
Information hiding in product development: the design churn effect
Ali Yassine, Nitin Joglekar, Dan Braha, Steven Eppinger, Daniel Whitney

Abstract Execution of a complex product development
project is facilitated through its decomposition into an
interrelated set of localized development tasks. When a
local task is completed, its output is integrated through
an iterative cycle of system-wide integration activities.
Integration is often accompanied by inadvertent
information hiding due to the asynchronous
information exchanges. We show that information
hiding leads to persistent recurrence of problems
(termed the design churn effect) such that progress
oscillates between being on schedule and falling behind.
The oscillatory nature of the PD process confounds
progress measurement and makes it difficult to judge
whether the project is on schedule or slipping. We de-
velop a dynamic model of work transformation to derive
conditions under which churn is observed as an unin-
tended consequence of information hiding due to local
and system task decomposition. We illustrate these
conditions with a case example from an automotive
development project and discuss strategies to mitigate
design churn.

Keywords Product development, Design process
modeling, Decomposition and integration, Component
and system performance generation, Information hiding,
Design churn

1
Introduction
‘‘We just churn and chase our tails until someone says
that they won’t be able to make the launch date.’’

(Anonymous product development manager at an auto-
mobile manufacturer). The difficulty in accurately mea-
suring individual activity progress within the context of
the overall program goals is well understood by product
development (PD) managers. The above quote is taken
from a study of PD management practices at a large
automotive company (Mar 1999). Progress oscillates
between being on schedule (or ahead of schedule) and
falling behind. In many instances, development tasks are
repeated and no one knows why. This is a universal
phenomenon in PD settings. For instance, in the software
development realm, Cusumano and Selby (1995) report
that progress is measured by the number of bugs that
testers report to developers during the development
process. They show a bug report oscillating from a high
number of bugs to a low number and back to a high
number and so on. Other histories showing oscillatory
behavior in PD processes have been observed in aero-
space (Browning et al. 2002), automotive (McDaniel 1996;
Mar 1999), electronics (Wheelwright and Clark 1992),
and information system development (Joglekar 2001)
settings.

The motivation for studying the churn phenomenon
is abundant. The oscillatory nature of PD progress
makes it hard to measure actual development
progress and ultimately difficult to judge whether the
project is on schedule or slipping. Other unfortunate
consequences of churn may include significant increase
in development times, organizational memory lapses
regarding PD problem solving know-how, and deterio-
rated morale amongst developers. There are few mana-
gerial guidelines available for dealing with churn.
Typically, a lack of understanding for the underlying
causes of churn leads to myopic resource allocation
decisions.

In this paper, we take an information-processing view
of PD by characterizing the development process as a
sequence of problem-solving activities (Clark and
Fujimoto 1991). Design churn is defined as a scenario
where the total number of problems being solved (or pro-
gress being made) does not reduce (increase) monoto-
nically as the project evolves over time.

There are several possible explanations for churn and
this paper investigates one of them: the information
dependencies among activities; that is, the structure of the
development process. The information processing view
postulates design decomposition to be a nested series of
generation and testing activities (Simon 1996). If testing
occurs simultaneously with the generation activities, then

Research in Engineering Design 14 (2003) 145–161

DOI 10.1007/s00163-003-0036-2

145

Received: 6 September 2002 / Revised: 12 June 2003
Accepted: 13 June 2003 / Published online: 5 September 2003
� Springer-Verlag 2003

A. Yassine (&)
Department of General Engineering,
University of Illinois at Urbana-Champaign,
313 Transportation Building, Urbana, IL 61801, USA
E-mail: yassine@uiuc.edu
Tel.: 217-333-8765
Fax: 217-244-6165

N. Joglekar
Boston University, Boston, MA 02215, USA

D. Braha, S. Eppinger, D. Whitney
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Original paper



the process will not churn1. In reality, generation-testing
cycles have built-in delays. This paper develops a gener-
ation-testing model with the capability to consider inte-
gration of several generation groups in the presence of
delays2. The structure of the development process inher-
ently results in some of the information related to the
design tasks being sometimes hidden from other devel-
opers and managers3. Our premise is that in many devel-
opment scenarios, design churn becomes an unintended
consequence of information hiding. This is consistent with
the ill-structured nature of design problems (Braha and
Maimon 1998)4.

Imperfect evaluation in the test activity may also cause
churn. For instance, some systems exhibit nonmonotonic
change in either the variance or the expected value (and
sometimes both) of design parameters due to uncertainty
in performance evaluation (Browning et al. 2002). In
order to avoid the confounding effects of variability (as it
will only exacerbate churn), we deal only with the
expected values and exclude performance variation as a
plausible source of churn. Other explanations for churn
are also possible. Exogenous changes (e.g., a change in
customer requirements) to design objectives also lead to
churn (Mar 1999). Again, such changes will only con-
found the analysis of our basic premise and are excluded
from the model. Furthermore, oscillatory allocation of
resources as in ‘‘firefighting’’ models (e.g., Repenning et
al. 2001) and in behavioral choice models (e.g., Ford and
Sterman 1999) exhibit churn-like behavior. These expla-
nations are also excluded from our model based on
similar rationales.

We explore our premise by developing a model for
tracking the progress of PD processes while accounting
for information hiding. Our model divides the develop-
ment process into two interdependent task sets: local
and system. The structure of this problem-solving pro-
cess is set up such that local tasks, by definition, cannot
hide information from system tasks about their indi-
vidual progress and problems. On the other hand, sys-
tem tasks may withhold information (gathered from
local tasks) for limited periods of time before releasing
it to local tasks. Between these releases, the information
is hidden from local tasks, which work based on pre-
viously released information. Our model focuses on
churning that is caused by these episodic releases of
information.

Analysis of churn due to information hiding raises
interesting questions about the convergence of the
underlying system. We define PD convergence as a pro-

cess in which the total number of problems being solved
falls below an acceptable threshold. That is, the problem-
solving activities result in a technically feasible design
within a specified time frame5. The main results obtained
from the analysis of this model are summarized as
follows:

1. The existence of design churn is a fundamental char-
acteristic of the decomposition and integration of de-
sign between local and system teams. More specifically,
it is shown that design churn may be attributed to two
modes. The first mode reflects the ‘‘fundamental churn’’
of the design process, and the second mode, termed
‘‘extrinsic churn’’, may be present depending on the
relative rates of work completion and the rework in-
duced between system and local tasks.

2. It is possible for development processes to exhibit
churning behavior under both converging and diverg-
ing scenarios. Conditions under which the total number
of design problems associated with the system and local
tasks converges to zero as the development time in-
creases are presented.

The rest of the paper is organized as follows. In the
next section, we discuss the literature relevant to infor-
mation hiding and design churn. In Sect. 3, we propose a
model for asynchronous information exchanges in a
development environment. In Sect. 4.1, we introduce a
PD model that involves a single local development team
and single system integration team, and that accounts for
information hiding. The basic model is formulated and
analyzed in the rest of Sect. 4, where conditions for the
convergence of the design process as well as ‘‘pure design
churn’’ are presented. In Sect. 5, we present a generalized
model that involves multiple local development teams
that exchange information, under more general infor-
mation release policies, with a corresponding system
integration team. In Sect. 6, we apply the findings of the
model to analyze the appearance design process for an
automotive product development project. In Sect. 7, we
discuss the managerial implications by identifying miti-
gation strategies to counter design churn in complex
development processes.

2
Literature review
Information hiding is not a new concept in management
science. For instance, in the supply chain management
literature, information hiding has been justified on
grounds of either asymmetrical or distorted availability of
information (Lee et al. 1997). Similar ideas have been
explored in a segment of PD literature. For instance, in
software development projects, information hiding refers
to the practice of keeping the implementation details of a
software module hidden from other modules in the pro-
gram (Sullivan et al. 2001). Typically, such practices are
justified by the desire to reduce the coordination burden.
However, formal models for capturing the effects of
information hiding are rare in the PD literature.

1 It is customary in the PD literature to presume that a fully
concurrent generation-testing cycle does not create more prob-
lems than it solves (Smith and Eppinger 1997).
2 In Sect. 3, we propose a generalized decomposition model,
where the generation activities are assigned to local or specialized
groups, while testing is conducted by system-wide test and inte-
gration groups.
3 Wheelwright and Clark (1992) describe how PD projects fail to
meet their original potential due to intrinsic characteristics of the
process and not due to a lack of creative people, technical skills,
or management skills within the PD organization.
4 We thank one of the anonymous reviewers for pointing this out.

5 A formalization of convergence in terms of conditions for sta-
bility is presented in Sect. 4.3.

Res Eng Design 14 (2003)

146



There are several management science models that
relate to one or more aspect of PD design churning. We
group these models into the following categories: set-
based concurrent engineering, resource allocation, and
information dependency. These models are described
next.

Sobek et al. (1999) describe a method to model
convergence in Toyota’s PD process, called set-based
concurrent engineering (SBCE). With SBCE, Toyota’s
designers think about sets of design alternatives, rather
than pursuing one alternative iteratively. As the
development process progresses, they gradually narrow
the set until they come to a final solution. SBCE
literature does not focus on instances where design
churn is possible; however, it is possible to extend these
models to demonstrate and study churn (Mihm et al.
2001).

Information interdependency between development
activities is an important feature of complex product
development processes (Eppinger et al. 1994).
Interdependency is manifested and measured by the
amount of iteration and rework inherent in a PD pro-
cess. The Design Structure Matrix (DSM) provides a
simple mapping to capture interdependencies within a
development process (Eppinger 2001; Browning 2001;
Yassine and Braha 2003). As will be shown later in the
paper, DSM models may exhibit divergent churn
behavior; however, both Smith and Eppinger (1997) and
Browning and Eppinger (2002) artificially suppress this
behavior.

Resource allocation has been identified as a managerial
lever for controlling the rate of PD process completion
(Ahmadi and Wang 1999). Bohn (2000) and Repenning
et al. (2001) define the ‘‘firefighting’’ syndrome as the
preemption of important, but not urgent, development
activities due to an imminent necessity or problem (re-
ferred to as a ‘‘fire’’) in another part of the same devel-
opment project (or another development project). Moving
resources from one part of the project to another (or from
one project to another) may trigger a vicious cycle of
firefighting. As a result, PD performance will oscillate.
Conventional PD resource allocation studies (Adler et al.
1995; Loch and Terwiesch 1999) model waiting effects
without focusing on design churn.

Our treatment of design churn builds on the PD liter-
ature of task concurrency, information dependency, and
resource allocation constructs. In particular, we use a DSM
model as a building block to expand upon by introducing

asynchronous information delays with these constructs6.
In the next section, we establish the linkage between
asynchronous interdependencies and the DSM.

3
Asynchronous information interdependency
in design processes
In a large and complex PD project, different development
groups work concurrently on multiple aspects of the
process (Joglekar et al. 2001). Work progresses within each
group through internal iteration. Coordination between
groups takes place through system level testing or an
integration group. Individual (i.e., local) groups provide
status updates to the system group. This information is
processed based on global considerations, which may re-
sult in rework for some of the individual groups. Figure 1
shows a schematic of the information exchanges within the
PD process described above. In the left side of the figure,
we describe how a set of local development teams, working
concurrently on a common project, interact through a
system level team that coordinates and orchestrates their
individual development efforts. The double-headed arrows
demonstrate the two-way communication that takes place.
The right side of the figure depicts the interaction process
between a single local development team and the system
team. The solid arrow indicates that local teams frequently
provide the system team with updates regarding their
progress, while the dotted arrow indicates that the system
team provides intermittent feedback to the local team.

The frequency of system level feedback might depend
on either exogenous considerations (such as suppliers’
ability to provide updates) or endogenous considerations
such as system level test requiring a minimal turn around
time for a desired fidelity (Thomke and Bell 2001). If the
synchronization is effectively instantaneous, for example
during daily builds of Microsoft’s development cycles,
then we can think about the whole process in terms of a
unified (combining local and system level) structure.
Smith and Eppinger (1997) have developed a method using
linear systems theory to analyze such models and identi-
fied controlling features of a unified iteration process.
Unified iteration does not allow for information delays

Fig. 1a, b. Local and system bifurcation
of information

6 A control theory-based matrix formulation using the DSM is a
convenient approach to build our argument. However, the core
ideas can be built using alternative approaches. See, for instance,
Mihm et al. (2001) for a selective evolutionary based exposition of
related PD decisions.

A. Yassine et al.: Information hiding in product development: the design churn effect

147



between local and system task execution. However, many
PD processes are characterized by intermittent system
feedback7. Hence, we explore the management of multiple
development teams coordinated through a system inte-
gration team and subject to periodic feedback (Joglekar
and Yassine 2001).

The DSM shown in Fig. 2 captures the above develop-
ment setup. The DSM is composed of blocks that represent
several local development teams and a system integration
team. The system team facilitates interactions between
local teams as represented by the solid arrows in the figure.
The local DSMs are internally updated at every time step
(DT), and provide status information to the system DSM at
ti,S periodic intervals. The system DSM provides updates to
the local DSMs at periodic intervals T1,T2,…,Tm. The local
and system update periods (i.e., ti,S‘s or Ti’s) may or may
not be synchronous; e.g., T1 ¼ k1DT; . . . ;Tm ¼ kmDT
where ki are integer constants for all i’s. In addition, the
dotted arrows demonstrate an instance where local teams
are allowed to interact directly (i.e., without the facilitation
of the system team), in which case the local DSM Li pro-
vides status information to other local DSMs at periodic
intervals ti,1,ti,2, . . ., ti,m.

This type of DSM is not a pathological case. Numerous
researchers have documented the existence of this local/
system bifurcation (Sosa et al. 2000). The problem cannot
be treated as a single DSM to study the churning proper-
ties of the development process due to time delays and
asynchrony in information transfers between the system
and different local groups.

4
Asynchronous work transformation model:
single local DSM case

4.1
Model formulation
First, we study a simplified version of the problem. We
assume, without loss of generality, that there exists a
single local DSM (containing the local tasks required for
the development of a component and performed by a
local development team) that exchanges information
with a corresponding system DSM (containing the sys-
tem tasks required for the development of the same
component and performed by a system development
team) at every time step. The system DSM releases
information every T time steps8. Consistent with Smith
and Eppinger (1997), we specify that all the tasks asso-
ciated with the local and system DSMs are internally
updated at each iteration step. We label L(k) as the
vector for the amount of ‘‘unfinished work’’ in the local
tasks at time k. Absent of all system feedback, the pro-
gress of L(k) is given by:

LðkÞ ¼WLLðk� 1Þ k ¼ 1; 2; ::: ð1Þ

The amount of unfinished work can be measured by the
time left to finalize a specific design, the number of engi-
neering drawings requiring completion before the design
is released, the number of engineering design studies
required before design release, or the number of open
issues that need to be addressed/resolved before design
release, to name a few (McDaniel, 1996). The choice is
dependent on the particular design environment pertain-
ing to how the status of development progress is
measured. At this point, the choice of how to measure
unfinished work is immaterial to building the theoretical
foundations of the proposed model. However, this point
will be revisited when we illustrate the application of the
model in a specific development environment.

WL is the work transformation matrix that captures the
fraction of rework created within a local group of tasks
(Smith and Eppinger 1997). Equation 1 describes the work
transformation during each iteration stage as follows.
Individual local tasks finish a fraction of their work, given
a constant completion rate specified in the diagonal of WL.
However, this work causes some rework to be created to
other dependent local tasks. The off-diagonal elements of
WL document such dependencies. The construction of WL

is detailed in Appendix 1.
We augment the state space for the above model by

introducing two more vectors: S(k) and H(k). The vector
S(k) represents the amount of unfinished work in all
system tasks at time step k, and H(k) is a vector for the
amount of finished system work at time step k that is ready
to be transmitted to local tasks but remains hidden until it
is released. We also define a matrix WS that corresponds to

Fig. 2. DSM representation of a PD process showing local and
system teams (Li represents a local development team, S
represents a system team, and the captions next to the arrows
indicate the frequency of information update)

7 This is a common PD observation since system teams need time
to absorb and integrate all the local information they receive
before sending feedback. Consequently, there is a delay from the
time system teams receive local information until the time they
send it back to local teams. Furthermore, information hiding and
delays occur due to the fact that local teams, once they receive
system feedback, do not usually drop all things at hand and
immediately act on or respond to this new information. Usually,
this new information is queued or batched with other updates.

8 The model is capable of accommodating multiple local DSMs as
discussed in Sect. 5. Furthermore, for the sake of simplicity and
ease of exposition, we assume that these local DSMs and the
system DSM have the same rank. Finally, the system can release
information once or in multiple periods.

Res Eng Design 14 (2003)

148



S(k) in a manner analogous to the relation between WL

and L(k), that is

SðkÞ ¼WSSðk� 1Þ k ¼ 1; 2; ::: ð2Þ

Combining both state equations (Eqs. 1 and 2)
and incorporating both types of information
exchanges (from local to system and vice versa), we
obtain the state equation (Eq. 3). This equation
assumes that the system transmits all the work withheld
up until the last moment before data transmittal to local
tasks.

Lðkþ 1Þ
Sðkþ 1Þ
Hðkþ 1Þ

2
4

3
5 ¼

WL 0 0

WLS WS 0

0 WSH I

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AHold

LðkÞ
SðkÞ
HðkÞ

2
4

3
5ð1� dTðkÞÞ

þ
WL WSL I
WLS WS 0

0 0 0

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ARelease

LðkÞ
SðkÞ
HðkÞ

2
4

3
5dTðkÞ

ð3Þ

In Eq. 3, dTðkÞ ¼
P1
j¼0

dðk� jTÞ is the periodic impulse train

function, where dðk� nÞ is the unit impulse (or unit
sample) function defined as:

dðk� nÞ ¼ 1 k ¼ n
0 k 6¼ n

�
ð4Þ

As can be seen from Eq. 3, the updated amount of
design work for a local team depends on the team’s
previous amount of design work and the interaction
with the system team; similar conclusions can be ob-
tained regarding design tasks for the system team and
hidden tasks. The matrix AHold is active at each iteration
step except for every T periods when the system team
releases its feedback to the local team and the matrix
ARelease becomes active. WLS is a matrix that captures
the rework fraction created by local tasks L(k) for the
corresponding system tasks S(k). Similarly, when infor-
mation is released by the system, the matrix WSL cap-
tures the rework fraction created directly by the system
tasks S(k) for the local tasks L(k). WSH is a matrix that
captures the rework created for the local tasks by the
system tasks, and is placed in a hidden (or holding)
state until it is time to be transmitted to local tasks.
When no information is being released by the system to
local tasks, the identity submatrix in AHold guarantees
that finished system work is carried over to the next
period. The identity submatrix in ARelease guarantees that
finished system work is transmitted to local tasks,
through H(k), every T time steps. Consequently, H(k)
gets set to zero each T steps and is rebuilt in between.
The construction of the work transformation matrices
WL, WS, WLS, WSH, and WSL is dependent on the
structure of the information exchanged within the
development process. In Appendix 1, we specify (con-
sistent with the case study presented in Sect. 6) the work
transformation matrices based on the local and system

DSMs XL;XS; as well as the inter-component dependency
matrices XLS;XSL; which represent the interaction be-
tween local and system teams9.

Individual elements within the L, S, and H vectors
refer to the same task. To illustrate the concept, con-
sider the following two tasks: door trim design and
garnish trim design related to the development of a car
door. The state equations for this problem are shown in
Eqs. 5 and 6 for the case when no information is being
released by the system (e.g., the ‘‘body’’ integration
team) to local tasks (e.g., the ‘‘door’’ design team), and
for the case when information is released by the system,
respectively.

In this example, L1(k) and S1(k) may designate the
number of design problems or open issues associated with
the door trim task, for the local design team and system
integration team, respectively. H1(k) refers to the number
of door trim problems resolved by the system integration
team awaiting to be released to the local design team. Any
problem associated with the door trim design can reside in
only one of these three states until it is fully resolved. Note
that 1� wL

11 and 1� wL
22 are the fractions of L1 and L2

respectively that can be completed in an autonomous
manner in every time step. Furthermore, wL

12L2ðkÞ and
wL

21L1ðkÞ are the amounts of rework that get created for
tasks L1 and L2, respectively, as a consequence of the
autonomous progress. Similar interpretations can be made
for the system matrix (i.e., wS

ij).

L1ðkþ1Þ
L2ðkþ1Þ
S1ðkþ1Þ
S2ðkþ1Þ
H1ðkþ1Þ
H2ðkþ1Þ

2
6666664

3
7777775
¼

wL
11 wL

12 0 0 0 0
wL

21 wL
22 0 0 0 0

wLS
11 wLS

12 wS
11 wS

12 0 0
wLS

21 wLS
22 wS

21 wS
22 0 0

0 0 wSH
11 wSH

12 1 0
0 0 wSH

21 wSH
22 0 1

2
6666664

3
7777775

L1ðkÞ
L2ðkÞ
S1ðkÞ
S2ðkÞ
H1ðkÞ
H2ðkÞ

2
6666664

3
7777775

ð5Þ

L1ðkþ1Þ
L2ðkþ1Þ
S1ðkþ1Þ
S2ðkþ1Þ
H1ðkþ1Þ
H2ðkþ1Þ

2
6666664

3
7777775
¼

wL
11 wL

12 wSL
11 wSL

12 1 0
wL

21 wL
22 wSL

21 wSL
22 0 1

wLS
11 wLS

12 wS
11 wS

12 0 0
wLS

21 wLS
22 wS

21 wS
22 0 0

0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

L1ðkÞ
L2ðkÞ
S1ðkÞ
S2ðkÞ
H1ðkÞ
H2ðkÞ

2
6666664

3
7777775
ð6Þ

4.2
Model analysis
In this section, we explore the fundamental characteristics
of the model described in Eq. 3. All proofs are presented in
Appendix 2.

First, we notice that Eq. 3 can be rewritten as follows:

xðkþ 1Þ ¼ AðkÞxðkÞ

9 The local and system DSMs as well as the inter-component
dependency matrices represent the amount of rework created for
each task based on work done on the other tasks in the previous
period.

A. Yassine et al.: Information hiding in product development: the design churn effect

149



where xðkÞ ¼
LðkÞ
SðkÞ
HðkÞ

2
4

3
5 and

AðkÞ ¼
WL dTðkÞWSL dTðkÞI
WLS WS 0

0 ð1� dTðkÞÞWSH ð1� dTðkÞÞI

2
664

3
775 ð7Þ

Thus, the model described in Eq. 3 is a homogenous
linear difference system that is nonautonomous, or time-
variant. Moreover, since the impulse train function dTðkÞ
is periodic with period T (recall that the system DSM re-
leases information every T time steps), we conclude that
for all k�Z (where Z is the set of all positive integers),
A(k+T)=A(k). That is, the model described in Eq. 7 is a
linear periodic system.

We now present some results obtained using Floquet
theory (Richards 1983) for the linear periodic system given
in Eq. 710.

Definition 1
Matrix C ¼ AðT � 1ÞAðT � 2Þ � � �Að0Þ is referred to as the
monodromy matrix of Eq. 7.
In the following we assume that the monodromy matrix is

diagonalizable11. C is diagonalizable if and only if it has
linearly independent eigenvectors. A sufficient condition
for C to be diagonalizable is that it has distinct eigenvalues
(Strang 1980). We cite the following result from Richards
(1983) as Lemma 1, Theorem 1, and Corollary 1 to set up
further analysis.

Lemma 1
Let C be a diagonalizable n·n matrix, and let T be any
positive integer. Let us decompose C as C ¼ SCKCS�1

C ;
where KC is a diagonal matrix of the eigenvalues of C, and
SC is the corresponding eigenvector matrix. Then, there
exists some n·n matrix B such that BT=C. Moreover,
B ¼ SCKBS�1

C ; where KB ¼
ffiffiffiffiffiffi
KC

T
p

:The following result
indicates that the analysis of the periodic system described
in Eq. 7 is reduced to the study of a corresponding
autonomous linear system.

Theorem 1
If y(k) is a solution of the autonomous linear system

yðkþ 1Þ ¼ ByðkÞ ð8Þ

then the general solution x(k) of the linear periodic system
(Eq. 7) is given as follows:

xðkÞ ¼ PðkÞBkg ð9Þ

where P(k) is a nonsingular periodic matrix of period T,
and g 2 Rn is a constant vector12.

Corollary 1
The general solution x(k) of the linear periodic system
(Eq. 7) is given by

xðkÞ ¼ PðkÞyðkÞ ð10Þ

where y(k) is the general solution of the autonomous linear
system (Eq. 8).

Corollary 1 has the following interesting interpreta-
tion for the information hiding problem in PD. We note
that there are two sources of oscillation that govern the
development of the total number of problems being
solved as the project evolves over time. The first source
is associated with the periodic matrix P(k) in Eq. 10,
and reflects the ‘‘fundamental churn’’ of the process.
This fundamental churn may be attributed to the
intrinsic characteristic of information delays between
local and system task execution. The second source of
oscillation, termed ‘‘extrinsic churn’’, is associated with
the properties of the linear autonomous system (Eq. 8)
as discussed in Smith and Eppinger (1997). More spe-
cifically, positive real eigenvalues of B correspond to
nonoscillatory behavior of the solution y(k). Negative
and complex eigenvalues of B describe damped oscilla-
tions. The overall property of the linear periodic system
(Eq. 7) is thus the combined effect of both sources of
oscillation.

Corollary 1 allows the development of conditions under
which the linear periodic system (Eq. 7) converges (i.e., as
the time increases to infinity the total number of design
problems associated with the system and local tasks con-
verges to zero). We show in Sect. 4.3 that the eigenvalues
and the eigenvectors of the matrix B determine conditions
of convergence.

4.3
Conditions for stability
In this section, we present conditions under which the
total number of design problems associated with the sys-
tem and local tasks converges to zero as the time increases
to infinity.

First, we note that the zero solution is an equilibrium
point13 of Eq. 7. Next we introduce the definitions of sta-
bility of the equilibrium point.

Definition 2
The equilibrium point x� is

10 Floquet theory has been mainly applied in the mathematical
and the physical sciences (Kuchment 1993). However, to the best
of our knowledge, Floquet theory has not been applied in the
social and management sciences.
11 This assumption is reasonable as discussed in Smith and
Eppinger (1997). Even if this assumption is violated, our quali-
tative results will remain unchanged; however, the computation
of the underlying matrices becomes more complicated.

12 Any solution of Eq. 8 may be obtained from the general
solution by a choice of vector g based on initial conditions.
13A point x* is called an equilibrium point of Eq. 7 if x� ¼ AðkÞx�
for all k‡0.

Res Eng Design 14 (2003)

150



1. Stable if given egt; 0 there exists d ¼ dðeÞ such that
x0 � x�k k < d implies xðkÞ � x�k klt; e for all k‡0. x� is

unstable if it is not stable.
2. Globally attracting if limk!1 xðkÞ ¼ x� for any initial

work vector x0.
3. Asymptotically stable if it is stable and globally

attracting.

Intuitively, the zero solution is stable if the total
number of design problems associated with the
system and local tasks remains bounded as the project
evolves over time. Asymptotic stability requires the
additional condition that the total number of
design problems associated with the system and local
tasks converges to the origin for any initial work
vector.

When the PD process involves time delays and
asynchrony in information transfer between the
system and local group, conditions for the convergence
of the development process are of vital importance for
PD management. Before we present stability conditions
for the asynchronous work transformation model, we
introduce the so-called Floquet exponents and Floquet
multipliers of the linear periodic system (Eq. 7). Floquet
exponents are the eigenvalues k of B, while the
corresponding eigenvalues kT of the monodromy matrix
(C) are the Floquet multipliers. We have the following
result:

Theorem 2
The zero solution of Eq. 7 is stable if and only if the
Floquet exponents have magnitude less than or equal to 1,
and asymptotically stable if and only if all the Floquet
exponents have magnitude less than 1.

The following provides an additional result that ex-
plains the behavior of solutions of the asynchronous work
transformation model:

Corollary 2
The zero solution of Eq. 7 is stable if the Floquet multi-
pliers have magnitude less than or equal to 1 and
asymptotically stable if all the Floquet multipliers have
magnitude less than 1.

A direct consequence of Theorem 2 is that the Flo-
quet exponents and their corresponding eigenvectors
(i.e., eigenvectors of B) determine the rate and nature of
convergence of the design process. Consistent with
Smith and Eppinger (1997), we use the term design
mode to refer to an eigenvalue of B along with its
corresponding eigenvector14. The magnitude of each
eigenvalue of B determines the geometric rate of con-
vergence of one of the design modes, while the corre-
sponding eigenvector identifies the relative contribution

of each of the various constituent tasks to the amount of
work that jointly converges at the given geometric rate
(Smith and Eppinger 1997). The eigenvector corre-
sponding to the largest magnitude eigenvalue of B (most
slowly converging design mode) provides useful infor-
mation regarding design tasks that require a significant
amount of work. More specifically, the larger the mag-
nitude of an element in that eigenvector, the stronger
the element contributes to the slowly converging design
mode.

4.4
Conditions for ‘‘pure churn’’
‘‘Pure design churn’’ is defined as a scenario where
development progress oscillates freely as the project
evolves over time and neither convergence nor diver-
gence occurs. Pure design churn means that the amount
of unfinished work does not decrease simultaneously for
all of the tasks. Instead, the amount of unfinished work
shifts from task to task as the project unfolds. The above
scenario is represented by particular solutions that are
periodic, i.e., solutions x(k) where for all k�Z,
xðkþ NÞ ¼ xðkÞ for some positive integer N. The fol-
lowing results hold:

Theorem 3

1. The linear system (Eq. 7) has a periodic solution of
period T if the monodromy matrix C has an eigenvalue
equal to 1.

2. The linear system (Eq. 7) has a periodic solution of
period 2T if the monodromy matrix C has an eigenvalue
equal to )1.

3. If the largest magnitude eigenvalue of the monodromy
matrix C equals 1 and is strictly greater (in absolute
value) than any other eigenvalue, then the limiting
behavior of the general solution of the linear system
(Eq. 7) is periodic with period T.

5
Asynchronous work transformation model:
multiple local DSM case
In this section, we consider the general case where mul-
tiple local teams are coordinated through a system inte-
gration team and subject to periodic feedback. More
specifically, the m local DSMs are internally updated and
provide status information to others (local and system
DSMs) at every time step. The system DSM provides up-
dates to the m local DSMs at periodic intervals T1;T2;:::;Tm

as shown in Fig. 2.
We label Li as the vector that designates the amount of

unfinished work of the tasks of local team i (i=1,...,m) at
time k. Let ni denote the number of local tasks in local team
i, and let n ¼

P
ni denote the total number of tasks in all of

the local teams. Individual elements within the Li

(i=1,...,m), Si, and Hi vectors refer, correspondingly, to the
same task. In general, the system of equations is written as
follows:

14 For autonomous linear systems (i.e., A(k)=A), the period of the
matrix A(k) is T=1, the monodromy matrix C=A, and the
Floquet multipliers are simply the eigenvalues of A. Thus, the
Smith and Eppinger (1997) model is a special case of Eq. 7.

A. Yassine et al.: Information hiding in product development: the design churn effect

151



In the above expression, WLi is a work transformation
matrix that captures the fraction of rework created within
the group of tasks of local team i. WS is the work trans-
formation matrix that captures the fraction of rework
created within the system tasks. WSi,Hj is a nj·ni matrix
that captures the fraction of finished system work created
by system tasks Si(k) for the local tasks Lj(k) , and is held
in Hj(k) until the next scheduled information release.

WLi,Lj is a nj·ni matrix that captures the fraction of rework
created by local tasks Li(k) for the local tasks Lj(k). WLi,Sj is
a nj·ni matrix that captures the fraction of rework created
by local tasks Li(k) for the system tasks Sj(k). Since
information is released by the system to local team i only
at periodic intervals of Ti, the ni·ni diagonal submatrix
ð1� dTi

ðkÞÞI guarantees that finished system work is car-
ried over to the next period. When information is released
by the system to local team j, the nj·ni matrix dTj

ðkÞWSiLj

captures the fraction of rework created directly by the
system tasks Si(k) for the local tasks Lj(k). The ni·ni

diagonal sub-matrix dTi
ðkÞI indicates that information is

transmitted to the local tasks Li(k) indirectly through the
holding state Hi(k).

The next result shows that the model described in
Eq. 11 is a special case of a linear periodic system. Once the
period of the matrix A(k) is identified, the monodromy
matrix C can be determined, and the results presented in
Sect. 4 can be readily employed.

Theorem 4
If the system team provides updates to m local teams at
periodic intervals T1,T2,...,Tm, then the fundamental period
T of the linear matrix A(k) is the least common multiple of
T1,T2,...,Tm; i.e., T ¼ lcmðT1;T2;:::;TmÞ:

Following a similar reasoning as in Theorem 4, it can be
shown that any periodic information release policy will
lead to a linear periodic system, and thus can be analyzed
using the tools presented in Sect. 4. For example, the local
teams may provide status information to others (local and
system teams) at periodic intervals t1;t2;:::;tm; tsystem;
rather than at every time step; or any team (local or
system) may provide information status to others (local or
system teams) at nonuniform (but periodic) intervals.
Indeed, any such periodic information release policy can
be transformed to a model where all elements aij(k) of the
linear matrix A(k) are periodic functions (with possibly

nonidentical periods). In this case, Theorem 4 can be
adapted by letting the fundamental period T of the linear
matrix A(k) be the least common multiple of the periods of
the elements aij(k).

6
Case study: the automotive appearance design process
In this section, an illustration of the asynchronous work
transformation model in a real product development pro-
cess, previously reported by McDaniel (1996), is presented.
We intend to demonstrate internal process dynamics, show
that oscillatory patterns arise in an asynchronous PD pro-
ject, and assess several mitigation strategies by exploiting
the results developed in the paper. In Sect. 6.1, we provide a
general overview of the nominal automotive appearance
design process. Section 6.2 demonstrates how to construct
the underlying work transformation matrices. Then, in
Sect. 6.3 we analyze the base case model. Section 6.4
assesses the efficacy of churn mitigation strategies based on
three operational scenarios. Finally, results of sensitivity
analysis are presented in Sect. 6.5.

6.1
Appearance design process overview
Appearance design refers to the process of designing all
interior and exterior automobile surfaces for which
appearance, surface quality, and operational interface is
important to the customer. Such design items include, for
example, exterior sheet metal design and visible interior
panels. Appearance design is the earliest of all physical
design processes, and changes in this stage easily cascade
into later development activities causing costly rework.
This is avoided by allowing ‘‘stylists’’ (from the industrial
design group) to work closely with ‘‘engineers’’ (from the
engineering design group). While stylists are responsible
for the appearance of the vehicle, engineers are responsible
for the feasibility of the design by ensuring that it meets
some functional, manufacturing, and reliability require-
ments. Figure 3 shows the industrial design process within
the context of the overall automotive product development
process. The industrial design portion is allotted approx-
imately 52 weeks for completion in a typical vehicle pro-
gram.

Records from the study company, shown in Fig. 4,
indicate churning behavior for a specific vehicle program.
While the curves presented in the figure show churn in

L1ðkþ 1Þ
..
.

Lmðkþ 1Þ
S1ðkþ 1Þ

..

.

Smðkþ 1Þ
H1ðkþ 1Þ

..

.

Hmðkþ 1Þ

2
6666666666666664

3
7777777777777775

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{x kþ1ð Þ

¼

WL1 � � � WLmL1 dT1
ðkÞWS1L1 ::: dT1

ðkÞWSmL1 dT1
ðkÞI 0 0

..

. . .
. ..

. ..
. . .

. ..
.

0 . .
.

0
WL1Lm . . . WLm dTm

ðkÞWS1Lm ::: dTm
ðkÞWSmLm 0 0 dTm

ðkÞI
WL1S1 � � � WLmS1 wS

11 � � � wS
1n 0 0 0

..

. . .
. ..

. ..
. . .

. ..
.

0 0 0
WL1Sm � � � WLmSm wS

n1 � � � wS
nn 0 0 0

0 0 0 ð1� dT1
ðkÞÞWS1H1 ::: ð1� dT1

ðkÞÞWSmH1 ð1� dT1
ðkÞÞI 0 0

0 0 0 ..
. . .

. ..
.

0 . .
.

0
0 0 0 ð1� dTm

ðkÞÞWS1Hm ::: ð1� dTm
ðkÞÞWSmHm 0 0 ð1� dTm

ðkÞÞI

2
66666666666666664

3
77777777777777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A kð Þ

L1ðkÞ
..
.

LmðkÞ
S1ðkÞ

..

.

SmðkÞ
H1ðkÞ

..

.

HmðkÞ

2
6666666666666664

3
7777777777777775

zfflfflfflfflfflffl}|fflfflfflfflfflffl{x kð Þ

ð11Þ

Res Eng Design 14 (2003)

152



both interior and exterior subsystem development, our
analysis of the churn phenomenon will be limited to the
interior design process involving the styling and engi-
neering development organizations.

Information exchanges from styling to engineering take
the form of wireframe CAD data generated from clay
model scans, referred to as scan transmittals of surface
data. Scan transmittals are scheduled at roughly six-week
intervals (i.e., T=6). Information exchanges between
engineering and styling occur on a weekly basis through a
scheduled feasibility meeting. During these meetings var-
ious engineering groups provide feedback to styling on
infeasible design conditions. Therefore, with this infor-
mation transfer setup engineering will be the local team, as
defined in our model, and styling will be the system team.

In addition to the cross-functional information ex-
changes between styling and engineering, information
flows also occur within functional groups. For example,
within engineering, a hand clearance study would compile
information about the front door trim panel and the front
seat to determine whether the two components physically
interfere, and whether the space between them meets
minimum acceptable requirements.

Finally, an appropriate metric by which to measure
development progress needs to be defined. We choose to
use the number of open design issues (or open problems)
although it may be convenient, in other development
environments, to use different measures of progress such
as the time to finish a design task. Our choice is justified
by the fact that the company we are investigating tracks
open issues on an ongoing basis through minutes from the
above mentioned feasibility meetings. Time to completion
estimates are normally forecasted based on the open issues
status.

6.2
Construction of work transformation matrices
From the program management perspective, the vehicle
interior is segmented into subsystems, or components.
These components represent major subassemblies of
the interior, and include typical components such as the
instrument panel, the front door trim panels, and the
center console. This level of component aggregation is
used primarily because these components have been the
unit of management and budgetary control for
engineering design work, and because the company
defined a number of standard engineering design
studies to be performed on each component at this level.

The DSMs XL;XS for the engineering and industrial
design processes are shown in Figs. 5a and 5b,
respectively. The transformation of component-level
design information to system-level design information,
as used within the industrial design group, is captured
by the ‘‘dependency’’ matrix XLS in Fig. 5c. This
transformation is typically performed on a weekly
basis, when the engineering group provides feedback to
the industrial design group on infeasible conditions.
Similarly, the dependency matrix XSL in Fig. 5d
captures the impact of industrial design on the engi-
neering process at each scan transmittal (on a six-week
interval).

The average autonomous completion rates per com-
ponent are shown along the diagonal of the local and
system DSMs (i.e., XL and XS; respectively)15. To set a
base level of normalized resource usage for each com-
ponent, engineers defined the resource usage intensity
required to accomplish the autonomous completion
rates presented in Fig. 5 as one resource-week. The
DSMs for styling and engineering were obtained by
circulating a survey instrument to both groups.
Respondents were asked to populate the DSM by esti-
mating the pairwise coupling (i.e., dependency strength)
between components using S, M, W, or N ratings (i.e.,
strong, medium, weak, or none, respectively). These
estimates were converted into numerical values (by
assigning a probability of 0.3, 0.2, 0.1, and 0 for the
S, M, W, and N, respectively). Local and system DSMs,
as determined by the average of responses of the sur-
veys, are shown in Figs. 5a and b. A complete expla-
nation of the DSM and dependency matrices in Fig. 5 is
given by McDaniel (1996).

Fig. 3. Appearance design in relation to total devel-
opment process

Fig. 4. Churning behavior observed in a family of vehicle
programs (McDaniel 1996)

15 These rates are obtained by estimating the autonomous com-
pletion time for each component and using an exponential decay
function.

A. Yassine et al.: Information hiding in product development: the design churn effect

153



6.3
Base case analyses
For the base case, the largest magnitude eigenvalue of B is
0.9943. Because this eigenvalue is so close to 1, this means
that the system is stable under the above operating condi-
tions, and converges very slowly (see Theorem 2). By
inspecting the eigenvector corresponding to the largest
magnitude eigenvalue of B, we observe that the magnitudes
(in descending order) of the elements are as shown in Fig. 6.

The interpretation of the ranking, in Fig. 6, is that the
larger the magnitude of an element in this eigenvector, the
more strongly the element contributes to the slow con-
vergence of this mode of the design process. Thus, the
ranking of the eigenvectors gives useful information for
identifying the structure of the total work vector. This
interpretation is supported by examining the cumulative
work, which is obtained by simulating the design process

for 52 weeks, as shown in Fig. 616. We see that the cumu-
lative work associated with the local ‘‘instrument panel’’
(i.e., L6) is more than the work done on other local tasks.
This is primarily due to the large work associated with the
system instrument panel (see the cumulative work of S6)
and the long information delay (T=6) between local and
system task execution. This phenomenon can be seen by
examining the specific traces for individual local compo-
nents as shown in Fig. 7a. As can be seen, the instrument
panel has the largest number of open design issues at every
point of time. Also, the oscillatory changes in design status
induced by new information contained in scan transmittals

Fig. 5a–d. Local, system DSMs, and system/local conversion
matrices

Fig. 6. Eigenvector and corresponding total work

16 For instance, by comparing the local tasks we see that, in all
cases, the largest terms in the total work vector are also the largest
terms in the largest eigenvector. In our case, the second largest
eigenvalue is much smaller than the largest eigenvalue; thus, the
second mode does not contribute significantly to the total work.

Res Eng Design 14 (2003)

154



are apparent. Finally, we observe that even in the complete
absence of external changes, the appearance design process
is not completed on time. Design rework and oscillatory
behavior in the process result from the decomposed pro-
cess structure and product architecture, and can never be
eliminated from the appearance design process. We con-
clude that the appearance process must be redesigned to
speed up convergence and mitigate churn.

6.4
Mitigation scenarios
Recall that the development process is stable, under the
base operating conditions, but converges slowly. McDaniel
(1996) reported that several mitigation strategies were
implemented by the engineering and styling teams in
order to speed up the rate of design progression needed to
meet the required completion date. The analysis developed
in this paper provides insight regarding means for
achieving stability for a diverging process or speeding up
convergence for a slowly converging process. Note that

some of the mitigation strategies might eliminate the
churn completely while others might mitigate churn by
damping it at a quicker rate. In particular, three types of
mitigation strategies can be applied:

1. Increasing the autonomous design completion rate for
each component (i.e., increasing the fraction of work
that can be completed in an autonomous manner in
every time step).

2. Lessening the pairwise coupling (i.e., dependency
strengths) between components.

3. Increasing the frequency with which design information
is transmitted from the industrial design to the engi-
neering process (i.e., reducing the information delay T).

The first strategy can be implemented, for instance, by
applying resources (work efforts) above the normalized
base-case level, which will result in increased progress
being made on the independent, autonomous components.
The extra resources may be obtained through design

Fig. 7a–d. The effect of mitigation strategies on the behavior of
the system

A. Yassine et al.: Information hiding in product development: the design churn effect

155



technology, personnel training, overtime, skill level, and
other determinants of design productivity. The second and
third strategies can be accomplished, for instance, by using
the knowledge of the intercomponent coupling as an aid to
making colocation on teaming arrangements (McCord and
Eppinger 1993), or by using a variety of formal and
informal mechanisms to facilitate the management of de-
sign information flows (Braha 2001).

Figures 7b and 7c present the effect of the first two
mitigation strategies on the behavior of the base-case
model. Scenario 1 represents expending 2.5 normalized
resource-weeks and scenario 2 represents modifying the
engineering coupling structure by eliminating the weak
dependencies. In all cases, the increase in total resource
expenditure and reduction in the magnitude of the engi-
neering intercomponent dependencies are applied to the
more complex local components (i.e., center console (L2),
door trim panel (L3), and instrument panel (L6), see
Fig. 7). Figure 7d shows the combined effect of these
strategies on the total number of open issues.

Delays in information flows (introduced by scan
transmittal intervals) from the industrial design to the
engineering process have a destabilizing effect on system
behavior. For example, Fig. 8 presents the behavior of
the system for various information delays. As can be
seen, increasing the information delay results in more
extreme churning behavior. Moreover, even though all
scenarios are converging, the increased churning
behavior leads to slower convergence rates. Indeed, by
inspecting the convergence rate (i.e., largest magnitude
eigenvalue17 of the matrix B) of the appearance design
process, for various delays between consecutive infor-
mation releases, we observe that convergence slows

monotonically for longer delays. To illustrate the eco-
nomic cost of churn, we inspect the amount of total
work in the system over the ‘‘convergence’’ period (i.e.,
the time required to complete 99% of the initial total
work). We see that the work associated with the infor-
mation delay T=6 is about 10% more than the total
work associated with the delay T=1.

We also notice in Fig. 6 that the accumulation of ongoing
changes in the industrial design group related to the local
instrument panel (see the cumulative work of H6) is larger
than the magnitudes of other elements. Thus, it may be
possible to reduce the impact of the accumulated design
information by using differential delays among compo-
nents; that is, by increasing the frequency with which design
information is transmitted from the industrial design to the
local components that have the most destabilizing effect on
total system performance. For instance, consider the
scenario where the industrial design team provides updates
to the local engineering tasks L2, L3, and L6 at shorter peri-
odic intervals of T1<6 weeks (while maintaining the delay
for the others at T2<6 weeks). According to the multiple
local DSM model of Sect. 5, the local DSM is now partitioned
into two local teams, DSM1={L2, L3, L6} and DSM2={L1, L4,
L5, L7, L8, L9, L10}. By applying the results18 of Sect. 5, Fig. 9
plots the convergence rate (i.e., largest magnitude eigen-
value of the matrix B) for the base scenario under (1) five
differential information release policies, T1=j and T2=6 for
j=1, 2, ..., 5, and (2) overall information release policy T=j for
j=1, 2, ..., 5. As can be seen, the differential delay policy
consistently achieves better ‘‘performance’’ (larger conver-
gence rate) than the corresponding uniform policy; that is,
the differential delay policy with T1=j and T2=6 achieves
better performance than the uniform information release

Fig. 8. The effect of delay on the churning behavior

17 Recall that the larger the eigenvalue the slower the system’s
convergence rate.

18 According to Theorem 4, the fundamental period of the mo-
nodromy matrix is 30=lcm(5, 6).

Res Eng Design 14 (2003)

156



policy with delay T= for every j=1, 2, ..., 519. Note that even
though the relative changes in the maximum eigenvalues are
small, the corresponding changes in the completion times
for the project were significant.

6.5
Sensitivity analysis
The model developed in this paper enables us to perform
sensitivity analysis. For example, let aL

2 be the autono-
mous local center console completion rate (correspond-
ing to the element in row two, column two in the local
DSM). Assume that the other elements in the local DSM
are set to their values as specified in Fig. 5. Figure 10a
plots the largest magnitude eigenvalue of B against aL

2 : As
can be seen, any value of aL

2gt; 0 will have a stabilizing
effect on the system behavior (see Theorem 2). A similar
plot for the local overhead system (Fig. 10b) suggests that
the convergence rate is completely insensitive to its
autonomous completion rate as long as it is greater than

0.05. Consequently, any increase in total resource
expenditure for a bottleneck component (such as the
center console) will be effective in improving the system
performance.

7
Discussion and conclusion

7.1
Case study limitations
The model and scenario analysis presented in this paper aim
at illustrating the fundamental process characteristics and
providing managerial insights on the effects of different
mitigation strategies. The following observations will assist
in assessing the limitations of our case study in context:

(A) The interior design is completely separable from the
exterior design. The overall appearance design pro-
cess is subject to a number of influences as it operates
within the total automotive product development
cycle. These influences are considered inputs to the
appearance design process. Here, the scenarios are
constructed to represent as closely as possible an
isolated interior design process that is independent of

Fig. 9. The effect of delay policy
on the largest eigenvalue

Fig. 10a, b. The effect of autonomous completion rate on
convergence

19 The advantage of reducing the information delay should be
weighed against the possibe additional resources and undesirable
side effects. Exploration of these tradeoffs is beyond the scope of
this paper.

A. Yassine et al.: Information hiding in product development: the design churn effect

157



exterior design actions (e.g., full exterior carryover in
which all relevant exterior design information is
known to component engineering groups).

(B) In order to facilitate downstream tooling design,
prototype development, and testing, and ultimately
to meet the desired product introduction date, the
appearance design phase of the process must be
completed within a specified amount of time. Thus,
an important input to the appearance design process
is the program work schedule, indicating planned
progress in design feasibility and expected status at
various program milestones. This input is used by
the appearance design process (primarily by the
engineering process) participants to assess the cur-
rent state of the design versus the scheduled state,
and to make corresponding adjustments in effort
levels via resource allocation and workload policies.
For instance, if a component design is behind sche-
dule, that group will usually work overtime in an
effort to catch up. In our model, we assume that the
resource usage intensity required to accomplish the
autonomous completion rate of the various tasks is
uniform throughout the project.

(C) The interior design is not free of midstream program
direction changes. The term program direction refers
collectively to the current set of assumptions
regarding product content, performance, variable
cost, investment, quality, and other program attri-
butes. Changes in the program direction are con-
sidered by process participants to be a critical source
of the difficulties encountered during appearance
design. The detailed data on program direction
changes are not available. In our model, we proceed
by assuming that the program has perfect initial
knowledge of the ultimate desired product content
and component cost, investment, and quality level;
however, we do not incorporate program direction
changes over the duration of the project.

Owing to the above mentioned limitations, duplication
of the historical behavior of the specific vehicle program
(as shown in Fig. 4) remains beyond the scope of this
study. A lack of replication of the progress history brings
up the issues of validity for the model and the case study.

7.2
Model validity
It is best to validate the process structure to illustrate
consistencies between constructs that are included within
the model, and the resulting process dynamics against
ex-post records to establish face validity to
our model. Illustration of external validity, i.e.,
applicability of the model in generic settings, is also
desirable. The complexity of the design process and
the scarcity of hard data and good records on the
appearance design process mean that a quantitative
validation of the model is questionable (Huber-Carol
et al. 2002). We restrict our discussion to a qualitative
comparison of our results and the observed process
data. In particular, we draw the reader’s attention to the
following:

(A) The constructs of managerial relevance are considered
by the model and their interdependencies are based on
interviews conducted in the field study (McDaniel
1996). We have neither added any additional con-
structs nor have we deleted any details from these field
observations.

(B) Support for the model validity has also been
obtained by asking engineers and engineering
supervisors to rank the ‘‘complexity level’’ associ-
ated with the ten particular interior components
that are captured in the full model (McDaniel
1996). The complexity levels are expressed by the
number of standard engineering design studies
associated with each component (which is indi-
rectly affected by the ‘‘churn’’ and convergence of
each component). The ranking of the top three
components (i.e., instrument panel, door trim pa-
nel, and center console) is aligned with the three
components that were identified to have the most
destabilizing effect on total system performance as
depicted in Figs. 6 and 7. In particular, it has been
observed by engineers that the instrument panel is
consistently behind schedule, and that it has the
largest number of open design issues for the lon-
gest period of time as predicted by our model. It
has also been observed that the appearance design
process is not completed on time at the nominal
date of week 52, as demonstrated by our model. In
addition, the local components (e.g., the overhead
system) that have been found to be completely
insensitive to its autonomous completion rate (see
Sect. 6.5) are aligned with the engineers complexity
level rankings.

(C) The periodic jumps in the number of open
ssues, which occur in response to the updated
styling design information. In the periods between
scan transmittals, the engineering group works
with the information it has regarding the vehicle
design, without disturbance by styling updates, so
work progresses relatively smoothly. Styling reacts
to the ongoing engineering design changes, how-
ever, and because information about this reaction
is available to engineering only following scan
transmittals, the release of updated styling infor-
mation into the system results in some design
issues being opened or reopened. This release
drives the sharp changes in status, which represent
setbacks in progress due to the structure of
product development.

(D) It has been observed by the process participants that
lengthy delays in information exchanges between
styling and engineering is a major source in pushing
each component’s status further away from its
scheduled status, in alignment with our previous
discussion (see Sect. 6.4).

More complete modeling and validation would be
required to make more detailed observations. This
requirement suggests possible record-keeping actions that
could assist management at the subject company in
deepening its understanding of the appearance design

Res Eng Design 14 (2003)

158



process. Detailed vehicle program records should be kept
and analyzed, including such data as weekly component-
level design status, weekly component resource usages,
and number of times design files or drawings are ex-
changed or accessed, as well as a record of all product
changes that were made. These types of records would
have the additional benefit of enabling input–output cor-
relation analysis to be used to quantitatively estimate the
intercomponent coupling parameters, rather than relying
on survey techniques. They would also improve the esti-
mation procedure of the average autonomous completion
rate per component (by which engineering personnel were
asked to artificially decouple the interior components and
make a professional judgment about how quickly each
component could be designed on its own).

7.3
Conclusion
The model described in this paper provides managers
with operational insights that explicitly capture the fun-
damental characteristics of a development process. It
allows managers to experiment with several ‘‘what-if’’
scenarios in order to explore and compare the effects of
subsequent managerial actions of improvement. However,
a basic revelation of the model is that design churn is an
unavoidable phenomenon and a fundamental property of
a decomposed development process where the product or
process architecture dictates delays in feedback infor-
mation amongst the development groups. Consequently,
the most significant insight this model brings to man-
agers is to avoid making myopic resource allocation
decisions based on the observance of churn (Joglekar and
Ford 2003). The fluctuation in development progress
cannot be avoided, but can be managed once managers
understand its sources. Our model reveals several main
sources of churn:

(a) Interdependency of process or product structure is
apparent when the development occurs within a
monolithic group; however, it is usually hidden,
ignored, or forgotten once the process is decom-
posed into multiple groups. Fully anticipating,
understanding, and accommodating this structure
can explain why the tasks seem difficult, frustrating,
and prone to change.

(b) Concurrency of local and system execution may help
in expediting the development process; however,
careful timing and magnitude of feedback are nec-
essary to provide development groups with enough
time, between feedbacks, to understand and react to
these feedback flows. If these flows are not carefully
planned, they might drive the process unstable by
generating more rework than the development teams
can handle.

(c) Feedback delays are an important factor in developing
a clear understanding of the development process and
play a major role in determining the system stability.
In combination with the interdependency structure,
delays are the main reason why development prob-
lems (issues) believed to be solved (closed) tend to
reappear (reopen) at later stages of development.

While exposing churn as a fundamental property of a
decomposed development process, our model also pro-
vides managers with three mitigation strategies to combat
design process churn, divergence, or slow convergence.
These strategies are:

1. Timing-based strategies: these strategies advocate the
minimization of delays for specific tasks that contribute
the most to the slow convergence of the development
process. Our model provides a quantitative approach to
identify these bottleneck tasks. Once identified, strate-
gies for reducing the time delays for these tasks should
be implemented. These include the early release of
preliminary information and divisive overlapping
(Krishnan et al. 1997). Our illustration shows that
acceleration of the synchronization frequency for all
tasks may not be as effective as accelerating, by the
same amount, the synchronization frequency for the
bottleneck tasks.

2. Resource-based strategies: these strategies allow local
and system teams to work faster (as captured by the
diagonal elements of both WL and WS) by incorporating
more resources. Our illustration shows that working
faster on all the tasks simultaneously may not be as
effective as allocating the same amount of resources
only to the bottleneck tasks.

3. Rework-based strategies: these strategies suggest that
local groups ignore low priority local or system feed-
back (as captured by the low rework fractions in WLiLj

or WSiLjÞ: A similar strategy is to reduce the values of
WLiLj or WSiLj by requiring that local or system teams
not produce much feedback to local groups. Both these
strategies benefit from a modular architecture.

All the above strategies are effective in mitigating the
three sources of churn (i.e., interdependency, concurrency,
and feedback delays) either individually or collectively. We
have demonstrated the impact of these strategies using the
automotive appearance design process.

We have developed a model for a development process
based on decomposing it into two groups: local and sys-
tem. The model incorporates two types of information
flows: (1) information flows that reflect internal rework
within local and system groups, possibly generating
internal rework; and (2) information flows that reflect
status updates from local to system tasks and feedback
from system to local tasks. These information flows
influence both ‘‘fundamental’’ and ‘‘extrinsic’’ churn and
determine the shape and rate of convergence of the
development process.

Several extensions to our model are possible. First, cost
elements associated with the information release and
information processing activities may be incorporated
within our model. This may result in a convex formulation
that allows for the optimal determination of the information
delay T (e.g., Thomke and Bell 2001). Second, except for the
local and system autonomous rates of completion, our
model does not explicitly account for resource allocation
policies. Thus, explicitly incorporating resource allocation
as a decision variable may lead to the discovery of better
resource allocation policies in the context of decomposed
development processes. Finally, the linearity assumption in

A. Yassine et al.: Information hiding in product development: the design churn effect

159



our model can be relaxed, and nonlinear formulations
may be developed. For example, our model can be
modified by incorporating time-varying rework fractions,
which are reduced with time as the development process
unfolds.

Appendix 1

Specifications of work transformation matrices (WL, WS,
WLS, WSH, WSL)
The specification of the work transformation matrices is
based on the assumption that only work that is done in the
previous period is considered to create rework as a normal
course of operation. Let XL ¼ aL

ij

� �
be the local DSM. The

work completion coefficient aL
ii � aL

i is the local autono-
mous completion rate for task i at each iteration step. The
coupling coefficient aL

ij (for i 6¼ j) is the amount of rework

created for local task i per unit of work done on local task j.
Consequently, the elements of the work transformation
matrix WL become wL

ii ¼ 1� aL
i and wL

ij ¼ aL
ija

L
jj (for i 6¼ j).

The system DSM XS and work transformation matrix WS

are defined similarly.
The interaction between the local and system teams is
captured by the intercomponent dependency matrices

XLS ¼ aLS
ij

� �
and XSL ¼ aSL

ij

� �
: The coupling coefficient

aLS
ij is the amount of rework created for system task i per

unit of work done on local task j. Similarly, the coupling
coefficient aSL

ij is the amount of rework created for local
task i per unit of work done on system task j. Consequently,
the elements of the work transformation matrix WLS

are wLS
ij ¼ aLS

ij aL
jj: The matrix WSL is defined as wSL

ij ¼ aSL
ij aL

jj:

Finally, the ‘‘holding’’ matrix WSH is defined as

WSH=WSL.

Appendix 2

Proof of Lemma 1, Theorem 1, and Corollary 1
See Richards (1983).

Proof of Theorem 2
From Theorem 1, x(k) is a solution of the linear periodic
system described by Eq. 7 if and only if yðkÞ ¼ P�1ðkÞxðkÞ
is a solution of the linear autonomous system described by
Eq. 8. The matrix P(k) is nonsingular and periodic. Thus,
the stability of the linear periodic system (Eq.7) is equiv-
alent to the stability of the associated linear autonomous
system (Eq. 8). Consequently:

1. If the largest magnitude eigenvalue of B (i.e., the largest
magnitude Floquet exponent) is less than 1, then every
solution x(k) of Eq. 7 satisfies limk!1 xðkÞ ¼ 0:

2. If the largest magnitude eigenvalue of B is less than or
equal to 1, then every solution y(k) of Eq.8 remains
bounded for k‡0.

3. (Only if part). Assume that the largest magnitude
eigenvalue of B is greater than 1. Then there is a

solution y(k) of Eq. 8 such that limk!1 xðkÞ ¼ 1; and
the zero solution is unstable.

Corollary 2
Since the eigenvalues of B are the Tth roots of the eigen-
values of the monodromy matrix C, corollary 2 immedi-
ately follows.

Proof of Theorem 3
From Theorem 1, the general solution x(k) of Eq. 7 may be
written as xðkÞ ¼ PðkÞyðkÞ where y(k) is the general solu-
tion of the linear autonomous system (Eq. 8). For the
linear autonomous system, it can be verified that the
general solution can be written as yðkÞ ¼ BkSBg; where SB

is the eigenvector matrix of B and g ¼ ðg1; g2; :::; gnÞ
0
2 Rn:

The powers of B can be found by Bk ¼ SBKk
BS�1

B ; where KB

is a diagonal matrix of the eigenvalues of B. Consequently,

yðkÞ ¼ BkSBc ¼ SBKk
Bg

¼ ½n1; n2; :::; nn�

kk
1 0

kk
2

. .
.

0 kk
n

2
66664

3
77775

g1

g2

..

.

gn

2
66664

3
77775

¼ ½kk
1n1; k

k
2n2; � � � ; kk

nnn�

g1

g2

..

.

gn

2
66664

3
77775

where ½n1; n2; :::; nn� is the eigenvector matrix for B.
Hence the general solution x(k) of Eq. 7 may be given by

xðkÞ ¼ PðkÞyðkÞ ¼ ½kk
1PðkÞn1; k

k
2PðkÞn2; � � � ; kk

nPðkÞnn�

g1

g2

..

.

gn

2
6664

3
7775

ðB:1Þ

From Eq. B.1 we see that the general solution x(k) of Eq. 7
may be given by xðkÞ ¼ UðkÞg; i.e., each of the column
vectors of UðkÞ is a nontrivial solution of Eq. 7. Let
x̂ðkÞ ¼ kk

i PðkÞni be such a nontrivial solution. We have

x̂ðkþ TÞ ¼ kkþT
i Pðkþ TÞni ¼ kT

i kk
i PðkÞn ¼ kT

i x̂ðkÞ
ðB:2Þ

Notice that kk
i is an eigenvalue of the monodromy matrix

C, i.e., kT
i is a Floquet multiplier of the linear periodic

system (Eq. B.1). Thus, there exists a solution x̂ðkÞ of the
linear periodic system (Eq. B.1) such that
x̂ðkþ TÞ ¼ kT

i x̂ðkÞ; and this is the reason we call kT
i a

multiplier. Now,

(i) If the matrix C has an eigenvalue equal to 1, then
kT

i ¼ 1 and from Eq. B.2 there exists a periodic
solution of period T.

Res Eng Design 14 (2003)

160



(ii) If the matrix C has an eigenvalue equal to )1, then
kT

i ¼ �1 and from Eq. B.2 there exists a periodic
solution of period 2T.

(iii) Let the local and system work transformation
matrices be coupled and non-negative. Conse-
quently, the monodromy matrix C will be coupled
and non-negative. Thus, in many applications,
CL>0 for some power L (i.e., C is primitive) for
L>0. By the Perron-Frobenius theorems for primi-
tive matrices one of its eigenvalues k�C is positive
real and strictly greater (in absolute value) than all
other eigenvalues, and there is a positive eigen-
vector corresponding to that eigenvalue. Since
k�B ¼

ffiffiffiffiffi
k�C

T
p

; according to Eq. B.1, the largest mag-
nitude eigenvalue of B is also positive real, and
there is a positive eigenvector corresponding to that
eigenvalue. Therefore, the long-term behavior of the
system has the form

xðkÞ � c1ðk�BÞ
kPðkÞn ðB:3Þ

If the largest eigenvalue of C is equal to 1, then it follows
from Eq. B.3 that the long-term behavior of the system is
periodic of period T.

Proof of Theorem 4
Since T is the least common multiple of T1,T2,...,Tm, it
follows that there are integers a1,a2,...,am such that T=aiTi

for 1 £ i £ m. Let k‡0 be any time point. Assume that at
time point k the system team provides updates only to the
local teams i1,i2,...,ij. From the information release policy it
follows that there are integers b1,b2,...,bn such that
k ¼ bi‘Ti‘ for i‘ 2 fi1; i2; � � � ; ijg and k ¼ bi‘Ti‘ þ ei‘ for
i‘ 62 fi1; i2; � � � ; ijg where 0lt; ei‘ lt; Ti‘ : Consider time point
k+T.For i‘ 2 fi1; i2; � � � ; ijg; kþ T ¼ bi‘Ti‘ þ ai‘Ti‘ ¼
ðbi‘ þ ai‘ÞTi‘For i‘ 62 fi1; i2; � � � ; ijg; kþ T ¼ bi‘Ti‘ þ ei‘ þ
ai‘Ti‘ ¼ ðbi‘ þ ai‘ÞTi‘ þ ei‘Thus, we conclude that at time
point k+T the system team will provide updates only to the
local teams i1,i2,...,ij. Consequently, the fundamental peri-
od of the linear system (Eq. 11) is T.

References
Adler P, Mandelbaum A, Nguyen V, Schwerer E (1995) Project to

process management: empirically-based framework for analyzing
product development time. Manage Sci 41(3):458–483

Ahmadi R, Wang RH (1999) Managing development risk in product
design processes. Oper Res 47(2):235–246

Bohn R (2000) Stop fighting fires Harv Bus Rev, July–August 83–91
Braha D (2001) Data mining for design and manufacturing. Kluwer,

Boston
Braha D, Maimon O (1998) A mathematical theory of design: foun-

dations, algorithms and applications. Kluwer, Boston
Browning T (2001) Applying the design structure matrix to system

decomposition and integration problems: a review and new
directions. IEEE Trans Eng Manage 48(3):292–306

Browning T, Deyst J, Eppinger SD, Whitney D (2002) Adding value in
product development by creating information and reducing risk.
IEEE Trans Eng Manage 49(4):443–458

Browning T, Eppinger SD (2002) Modeling impacts of process
architecture on cost and schedule risk in product development.
IEEE Trans Eng Manage 49(4):428–442

Clark K, Fujimoto T (1991) Product development performance:
strategy, organization, and management in the world auto
industry. Harvard Business School Press, Boston

Cusumano M, Selby R (1995) Microsoft secrets. Free Press, New York

Eppinger SD (2001) Innovation at the speed of information. Harv Bus
Rev 79(1):149–158

Eppinger SD, Whitney DE, Smith R, Gebala D (1994) A model-based
method for organizing tasks in product development. Res Eng Des
6(1):1–13

Ford D, Sterman J (1999) Overcoming the 90% syndrome: iteration
management in concurrent development projects. Working paper,
Texas A&M University

Huber-Carol C, Balakrishnan N, Nikulin M, Mesbah M (2002)
Goodness-of-fit tests and model validity: statistics for industry
and technology. Birkhauser, Boston

Joglekar NR (2001) Data collected at Factory Mutual Insurance
Company, Norwood, MA

Joglekar NR, Yassine A, Eppinger SD, Whitney DE (2001) Perfor-
mance of coupled product development activities with a deadline.
Manage Sci 47(12):1605–1620

Joglekar NR, Yassine A (2001) Management of information
technology-driven product development processes. In:
Ganeshan R, Boone T (eds) New directions in supply-chain
management: technology, strategy, and implementation.
AMACOM, New York

Joglekar NR, Ford D (2003) Product development resource allocation
with foresight. Eur J Oper Res (in press)

Krishnan V, Eppinger SD, Whitney DE (1997) A model-based
framework to overlap product development activities. Manage Sci
43(4):437–451

Kuchment P (1993) Floquet theory for partial differential equations.
Operator theory, advances and applications. Springer, Berlin
Heidelberg New York

Lee H, Padmanabhan V, Whang S (1997) Information distortion in a
supply chain: the bullwhip effect. Manage Sci 43(4):546–558

Loch C, Terwiesch C (1999) Accelerating the process of engineering
change orders: capacity and congestion effects. J Prod Innovat
Manage 16(2):145–159

Mar C (1999) Process improvement applied to product development.
MS thesis, MIT

Marcus M, Minc H (1964) A survey of matrix theory and matrix
inequalities. Allyn and Bacon, Boston

McCord KR, Eppinger SD (1993) Managing the integration problem
in concurrent engineering. Sloan School of Management, Working
Paper #3594–93–MSA

McDaniel CD (1996) A linear systems framework for analyzing the
automotive appearance design process. Master’s thesis (Mgmt./
EE), MIT

Mihm J, Loch C, Huchzermeier A (2001) Modeling the problem
solving dynamics in complex engineering projects. Working pa-
per, INSEAD

Repenning N, Gocalves P, Black L (2001) Past the tipping point: the
persistence of firefighting in product development. Calif Manage
Rev 43(4):44–63

Richards J (1983) Analysis of periodically time varying systems.
Springer, Berlin Heidelberg New York

Simon H (1996) The sciences of the artificial. MIT Press, Cambridge
Smith RP, Eppinger SD (1997) Identifying controlling features of

engineering design iteration. Manage Sci 43(3):276–293
Sobek D, Ward A, Liker J (1999) Toyota’s principles of set-based

concurrent engineering. Sloan Manage Rev 40(2):67–83
Sosa ME, Eppinger SD, Rowles CM (2000) Designing modular and

integrative systems. ASME conference on design theory and
methodology, Baltimore

Strang G (1980) Linear algebra and its applications. Harcourt Brace
Jovanovich, New York

Sullivan KJ, Griswold WG, Cai Y, Hallen B (2001) The structure and
value of modularity in software design. In: Proceedings of the joint
international conference on software engineering and ACM SIG-
SOFT symposium on the foundations of software engineering,
Vienna

Thomke S, Bell D (2001) Sequential testing in product development.
Manage Sci 47(2):308–323

Wheelwright S, Clark K (1992) Revolutionizing product development.
Free Press, New York

Yassine A, Braha D (2003) Four complex problems in concurrent
engineering and the design structure matrix method. Concurrent
Eng Res Appl (in press)

A. Yassine et al.: Information hiding in product development: the design churn effect

161


