the engineering
metrics that signify the major performance features of
the product. They are defined for a category of similar
products. For example, the KCs for the FFU include:
the power type (AC/DC), static air pressure (Pa), air
quantity (m3/h), air velocity (m/s), noise level (dBA), etc.
A detailed list of the KCs of the FFU is presented in
Sect. 4.

The four information facets are defined as the func-
tional, physical, conceptual, and contextual facets. Each
facet has a pre-defined data structure. The purpose and
content of each facet are listed in Table 1. Among them,
the functional facet serves as the core facet.

3.2 Function representation with KEV

A formalized representation of function is required for
computation. This research adopts a flow-oriented,
hierarchical function structure, similar to the model
presented by Pahl and Beitz (1996). It involves function
description on a micro- and macro-level. The micro-level
description is a function block (FB), while the macro-
level structure deals with the overall organization of the
function hierarchy. An FB defines a function in terms of
the input/output flows and the function actions (FAs),
i.e., the input flow is transformed into the output flow as
the result of the FAs (Pahl and Beitz 1996). A flow can
be one of the three forms, namely, energy (E), material
(M) and signal (S), while an FA is usually in the form of
a transitive verb. Based on these definitions, an FB is
described as follows, where [] denotes optional object(s):

transitive verb(s)
þ ½source object(s) (i.e., the input flow)�
þ ½destination objects(s) (i.e., the output flow)�:

For example, the FFU involves a function of producing
air flow with a certain flow rate. An ‘air flow generation’
function may involve ‘converting’ the input energy
‘electric voltage’ to an output energy ‘velocity’ of the air
(Fig. 4). As a result, the function can be represented as
convert electric voltage to air velocity.

A complex product function is usually decomposed
into several sub-functions. A hierarchical function
structure is obtained as the result of the decomposition.

The decomposition stops when each of the leaf functions
can be fulfilled by a single, basic solution principle. Such
a leaf function is called an atomic function. Further-
more, it is assumed that the characteristics of non-
atomic functions can be defined by the complete set of
its descendant atomic function blocks. Figure 5 is a
typical function structure of FFU.

The atomic functions are formally represented by
three main attributes, namely, the input-flow (I), output-
flow (O) and FAs (A). Each FA, in combination with the
corresponding input/output flows (E, M, or S), consti-
tutes a key element fi. Thus, the key element is repre-
sented as a vector:

fi ¼ Ai Ii Oi½ �

where Ai is the FA, Ii is the input flow(s) and Ii 2
E [M [ S; and Oi is the output flow(s) and Oi 2 E [
M [ S:

If a function involves multiple FAs and multiple key
elements, the FB is represented as a key element vector
(KEV), which is a combination of these elements:

F ¼ f1 � � � fn½ �T ¼
A1 I1 O1

. . . . . . . . .
An In On

2
4

3
5

where n is the total number of FAs. Usually n should not
be a large value because in such a case, the function can
be further decomposed into sub-functions. As an
example, the ‘air flow generation’ function can be rep-
resented as a one-element KEV F ¼ f1½ �T ¼
convert voltage:air velocity:air½ �:
The elements in a KEV are non-numeric, and as such

they are not suitable for computational analysis. The
solution to this problem involves two steps: firstly,
developing taxonomies with proper coding schemes; and
secondly, mapping the categorical FAs and flows to
quantitative values using these coding schemes. In this
research, taxonomies are extracted from the researches
reported by Szykman et al. (1998), Pahl and Beitz
(1996), Kirschman and Fadel (1998), and Otto and
Wood (2001). They are further coded such that an FA is
represented by a unique three-digit code and a flow is
represented by a unique four-dight code. For example,
the coded form of the ‘air flow generation’ is
F ¼ 302 1202 : 2203 1163 : 2203½ �:

Table 1 A summary of the four facets of the product information model

Purpose Content

Functional Describes the function of a product;
an abstraction of design concepts

Structure: the hierarchical structure from
function decomposition

Function block: elements of the function structure
Physical Presents a visual and editable information entity Form: a geometric model (preferably CAD model)
Conceptual Depicts how a function is achieved Solution principles: embodiment of the working principles

of various components with respect to the functions
Contextual Set the products in the evolving context Design history: conceptual component reuse

and evolution records
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The taxonomy scheme used in this research can
support a broad variety of product functions. However,
the taxonomy is not necessarily complete as some
functions may not be properly defined. Two methods are
used to solve this problem. Firstly, the system accepts
user-defined functions to allow for certain level of
ambiguity. Secondly, the taxonomy can be updated to
include new vocabularies that are constantly used. An-
other problem is that the taxonomy scheme is not strictly
orthogonal, i.e., the function models are not free of
inconsistencies because different designers may use dif-
ferent vocabularies to describe the same function. To
alleviate this problem, the function modeling is sup-
ported by interactive graphical interface with rich
guidance.

This section presents a function-based product
information model. It is developed to provide a formal
and comprehensive representation scheme to capture the
essential product information. This model is generic in
that it is not restricted to specific types of products and it
is not limited to specific aspects of product information.
However, the function base used in this research may be
restrictive in dealing with the information that is not
functional in nature. The solution to this problem is to
include such information in the other information facets,
e.g., physical and contextual facets. In comparison,

some general modeling languages, such as CML, pro-
vided more generic structure to represent various types
of entities and processes. This research did not adopt
CML because its generic structure is not directly rele-
vant to product design. Various extensions to the base
language have to be made to accommodate the
requirements of the domain-specific representation
(Bobrow et al. 1996).

4 Knowledge extraction approaches

4.1 Mapping from design requirements to design com-
ponents

Typically, design is the process of finding the proper
design parameters to fulfill the design requirements.
Therefore, the relationships between the design
requirements and the design parameters are essential to
any design system. Such relationships can be broadly
considered as a mapping route from the design
requirements to the design components. This section
presents methods to identify the mapping route.

The process is achieved using the domain mapping
method similar to the zig-zag decomposition in axiom-
atic design (Suh 2001). Three transformations are in-
volved to correlate the design requirements with the final
conceptual components. The transformation matrix is
similar to the one developed in axiomatic design (Suh
2001), but without the constraint of uncoupled/decou-
pled design. The process is illustrated in Fig. 6.

Let R, K, F, C represent the vectors of customer
requirements, KCs, function groups (FGs), and con-
ceptual components, respectively. Among them, the
FG is a mechanism to organize the product functions.
It can be obtained using the function analysis method
to be presented in Sect. 4.2. The conceptual compo-
nents are defined as the conceptual facet in the product
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information model discussed earlier. For each product
case, it is assumed that a key conceptual component
can be identified corresponding to a functional com-
ponent (Mittal and Frayman 1989). Thus, a compo-
nent catalog can be obtained through the
decomposition of the product cases. Each function can
be instantiated by a set of components, for which the
attributes are different. In the design synthesis pro-
cesses, the outcome is a sensible combination of con-
ceptual components that are selected from the
component catalog. TR1, TR2 and TR3 are the map-
ping matrices. Equations 1–3 present a mapping route
from the customer requirements to the design concep-
tual components:

R ¼ TR1 � K; ð1Þ
K ¼ TR2 � F ; ð2Þ
F ¼ TR3 � C: ð3Þ

The first transformation is needed when the customers
have a set of general requirements to be measured
quantitatively with design specifications. The transfor-
mation can be performed manually using the QFD
method (Martin and Ishii 2002). Using the FFU as an
example, the customer may define the design require-
ments to be ‘low energy usage’, ‘low noise’, and ‘light
weight’. These requirements can be addressed by KCs
such as ‘power consumption’, ‘efficiency’, ‘noise level’,
and ‘product weight’. Once the KCs have been obtained,
they will be used to specify the design objectives and set
the constraints. Next, the KCs are mapped onto the
function domain using TR2, which is the correlation of
KCs and FGs. TR2 is established using a second QFD
phase. As will be discussed shortly, seven FGs are
formed for the FFU using the function analysis method.
The correlation between the KCs and the FGs is shown
in Table 2. Lastly, the FGs are correlated to conceptual
components through a third transformation. As will be
discussed in Sect. 4.2, TR3 is a natural outcome of the
function analysis.

4.2 Product platform building using function analysis

4.2.1 Introduction of feature map and the self-organizing
map (SOM) method

The pre-requisite of function analysis is a set of products
whose function structures have been built according to
the functional model. Next, all the FBs within the
function structures belonging to different products are
retrieved. The FBs are represented using the coded
KEV. The argument is that the attributes contained in
the key elements can be considered as coordinates that
collectively constitute a multi-dimensional discrete
space. Hence, the FBs can be viewed as data points
distributed in this space. If N attributes are used to
represent the FBs, the FBs can be considered as data
points in an N-dimensional space. This concept is illus-
trated with a 2D plane in Fig. 7. The FBs belonging to a
set of related products are scattered in this space (the
shaded circles). It is expected that similar FBs from
different products are close to each other and intrinsi-
cally fall into a specific group (the ellipse). However,
these groups are ‘invisible’ to a designer before any
computational analysis. In this research, the self-orga-
nizing map (SOM) is used to perform an unsupervised
clustering to find the grouping patterns. These patterns
stand for a preliminary functional product platform.

A typical SOM network structure consists of three
layers, namely, the input layer, the competitive layer,
and the output layer (Fig. 8). The input layer accepts a
multi-dimensional data pattern, which is usually repre-
sented as a vector. In the function analysis problem, the
input data vector is derived from the KEV. Seven nodes
are used to represent seven elements, namely, function
action, input energy flow, input material flow, input
signal flow, output energy flow, output material flow,
and output signal flow. Table 3 shows an example of the
input vector for the function ‘air flow generation’.

The competitive layer can be organized in one- or
two-dimensions. Each neuron receives a summation of
the weighted inputs from the input layer, and is associ-
ated with a collection of adjacent neurons, which form
its ‘neighborhood’. In the function analysis problem,
neurons in the competitive layer are organized in a two-
dimensional lattice. Once the network has been initial-
ized, three processes are involved in the formation of the
feature map (Haykin 1999), described as follows:

1. Competition: For each input vector, the neurons in
the competitive layer compute their responsive values
according to a distant function. The neuron with the
largest responsive value is declared as the winner.

2. Cooperation: The topological neighbors of the win-
ner are determined to provide the basis for coopera-
tion among them. The winner and its neighbors are
collectively called the excited neurons.

3. Synaptic activation: The excited neurons increase
their individual responsive values of the distant
function in relation to the input vector. This is
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achieved through adjusting the weight vectors of the
excited neurons such that they move towards the in-
put vector.

At the initial stage of building the network, no spe-
cific order is present. However, after the training pro-
cesses, the neurons in the competitive layer are
organized into some meaningful patterns, i.e., the fea-
ture maps.

The purpose of the output layer is to visualize the
interconnections between the nodes in the competitive
layer. In this research, the output layer is organized as a
tree structure, with the root nodes representing groups
of functions and the leaf nodes representing the function
components belonging to actual product cases
(Fig. 10a).

4.2.2 Functional platform building using SOM

A SOM network is built to analyze the FBs from a set of
representative FFU products. Seven nodes are used in
the input layer, and a two-dimensional, 5 · 5 hexagonal
grid is used in the competitive layer (Fig. 9). In a hex-
agonal grid, each node has six ‘neighbors’, except those
on the borders. When the input data (the FBs) are ini-
tially imported, all these data are located at the origin.
Next, a training process is performed according to the
three procedures discussed earlier. Upon repeated
presentation of the training data, the synaptic weight

Table 2 Correlation between
key characteristics (KCs) and
function groups (FGs) (TR2)

1 KC is dependent on a
function; 0KC is not dependent
on a function

KCs FGs

Flow generation Control Air filtering Casing Flow distribution Inlet Insulation

Power supply 1 1 0 0 0 0 0
Power consumption 1 1 1 1 0 0 0
Controller type 0 1 0 0 0 1 0
Motor type 1 1 0 0 1 0 0
Filter type 0 0 1 0 0 0 0
Air quantity 1 0 1 1 1 0 0
Total static pressure 1 0 1 1 1 0 0
Air velocity 1 0 1 1 1 0 0
Air uniformity 0 0 1 1 1 0 0
Service cleanliness 0 0 1 0 0 0 0
Noise level 1 0 0 0 1 0 1
Casing size 0 0 1 1 0 0 0
Casing material 0 0 0 1 0 0 0
Vibration 1 0 0 1 0 0 1
Mounting type 1 0 0 1 1 1 0
Cost 1 1 1 1 1 1 1
Weight 1 1 1 1 1 1 1
Manufacturing time 1 1 1 1 1 1 1

clustering center

function group

function blocks

Fig. 7 Graphical interpretation of function clustering

Input layer Output layerCompetitive
layer

Fig. 8 The network architecture of a self-organizig map (SOM)
(Haykin 1999)

Table 3 Input vector of a function block (FB)—air flow generation

Elements Function action Input energy Input material Input signal Output energy Output material Output signal

Value Convert Electric current Air – Velocity Air –
Code 302 1202 2203 0 1163 2203 0
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vectors tend to follow the distribution of the input vec-
tor due to the synaptic updating. A typical pattern after
the training process is shown in Fig. 9.

As can be seen from the feature map, the functions
have been grouped according to their affinity to each
other. The number on the left of each node represents the
number of functions that have been clustered at that
node. For example, 12 functions are located at N(1,1),
and they are reasonably considered as a group denoting
an ‘enclosing’ or ‘casing’ function. Based on this pattern,
a tree structure is generated as the output layer according
to the node that has at least one FB assigned (Fig. 10a).
This tree structure will be further refined by a human
designer. The refinement process allows the empirical
knowledge of human designers to be incorporated, and

the identification of possible errors in the SOM that are
caused either by insufficient training or by noise data.
The refinement includes operations such as merging
similar functions, deleting non-representative functions,
and changing the FG name. For example, the function
‘Working control’ located at N(2, 5) is merged with its
neighbor N(1,5), which is the center of the ‘control’
function. Finally, seven FGs are identified for the FFU
products (Fig. 10b).

4.2.3 Evaluation of the feature map

The formation of the feature map relies on the function
basis of the product information model. Function sim-

Fig. 10 The functional product
platform

Fig. 9 The feature pattern in
the competitive layer after
training
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ilarity is the underlying rule to group the functions,
where function similarity is estimated based on the co-
ded functions and flows. In essence, these are analogous
to the quantitative and heuristic methods used in mod-
ular design (McAdams et al. 1999; Zamirowski and Otto
1999; Stone et al. 2000a, b). The resulting function
groups are similar to the product platforms obtained in
these approaches.

Self-organizing map (SOM) is a necessary step al-
though a refinement process is carried out subsequently
by a human designer. The reasons are, firstly, the SOM
method analyses the data from the KEV while a designer
relies more on empirical information; secondly, a man-
ual analysis of the data from the KEV will involve sig-
nificant effort especially when a large number of
functions are included; and thirdly, the designer may not
be aware of the appropriate numbers or patterns of FGs
at the beginning of the analysis. Therefore, the advan-
tages of using the SOM method are (1) an expedition of
the process, (2) alleviation of human labor, (3) deter-
mination of useful initial knowledge and pattern of the
platform structure, and (4) analysis of the data from a
perspective other than empirical observation. Therefore,
the SOM process and human refinement are compli-
mentary to each other.

To summarize, the SOM networks can generate a
feature map from a set of functions without supervision.
It can identify the preliminary patterns of the functions
and facilitate product platform building. This method is
different from product platform design using the top–
down approaches which require extensive product
analysis (Simpson et al. 2001). In comparison with the
product architecture building methods in modular de-
sign (McAdams et al. 1999; Zamirowski and Otto 1999;
Stone et al. 2000a, b), the SOM method is a computa-
tional technique using unsupervised learning algorithms.
Therefore, it has less reliance on human expertise and is
very fast. Although, the final formation of a product
platform still requires refinement by human, it is carried
out after a feature map has been formed such that a
rudimentary architecture is already present. Therefore,
the refinement process is not a heavy load.

It should be noted that the elements in each FGs are
the atomic functions belonging to the existing products.
According to the initial product information model, the
design conceptual components can be referenced by
these atomic functions. Thus, a matrix TR3 can be
automatically formed to correlate the FGs with the
conceptual components.

5 Solution synthesis using multi-objective optimization

5.1 Problem definition

The design specifications with respect to KCs are cate-
gorized into two types, namely the design objectives and
the design constraints. In a typical product design
problem, there are usually multiple non-commensurable

objectives to be achieved simultaneously, such as mini-
mizing cost, minimizing manufacturing time, etc. The
design constraints refer to a number of restrictions im-
posed on the design artifact, such as the product
dimension, material, power consumption, etc. At the
same time, the conceptual components are considered as
the design parameters to fulfill the objectives, subject to
the design constraints.

Let C=[ c1, c2, ..., cn ]T be a vector of the design
parameters, where ci is the ith conceptual component.
The possible values of C constitute a parameter space.
The values of the KCs, considered as design objectives,
are computable from C. Let T(C) = [ t1(C), t2(C), ...,
tr(C) ]

T, where t1(C), t2 (C),... , tr(C) are the r objective
functions. The values of T(C) constitute an attribute
space. The values of the KCs, considered as design
constraints, are computable from C, i.e., G(C) = [
g1(C), g2(C),..., gs(C) ]

T, where g1(C), g2(C),..., gs(C) are
the s constraint functions. The constraints will divide the
parameter space into two regions, namely, feasible and
infeasible regions. The optimal solutions must also be
feasible. Assuming that the design requirements for a
particular design task are initiated as design constraints
g1
0, g2

0, ..., gs
0, it is required the suitable C be set, from

which the corresponding G(C) is computed to fulfill the
design constraints. Thus, the problem can be formulated
as a multiple objective optimization problem (MOOP).

Min T ðCÞ ¼ t1ðCÞ; t2ðCÞ; . . . ; trðCÞ½ �T ð4Þ
s.t. C ¼ c1; c2; . . . ; cn½ �T 2 S and

g1ðCÞ; g2ðCÞ; . . . ; gsðCÞ½ �T � g0
1; g

0
2; . . . ; g0

s

� �T ð5Þ

In Eq. 5, the inequality applies component-wise, i.e.,
gi(C) £ gi

0 (i = 1,..., s). It should be noted that
gi(C) £ gi

0 is a generalized representation of the con-
straint, such that when ‘ ‡’ or ‘=’ are involved, the
equation need to be converted slightly.

The design problem is reduced to the selection and
combination of the conceptual components from the
existing products to minimize the design objectives
subject to the constraints. In a fully developed design
database, sufficient number of conceptual components
will be retrieved as building elements. Thus, there will be
many possible combinations. Moreover, for a typical
engineering design problem, little is known about the
shape and modality of the attribute space a priori. For
example, the objective functions can be linear or non-
linear; the attribute space can be convex or non-convex,
discrete or continuous. This is especially true considering
a generic method applicable to the design of various
types of products. A robust and efficient search and
optimization method is needed to find the optimal
solutions.

5.2 Multi-objective optimization algorithm

A number of multi-objective optimization algorithms
have been reported. Some of the algorithms have
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converted a MOOP into a single objective optimization
problem using a few user-defined procedures, such as the
weighted sum method, the 2-constraint method, the
weighted metric methods, etc. (Deb 2001). Deb (2001)
pointed out that a major limitation of these methods is
that they involve a number of user-defined parameters
which are difficult to set in an arbitrary problem.

The multiple objective optimization methods based
on genetic algorithm (GA) have been extensively studied
and reported to address the above deficiency (Deb 2001).
These algorithms are usually divided into the non-Pareto
and Pareto-based approaches (Fonseca and Fleming
1998). Andersson and Wallace (2002) proposed a Pa-
reto-based approach, namely, the multi-objective strug-
gle genetic algorithm (MOSGA), and compared it with a
few typical multi-objective GA, such as vector evaluat-
ing GA (VEGA), non-dominated sorting GA (NSGA),
multi-objective GA (MOGA), etc. It is claimed that the
MOSGA method can handle the multi-modal attribute
spaces with improved robustness. Moreover, it requires
less tuning of the GA parameters in comparison with the
other methods. These are desirable for the design syn-
thesis problem. Therefore this research adopts the
MOSGA method.

In a MOOP, the search results usually constitute a
Pareto-optimal solution set instead of just one optimal
solution. A Pareto-optimal solution is also called a non-
dominated solution. A solution is said to dominate an-
other if it is superior in most, if not all objectives.
Considering the minimization problem T(C) with r
objectives, and two solution vectors C1 and C2, C1 is said
to dominate C2, if

8i 2 1; 2; . . . ; rf g : tiðC1Þ � tiðC2Þ and
9j 2 1; 2; . . . ; rf g : tjðC1Þ

ð6Þ

In a Pareto-based optimization GA, the fitness of an
individual solution is represented as its rank. Each
individual is assigned a rank, which is the number of
population members that dominate over it plus one
(Fonseca and Fleming 1998). Therefore, a lower ranking
indicates a better fitness, and the solutions with the rank
‘1’ are the non-dominated solutions. Based on the above
discussion, the MOSGA algorithm for the design syn-
thesis problem is outlined next (Fig. 11).

In Step 1, a design task is initiated by selecting a few
KCs and setting them either as design objectives or
constraints. For various types of products, the KCs are
different, and as a result, the design objectives and
constraints are different. In Step 2, a product platform is
chosen and conceptual components are retrieved
according to the FGs. Retrieval of conceptual compo-
nents is subjected to the design constraints, which is
discussed in Sect. 5.5. In Step 3, the configuration of the
algorithm is set up by setting the population size and the
number of generations. The initial population is gener-
ated according to the population size. In Step 4, two
individuals are randomly selected from the population,
and crossover and mutation is performed to generate the

children. Next, the r objective functions of each child are
calculated. The child is compared with every individual
in the population with respect to the r objective func-
tions, through which the rank of the child is obtained.
Next, the algorithm searches for an individual that is
most similar to this child and replaces it with the child if
the child has a lower rank, or if the child dominates it. In
Step 5, the ranking of the population is updated if the
child has been inserted. The population energy and
population plot are updated accordingly. The Pareto-
optimal front is identified in Step 6. It should be noted
that the purpose of this method is to find adequate de-
sign variants, instead of identifying each and every glo-
bal optimum. Therefore, once the design space has been
explored sufficiently such that the population converges
to a specific curve/surface, presumably the Pareto front,
the search is stopped.

Two simple criteria are presented next. The sufficient
exploration of the design space is confirmed when both
conditions in the criteria are satisfied:

1. The average population energy is stabilized at a rea-
sonably low level. The average population energy
refers to the average values of the objective functions
according to the current population. The energy is
calculated for each generation. It will decrease grad-
ually, and converge to a relatively stable state after a
certain number of generations. It is observed that few
new Pareto optima are discovered after the search
reaches the stable state, and hence this is an indica-
tion that the design space has been effectively ex-
plored. A typical population energy curve is shown in
Fig. 12a.

2. The Pareto-optimal front can be identified in the
population plot. A population plot illustrates the
individuals as points in the design space, with their
objective functions as the coordinates. During the
GA-based search, new individuals will be added into
the plot. It is observed that at the early stage of the
search, a number of new individuals are produced. As
the search proceeds, fewer new individuals are pro-
duced, and the non-dominated optimal solutions
gradually form a specific curve/surface. When such a
curve/surface becomes apparent, the search is stop-
ped. A typical population plot is shown in Fig. 12b.
In this figure, the circles represent the initial popu-
lation and the crosses represent the individuals gen-
erated during the search. The search converges to a
Pareto-optimal set, indicated by the triangles.

A prototype design synthesis system has been
developed. It is capable of visualizing the population
energy and population plot. The user can observe the
search process, stop the search, or fine-tune the param-
eters with a new iteration. For the parameters fine-tun-
ing, two parameters are essential, namely, the
population size and the number of generations. A user
can carry out a few tentative design synthesis sessions to
determine these parameters. Generally, the design space
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can be sufficiently explored with a large population size
and a large number of generations. However, this sig-
nificantly increases the computational load. A practical
method is to start from a relatively small population size
and small number of generations, and increase them
gradually. The parameters are finalized when the in-
crease of the two parameters does not result in an
obvious improvement of the Pareto front.

In the subsequent steps, the algorithm controls the
search by checking whether the generation reaches a
limit, or whether the user force stops the search. The
Pareto-optimal set, if it is obtained, undergoes a post-
optimal selection process to arrive at the final candidate
solutions. Design synthesis results are saved into the
database if desired.

5.3 The structure of a chromosome

In this research, a chromosome, i.e., a solution is a
combination of the available conceptual components.
The length of a chromosome is the total number of
candidate conceptual components, i.e., all the compo-
nents that have been retrieved for the design synthesis.

Each conceptual component is represented as one bit on
the chromosome string and this one bit indicates whe-
ther that component has or has not been selected to
form a solution. If a component has been selected to
form a solution, the bit has a value of ‘1’; otherwise it
has a value of ‘0’. This results in a string of bits indi-
cating the selection of the conceptual components. An
additional constraint is that only one conceptual com-
ponent can be selected from within any one FG. For
example, each column in Table 4 denotes one chromo-
some. Besides these, the stochastic universal selection,
the single-point crossover, and the bit-wise mutation,
which are common to genetic algorithms, are used to
generate the offspring.

5.4 The objective functions

As has been discussed earlier, the individual solutions
have to be ranked to carry out the GA-based search. To
obtain the rank of a solution, the individual objective
functions, namely, ti(C), (i = 1,..., r) have to be calcu-
lated. The information of every relevant gene is used to
calculate the individual objective functions. In the FFU
design, three objectives are considered, namely, cost,
product weight, and manufacturing time. These objec-
tives can be calculated based on the attributes of the
conceptual components. In particular, each component
has three corresponding attributes, namely, cost, weight,
and manufacturing time. These attribute values can be

Initiate a design task by
setting design objectives

and constraints from KCs

Select a product platform and
retrieve conceptual components

Set algorithm parameters; select and
combine components to form initial

population (solutions)

Perform reproduction; compare the
new child against the population

N

Y

Generation number
limit reached?

N

1

2

3

4

5
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Force terminate search?
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Y

8

9 Present results; save results
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population energy plot

(Population energy
stabilized) AND (Pareto front

identified)?
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Fig. 11 A flowchart of the multi-objective struggle genetic algo-
rithm (MOSGA) algorithm for the design synthesis problem

Fig. 12 Visualization of population energy and population plot
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obtained from the existing product components. The
final value of each objective for a particular solution is
the summation of the corresponding component attri-
butes. Once the individual objective functions are ob-
tained, the rank of the solutions can be obtained. It
should be noted that the three design objectives adopted
in this case study are only for the FFU product. Other
objective functions can be designed according to the
characteristics of the designed product. For example, the
objective functions for household/office products (e.g.,
power tools, printers, air conditioners, etc.) usually in-
clude cost, weight, reliability (measured by MTBF),
efficiency, etc. The objective functions for industrial
equipments (e.g., measurement devices, machine tools,
etc.) include cost, precision, respond speed, reliability,
etc. These objective functions are adopted to address the
major concerns of the customers and the manufacturers.
To compute the objective functions, the relationships
between the objective functions and the attributes of the
conceptual components must be established. The rela-
tionships can be in the form of equations (Chidambaram
and Agogino 1999; Nelson et al. 2001) or meta-models.
A few widely adopted meta-modeling techniques include
the response surface method (Chen et al. 1996), regres-
sion analysis (Fujita and Yoshioka 2003), and kriging
(Simpson 1998).

5.5 Applying design constraints

The design constraints are used to filter the design
components so that only those components that can
satisfy the constraints are used in the actual design
synthesis. Firstly, it is noted that the constraints are
extracted from the KCs, which can have four types of
values, namely, categorical (C), Boolean (B), ordinal (O)
and real number (R). Among them, the real number is
continuous while the other three are discrete. The cate-
gorical type of data represents a set of mutually exclu-
sive values. For example, the casing material of an FFU
can be chosen from stainless steel, zinc–aluminum-
coated steel, Aluminum, etc. A Boolean type refers to

the presence or absence of a characteristic. It is actually
a special case of the categorical type. An ordinal type is
similar to the categorical type but it has an ordering
feature, i.e., a higher order value can satisfy a lower
order requirement. For example, the service cleanliness
can have the following grades {100,000, 10,000, 1,000,
100, 10, 1}. The succeeding ones can satisfy the pre-
ceding ones but not vice versa. A real type is usually
given as a real number and a tolerance. For example, the
air quantity can be specified as 1,800 m3/h ± 18%.

The product case from which a component is ex-
tracted from is called its host product. A filtering process
is carried out through a comparison of the KCs of the
host products with the specifications of a new design
task. It is assumed that the design specifications of a new
design task constitute a design range vector Rd = [ d1,
d2, ..., dq ]

T. Rd is defined with respect to a set of KCs (ki,
i = 1, ..., q). The subscript here is q instead of p as not
all the KCs are used as the design constraints. A host
product is characterized by the same set of KCs, which
determines a system range vector Rs = [ s1, s2, ..., sq ]

T.
Thus, a pair-wise comparison can be made between Rs

and Rd, based on the type of KCs. This leads to a set of
results showing whether a system range can satisfy a
design range.

At the same time, each conceptual component cj,
(j = 1, ..., m) is related to a few KCs through the
transformation matrices TR2 and TR3, i.e., there exists a
subset of { ki|i = 1, ..., q }, whose elements are the KCs
related to cj (j = 1, ..., m). If, for every element in this
subset, the corresponding si satisfies di, the candidate
component cj will be selected for the design synthesis.
Otherwise, the component is discarded. This process is
shown in Fig. 13.

5.6 Post-optimal solution selection

The MOSGA method will result in a Pareto-optimal set.
Usually, a designer needs to select one or more candi-
date solutions to be further developed in the subsequent
design processes. To do so, some meta-knowledge is

Table 4 A chromosome
structure of the fan filter unit
(FFU) product

Components Solutions

1 2 3 4 5 6 7 8 � � � N

R4E 355-AK05-05 0 1 0 0 0 0 0 0 1
S-1 LS controller 1 0 0 0 0 0 0 1 0
KLD Rock wool 0 0 0 1 0 0 0 0 0
G-type casing 0 0 1 0 0 1 0 0 0
Casing enclosed 0 0 0 0 0 0 1 0 0
Integrated controller 0 0 0 0 1 0 0 0 0
R3G 310-AJ38-61 1 0 0 1 0 0 0 0 0
ULPA filter 1 0 0 0 0 1 0 0 0
Al shaft casing 0 0 0 0 0 0 0 1 0
HEPA(99.99%@0.3 lm) 0 1 0 0 0 0 0 0 0
R4E 310-AF-12-05 0 0 0 0 0 1 0 0 0
..
.

D-S-S air guider 0 1 0 0 0 0 1 0 1
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needed, e.g., a designer may need to show his/her pref-
erence of the design objectives through assigning dif-
ferent weights to them. In this research, a relative weight
is assigned to each objective and the weighted fitness
Tw(C) is obtained for every Pareto-optimal solution.

TwðCÞ ¼
Xr

i¼1

wi tiðCÞ � tmin
i

� �

tmax
i � tmin

i

ð7Þ

where r is the number of objectives; wi is the weight
assigned to the ith objective and

Pr
i¼1 wi ¼ 1; tmax

i and
ti
min are the maximum and minimum objective functions
for the ith objective, respectively. (t1

min, t2
min,..., tr

min)
constitutes the coordinates of a utopian ideal solution.
Tw(C) is actually a normalized, weighted distance that a
solution is to the ideal solution. The final solution is
chosen as the one(s) with the smallest weighted fitness. If
the weighted fitness of several solutions is very close,
additional meta-knowledge is required to assess the
merits of the candidate solutions.

6 A case study

A case study is carried out to design a new FFU product
using the design reuse approach. To study the effec-
tiveness of this approach, parallel design sessions were
carried out by two groups of designers, with respect to
the same set of design requirements (Table 5). Group A
carried out the design based on experience. Group B
performed the task using the design reuse system. Both
groups consisted of two designers, namely, a product
planner who proposes the configuration of the product,
and a technical engineer who is responsible for esti-
mating the technical feasibilities. Designers in the two
groups have the same level of experience, i.e., the aver-
age years of profession are equivalent (3.5 years). The
product planner in Group B was given a short training
course to use the design reuse system. In addition, the
subjective weights assigned to the design objectives
would influence the results. Group B adopted quanti-
tative weights, namely, w1= 0.5 for cost, w2=0.4 for
manufacturing time, and w3=0.1 for product weight. A
similar strategy was adopted by Group A. However,
estimated values of the objective functions were used
where the exact values were not available. The proce-

dures using different approaches are presented next, and
the outcome is compared according to solution variety
and solution superiority.

6.1 Experience-based design

6.1.1 The design process

The experience-based method involves procedural
selection and combination of the design components.
Each component is selected or designed to achieve a set
of performance factors, derived from the design
requirements. The designer usually relies heavily on
individual/team experience, documentation, and simu-
lation results. Therefore, individual/team preferences
significantly influence the efficiency and validity of the
design. Since the components are determined by a
number of factors, it is not easy for a designer to manage
them simultaneously. Modifications and rework are of-
ten inevitable.

6.1.2 Results

The configuration of the product is generated by Group
A. It is noted that the division of the design components
is different for the experience-based method and the
design reuse method. For the convenience of compari-
son, this paper has purposely rearranged the compo-
nents into an identical format. The product
configuration is shown in Table 6.

6.2 Product design using the design reuse approach

6.2.1 The design process

In the preparation stage for carrying out this case study, a
total of 22 FFU product cases have been collected,
modeled and stored in the database. A set of 18 KCs is

KC comparison
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...
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Design
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component

c 1
c 2
...
c m

?
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...
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Host 
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New
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TR2 TR3

Fig. 13 Retrieving components through key characteristics (KCs)
comparison

Table 5 Design objectives and design constraints

Objectives

Minimize cost
Minimize manufacturing time
Minimize weight

Constraints

Mounting type Horizontal
Air quantity 1,375 m3/h ± 10%
Total static pressure 200 Pa ± 4%
Air velocity 0.42 m/s ± 10%
Air uniformity < 15%
Service cleanliness Class1000
Noise level < 50 dBA
Casing material Aluminum
Casing height < 330 mm
Vibration < 0.025 G
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formalized and the correlation of KCs and FGs is
established as TR2 (Table 2). Product analysis has been
carried out to establish a functional product platform,
which is composed of seven FGs. In each product case, a
set of conceptual components were identified for the
functions. If a conceptual component is implemented in
more than one product cases, the duplicated ones were
eliminated. Thus, a component catalog was built to in-
clude all the unique conceptual components according to
product functions. Accordingly, the transformation ma-
trix TR3 to correlated FGs with conceptual components
is available. TR3 is not shown here due to its huge size.

Following the procedures presented in Sect. 5, design
synthesis is carried out using the design reuse prototype
system. The major steps are:

Step 1. Input the design objectives and design con-
straints as are shown in Table 5.
Step 2. Select a product platform and retrieve the con-
ceptual components (Fig. 14). In this step, only the
components that satisfy the design constraints are se-
lected.
Step 3. Set the parameters of the algorithm, namely, the
population size and the number of generations. To
determine the suitable algorithm parameters, a few
tentative synthesis sessions are performed. A population
size of 60 and number of generations of 100 are adopted
for this problem.
Step 4. Identify the Pareto front by observing the pop-
ulation plot and population energy.
Step 5. Set a relative weight to each objective. Calculate
the weighted fitness and present the solution candidates
(Fig. 15).

6.2.2 Results

Based on the above procedures, the design synthesis
has arrived at a Pareto-optimal set of 33 solution
variants. Each solution presents a possible configura-
tion of the product. An excerpt of the solution con-
figuration is shown in Fig. 15. In this figure, each cell
shows the name of the component. The numbers in the
brackets are the indices of the product and the com-
ponent. A list of the objective functions of the solutions
is shown in Fig. 16.

Finally, to choose the candidate solutions from the
Pareto-optimal set, the weights to the objectives are as-
signed as: cost (w1 = 0.5), manufacturing time
(w2 = 0.4) weight (w3 = 0.1). These weights are as-
signed according to the designer’s knowledge of the
objectives’ importance. It can be observed that the
weighted fitness of three solutions are very close,
namely, Solution 3 (0.09), Solution 13 (0.09), and
Solution 14 (0.08). A closer study of the components in
the three solutions is required. It is observed that the Al-
shaft (51-4) has been shared by the three solutions cor-
responding to component 1 (casing) (Fig. 15). Similarly,
identical components have been used for components 3
(blower) and 7 (controller), respectively. For the other
components, namely, 2, 4, 5, and 6, there are only minor
differences among the attributes of the actual compo-
nents. For example, Solution 14 has used 2-4 HEPA T70
(71-4) as the filter, while solutions 3 and 13 have used
HEPA T75 (77-7). Differences exist concerning the filter
thickness, cost, and weight. However, these differences
are insignificant. Therefore, the three solutions are al-
most identical to each other. The designer can choose
any one without making much difference in the final
results. Next, the designer retrieves the components, and

Table 6 Configuration of the candidate solution generated by
Group A

Technical data

Blower Type R4E 310-AP20-01
Motor M6E-097
Voltage (V) 230
Power (W) 60
Cost (S$) 130
Air flow (m3 /h) 1,380
Speed (rpm) 1,160
Noise (dBA) 54
Capacitor (lF/VDB) 1.5/450
Weight (kg) 4

Control Type LSC-S1
Cost (S$) 10
Communication RS485
Weight (kg) 0

Filter Type HEPA filter
Thickness (mm) 70
Pressure loss (Pa) 80
Cost (S$) 200
Width (mm) 865
Length (mm) 1,165
Weight (kg) 10

Casing Material Aluminum
Height (mm) 330
Thickness (mm) 1.5
Cost (S$) 220
Width (mm) 870
Length (mm) 1,170
Weight (kg) 25

Air guilder Type Set-piece
Mounting Rivet
Cost (S$) 15
Set number 2
Weight (kg) 2

Inlet cone Shape Square
Type Punched hole
Cost (S$) 10
Size (mm) 330
Weight (kg) 2

Insulation Type Corner blocks
Mounting Sticking
Cost (S$) 5
Set number 2
Material Rock wool
Weight (kg) 2

Summary Cost: S$590; Weight: 45 kg; Manufacturing time: ap-
prox. 30 min
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adapts them to the design requirements. Finally, a de-
tailed product configuration is generated (Table 7).

6.3 Comparison of the two methods

The effectiveness of the experience-based method and
the design reuse method are compared with respect to
solution variety and solution superiority.

The design reuse method has generated more design
variants. The design synthesis based on the multiple
objective optimization has generated a set of 33 Pareto-
optimal solutions. The post-optimal selection leads to
three solutions from the Pareto set. Although only one
solution is chosen for further development, it is advan-
tageous to have a few backups, in case demerits are
discovered in the chosen solution in the subsequent de-
sign process.

Fig. 14 Retrieve product
platform and conceptual
components

Fig. 15 Configurations of the
Pareto-optimal solutions and
evaluation results

Fig. 16 The objective functions
of the Pareto-optimal set
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The design reuse method can generate solutions that
are superior in the design objectives, namely, cost,
weight, and manufacturing time. The final adopted
solution has the objective functions of cost 524 (S$),
weight 40.9 (kg), and manufacturing time 28.2 (min). In
comparison, the solution generated by Group A is
estimated as cost 590 (S$), weight 45 (kg), and

manufacturing time 30 (min). There is a notable
improvement in the design objectives. This can be
attributed to the advantage of the design reuse method,
namely, the GA-based search has explored the design
space more effectively to reuse the best-fitted compo-
nents.

7 Discussions

The method proposed in this research is aimed at facil-
itating conceptual design through design reuse. The
benefits of this method are discussed next.

Firstly, design is less dependent on expertise using the
proposed method. The design reuse system is not only a
database for recording product information, but also
can extract knowledge from the raw data. The SOM
method can effectively analyze product functions and
facilitate the building of a functional product platform.
Moreover, using this system, each new product case will
be recorded and possibly contribute to future design.
Hence, the system has established a method to record
the knowledge and reuse it in a systematic way.

Secondly, the design time using the proposed method
is shorter as compared with the manual approach. The
design synthesis process itself can be carried out quickly.
Moreover, the subsequent detailed design can be carried
out more efficiently. This is because the design reuse
system is developed with the support of database tech-
nology. The product information has been collected and
well-indexed in the database, time saving can be
achieved through more efficient information retrieval. It
should be noted that to achieve this, an initial stage of
information collection and analysis must be performed,
which causes overhead to the design-by-reuse process.
However, the product information can be utilized
repeatedly, and the database can be constantly updated
when new design cases are presented.

The proposed method and prototype system provide
assistance in design variants generation. The design
synthesis based on multiple objective optimization can
generate a set of Pareto-optimal solutions. The post-
optimal selection process will present the designer with
one or a few solutions from the Pareto set, depending on
the weighted fitness. This can lead to better design effi-
ciency in comparison to manual or interactive decision
support methods (Yu and MacCallum 1995), especially
in large combinatorial problems. Moreover, with the
support of a large engineering database, the solutions
are generated based on more design cases than could be
accessed by a designer based solely on his/her experi-
ences. Thus, a designer is better supported to access the
vast amount of product information.

A few limitations of the proposed method are dis-
cussed next. Firstly, the function-based product infor-
mation model reduces the representation flexibility.
Although the information model strives to capture
product information in a comprehensive way, the use of
function structure and taxonomies is restrictive and

Table 7 Configuration of the candidate solution generated by
Group B

Technical data

Blower Type R4E 310-AF12-05
Motor M6E-068
Voltage (V) 230
Power (W) 55
Cost (S$) 110
Manufacture time (min) 0
Air flow (m3 /h) 1,320
Speed (rpm) 1,120
Noise (dBA) 53
Capacitor (lF/VDB) 1.5/450
Weight (kg) 3.8

Control Type Motor integrated
Cost (S$) 0
Manufacture time (min) 0
Weight (kg) 0

Filter Type (2*4)HEPA T70
Thickness (mm) 70
Pressure loss (Pa) 80
Cost (S$) 180
Width (mm) 865
Length (mm) 1,165
Manufacture time (min) –
Weight (kg) 10

Casing Material Aluminum
Height (mm) 325
Thickness (mm) 1.5
Cost (S$) 184
Width (mm) 870
Length (mm) 1,170
Manufacture time (min) 23
Weight (kg) 18.4

Air guilder Type Set air guiders
Mounting Rivet
Cost (S$) 18
Set number 3
Manufacture time (min) 2
Weight (kg) 3.5

Inlet cone Shape Circular
Type Aluminum coil set
Cost (S$) 24
Manufacture time (min) 0.2
Size (mm) 310
Weight (kg) 1.4

Insulation Type Corner block
Mounting Sticking
Cost (S$) 8
Manufacture time (min) 3
Set number 3
Material Rock wool
Weight (kg) 3.8

Summary Cost: S$524; Weight: 40.9 kg; Manufacturing time:
28.2 min
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inevitably reduces the flexibility. However, such a model
is necessary in order to perform data analysis using
computational methods.

Secondly, the formation of the product platform re-
quires human interaction. The SOM method is an
unsupervised learning method, but the building of the
product platform still requires human intelligence. Gi-
ven the same set of data, different designers can arrive at
different product platform structures, leading to differ-
ent effectiveness of product information management. It
is proposed that future work be carried out to enhance
the building of product platforms.

Thirdly, the design synthesis method using the
MOSGA algorithm does not guarantee that the best
solution is found. The method is robust in the sense that
it is able to explore the design space effectively and arrive
at near global optimum. However, being a heuristic
algorithm, the method does not guarantee that all the
global optimums are found, which is especially true for a
product design problem that involves significant com-
plexity and nonlinearity.

8 Conclusions

This paper presents a function-based design synthesis
approach to design reuse in conceptual design. Efforts
have been made to combine the function-based infor-
mation management methodologies and the computa-
tional design synthesis approaches. The function-based
product information modeling provides a coherent
scheme for knowledge representation and subsequent
knowledge extraction. These results, in turn, are critical
to the design synthesis procedures, which constitute the
design-by-reuse process. The research adopted an
unsupervised learning technique, namely, the SOM
neural networks, to facilitate the building of functional
product platforms. The SOM method can achieve
intelligent product architecture building. The design-by-
reuse process is mainly carried out using the multi-
objective optimization algorithms, which is capable of
dealing with diverse design objectives and constraints. A
design reuse system was developed to enable automated
solution generation for product conceptual design. The
effectiveness of the methods has been illustrated using a
case study of an industrial product.
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