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Abstract This paper explores the role of one-at-a-time
experimentation in parameter design of engineering sys-
tems. The focus is on degree of improvement achieved
rather than on efficiency in estimating model parameters.
The performance of adaptive one-at-a-time plans is com-
pared with the performance of orthogonal arrays through
computer simulations based on data from 66 response
variables in 27 full factorial experiments described in
science and engineering journals and textbooks. From the
simulation results, a map of the expected gains in per-
formance is provided as a function of the degree of pure
experimental error and the strength of interactions among
experimental factors. When experimental error is small
(less than a quarter of the factor effects) or the interactions
among control factors are large (more than one-quarter of
all factor effects), an adaptive one-at-a-time strategy tends
to achieve greater gains than those provided by orthogonal
arrays.

Keywords Parameter design, Optimization, Design
of experiments, Orthogonal arrays, Robust design

1
Introduction
This paper provides guidelines for the selection of exper-
imental strategies in parameter design. This paper focuses
on two alternatives, one-at-a-time plans and orthogonal
arrays. The strength of interactions between variables and
the degree of pure experimental error are found to be the
two most important characteristics in determining the
choice of experimental design. If these characteristics can
be estimated a priori, the methods in this paper allow one
to determine which experimental strategy will most likely
provide the greatest benefit.

The term ‘‘parameter design’’ here denotes the process
of selecting nominal values for the set of design parame-
ters. Parameter design can be undertaken to optimize ro-
bustness or to optimize the nominal response. Parameter
design is necessarily preceded by concept design, which
defines the set of design parameters, and is often followed
by tolerance design, which defines allowable variations of
the design parameters about the nominal values.

At present, parameter design is usually carried out
using a range of experimental arrays. These arrays are
developed on a statistical basis to achieve desirable
properties such as balance, orthogonality, and rotatability,
which are important for maximizing the information
gained from a limited number of experimental trials. A
surprising result of this paper is that a simple adaptive
experimental plan will, under some conditions, provide
greater improvements on average even though it is less
statistically efficient and yields less information to explain
the improvement. More discussion of experimental
designs and related research is presented in Sect. 2.

The structure of this paper is as follows: Sect. 2 pro-
vides some background on one-at-a-time experiments and
orthogonal arrays as well as research on these experi-
mental designs; Sect. 3 describes the research methodol-
ogy used; Sect. 4 presents the results of the investigation;
and Sect. 5 presents a discussion of the results with an
emphasis on recommendations for use of these data.

2
Background

2.1
Adaptive one-at-a-time experiments
In a one-at-a-time plan, the experimenter seeks to gain
information about one factor in each experimental trial
[33]. This procedure is repeated in turn for all factors to be
studied. In an adaptive one-at-a-time plan, the experi-
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menter also seeks to optimize the response along the way.
The adaptive one-at-a-time plan studied in this paper is
described by the rules below:

– Begin with a baseline set of factor levels and measure
the response.

– For each experimental factor in turn:

– change the factor to each of its levels that have not
yet been tested, keeping all other experimental
factors constant;

Table 1 presents an example of this adaptive one-at-a-
time method in which the goal is to improve the response
displayed in the rightmost column, assuming that larger
is better1. Trial 2 resulted in a rise in the response com-
pared to trial 1. Based on this result the factor A is held at
level 2 throughout the rest of the example. In trial 3, only
factor B is changed, and this results in a drop in the
response. The adaptive one-at-a-time method requires
returning factor B to level ‘‘1’’ in the trial in which factor C
is modified. In trial 4, factor C is changed to level 2. It is
important to note that although the response rises from
trial 3 to trial 4, the conditional main effect of factor C is
negative because it is based on comparison with trial 2
(the best response so far). Therefore factor C must be reset
to level 1 before proceeding to toggle factor D in trial 5.
The procedure continues until every factor has been
varied. In this example, the preferred set of factor levels is
A=2, B=1, C=1, D=2, E=1, F=1, G=1, which is the
treatment combination in trial 5.

The adaptive one-factor-at-a-time method requires
n(k)1)+1 experimental trials given n factors each having k
levels. The method provides estimates of the conditional
main effects of each experimental factor but cannot resolve
interactions among experimental factors nor provide a
guarantee of identifying the optimal factor settings. Both
random experimental error and interactions among fac-
tors may lead to a suboptimal choice of factor settings.

2.2
Orthogonal arrays
An alternative to one-at-a-time experimentation emerged
with the development of factorial experimental design
methods, starting in the 1920s through the work of R.A.

Fisher. An orthogonal array is an important class of
experimental designs that emerged from this work. An
example is the OA8(27)2 depicted in Table 2. Unlike the
one-at-a-time designs, the orthogonal array is ‘‘balanced’’:
all of the levels of each factor are represented in the array
an equal number of times.

The OA8(27) array depicted in Table 2 allows one to
estimate the main effects of seven two-level factors in eight
experiments. In general, orthogonal arrays require
n(k)1)+1 experimental trials given n factors each having k
levels, the same scaling as for one-at-a-time designs.
Although orthogonal arrays require the same number of
experiments as one-at-a-time plans, they provide greater
precision in effect estimation. The variance of the factor
effect estimates is proportional to the inverse of the rep-
lication number. For example, the OA8(27) provides factor
effect estimates with one-quarter of the variance as the
one-at-a-time plan because each factor is held at each level
four times.

2.3
Prior work on orthogonal arrays
and one-at-a-time designs
Orthogonal arrays are recommended within the statistics
and design methodology literature for several uses:

– For screening experiments, in which the objective is to
reduce the list of candidate variables to a small number so
that subsequent experiments can be more efficient [18].

– For analyzing systems in which one is confident that
the experimental factors do not interact strongly. Some
call orthogonal arrays ‘‘main effect plans’’ [4].

– For use in robustness optimization in which the
objective is to induce noise via an ‘‘outer’’ orthogonal
array while searching for robust parameter settings via
an ‘‘inner’’ orthogonal array. This approach is recom-
mended by Taguchi and several other authors [30, 21,
7], but is not preferred by others [33, 14].

Use of one-at-a-time plans is generally discouraged by
modern texts on experimental design and quality
improvement [33, 14]. Reasons cited include:

– More runs are required for the same precision in effect
estimation.

– Some interactions between variables cannot be
captured.

Table 1. An example of the adaptive one-at-a-time method

Trial A B C D E F G Response

1 1 1 1 1 1 1 1 6.5
2 2 1 1 1 1 1 1 7.5
3 2 2 1 1 1 1 1 6.7
4 2 1 2 1 1 1 1 6.9
5 2 1 1 2 1 1 1 10.1
6 2 1 1 2 2 1 1 9.8
7 2 1 1 2 1 2 1 10.0
8 2 1 1 2 1 1 2 9.9

Table 2. Anorthogonal array OA8(27)

Trial A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

1Each of the seven factors can have two levels in this example.
Note that the response shown is purely notional and is designed
to provide an instructive example of the algorithm; it is not data
from any actual experiment.

2The notation OA8(27) denotes that it is an orthogonal array with
eight experiments with seven two-level factors.
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– The conclusions from the analysis are not general (i.e.
only conditional main effects are revealed).

– Optimal settings of factors can be missed.
– One-at-a-time plans essentially rule out the possibility

of randomization and can be susceptible to bias due to
time trends.

While the cautions mentioned above should be taken
into account in considering the use of a one-at-a-time
plan, the data shown in this paper suggest that there is a
role for one-at-a-time plans and that they are more
effective than orthogonal arrays under certain conditions.
A key question, for which the answer does not appear to
exist in quantitative terms, is thus under what specific
conditions should one make use of this approach. For
example, Friedman and Savage [8] suggested that one-
at-a-time plans are useful for optimization, but provided
no criteria for deciding when to employ them. Daniel [6]
suggested that one-at-a-time plans should be limited to
those cases in which factor effects are of magnitude 4r or
more. However, the literature contains no empirical or
theoretical validation of this ‘‘4r rule’’ nor an analysis of
the coupled effects of pure experimental error and inter-
actions. This paper addresses these issues by providing a
quantitative guide for selection between orthogonal arrays
and one-at-a-time experiments.

3
Research method
To demonstrate the role of one-at-a-time experiments we
simulate the optimization of 66 different responses of 27
different engineering systems that span a wide range of
disciplines, including mechanical, electrical, materials,
civil, and chemical engineering. A brief description of the
responses and the associated engineering systems is
included in the Appendix. Each of these systems was
examined by analysis of a full-factorial study presented in
the science and engineering literature. Comparison is
made between one-at-a-time and orthogonal array results
in terms of average improvement in a response.

Full factorial studies were used for two reasons. First,
they allow the strength of interactions to be assessed and
compared to the strength of main effects. The way that we
quantify interaction strength is described in Sect. 3.1.
Second, they include as a subset all possible orthogonal
array plans and all possible one-at-a-time plans. This
enabled simulation of both of these methods as described
in Sects. 3.2 and 3.3.

3.1
Quantifying strength of interactions
Strength of interaction is quantified in this paper by
analysis of the sum-squared variations in the data. In
general, the sum-squared variations in an experiment can
be computed by the formula

SS ¼
Xn

i¼1

ðyi � �yyÞ2; ð1Þ

where n is the number of experimental observations, yi is
the measured response on the ith observation, and

�yy is the average response. This sum-squared variation has
two components: one due to experimental error and one
due to the factor effects or treatment conditions. This sum-
squared variation from all factor effects in an experiment
can be computed by the formula

SSFE ¼
n

p

Xp

t¼1

ð�yyt � �yyÞ2; ð2Þ

where t represents a treatment condition or row number in
the experimental design, �yyt represents the mean response
at that treatment condition, and �yy represents the overall
average response across all treatment conditions.

The sum square from factor effects can be further
decomposed into two contributing factors, the sum
square from main effects and the sum square from
interactions.

SSFE ¼ SSME þ SSINT: ð3Þ
The sum-squared variations from main effects include
linear terms and, for the three-level factorial experiments,
simple quadratic terms as well. The sum of squares from
interactions is the sum of all interactions, including two-
way, three-way, and higher-order interactions. In this paper,
strength of interactions is characterized by the ratio

Interaction Strength ¼ SSINT

SSFE
¼ SSFE � SSME

SSFE
: ð4Þ

This ratio can range from 0 to 1. A value of 1/2 implies that
the summed effects of interactions are the same size as the
summed main effects. Given the method of calculation
above, all sum-squared variations from treatment condi-
tions not from main effects were allocated to factor effects.
By adopting this approach, we implicitly assumed that the
mean response at any given treatment condition repre-
sents the best unbiased estimate of the system response at
that treatment condition. (An alternative approach would
be to invoke the sparsity of effects, hierarchy, and inher-
itance principles to remove some interactions from our
model and pool their sum-squared variations as pure
experimental error.) It is recognized that our choice of
assumptions may lead to overestimating the strength of
interactions.

3.2
Simulating orthogonal arrays
An orthogonal array approach to improving an
engineering system was described in Sect. 2.2. This
approach was simulated on the basis of published full
factorial data by means of the following steps: (a) select the
smallest fractional factorial design of at least resolution III
that accommodates all the factors and levels. (b) Then for
e=0 to 1 in steps of 0.1 (e is a variable used to modulate the
strength of pure experimental error):

– for 1000 trials:

– Form a random permutation of the factorial design
by random assignment of factors to columns and
levels to coded levels.

D. D. Frey et al.: A role for ‘‘one-factor-at-a-time’’ experimentation in parameter design

67



– For each row of the factorial design: (a) look up
the mean response for the treatment condition
from the table of data from the full factorial ex-
periment. (b) To the mean response add a nor-
mally distributed random value with zero mean
and standard deviation of e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSFE=n

p
.

– Compute the estimated main effects of the factors
based on analysis of means of the simulated data.

– Select the levels of the factors that correspond to
improved response.

– Look up the response corresponding to the selected
factor levels (without adding noise).

– Normalize the response from the previous step by
subtracting the average of all the full factorial data
and dividing it by the difference between the
maximum mean response at all treatment condi-
tions and the average of all the full factorial data.

– Store the normalized response.
– Perform the next trial.
– Compute the mean and standard deviation of the

stored normalized response for the current value of
the degree of pure experimental error e.

– Next e.

Finally, graph the mean and standard deviation of the
normalized response versus e.

Some explanation may be required regarding the
method of adding simulated experimental error. The
formula for the standard deviation of the noise was
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSFE=n

p
where SSFE is the sum-squared variations from

factor effects (computed using Eq. (2) and the published
data for that engineering system), n is the total number
of observations published for that engineering system
(see Eq. (2)), and e is a parameter that allows the
amount of experimental error to be adjusted. This
formula was chosen so that when e is unity, the mean-
squared variations from pure experimental error will be
equal to the mean square variation from factor effects.
This paper will use the parameter e on the abscissa of
many plots. It can be interpreted as a ratio of the
strength of pure experimental error to the strength of
factor effects.

3.3
Simulating one-at-a-time plans
An adaptive one-at-a-time approach to improving an
engineering system was described in Sect. 2.1. This
approach was simulated on the basis of published full
factorial data by means of the following steps for e=0 to 1
in steps of 0.1 (e is a variable used to modulate the
strength of pure experimental error):

– for 1000 trials:

– Select a random order for varying the controllable
factors.

– Select at random a starting point for each factor
level.

– Look up the mean response for the treatment
condition from the table of data from the full fac-
torial experiment.

– To the mean response add a normally distributed
random value with zero mean and standard devia-
tion of e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSFE=k

p
.

– For each experimental factor in turn: (a) change the
factor to each of its levels that have not yet been
tested while keeping all other experimental factors
constant. (b) Look up the mean response for the
treatment condition from the table of data from the
full factorial experiment. (c)To the mean response
add a normally distributed random value with zero
mean and standard deviation of e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSFE=k

p
. (d)

Retain the factor level that provided the best
‘‘simulated’’ (i.e. noisy) response so far.

– If the number of experimental conditions simulated
in this trial is smaller than that required for the
smallest resolution III factorial design, then return
to the first factor in the randomly selected order
and continue the process in the preceding step until
the number of experimental conditions simulated
in this trial is equal to that required for the smallest
resolution III factorial design.

– Look up the response corresponding to the selected
factor levels (without adding noise).

– Normalize the response from the previous step by
subtracting the average of all the full factorial data
and dividing it by the difference between the
maximum mean response at all treatment condi-
tions and the average of all the full factorial data.

– Store the normalized response.
– Next trial.

– Compute the mean and standard deviation of the
stored normalized response for the current value of the
degree of pure experimental error, e.

– Next e.

Finally, graph the mean and standard deviation of the
normalized response versus e.

One aspect of the algorithm above requires further
amplification and justification. Depending on the number
of experimental factors and levels, a simple one-at-a-time
plan can require fewer runs than the smallest available
orthogonal array. For example, for six two-level factors,
the smallest available orthogonal array requires eight
runs, while the one-at-a-time plan only requires seven
runs. One of the steps listed above adds extra runs to the
simple one-at-a-time plan until it uses an equal number
of runs as the smallest resolution III factorial design. This
feature was added to the algorithm above in order to
make the comparison between the two methods more
consistent. The cost of carrying out the one-at-a-time
plan should be equal to the cost of carrying out the or-
thogonal array plan.

4
Results
This section presents the results of applying the methods
described in Sect. 3 to the data from the full factorial ex-
periments. Section 4.1 presents detailed results from 1 of
the 66 responses to show the kind of results the method
provides. It is not practicable to present such a detailed
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analysis of every data set in the sample, but a summary of
the results from all the 66 responses follows in Sect. 4.2.

4.1
Example results
The example system chosen for presentation is a detona-
tion spray process for alumina coatings [22]. This example
is particularly clear and generally representative of the
results obtained across the sample of 66 responses. The
detonation spray process is depicted in Fig. 1. Alumina
powder, carrier gas, and hydrocarbon gas enter one end of
a barrel. A spark plug detonates the mixture, sending the
gases out of the end of the barrel and onto the work piece
to be coated. The responses of interest were porosity,
roughness, hardness, and wear rate, but in this section we
analyze only the porosity of the coating, expressed as
percent porosity. The smaller the porosity, the better.
There were four controllable factors, each having two
levels as listed in Table 3.

Saravanan et al. [22] carried out a full factorial (24)
experiment, and the results are listed in Table 4. The
strength of interactions (Eq. (4)) can be computed via
analysis of variance of a linear regression model. The
sum of squares due to linear regression is 107.6, and the
total sum of squares due to variation about the mean is
127.4. The published full factorial is unreplicated. We
assumed that the residual error (19.8) is attributable to
interactions rather than pure experimental error, making
the interaction strength ratio (Eq. (4)) equal to 0.16.

Simulations were conducted of orthogonal array
methods as described in Sect. 3.2, and the resulting mean
performance is represented by squares in Fig. 2. The
strength of simulated pure experimental error (the pa-
rameter e) is the abscissa, and the ordinate is the nor-

Fig. 1. A detonation spray
process for alumina coatings

Table 3. Controllableexperimental factors of the detonation
spray process

Coded
level

C2H2-to-O2

ratio
Carrier gas
flow rate
(l/sec)

Freq. of
detonations
(Hz)

Spray
distance
(mm)

+1 1:2.0 3.21 4 220
)1 1:2.8 1.33 2 180

Table 4. Experimental results from the detonation spray process

Ratio Rate Freq Dist Porosity

+1 +1 +1 +1 5.95
+1 +1 +1 )1 4.57
+1 +1 )1 +1 4.03
+1 +1 )1 )1 2.17
+1 )1 +1 +1 3.43
+1 )1 +1 )1 1.02
+1 )1 )1 +1 4.25
+1 )1 )1 )1 2.13
)1 +1 +1 +1 12.28
)1 +1 +1 )1 9.57
)1 +1 )1 +1 6.73
)1 +1 )1 )1 6.07
)1 )1 +1 +1 8.49
)1 )1 +1 )1 4.92
)1 )1 )1 +1 6.95
)1 )1 )1 )1 5.31

Fig. 2. Results of simulating one-at-a-time and orthogonal array
plans applied to porosity in the detonation spray-coating process
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malized improvement. The standard deviation divided by
5 is indicated by error bars. The orthogonal array provided
roughly 75% of the possible improvement on average over
the range of pure experimental error from 0 to 1, although
there was a weak decrease in improvement for e greater
than 0.5.

To better understand these results, it is helpful to
consider some details in the data not presented in Fig. 2.
When the pure experimental error was zero, the or-
thogonal array consistently predicted that the preferred
level of Ratio was +1, the preferred level of Freq was –1,
and the preferred level of Dist was –1 (Table 4). How-
ever, the preferred level of Ratio as predicted by the
orthogonal array was not consistent; it depended on
which orthogonal fraction of the full factorial was used.
The orthogonal array plan led to a porosity of either 2.13
or 2.17 (Table 4). The mean porosity after optimization
was 2.15. Since the average porosity in Table 4 is 6.03
and the best porosity is 1.02, the normalized improve-
ment was consistently 75% and never 100%. The or-
thogonal array consistently failed to reach the optimal
porosity of 1.02.

Simulations were conducted of the adaptive one-at-a-
time method as described in Sect. 3.3, and the resulting
mean performance is represented by diamonds in Fig. 2.
When the pure experimental error was zero, the one-at-a-
time plan yielded values of porosity of 1.02, 2.13, or 2.17,
depending on the choice of random order of the factors.
The mean porosity (averaged over all trials) was 1.5, which
is 90% of the possible improvement from the average
porosity of 6.03 to the best porosity of 1.02. As the pure
experimental error was increased from 0 to 1, the nor-
malized mean improvement in porosity dropped to 52%,
and the standard deviation of the improvement rose by a
factor of about 3.

The crossing point on Fig. 2 is of practical significance
for the experimenter. For strengths of pure experimental
error of about 0.6 or less, the one-at-a-time method
provided greater improvements on average than the or-
thogonal array method. It is therefore important to un-
derstand whether this break-even point is consistent
across many engineering systems and whether the

location of such a point depends on other factors, like
the strength and structure of interactions among the
controllable experimental factors. This will be explored in
the next section.

4.2
Results from the entire sample population
The interaction strength of each of the 66 responses for the
entire sample was quantified according to Eq. (4). To
present the results from the sample population, we found it
useful to group the responses into four classes in terms of
the ratio of the strength of interactions compared to the
strength of the main effects. The categories of ‘‘mild,’’
‘‘moderate,’’ ‘‘strong,’’ and ‘‘dominant’’ interactions were
defined as in Table 5. The particular ranges were chosen to
be round figures and to subdivide the sample population
into categories with roughly the same number of responses.

One way to summarize the data from this study is
shown in Table 6. The number in each cell of the table is
the ratio of times the one factor at-at-time method per-
formed as well as or better than orthogonal arrays. For
each cell, there is a category of interaction strength listed
in the row heading and a degree of experimental error e
listed in the column heading. The cells marked with an
asterisk (*) indicate that the ratio is 0.5 or greater. The
data show that for systems with mild or moderate inter-
action strength, it is advisable to use one at-a-time plans in
preference to orthogonal arrays only if the experimental
error is greater than 25% of the factorial effects. For sys-
tems whose interactions are strong or dominant, however,
it is advisable to select one-at-a-time plans in preference to
orthogonal arrays even if the pure experimental error is as
great as the factorial effects.

Another way to present the data from this study is to
graph the normalized improvement of the engineering
system. Figure 3 shows the normalized improvement from
the orthogonal array method versus the strength of ex-
perimental error with different interaction strengths plot-
ted parametrically. Figure 4 presents the same type of
graph for the one-at-time method. Table 7 summarizes the
data in Figs. 3 and 4 in a way that simplifies selection
between the two methods.

Table 5. Categories of
interaction strength Interaction strength category Range of interaction strength No. of responses in this category

Mild 0 to 0.1 19
Moderate 0.1 to 0.25 16
Strong 0.25 to 0.5 10
Dominant 0.5 to 1.0 21

Table 6. Probability of selecting a better design (or the same design) usingone-at-a-time method (as compared to orthogonal arrays).
Elements with anasterisk (*) indicate a probability of greater than 0.5

Strength of experimental error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Interaction strength Mild 1.00* 0.95* 0.63* 0.42 0.37 0.32 0.32 0.11 0.11 0.26 0.16
Moderate 0.88* 0.81* 0.69* 0.56* 0.44 0.50 0.44 0.13 0.25 0.13 0.25
Strong 1.00* 1.00* 1.00* 0.90* 0.80* 0.80* 0.70* 0.70* 0.70* 0.70* 0.80*
Dominant 1.00* 0.81* 0.90* 0.90* 0.86* 0.90* 0.90* 0.90* 0.90* 0.90* 0.86*
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When interactions are mild and experimental error is
low, both one-at-a-time plans and orthogonal arrays lead
to selection of the best set of control factor levels from
among all the discrete alternatives. This is indicated on
Figs. 3 and 4 in that the curve for systems with ‘‘mild’’
interactions intersects the ordinate at a normalized im-
provement of almost 1. As the degree of pure experimental
error rises, the normalized improvement drops for both
one-at-a-time plans and orthogonal arrays. The curves in
Fig. 3 are less steep than those in Fig. 4, indicating that, on

average, orthogonal arrays are less affected by pure ex-
perimental error than one-at-a-time plans. On the other
hand, the spacing between curves is greater in Fig. 3 than
in Fig. 4, indicating that, on average, orthogonal arrays
tend to be more affected by interactions than one-at-
a-time plans are.

5
Implications for engineering practice
The results in this paper suggest that to maximize im-
provements from small numbers of experiments one-at-
time plans should be considered. The tables and figures of
Sect. 4.2 are useful guides for deciding when to use one-at-
a-time plans, especially if the engineering scenario can be
characterized in terms of degree of pure experimental error
and interaction strength. Judgments of pure experimental
error may be made based on past experience, error analysis
of the experimental apparatus, or by replicating some
experiments. An a priori estimate of interaction strength
may be based on prior experience with similar systems or a
comparison of the system at hand with those listed in the
Appendix. Once pure experimental error and interaction
strength have been estimated, it is possible to locate the
engineering system within a cell or range of cells of Table 6.
The number in the table can be interpreted as the proba-
bility that the adaptive one-at-a-time method will provide
better results than orthogonal arrays.

One barrier to using the results of this paper is that
judging interaction strength a priori can be a difficult task.
However, there are two mitigating factors. One is that, to
use Tables 6 and 7, it is sufficient to classify an engineering
system into rather coarsely grained categories (mild,
moderate, strong, or dominant). The second mitigating
factor is that, depending on the strength of pure experi-
mental error, the choice of design may be determined
independent of the strength of interactions. For example,
when pure experimental error is very low, the one-factor-
at-a-time design outperforms the orthogonal array for all
categories of interaction strength.

To use the results of this paper, one should estimate the
strength of pure experimental error. Three issues regard-
ing pure experimental error should be noted:

1. Deterministic computer simulations of engineering
systems do not have pure experimental error. Although
the estimates from simulations include errors (rounding
errors, discretization errors, etc.), the errors are not
random—the simulation results are exactly the same for
every replicated trial. Therefore, in applying the results
of this investigation to optimization of computer

Fig. 3. Normalized improvement versus strength of
experimental error for orthogonal arrays

Fig. 4. Normalized improvement versus strength of
experimental error for adaptive one-at-a-time

Table 7. Map of average normalized improvement versus interaction strength and strength of experimental error. The first
number is for one-at-a-time method. The second number is for orthogonal arrays

Strength of experimental error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Interaction strength Mild 100/99 99/98 98/98 96/96 94/94 89/92 86/88 81/86 77(82 73/79 69/75
Moderate 96/90 95/90 93/89 90/88 86/86 83/84 80/81 76/81 72/77 69/74 64/70
Strong 86/67 85/64 82/62 79/63 77/63 72/64 71/63 67/61 64/58 62/55 56/50
Dominant 80/39 79/36 77/34 75/37 72/37 70/35 69/35 64/34 63/31 61/35 59/35
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simulations, it is probably best to consider the strength
of pure experimental error to be zero. The data in Ta-
ble 7 show that, when pure experimental error is zero,
the adaptive one-at-a-time approach provides greater
gains on average than the orthogonal array approach
for all categories of interaction strength. A logical
conclusion is that when optimizing a system by means
of deterministic simulations, one-at-a-time plans are
generally to be preferred when the number of simula-
tion runs is limited to approximately the number of
experimental factors.

2. Taguchi recommends using an outer array to explore
different noise conditions for every setting of the con-
trollable parameters in the inner array. The noises in-
duced deliberately in this way are not pure experimental
error. If an outer array of noise is replicated, then pure
experimental error can be estimated by calculating the
variance in the signal-to-noise ratio among the repli-
cates. Increasing the distance between the factor levels
in the outer array increases the amount of induced
noise, but probably lowers the degree of pure experi-
mental error in the signal-to-noise ratio because the
induced noises can overwhelm the uncontrollable
variations. We suggest that experimenters using outer
arrays for robustness optimization should estimate
strength of pure experimental error as 0.3 or less.

3. It is often possible to carry out robustness optimization
more efficiently by including induced noises along with
controllable factors in a single experimental array. Using
an adaptive one-at-a-time approach for robustness op-
timization requires that robustness be assessed at each
experimental step. Therefore, the outer array approach
is required. Efficiency of an outer array approach can
often be improved by compounding noise factors.

There are options other than orthogonal arrays or one-
at-a-time plans that can also be considered in parameter
designs. In this context Figs. 3 and 4 provide some addi-
tional information for deciding whether to consider higher
resolution designs. After estimating interaction strength
and degree of experimental error, the system at hand can
be located on Figs. 3 and 4. The larger of the two values is
an estimate of the expected fraction of possible improve-
ment likely to be realized from a resolution III design, and
it thus provides an estimate of the additional improvement
one might make using a higher resolution design. The
potential additional improvement can be weighed against
the costs of the additional experiments and increased time
to market.

A further attribute of one-at-a-time methods is that a
project manager can carry out several experimental
investigations simultaneously and dynamically allocate
resources among them. Those that are not providing
improvements can be canceled in favor of other
investigations or new opportunities.

It is important to acknowledge the limitations of the
results presented in this paper. One limitation is that the
set of full factorial experiments used in the study included
six or fewer experimental factors. The quantitative
conclusions should not be applied to systems with more
experimental factors. Another limitation is that, as

mentioned just above, there are a variety of methods
available other than the two alternatives explored here,
although most of these require substantially more exper-
iments. The results of this paper will be most useful when
budget limitations or a need for quick time to market limit
the number of experiments that can be carried out. Last,
realized improvements in the response are not the only
factors to consider in choosing an experimental design. In
some cases, the knowledge gained through the experiment
can be as useful as the improved performance itself.
Nevertheless, when performance improvement is the
primary purpose of the experimental effort, one-at-a-time
plans will often be the best choice.

6
Future work
There are a number of extensions of the study that seem
worthwhile to pursue. For example, most of the im-
provements provided by one-at-a-time plans occur within
the first half of the experiment. As such one-at-a-time
plans are potentially of even greater benefit in organiza-
tions where budget and schedule changes are likely to
interrupt on-going experiments. A useful study might be
to quantify the effects of interruptions on both one-at-
a-time and balanced factorial designs. If the differences
prove to be substantial, it would be an additional impetus
to use adaptive one-at-a-time experiments in dynamic
product development environments.

One-at-a-time plans may provide additional benefits if
the experimental factors can be ordered a priori based on
the expected size of main effects. It is thus of interest to
quantify how well a typical product development team is
able to order the experimental factors. An investigation
based on simulations similar to the ones in this paper
could then assess how much additional benefit this a priori
knowledge provides through one-at-a-time experiments.

Another issue is how the interplay between the in-
creased use of modeling and simulation and experiments
factors into the attractiveness of experimental methods.
For example, it is possible that one-at-a-time plans provide
advantages when integrating a physics-based model with
an experimental investigation because the model can
provide predictions of each upcoming outcome. Each
experimental trial can potentially lead to modifications of
a physics-based model. This dynamic interplay between
model and experiment is often an important part of
engineering design.

Finally, the authors recommend investigations of the
mechanisms by which one-at-a-time plans provide greater
improvements on average than orthogonal arrays. Two
possible mechanisms are that adaptive one-at-a-time plans
exploit interactions on average even though they cannot
resolve them, and that orthogonal arrays, on average, fail
to fully exploit the main effects because of the confounding
of main effects with interactions.

7
Appendix
The following table gives a description of the responses
and the associated engineering systems
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Engineering system [Ref. no.] kn Response SSINT/SSFE Category

EDM of carbidecomposites [11] 33 Roughness 0.002 Mild
Wire EDM process [29] 23 Roughness (l) 0.003 Mild
Processing ofincandescent lamps [2] 24 Power (l) 0.003 Mild
Wire EDM process [29] 23 Waviness (l) 0.01 Mild
Processing ofincandescent lamps [2] 24 Lumens (l) 0.01 Mild
Wire EDM process [29] 23 Cut spd (l) 0.03 Mild
Processing ofincandescent lamps [2] 24 Life (l) 0.03 Mild
Plasma spraying of ZrO2 [9] 24 Velocity 0.03 Mild
Hydrosilylation ofpolypropylene [25] 23 Silane 0.04 Mild
Hydrosilylation ofpolypropylene [25] 23 Double 0.04 Mild
Thermal fatigue of PWBs[20] 23 Cycles 0.04 Mild
Plasma spraying of ZrO2 [9] 24 Temp. 0.04 Mild
Remediating aqueousheavy metals [1] 24 Lead 0.05 Mild
Polymerization ofmicrospheres [12] 23 Mn 0.06 Mild
Polymerization ofmicrospheres [12] 23 Surf. density 0.07 Mild
EDM of carbidecomposites [11] 33 Tool wear 0.08 Mild
Fractionation ofrapeseed lecithin [28] 24 Enrichment 0.08 Mild
Fractionation ofrapeseed lecithin [28] 24 Yield 0.08 Mild
Plasma spraying of ZrO2 [9] 24 Size 0.09 Mild
Remediating aqueousheavy metals [1] 24 pH 0.10 Moderate
Polymerization ofmicrospheres [12] 23 Diameter 0.11 Moderate
Detonation sprayprocess [22] 24 Hardness 0.11 Moderate
Detonation sprayprocess [22] 24 Roughness 0.11 Moderate
Polymerization ofmicrospheres [12] 23 Mw 0.13 Moderate
MIG process [17] 24 Reinforce 0.13 Moderate
Polymerization ofmicrospheres [12] 23 Mz 0.15 Moderate
Detonation sprayprocess [22] 24 Porosity 0.16 Moderate
MIG process [17] 24 Width 0.16 Moderate
Simulation ofearth-moving systems [27] 26 Production 0.17 Moderate
Remediating aqueousheavy metals [1] 24 pH (alt. method) 0.10 Moderate
MIG process [17] 24 Reinforce 0.17 Moderate
EDM of carbidecomposites [11] 33 MRR 0.17 Moderate
Remediating aqueousheavy metals [1] 24 Lead (alt. method) 0.19 Moderate
Glass fiber composites[3] 23 Strength longitudinal 0.22 Moderate
MIG process [17] 24 Penetration 0.22 Moderate
Solid polymerelectrolyte cells [26] 23 Potential 0.27 Strong
Glass fiber composites[3] 23 Stiffness transverse 0.31 Strong
Glass fiber composites[3] 23 Stiffness longitudinal 0.32 Strong
Production of surfactin[23] 24 Yield 0.38 Strong
Ball burnishing of anANSI 1045 [13] 24 Roughness 0.39 Strong
Polymerization ofmicrospheres [12] 23 Surface density 0.41 Strong
Steam-explodedlaser-printed paper [24] 25 Brightness 0.42 Strong
Glass fiber composites[3] 23 Strength transverse 0.44 Strong
Pilot plant filtrationrate [18] 24 Rate 0.45 Strong
Surface morphology offilms [16] 25 Stress 0.46 Strong
Abrasive wear of Zi–Alalloy [15] 23 Composite 0.52 Dominant
Epitaxial layer growth[33] 24 Thickness 0.56 Dominant
Wire EDM process [29] Waviness (r) 0.59 Dominant
Processing ofincandescent lamps [2] 24 Lumens (r) 0.59 Dominant
Surface morphology offilms [16] 25 Roughness 0.60 Dominant
Post-exposure bake in X-raymask fabrication [10] 24 Line width 0.61 Dominant
Steam-explodedlaser-printed paper [24] 25 Opacity 0.62 Dominant
Finish turning [32] 25 Roughness 0.63 Dominant
Solvent extraction ofcocaine [5] 23 % weight 0.63 Dominant
Polymerization ofmicrospheres [12] 23 % pepi 0.70 Dominant
Deterioration ofreinforced concrete [31] 33 Corros. Rate 0.70 Dominant
Simulation ofearth-moving systems [27] 26 Match factor 0.76 Dominant
Steam-explodedlaser-printed paper [24] 25 Light abs. 0.76 Dominant
Abrasive wear of Zi–Alalloy [15] 23 Zinc 0.80 Dominant
Steam-explodedlaser-printed paper [24] 25 Light scatter 0.81 Dominant
Wire EDM process [29] 23 Roughness (r) 0.81 Dominant
Processing ofincandescent lamps [2] 24 Power (r) 0.81 Dominant
Wire EDM process [29] 23 Cut speed (r) 0.84 Dominant
Processing ofincandescent lamps [2] 24 Life (r) 0.87 Dominant
Friction measurementmachine [19] 23 Frict. coeff. (l) 0.91 Dominant
Friction measurementmachine [19] 23 Frict. coeff. (r) 0.97 Dominant
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