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Abstract In this paper, a mathematical framework for
describing a variety of complex and practical design pro-
cesses is developed. We demonstrate that our model has
the desirable quality of representing several, seemingly
distinct, approaches as instances of the same framework.
In addition, General Design Theory is shown to be a
special case of the proposed framework. Using simple
examples throughout the paper, we also hint at the
potential for the framework to serve as a basis for a
descriptive study of design. Various design phenomena
such as design failure, identification of design knowledge
bottlenecks, and benefits of collaborative design could be
understood using the proposed model.
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1
Introduction
Mathematical formalisms of design have been of great
interest to many researchers over the years. The ability to
formalize a complex problem such as design, and solve it
using algorithms whose results could be proven and per-
formance guaranteed, have been a major attracting force.
This interest has been equally received with skepticism
since these ideas have made limited-scope impact on real
design. For example, General Design Theory (GDT)
(Yoshikawa 1981; Tomiyama and Yoshikawa 1987; Reich
1995) models design as an immediate result obtained once
all specifications are provided. The extended version of
GDT models design as an evolution of models (Tomiyama
and Yoshikawa 1987). However, the theory does not detail
the nature or process of this evolution.

Most researchers and practitioners recognize that
design processes cannot be fully formalized mathemati-
cally. Nevertheless, casting design in mathematical terms
serves several goals. First, by developing increasingly
better mathematical models of design we improve our
understanding about the limit of formalizing design and
the limit of automating it. Second, studying mathematical
models of design could produce practical guidelines or
ideas for implementing design support procedures or
systems.

Consider the following design scenario. A designer
obtains general specifications from a customer. She has in
mind several general ideas about addressing the specifi-
cations. She studies the specifications in relation to the
general ideas and refines them. She selects two of the ideas
and details them. The analysis that follows uncovers con-
straints not previously anticipated. These are added to the
specifications. The analysis results are contrasted with
design codes and requirements. New laws for recycling
take effect and need to be considered as part of the
evolving specification list. Therefore, an extended design
process commences and terminates when an acceptable
solution is found.

Our goal is to develop a mathematical framework that
is broad enough to describe a variety of complex and
practical design processes. For example, the framework
has to account for the following properties of design
processes:

1. Design starts from some abstract specifications and
terminates with a description of a product.

2. In design, the product specifications are gradually
refined. Better understanding of the specifications is a
by-product of design.

3. Design is an iterative, exploratory, and sometimes
chaotic process.

4. Intermediate states of the design process might include
conflicting specifications and product description.

5. Design progresses by context-dependent activities:
thinking, alternatives, and decisions emerge from the
situation as it unfolds by bringing diverse knowledge to
bear on the present context.

6. Designers make use of diverse knowledge whether they
work alone or collaboratively.

7. Design is about finding solutions, not (globally) optimal
solutions. Designers generally do not receive the
knowledge or resources needed to achieve optimality.

Our mathematical framework should also be detailed
enough (1) to allow theoretical statements about design
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procedures to be made, and (2) to provide ideas for
improving practical processes and insight regarding their
outcome. In line with the descriptive focus of the frame-
work, we do not suggest that we can automate design pro-
cesses, nor is it our goal. Moreover, some of the constructs in
the framework are computationally expensive to create or
manipulate; therefore, our framework suggests that it is less
than likely for design automation to be realized.

We present our framework in two steps in order to
improve its clarity. Initially, we present a basic model
that introduces several key concepts, even though it is
unrealistic. Subsequently, we introduce an extended
model that addresses the aforementioned properties of
design processes. Due to space limitation, we illustrate
only several concerns and leave the rest to subsequent
papers.

The remainder of the paper is organized as follows:
Section 2 provides an overview of the models; Section 3
describes the framework in more detail; and Section 4
illustrates the benefits of the framework. First, we show
that GDT is a special case of our framework. Second, we
show how a simple rule-based design system can be cast as
an instance of the framework. Third, we briefly demon-
strate how the learning system ECOBWEB (Reich and
Fenves 1992) can be interpreted in our framework. Section
5 concludes the paper.

2
Overview of the models
This section presents an overview of the various ‘‘prox-
imity’’ models for engineering design processes. The
proposed models clarify and extend previous work (Braha
and Maimon 1998), motivated by empirical observations
on how engineers design (e.g., Akin 1979; Blessing 1995;
Ullman et al 1986; Hales 1987) and the nature of complex
product design activities (Blessing 1995; Hales 1987; Reich
et al 1999). In the following, a basic model for design
synthesis is described, and several key concepts such as
proximity and process are introduced. Subsequently, an
extended model for design synthesis is presented that
reflects scenarios that are more realistic.

2.1
Basic model
The basic model formulates design as a process that starts
from abstract specifications such as customer needs or
functional requirements in the function space. These
specifications are iteratively refined by moving to a better
‘‘proximal’’ specification list. At some point, the designer
is able to match partial structural information, in the
structure space, with the current refined specifications.
Then, the process continues in the structure space by
refining the partial structural information until a design
solution is obtained. This process is depicted in Fig. 1.

Roughly speaking, this process is viewed as a local
exploration procedure that finds a design solution (terminal
state) with respect to the proximal structure. That is, if fi is
the ‘‘current’’ (‘‘tentative’’ at stage i) specification list, then
fi+1 is a proximal refined specification list if it does not differ
substantially from fi. Given a tentative specification list fi,
the local exploration looks for a proximal refinement of fi.

When no further refinement is possible1, the ‘‘refinement
phase’’ stops, the synthesis mapping begins, and a similar
refinement process is carried out in the structural domain.
We call this process the basic model.

To support local exploration of a specific design problem
we need a method for finding the initial description at each
phase of refinement (i.e., f0 or d0), and a proximal structure
of any feasible description. We also need to know how to
select among several proximal items at each refinement step
so as to arrive at better solutions.

In this paper, we propose a formalism that captures the
above considerations. This is done by introducing a
proximal structure called closure space (or proximity
space, see Cech 1966). For each functional description f (or
structural description d) in the function space F (or in the
structure space D), a closure UF( f) (or UD(d)) is identified.
Given two functional descriptions f and g, if g2UF( f) we
say that g generates f, or f is generated by g. We also define
the closure of any set of functions. In a logical framework,
the closure operation may be associated with abduction
(see Takeda et al. 1990 for discussion on abductive infer-
ence in design). That is, for any two expressions a and b, if
b2U(a) then b fi a (see Sect. 4.2). Obviously, the closure
operation can be realized in many other ways (see
Sect. 4) depending on the refinement strategies used to
create the proximal structure. In view of the local explo-
ration presented above, the model in Fig. 1 is elaborated in
Fig. 2.

Fig. 1.

Fig. 2.

1 For instance, when the designer reaches a specification fn that
cannot be refined due to limited knowledge, or when sufficient
information is gathered that enables the ‘‘synthesis’’ mapping to
take place.
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Each circle in Fig. 2 represents the closure of the
current description (functional or structural). In general,
the closure of a description contains more than a single
element. A unique design process is obtained by selecting
at each refinement stage a single generating element out of
many possible ones.

The creation of the closure and the selection of a
generating element are knowledge driven. Therefore, the
availability, richness, and coherence of knowledge strongly
influence the ability to obtain quality design solutions.
Missing, partial, or otherwise poor quality knowledge will
lead to familiarity with only part of the closure, potentially
exploring only inferior parts of the closure, leaving out the
more promising solutions.

We denote the synthesis operation as a mapping ! from a
functional description to a set of structural descriptions,
where each selected structural description may be described
in terms of partial information only. The selected structural
descriptions correspond to the output of the particular
synthesis method the designer uses. Our formalism provides
the means for representing several possible design pro-
cesses. For instance, the set of all design solutions (structural
descriptions) that can be obtained from the initial specifi-
cation list f0 by applying two steps of functional refinements,
synthesis, and two steps of structural refinements can be
formally described as follows:

UD UD ! UF UF f0ð Þð Þð Þð Þð Þ ð1Þ

Equation 1 encapsulates the set of all trajectories that are
obtained starting from f0 and ending with a design solution
with the same given number of steps. More generally,
different design solutions or trajectories might require a
different number of design steps as shown in Fig. 3. A single
trajectory, which defines only one possible candidate
development, is a list of ‘‘visited’’ functional and structural
descriptions. A single trajectory can be described by
selecting, at each stage, one description from the closure of
the current description. In reality there are sometimes few
parallel candidate developments as shown in Fig. 3.

2.2
Limitations of the basic model
The basic process model has several limitations. First, it is
too linear. The designer carries out an extensive phase of

specification refinement, followed by a ‘‘synthesis jump’’
and an extensive phase of solution refinement (see Fig. 1).
This model is ‘‘basic’’ in the sense that some aspects of
‘‘real design’’ are not captured by the model, including (1)
repeated interplay and multifold contextual mappings
between the function and structure spaces, (2) the asso-
ciation-intensive search and feedback loops involved, and
(3) the continuing learning that refines the requirements
even during synthesis. To overcome these and other sim-
plifications, we propose an extended topological model
called coupled design process.

2.3
Real design model
The extended model captures the interplay between
design descriptions (or process states), each of which is
represented by a pair2 of functional and structural
descriptions <f,d>. This extension, which simultaneously
handles the function and structure spaces, could be further
expanded to explicitly incorporate and deal with more
complex models that have functional, structural, behav-
ioral (e.g., <f,d,b>), or other design aspects such as the
environment, organization, and design processes em-
ployed by designers (Blessing 1995). The nature of the
interplay is not built into the framework (similarly to not
insisting on a particular form of proximal structure as
discussed above). Therefore, the framework could model
different views of design such as design as exploration
(Smithers 2000), or empirical findings about design such
as the diffused distinction between different design stages
as seen in real projects (Dasgupta 1994; Hales 1987).

Formally, design descriptions are elements of the
Cartesian product of the function and structure spaces
F·D, which is called the design space. A ‘‘coupled design
process’’ is performed as follows. The designer starts with
the initial design description <f0,d0>. The f0 are the initial
specifications and d0 is the initial context description, e.g.,
a product during redesign or improvement or an abstract
idea. In general, during the transition from the current

Fig. 3.

2 This natural type of representation has been utilized, explicitly
or implicitly, as a means for describing the design process by
other researchers (e.g., Pahl and Beitz 1984; Gero 1990; Takeda
et al. 1990; Dasgupta 1994; Simon 1996; Suh 2001). Here, we use it
as a basis for modeling the underlying topological spaces.
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design description <fi,di> to the new design description
<fi+1,di+1>, both structural and functional descriptions
can be refined. This transition can explain complex pro-
cesses involving simultaneous refinement of the structural
and functional descriptions. It can also capture pure
synthesis, which maps part of the functional description fi

to a structural description that augments the current
structural description di. In this case, the new functional
description fi+1 incorporates specifications that have
already been satisfied as well as those that remain to be
satisfied.

The refinement and synthesis operations are context
dependent; that is, both fi and di are needed in order to
carry out the operations. In addition, <fi,di> may be re-
fined in case some design constraints are violated (see
example in Sect. 4.2).

To capture the transition operation using our formal-
ism, we simply introduce a proximity structure for the
space F·D. That is, for each design description <fi,di>, a
closure operation UF·D(<fi,di>) is identified. Every design
description in UF·D(<fi,di>) generates the design descrip-
tion <fi, di>. The coupled design process is illustrated in
Fig. 4. Each circle in Fig. 4 represents the design descrip-
tions obtained by applying the closure operation. In gen-
eral, the closure of the current description includes more
than a single element. In real design, it could contain an
infinite number of elements. Thus, a unique design process
is obtained by selecting at each stage a single element out
of the many possible ones without necessarily creating the
complete closure. A design process ends with a design
description of the form <fn,dn>, where fn are the detailed
specifications manifesting a deeper understanding of the
problem, and dn is a design description that satisfies these
specifications and can be realized. Given <fn,dn>, dn may
satisfy fn though it may not be realized, in which case
<fn,dn> is not a final state. This intermediate favorable
situation can happen particularly during conceptual or
detailed design stages. In these situations, designers con-
tinue to refine the specifications knowing they are still
incomplete. We might be able to say that in such a

situation conceptual design terminates and another stage
begins in a new space.

2.4
Relating the basic model to the real design model
If the closure operation UF·D can be decoupled into two
independent closure operations UF and UD, such that
UF·D(<f,d>)=UF(f)·UD(d), then <fi,di> can be refined to a
new design description <fi+1,di+1> by first refining fi using
UF and then refining di using UD. (When d0=/, we need
the synthesis operation to obtain d1.) The effect of the
closure operation UF (similarly UD) can also be viewed as
applying UF to the projection of the pair <fi,di> onto its
f-coordinate (similarly d-coordinate).

The basic design process presented in Fig. 2 is a special
case of the real design model presented above. Indeed, the
basic design process can be described as a sequence of
design descriptions <f0,/>, ... <fn,/> followed by a syn-
thesis mapping that leads to <fn+1,d0>, and a sequence of
design descriptions <fn+1,d0>, <fn+1,d1>, ... <fn+1,dm>. For
example, <fn+1,/>is generated from <fi,/>, where fn+1 is
selected from the closure UF(fi). This description is illus-
trated in Fig. 5, where it is shown that a basic design
process (solid line) follows a specific pattern, i.e., a se-
quence of operations in the function space, and is followed
by synthesis and a sequence of operations in the structure
space. In general, however, we cannot perform such de-
coupling because design decisions are context dependent,
i.e., both the current specifications and the product
description affect refinement decisions. For expositional
purposes (and without loss of generality), we introduce the
model assuming the basic process presented in Fig. 3.

3
Topological structures for design
In this section, we present a model that attempts to
cast design more formally in the framework of general
topology, in particular closure spaces (Cech 1966). In this
paper, we have considered general topology as a mathe-
matical base for our discussion. By placing richer struc-
tures on a topological space, additional spaces may be
obtained (e.g., especially metric spaces). Here we follow a

Fig. 4.

Fig. 5.
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‘‘least committed’’ research approach, where some of these
extended spaces will warrant continued attention over
time, and will be introduced as they arise naturally in
applications. For brevity and clarity, some of the formal
definitions and theorems are excluded (they are presented
in Braha and Maimon 1998), and concepts are presented
intuitively.

3.1
Structure and function spaces
The structure and function spaces are defined as follows:3

Definition 1
A structural description d is defined by its observable or
otherwise measurable attributes. The attributes may be of
several types, e.g., physical or geometrical. A structural
description has respective values for its attributes. For
designers, the structure space is the set of all structural
descriptions they can generate with their present knowl-
edge; this is denoted by D.

Definition 2
A functional property is the behavior that an artifact dis-
plays when it is subjected to a situation. The collection of
all functional properties observed in different situations is
the functional description of the artifact. The function
space is the set of all functional descriptions, and is de-
noted by F. A functional description f2F is also referred to
as a design specification list since it designates the sought-
for functionality of the artifact.

In a similar way, we could introduce into the formu-
lation additional aspects beyond D and F, such as behav-
ior, as desired by a particular design approach. The next
definition formalizes the intuitive notion of proximity in
the structure and function spaces. The definitions are
provided for the related function space. Similar definitions
can be provided for a structure space or coupled space
(discussed in Sect. 2.3).

3.2
Closure spaces

Definition 3 (Closure operation and function space)
If UF is a function that maps a set of functional descrip-
tions to a new set of functional descriptions (i.e., UF is a set
function that maps elements of 2F, denoting the power set
of F, into 2F), then we say that UF is a closure operation (or
closure) for F, provided that the following conditions are
satisfied:

1. UF(Ø)=(Ø),
2. F ˝ UF(F) for each F ˝ F, and
3. UF(F[G)=UF(F) [UF(G), for each F ˝ F and G ˝ F.

The structure <F,UF> is called a closure function space.
A closure operation UD for the structure space D is defined
in a similar manner. The structure <D,UD> is called a

closure structure space; in real design, the closure would
originate from the designers’ knowledge or other sources.

Discussion
If F={f}, then every functional description g in the closure
of f (i.e., such that g2UF(f)) is termed as a generator of f
(see Figure 6). Alternatively, we say that g generates f, or
that f is generated by g. In general, for any subset F ˝ F,
any functional description f in the closure of F (i.e., such
that f2UF(F)) is termed as a generator of F.4 Intuitively, f
is a generator of F if f generates some functional
description in F as illustrated in Fig. 7.

Generally speaking, the relation ‘‘generated by’’ is
associated with the relation ‘‘refined by’’. That is, as related
to the process presented in Fig. 2, the progression from a
specification list fi to a refined specification list fi+1 implies
that the specification list fi is generated by the refined
specification list fi+1, or that fi+1 generates fi. In formal
terms, the refined specification list fi+1 is included in the
closure of fi.

As discussed in Sect. 2.1, in reality there are sometimes
several parallel candidate developments starting from the
initial specification list f0 (see Fig. 3). Applying Definition
3, this situation may be described as follows. The designer

Fig. 6.

Fig. 7.

3 Some definitions may resemble GDT terminology (Yoshikawa
1981); nevertheless, as already discussed, GDT is only a special
case of our framework.

4 Note that we use the term ‘‘f is a generator of F’’ although f may
only generate part of F.
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starts by creating the closure of f0, UF(f0)=F. Creating the
entire closure may be an expensive operation. Therefore,
the designer may create part of the closure, and make a
decision based on the partial knowledge regarding the
complete closure. Each specification list in F generates f0.
While creating the closure, the designer may select and
proceed with any refined specification list in the part of F
thus far created. The next refinement step involves finding
the closure of the selected refined specification list. This
step is repeated until no further refinements are possible
(more detail regarding this later). Thus, F denotes the set
of all possible refined specification lists of f0. Similarly, the
closure of F, UF Fð Þ ¼

S

f2F

UF fð Þ, denotes the set of all

possible refined specification lists in the second and sub-
sequent stages. A trajectory of a refinement process is
created by selecting a single specification list from each
closure in each refinement stage (see Fig. 3). In real design,
one or several trajectories are explored, and the complete F
or UF(F) are not exhaustively created due to limited re-
sources such as time, money, or knowledge.

Having examined the meaning of the closure concept,
let us explore its structure. First, it is clear that F is in-
cluded in its closure. The closure of F may be composed of
the following three categories:

1. Specification lists that are included in F such that each
one does not generate any other specification lists in F
(except for themselves).

2. Specification lists that are included in F such that each
one generates specification lists in F (other than
themselves).

3. Specification lists that are not included in F, and such
that each one generates specification lists in F.

Each specification list that falls within the second and
third categories above is called a cluster point, and the set
of all cluster points is called the derivative of F as illus-
trated in Fig. 7. The specification lists that are included in
the derivative of F, and that are not included in F (class 3),
represent the new explicit information that is gained by
applying diverse knowledge during the refinement process.
Thus, the closure of a set F is the union of F with its set of
cluster points. The formal definition of a cluster point and
derivative of a set is presented in Appendix 1.

Often, solving a design problem is a collaborative effort
carried out by several designers, each possessing different
knowledge. The notion of a closure may be useful in
interpreting some aspects of collaborative design. The
following example illustrates a simple collaborative sce-
nario. Assume that there are two designers, Alice and Bob,
working collaboratively on a certain problem. Bob and
Alice each carry out (independently) few parallel candidate
developments based on his/her private knowledge. At
some point in the refinement process, Bob and Alice share
their intermediate results FBob

n and FAlice
m , respectively. Each

set represents a set of possible refined specification lists
(starting from f0). If FBob

n and FAlice
m intersect, they can

continue together to refine the intersection; otherwise,
they will have to collaborate together to find refinements
within a closure created by their mutual knowledge. In
some cases, the collaboration means creating shared

terminology, effectively realizing that their closure struc-
tures overlap. In other cases, there are true gaps in their
knowledge that mandate collaborative learning. The
intersection of sets or the closure created by mutual
knowledge is more focused than each of the sets or clo-
sures separately. The usefulness of collaborative design
may be seen through the above topological illustration.

Definition 4 (Closed sets)
A subset F of a closure function space <F,UF> is called
closed if UF(F)=F. Closed sets in a closure structure space
<D,UD>are defined in a similar manner.

Discussion
Intuitively, a set F is closed if every element in F is gen-
erated only by elements in F as shown in Fig. 8. As ex-
plained above, the set of all possible refined specification
lists (starting from f0) in a particular stage of refinement
can be defined recursively as follows:5

1. F0={f0}
2. F1=UF(F0)
3. Fi+1=UF(Fi)

If, at some stage, the derived set of refined specification
lists Fn is a closed set6, then we are assured that every
specification list in Fn is generated only by specification
lists in Fn. Thus, no further refinement stage that yields
new refined specification lists (or new information) is
possible. Formally, it means that UF(Fn)=Fn. In a real sit-
uation, this means that there is not enough information to
further continue design exploration in the function space.
Therefore, the refinement process stops and synthesis must
begin (see Fig. 1). Prior to performing the synthesis
operation, the designer searches within Fn for a suitable
refined specification list that can be mapped to structural
descriptions in the structure space. The refinement process
in the structure space then begins (see Fig. 1). It is
important to note that not every refinement process will
end with a closed set in a finite number of steps. However,
if at some point a closed set is found, then the refinement
process stops.

Fig. 8.

5 It could be prohibitively expensive to generate this set in real
design.
6 It may be impossible to verify this property in real design;
however, engineering intuition, experience, or lack of knowledge
might imply it.
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As stated above, the set of all possible refined specifi-
cation lists (starting from f0), at any particular stage of
refinement, can be defined recursively as Fi+1=UF(Fi). It
can be shown that, after a long time (even an infinite
number of steps), repeated application of the closure
operation UF will result in a closed set. That is, lim

i!1
Fi is a

closed set. Therefore, every refinement process must ter-

minate at some point (though not necessarily at a usable
or good specification).

3.3
Interior, neighborhood, and the analysis process
For any set F, the interior of F is defined as the set of
descriptions in F that generate descriptions only in F. For
example, the set {f1,f2,f3} in Fig. 9 is the interior of F. The
description f4 is not included in the interior of F since it
generates some description that is not in F. If we verify
that the functional description f is included in the interior
of a set G, then G is a neighborhood N(f) of the functional
description f. In general, if a set F is included in the
interior of a set G, then G is a neighborhood of F. The
formal definitions are provided in Appendix 1.

Discussion
The definitions of interior and neighborhood are useful for
interpreting certain analysis activities as follows. The
designer starts with a candidate design solution d0 that
needs to be analyzed. Sometimes, d0 cannot be analyzed
directly (e.g., by performing finite-element analysis), since
its structural description is not provided in a form suitable
for analysis. To overcome this problem, the designer
creates a series of successive design descriptions, such that
each design description in this ‘‘implication’’7 chain is
implied by the design description that precedes it. After a
suitable structural description dm is obtained, the designer
is able to analyze the object. This analysis operation, G, is
expected to result in the behavior of the product f0. A
similar implication process is followed for the function
space until a comprehendible behavior for the product is
obtained. For example, in finite element analysis, the initial
design description is broken down into an analysis model
dm. This includes a series of abstraction steps as well as
detailing steps for preprocessing the product information,

which is required by the underlying analysis procedure.
The design description dm is analyzed in order to extract
the detailed design behavior f0, which undergoes postpro-
cessing to result in a compressed, user-friendly result fn.

How can the above analysis process be described using
our topological concepts? This is done by equating the
relation ‘‘di+1 is implied by di’’ with ‘‘di+1 is generated by
di’’ or ‘‘di generates di+1’’.8 Therefore, if N(d) is a neigh-
borhood of structural description d, then by the neigh-
borhood definition every structural description that is
implied by d (or ‘‘is generated by d’’) must be in N(d). By
associating a neighborhood with each structural descrip-
tion d (similarly functional description f), the analysis
process can be described as shown in Fig. 10. Each circle
in Fig. 10 represents a neighborhood of the current
description (functional or structural). In general, the
neighborhood of a description can contain more than one
element. In this case, the designer explores the neighbor-
hood for descriptions that the current description gener-
ates. Since every description that is generated by f is
guaranteed to be in its neighborhood, the designer can
focus her exploration efforts on the neighborhood of the
current description (whose cardinality is much smaller
than all possible descriptions). A unique analysis process
is obtained by selecting, at each stage, a single description
out of the many possible neighborhood descriptions.

3.4
The relationship between neighborhoods and closures
Two main topological concepts have been introduced thus
far. The closure operation serves as the underlying concept
for design synthesis, while the neighborhood concept is
used for modeling design analysis. We anticipate that they
have a relationship given the similarity between Figs. 10
and 2. However, design analysis is supported by employing
neighborhood processes (Fig. 10), whereas design
synthesis is driven by closure procedures (Fig. 2). The
following simple but important theorem shows that
closures are completely determined by neighborhoods
(see also Fig. 11).

Theorem 1
A functional property f2F belongs to the closure of a
subset F of a space <F,UF> if and only if each neighbor-
hood of f in <F,UF> intersects F.

Fig. 9.

Fig. 10.

7 Note that our use of the term ‘‘implication’’ is not necessarily
identical to ‘‘logical implication’’. In a logical framework, the
implication relation is associated with deduction. Consequently,
by modus ponens, every description in the implication chain is
implied by the initial candidate solution d0.

8 <fn>Recall that ‘‘di+1 is generated by di’’ or ‘‘di generates di+1’’ if
di2UF(di+1).
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Discussion
As shown above, a closure space can be constructed by
directly providing the closure operation (see Definition 3).
This requires that for each description, the designer has
knowledge regarding the set of descriptions that generate
it. Theorem 1 suggests an alternative way of constructing a
closure space by using neighborhoods. In reality, creating
the entire neighborhood system for each description may
be an expensive operation, in which case the following
approximate procedure may be employed:

Algorithm Approximate Closure

Input: functional property f ; collection of neighborhoods

Output: The approximate closure of f

begin

for several g 2 F do

begin

if most neighborhoods of g contain f then

add g to the closure of f

end

return approximate closure of f

end

An approximate closure accounts for real, imperfect,
partial, or incorrect knowledge; thus, it may help to ex-
plain design failures. In contrast, limited resources can
explain suboptimal designs. Studying the nature of
approximate closures is a subject for future work.

It is also possible to construct the neighborhood of any
design description by utilizing the closure operation. In-
deed, neighborhoods have been defined using the interior
concept (see Appendix 1). The interior of a set, in turn, has
been defined using the closure operation (see Appendix 1).
This quality, together with Theorem 1, renders the
neighborhood and closure concepts ‘‘dual’’.

3.5
Open sets

Definition 5 (Open sets)
A subset F of a closure function space <F,UF> is called
open if its complement (relative to F) is closed, i.e., if
UF(F)F)=F)F. Open sets in a closure structure space
<D,UD> are defined in a similar manner.

Discussion
A set is called open if every description in the set
generates only descriptions that exist within the set. It
was shown that closed sets play an important role in
synthesis processes. Specifically, if at some point a
closed set is found, no further stage of refinement that
yields new refined specification lists (or new informa-
tion) is possible, and the refinement process stops. This
situation can trigger knowledge acquisition in an at-
tempt to continue the refinement or synthesis processes.
The open set concept has a similar role in the context of
analysis processes. That is, if at some stage of ‘‘impli-
cation’’, the set of all structural descriptions Dn that can
be generated from d0 is an open set, then we are assured
that every description in this set generates descriptions
that already exist within the set. In this case, the
implication process stops and the analysis operation
may be applied as shown in Fig. 10. This is the ultimate
analysis that uncovers the underlying behavior of the
product. Prior to performing the analysis operation, the
designer explores within Dn for a suitable structural
description that can be mapped into functional
descriptions in the function space. This is followed by a
derivation process in the function space. It is important
to note that not every derivation process will end with
an open set. However, such an occurrence will guarantee
the termination of the derivation process.

4
Putting the framework to use
In order to illustrate the usefulness of the framework
and explain the various concepts, three examples are
presented. The first example shows that General Design
Theory (GDT, see Yoshikawa 1981; Tomiyama and
Yoshikawa 1987; Reich, 1995) is a special case of our
framework. The second example clarifies the various
concepts through a simple knowledge-based design
system. The third example demonstrates how the ma-
chine learning system ECOBWEB (Reich and Fenves
1992) can be elucidated in our framework.

These three examples follow the same structure:

1. Given a particular context, interpret the closure and
neighborhood concepts in a way suitable to the context.

2. Collect the knowledge to realize the interpretation.
3. Execute design situations.

The three examples are very different, demonstrating
the diversity of situations that can be understood with the
framework. These examples certainly are not indicative of
the scope of the framework.

4.1
General Design Theory (GDT ) as a special case

4.1.1.
Topological closure spaces
GDT is defined in terms of the set of all real artifacts that
did exist, do exist, and will exist S; and a collection of
subsets (called abstract concepts) of the space S that satisfy
the axioms of point-set topology (Croom 1989). For
example, in the domain of chairs (Reich 1995) S includes

Fig. 11.
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eight chairs as depicted in Fig. 12. One abstract concept
could be chairs that constrain back defined as the set
{B,C,F,G}. Another concept could be a movable chair
consisting of {A,E,F,G,H}.

Let us call <S,J> the Yoshikawa–Tomiyama space (Y–
T space). According to GDT, a design process is a mapping
between a Y–T function space and a Y–T structure space
(see Reich 19959). For example, the specification of a chair
that will be movable and constrain back leads to two po-
tential designs, F and G. These designs can be generated in
two ways. The first way starts with {A,E,F,G,H} as the
movable designs and refines them (by set intersection)
with the constrain back property. The second way starts
with {B,C,F,G} as the constrain back designs and refines
them with the movable property. Note that the refinement
process was made easier by the use of the eight repre-
sentative chairs as mediators between the specification and
the design description. In the absence of these chairs, the
process might have been more difficult.

In the following, we show that the GDT’s main
assumption regarding design knowledge being a ‘‘point-set
topology’’ is a special case of our main concept of closure
spaces. To this end, we show that for every Y–T space
there corresponds a unique closure space, and that the
Y–T space can be derived from this unique closure space.
We also demonstrate how to construct the unique closure
space. This can be done without knowing all the entities in
advance.

First, it can be shown that the open sets (Definition 5)
of any closure space <S,Us> satisfy three conditions, which
are the axioms defining a point-set topology for S (Braha
and Maimon 1998). Next, we ask the following question:
given a Y–T space, is there a unique closure space <S,Us>,
such that the open sets of <S,Us> coincide with the sets in
the Y–T space? In general, the answer to this question is
negative. That is, for any Y–T space, there may correspond
many closure spaces where the open sets of each closure
space coincide with the Y–T space. However, if we focus
on a special class of closure spaces (called topological
closure spaces, see below), then it can be shown that for
any Y–T space there corresponds a unique topological
closure space (Braha and Maimon 1998). In other words, if
the open sets of two topological closure spaces coincide
with the sets of some Y–T space, then the two topological
closure spaces are identical (in the sense that both have
the same closure operation). Therefore, Y–T spaces

correspond to a subset of closure spaces. This quality
makes closure spaces more general than Y–T spaces. How,
then, is a topological closure space defined?

A topological closure space is a closure space <F,UF>
where each UF(F) is a closed set (see Definition 4). That is,
if we apply a refinement process starting from the initial
specification list f0 (see Fig. 2), then any refinement pro-
cess ends in a single step! The reasoning is as follows:
starting from f0, we create the closure UF(f0) of f0. Next, we
find the closure UF(UF(f0)) of UF(f0). However, since
<F,UF> is a topological closure space, UF(f0) is a closed set,
and thus UF(UF(f0))=UF(f0). Consequently, no further
refinement is possible and the refinement process termi-
nates. This type of design process is rather unrealistic;
nevertheless, it is also a consequence of GDT axioms
(Reich 1995). Next, we show how to construct the topo-
logical closure space out of a Y–T space.

4.1.2
Constructing a topological closure space from a Y–T space
First, we need to define two concepts related to Y–T spaces
(not to closure spaces): (1) limit point (also called cluster
point) of a subset S; and (2) closure of a subset S (not to be
confused with the closure operation of a closure space).

Definition 6
Let <S, J>be a Y–T space. An entity s* (real artifact) in S
is a limit point of a set S ˝ S if every abstract concept in
containing s* contains a point of S distinct from s* (see
Fig. 13). The set of limit points of S, S¢, is called the derived
set of S. The closure S of S is the union of S with its set of
limit points, i.e., S = S[S¢.

Discussion
An entity s* is a limit point of a set S={s} if every
property of s* is also a property of s (recall that in GDT
properties are abstract concepts). In general, an entity s*

is a limit point of a set S if every property of s* is also a
property of some entity in S. Having defined the closure
of a set in a Y–T space, the closure operation UF in the
corresponding topological closure space is defined simply
as UF(S)=S. The structure space is defined similarly. It
can be shown that the above construction satisfies three
conditions, which are the axioms defining a closure
operation (Braha and Maimon 1998). The closure oper-
ation can be used in design execution. For instance,
starting with the specification ‘‘a chair that will be
movable and constrain back,’’ the designer starts with a
Scandinavian chair (chair E in Fig. 12) that is known to
be movable (but not to constrain back), and explores

Fig. 12.

Fig. 13.

9 We use this source rather than the original papers since it
summarizes GDT with simple intuitive examples.
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similar chairs in the closure of E, UF({Scandinavian
Chair}). This step will obtain all the chairs that share
similar functional properties with E. In particular, if there
is a chair that is both movable and constrain back, it will
be included in the closure of E (e.g., office chair and
wheel chair). The designer searches within the closure UF

({Scandinavian Chair}) for a suitable design solution
(e.g., wheel chair) and then performs the synthesis
operation that uncovers the structural description of the
wheel chair in the structure space.

To summarize: (1) the closure of a subset in a point-set
topology is the particular interpretation of the closure
operation in a related topological closure space; (2) entities
are the knowledge elements; and (3) design processes
are executed as described above as a consequence of the
closure interpretation.

4.2
Rule-based design
This section presents a simple rule-based design example
in order to illustrate the topological concepts presented in
this paper. Rule-based systems are useful for this illus-
trative purpose since their two methods of control—for-
ward chaining and backward chaining—can be construed
as forms of analysis and synthesis.

Using forward chaining, we start with the known facts
in the knowledge base and generate new conclusions that
in turn can allow more inferences to be made (Russell and
Norvig 1995). This kind of deductive inference is useful in
design analysis, where the task is to uncover the behavior
displayed by the artifact when it is subjected to various
situations.

Alternatively, the strategy of backward chaining is to
begin with the functional requirements we want to
achieve, and then attempt to accomplish their conditions
(new functional requirements). In backward chaining, the
search process is repeated recursively when there is a
goal (functional requirement) to be achieved. This is
done by selecting and applying transformation rules to a
candidate unsatisfied goal. The search process terminates
whenever a set of functional requirements is identified,
which can be matched to known structural attributes. If
incompatibilities (e.g., violated constraints) happen in
later design phases, then backtracking is applied and the
inference engine generates another set of unsatisfied
goals. Design synthesis, which is the task of finding a
structure given a functional requirement, is likely to
utilize backward chaining rather than forward chaining
(e.g., Takeda et al 1990). In order to automate a back-
ward chaining inference engine, it is important to gen-
erate ‘‘effective’’ subgoals in a controlled manner as well
as employing efficient backtracking methods in order to
deal with the enormous search space of possible goals
(Chandrasekaran 1990).

4.2.1
Rule-based design and closure spaces
Let <fi,di> be all the information (at any stage of the
solution process) about the problem being solved,
where fi and di are the current functional and
structural descriptions, respectively. By utilizing a

backward chaining inference mechanism (also called
abduction), a new design description <fi+1,di+1>is ob-
tained. The descriptions <fi,di> and <fi+1,di+1> are re-
lated via the logical formula <fi+1,di+1> fi <fi,di>, where
<fi+1,di+1> is referred to as the antecedent and <fi,di> as
the consequent10. The above logical implication is per-
formed with respect to the underlying designer’s
knowledge.

Backward chaining can be interpreted using our topo-
logical concepts as follows. For any two expressions a and
b, if b2U(a) then b fi a. That is, the closure of any
expression a includes expressions that logically derive the
expression a. By applying the above construction, rule-
based design can be cast into our design process frame-
work. The designer starts by creating part of the closure of
the initial design description <f0,d0>. This is performed by
applying one or more production rules in the knowledge
base (see example below). The designer selects any
description in UF·D(<f0,d0>), finds part of the closure of
the selected design description, etc.

The interpretation of abduction in terms of closures
may be extended to other topological notions. For exam-
ple, a set A is closed if every logical expression in A is
logically derived11 only by expressions in A. The interior of
a set A includes expressions in A that logically derive only
expressions in A. A set A is a neighborhood of an
expression a if the expressions that are logically derived by
a are included in A. Thus, if a is a known fact (e.g., ‘‘the
stretched area is 5·7 cm’’), then any expression that is
deduced by a (e.g., ‘‘the tensile stress is high’’) is included
in a neighborhood of a. This kind of deductive inference is
useful in analysis. A set A is open if every expression in A
logically derives only expressions in A. Thus, if an open set
A includes known facts, no new fact can be derived from
the known facts in A.

In the following, the problem of designing an auto-
mobile using a rule-based system is used to explain the
concepts of the topological model.

4.2.2
Automobile design example
Let the structural and functional descriptions be specified
in terms of a list of properties. The structural properties
that specify the configuration of actual cars as well as the
functional properties that are manifested by actual cars are
presented in Table 1a and Table 1b, respectively. A small
sample of the domain-specific knowledge relevant to the
car design domain is expressed in terms of the production
rules presented in Appendix 2.

Assume that the designer is faced with the problem of
designing a car that is able to achieve the following func-
tional attributes as requirements:

1. The car creates minimal pollution ( f 3).
2. The car is capable of high driving speed ( f 10).
3. The car has low fuel consumption ( f 12).
4. The car is safe ( f 18).

10 Here, in any formula of the form A fi B, A is referred to as the
antecedent and B as the consequent (Russell and Norvig 1995).
11By applying a specific knowledge base.
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The following ‘‘facts’’ are assumed: (1) the car is used for
family driving, (2) the external conditions are good, (3) the
maximum allowed speed is 160 km/h, and (4) the car is
used for urban driving.

The following constraints12 are further considered: (1)
the structural attributes ‘‘tire with 205 width symbol (d41)’’
and ‘‘tire with 155 width symbol (d42)’’ cannot be included
together in a design description, and (2) the structural

attribute ‘‘the car is electric-powered (d15)’’ cannot be in-
cluded in a design description if the functional attribute
‘‘the car has DIESEL ENGINE (f 2)’’ is satisfied.

The rule-based design system needs to search through
the problem space for a path from the initial requirements
to some state of the car’s structural description such that
the requirements f 18, f 10, f 12, f 3 are achieved, and while
adhering to the compatibility constraints.

In attempting to achieve the initial requirements, a
backward chaining inference with depth-first control
strategy is used by the rule-based system. In addition, if
any of the above constraints are violated during the search,
dependency-directed backtracking13 (Brown and Chandr-
asekaran 1989) is utilized and an alternative rule is chosen
from the list of available finite choices.

In the example, the design description is a conjunction
of structural and functional attributes (if a functional
attribute appears in a process state it means that it remains
to be satisfied). Table 2 shows the trace of ‘‘process
descriptions’’ <fi,di> generated in the course of searching
for a solution to the automobile design problem. As
mentioned above, <fi+1,di+1> is a description in the clo-
sure of <fi,di>. At each step of the search the consequent
parts of the production rules (listed in Appendix 2) are
matched against the current unsatisfied functional attri-
butes and known facts. The current unsatisfied functional
attributes in the design description <fi, di> are given by fi

as shown in the second column of Table 2. Since many
production rules may match the current description, the
preferred rule is the one that matches the first leftmost
unsatisfied functional attribute (a depth-first control
strategy). Topologically speaking, the designer selects a
refined description in the closure of <fi,di> according to
the above matching heuristic procedure.

To summarize: (1) the concept of logical abduction is
used as an interpretation of the closure operation; (2) a
rule base constitutes the knowledge; and (3) design and
analysis processes are executed as backward and forward
inferences, respectively.

4.3
ECOBWEB
ECOBWEB (Reich and Fenves 1992) is a machine learning
system that creates a classification hierarchy from design
examples that are represented by lists of property-value
pairs including functional and structural properties. Given
a partial design description (which could include only a
part of the functional specifications) and a previously
learned classification hierarchy, ECOBWEB can synthesize
a number of candidate designs from the hierarchy. The
candidates are complete descriptions of designs consisting
of all functional and structural descriptions. ECOBWEB
has several design strategies. It has been previously shown
that ECOBWEB approximates the topological structure of
GDT (Reich 1990). Now we illustrate how ECOBWEB’s

Table 1a. Structural attributes for the automobile design example

Structural attributes

(d1) 4-wheel drive (d23) High transmission ratio
(d2) 4-wheel steering (d24) Horn
(d3) 6–8 cylinders (d25) Hydraulic disk brakes
(d4) Absorbent front end (d26) Large pistons & cylinders
(d5) Air bag (d27) Light weight
(d6) Air-cooled engine (d28) Liquid cooling system
(d7) Air deflector (d29) Low & small structure
(d8) An engine that

deflects down
(d30) Muffler

(d9) Antilock braking
system (ABS)

(d31) Power brakes

(d10) Automatic belts (d32) Powerful starter
(d11) Catalytic converter (d33) Radial tire
(d12) Deep thread patterns (d34) Richer mixture fuel
(d13) Disconnecting

fan system
(d35) Rigid passenger

compartment
(d14) Drum brakes (d36) Stabilizers in the front
(d15) Electric powered (d37) Suspension system
(d16) Electronic ignition (d38) Tubeless tire
(d17) Extra differential (d39) Windshield defroster
(d18) Extra strong door (d40) Windshield washer & wiper
(d19) Extra-strong roof (d41) Tire with 205 width symbol
(d20) Fog lights (d42) Tire with 155 width symbol
(d21) Fuel injection (d43) Tire with 60 aspect ratio

symbol
(d22) High ground

clearance
(d44) Tire with U speed symbol

Table 1b. Functional attributes for the automobile design
example

Functional attributes

(f1) Aerodynamic design (f16) Passable in difficult terrain
(f2) Diesel engine (f17) Reliable tire
(f3) Creates minimal pollution (f18) Safe car
(f4) Easy parking (f19) Safe in accidents
(f5) Efficient engine (f20) Safe in bad weather
(f6) Economical (f21) Safe in flipping over
(f7) Reliable brakes (f22) Safe in head-on collisions
(f8) Heavy car (f23) Safe at high driving speed
(f9) High power output (f24) Safe in off-highway road
(f10) High driving speed (f25) Safe in poor external

conditions
(f11) High-volume

combustion chamber
(f26) Safe in poor visibility

(f12) Low fuel consumption (f27) Safe in side collisions
(f13) Low maintenance costs (f28) Small car
(f14) Mechanically

dependable and durable
(f29) Small engine

(f15) Off-highway tire (f30) High-powered engine

12 Constraints in discrete domains can be expressed as compati-
bility relations between attributes, stating that certain combina-
tions are allowed or not.

13 Dependency-directed backtracking provides a way of taking
into account the information about which pieces of knowledge
contribute to the failure. This information is used in the decision
of how far to backtrack.
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prototype-based synthesis strategy works in our frame-
work.

Given an initial <f0,d0> that could contain some func-
tional specifications and a partial design description, such
as design a highway bridge where vertical clearance (Clear-
G) governs (see Fig. 14), ECOBWEB gradually refines it
until it becomes a description containing all property-
value pairs <fn,dn>. The refinement is done in stages. First,
<f0,d0> is pushed down the hierarchy until a node is found
that has a characteristic value for functional or design
description properties (characteristics T-or-D and Lanes
in Node 1). These characteristics (if not part of the present
description <f0,d0>) are assigned to the current design
description. If it is a characteristic function, <f0,d0> is
transformed into <f1,d1> where d1=d0. If the characteristic
is a structural property, <f0,d0> is transformed into
<f1,d1> where f1=f0. If the node included a mix of func-
tional and structural characteristics, the description
<f0,d0> is transformed into <f1,d1> (that is, <{Purpose
Highway, Clear-G Governing, Lanes 2}, {T-or-D
Through}>).

Subsequently, the design is pushed down to Nodes 2
and 5 and its design description is augmented with Type
Simple-T and Material Steel while its initial specifications
are matched by the functions in these nodes. The design
could end here with an abstract description or, given di-
verse knowledge expressed in a deep hierarchy, the push
down operation would terminate when all the missing
design description properties have been matched with and
assigned characteristic values. Limited knowledge, exem-
plified by a shallow hierarchy, will lead to pushing the
description to a leaf node and completing the missing
values from that leaf.

Implicitly, the hierarchy created by learning from
examples can be interpreted as a sequence of closures. The
closure operation could be defined as: if <fi,di> is the
present description then its closure <fi+1,di+1> includes
the properties in <fi,di>with several additional properties.
ECOBWEB only approximates this closure (see Sect. 3.4);
therefore, its synthesis is not guaranteed to be successful at
all times. In particular, when the hierarchy is shallow, the

closure approximation is coarse and failures are
unavoidable. In contrast, when the hierarchy is deep, the
chances of getting successful results increase (Reich 1995),
even though the hierarchy is still an approximation of a
closure. ECOBWEB push down operation implements a
greedy search algorithm for reducing computational
complexity; therefore, no optimal designs are expected.

To summarize: (1) the hierarchical structure created by
learning is an approximation of closure; (2) the examples
are the source of knowledge; and (3) design processes are
executed according to the aforementioned procedure.

5
Discussion
We have described a mathematical framework of design
processes based on closure spaces. This framework is shown
to be more general than GDT. In addition, the framework
has been utilized to describe the operation of rule-based
systems, and a particular learning system. These results
demonstrate that our model has the desirable quality of
representing several, seemingly distinct, approaches as in-
stances of the same framework. It is important to note that
our framework is not suggested as a means for supporting or
proving theorems for automated design.

Using simple examples throughout the paper, we also
hinted at the potential for the framework to serve as a
basis for a descriptive study of design. Various design
phenomena such as design failure, identification of design
knowledge bottlenecks, and benefits of collaborative de-
sign could be described and understood using the frame-
work. This potential needs to be explored further.

Another consequence of the proposed model is related
to design sensitivity and design robustness. More specifi-
cally, the topological concept of continuity can be devel-
oped in order to address the important issues of product
and process robustness (Braha and Maimon 1998; Braha
and Reich 2001). By ‘‘process robustness’’ we mean the
desirable property of a design process by which a small
change in the input (i.e., specifications expressed in terms
of the product’s functionality) results in a slight
modification in the design process output (i.e., artifact’s

Fig. 14.
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structural description). Process robustness supports de-
sign synthesis since a new problem, whose specifications
differ slightly from the specifications of a known product,
may be solved by slightly modifying the structure of the
known solution (similar to case-based reasoning). This
may not yield a creative design but, nevertheless, a better
design. ‘‘Product robustness’’ refers to the positive aspect
of the product where only a small change in the product’s
behavior occurs when the product’s structure (e.g.,
geometry) is slightly perturbed. The robustness property
of a product also guarantees that a sequence of incre-
mental refinements to its structure (e.g., due to temporal
drift, deterioration, or failure) will cause only small
incremental changes to its functionality.

In the future, we intend to address several additional
issues. (1) Demonstrating the utility of the proposed
framework in classifying and analyzing different design
methodologies, such as the conceptual design with a
‘‘function structure’’ (Pahl and Beitz 1984), or the sys-
tematic concept generation for technical products (Hubka
and Eder 1988); (2) showing the utility of our framework
in describing collaborative design, and elaborating on the
consequences of design robustness as discussed above;
and (3) exploiting the computational aspects (considering
realistic approximation procedures) and considering the
underlying topological concepts (e.g., closure and neigh-
borhood).

Appendix 1

Cluster point, interior, and neighborhood

Definition A.1 (Cluster point of a set)
A cluster point of a set F in a closure function space is a
point f belonging to the closure of F){f} The set of all
cluster points of a set F is denoted by F¢ and called the
derivative of F in the closure function space. Clearly, the
closure of a set F is the union of the set F with its set of
cluster points.

Definition A.2 (Interior of a set)
With any closure UF for a set F there is associated the
interior operation intUF, denoted briefly by int. The
operation int is a function that maps elements of 2F into

2F, such that for each F�F, int(F)=F)UF(F)F). The set

int(F) is called the interior of F in <F,UF>.

Definition A.3 (Neighborhood)
A neighborhood of a subset F of a closure function space
N(F) is any subset G of F containing F in its interior. By a
neighborhood, N(f), of a functional description f of F, we
mean a neighborhood of the one-point set {f}. The
neighborhood system of a set F ˝ F (a point f2F) in the
space <F,UF> is the collection of all neighborhoods of the
set F (the point f ).

Table 3. A sample of rules for the car example

RULE 1 If the car has OFF-HIGHWAY TIRES and 4-wheel drive
and extra differential and high ground clearance and is light weight

Then the car is PASSABLE IN DIFFICULT TERRAIN
RULE 2 If the car is SAFE IN POOR EXTERNAL CONDITIONS

Then the car is SAFE and the external conditions are not good
RULE 3 If the car is SAFE AT HIGH DRIVING SPEED

Then the car is SAFE and the maximum allowed speed is 200 km/h
RULE 4 If the car is SAFE IN ACCIDENTS

Then the car is SAFE and the car is used for family driving and
the external conditions are good and the maximum allowed
speed is 160 km/h

RULE 5 If the car is SAFE IN POOR VISIBILITY and SAFE IN BAD
WEATHER and SAFE IN OFF-HIGHWAY ROADS

Then the car is SAFE IN POOR EXTERNAL CONDITIONS
RULE 6 If the car is SAFE IN HEAD-ON COLLISIONS and SAFE

IN SIDE COLLISIONS and SAFE IN FLIPPING OVER
and has automatic belts

Then the car is SAFE IN ACCIDENTS
RULE 11 If the car has an absorbent front end and air bags and an

engine that deflects down
Then the car is SAFE IN HEAD-ON COLLISIONS

RULE 12 If the car has extra strong doors
Then the car is SAFE IN SIDE COLLISIONS

RULE 21 If the car has AERODYNAMIC DESIGN and an EFFICIENT
ENGINE and a DIESEL ENGINE and a disconnecting fan
system and is light weight

Then the car has LOW FUEL CONSUMPTION
RULE 22 If the car has tubeless tires and radial tires

Then the car has RELIABLE TIRES
RULE 38 If the car has AERODYNAMIC DESIGN and an EFFICIENT

ENGINE and a DIESEL ENGINE and a disconnecting fan
system and tires with 155 width symbol and tires with 60 aspect ratio symbol

Then the car has LOW FUEL CONSUMPTION
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Appendix 2

production rules
A small sample of the domain-specific knowledge relevant
to the car design domain is expressed in terms of the
production rules presented in Table 3.
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