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Abstract. This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rect-
angular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing
edge thickness h; the incoming boundary layer displacement thickness δ∗ is approximately equal to h.
The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simula-
tion which is in good agreement with existing computational and experimental data. The turbulent trailing
edge flow simulation is carried out using a parallel multi-block code based on finite difference methods
and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has
been studied first for the effects of domain size and grid resolution. Then two simulations with a total of
256×512×64 (∼ 8.4×106) and 512×1024×128 (∼ 6.7×107) grid points in the computational domain
are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to
investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is
the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise
vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the
mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral
analysis applied to the force coefficient in the wall normal direction shows that the main shedding fre-
quency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence
kinetic energy budget is analysed.

1. Introduction

The problem of turbulent flow over a rectangular trailing edge geometry is closely related to that of pre-
dicting the drag force acting on an airfoil with a blunt trailing edge or the pressure loss behind a blunt gas
turbine blade, and consequently it has important practical applications in the aerospace industry. This flow
has proved difficult to model accurately due to the abrupt change in the flow structure that takes place at
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the rear separation point: upstream it is a boundary layer flow, and downstream it is a wake flow. In the im-
mediate vicinity of the trailing edge the flow can be locally far from an equilibrium state and conventional
turbulence modelling techniques either prove to be inadequate or require special ad hoc modifications. How-
ever, this class of problem is suitable for the direct numerical simulation (DNS) technique; the method is able
to achieve accurate simulations of the unsteady turbulent fluid motions including the full range of scales pro-
vided that the finite difference grid has sufficient resolution, typically slightly larger than the Kolmogorov
microscale. Experience has shown that good quality results can be obtained from simulations at a moderate
Reynolds number.

One of the earliest experimental studies of the trailing edge flow is due to Black (1975) who investigated
a two-dimensional strut with a semi-circular leading edge and an asymmetric bevelled trailing edge of 25◦
tip angle. Similar experiments were carried out later by Viswanath and Brown (1983), Nakayama (1984) and
Thompson and Whitelaw (1985), using different trailing edge tip angles. All these experiments considered
the flow at a high angle of attack in which the separation occurred with an extended region of recirculation
on the upper surface upstream of the trailing edge; attention was focused on this as well as on the near-wake
region downstream. A numerical study of the same geometric configuration of Black (1975) has been car-
ried out recently by Wang (1997) using large-eddy simulation (LES) techniques for both the flow and the
aeroacoustic behaviour. Flows over an even simpler geometry such as a rectangular trailing edge with a finite
thickness are also of interest. Unlike the bevelled trailing edge described above, the flow past the rectangular
trailing edge is characterized by fixed separation points at the sharp corners. As a result, the wake exhibits
complicated fluid dynamics even at a moderate Reynolds number, and is amenable to a DNS study using
currently available computer resources.

The blunt trailing edge flow is quite similar in behaviour to the classical bluff body problem of flow past
a circular cylinder, and much of the fundamental behaviour, such as the large-scale vortex shedding into the
wake, is qualitatively similar. Recent reviews of the current state of the art in bluff body flows have been
given by Roshko (1993) and Bearman (1998). There are, however, clear differences between the present trail-
ing edge problem and the cylinder problem concerning the specification of the inflow: in the present trailing
edge simulation the inflow contains an existing turbulent flow field which interacts with and modifies the
classical unsteady wake flow.

There have been several previous experimental and numerical studies of flow over the rectangular trail-
ing edge arrangement with two incoming boundary layers. For laminar flow at low Reynolds number, it is
known that the region immediately behind the trailing edge is one of absolute instability, and downstream in
the wake the flow becomes convectively unstable. Thus the flow at the trailing edge has the characteristics
of an oscillator, and the flow downstream has the characteristics of an amplifier. These stability properties
have been studied by Hannemann and Oertel (1989) using both numerical calculations and linear stabil-
ity analysis. The experimental study of Hannemann et al. (1986) also considered the near-wake region of
a rectangular trailing edge at low Reynolds number.

For turbulent flow with symmetric boundary layers on the upper and lower surfaces of the rectangular
trailing edge, an experimental study has been carried out by Gough and Hancock (1996). The inflow bound-
ary layer thickness (δ99) at the trailing edge was equal to ten times the trailing edge thickness h, and the
Reynolds number (based on the momentum thickness θ) was about 600. For this configuration it was found
that the mean recirculation region extended for about 3h downstream of the trailing edge, and the coherent
Kármán vortex street was evident up to about 10h, beyond which it became incoherent and was effectively
scrambled by the small-scale streamwise vortices. A similar flow was investigated computationally by Gao
et al. (1996) using the LES technique. They found generally good qualitative agreements with the experi-
mental data for various turbulence statistics but quantitative differences were clearly evident; these have been
attributed to influences from the inflow boundary condition, as well as the models and numerics used in the
simulation. It is believed that the upstream incoming flow has a strong influence on the downstream flow
field, and hence that an accurate simulation of the inflow turbulent boundary layer is a necessary requirement
for performing an accurate trailing edge flow simulation.

The overall arrangement of the present simulation is outlined in Figure 1. A turbulent flow over a rectan-
gular trailing edge geometry at a Reynolds number of 1000, based on the freestream quantities and the trail-
ing edge thickness h, is studied using the DNS technique. Similar to Gao et al. (1996), the time-dependent
inflow boundary condition was generated from a separate turbulent boundary layer flow simulation (called
the “precursor” simulation); this simulation is validated by comparison with existing computational and ex-
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Figure 1. Configurations of turbulent boundary layer and trailing edge flow simulations.

perimental data. Then a turbulent trailing edge flow simulation (called the “successor” simulation) is carried
out using a parallel multi-block DNS code based on a finite difference method with a multi-grid Poisson
solver. The turbulent flow in the near-wake region of the trailing edge is tested for the influence of the compu-
tational domain size and grid resolution used. Two simulations with a total of 256×512×64 (∼ 8.4×106)
and 512×1024×128 (∼ 6.7×107) grid points in the computational domain are used to investigate the flow
features. Visualization of the instantaneous flow field shows clearly the interactions between the large-scale
spanwise, or Kármán, vortices and the small-scale streamwise vortices which formed part of the incoming
boundary layer turbulence, and provides an insight into the complex fluid dynamics in the near-wake region.
Comparisons of mean flow quantities and turbulence statistics are presented, as well as the pressure distri-
butions over the trailing edge. A spectral analysis using the time history of the force coefficient in the wall
normal direction is carried out and turbulence kinetic energy budget analysis is performed at locations in both
the boundary layer and wake regions.

2. Governing Equations and Numerical Discretization

We consider here the motion of an incompressible viscous fluid past a rectangular trailing edge. The fluid,
assumed to have constant density ρ and constant dynamic viscosity µ (thus the kinematic viscosity ν = µ/ρ

is also a constant), moves in a Cartesian coordinate system xi = (x, y, z) with velocity ui = (u, v, w) and
pressure p. Let t denote the time, then the evolution of the fluid motion satisfies the incompressible Navier–
Stokes equations given by
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where we use the usual tensor summation convention for indices i and j . We also define the Reynolds
number Re = Ueh/ν for this problem in terms of the freestream flow velocity Ue and the trailing edge
thickness h.

The Navier–Stokes equations are discretized on a staggered grid using a second-order central finite
difference scheme, and advanced in time with the projection method based on a second-order explicit
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where the quantity Hi is defined as

Hi = −∂ujui

∂xj
+ν

∂2ui

∂xj ∂xj
.

This is then corrected for continuity to yield the velocity at a time step n +1 using

un+1
i = u∗

i − 3

2
∆t

∂pn

∂xi
, (4)

where the pressure pn is obtained by the solution of the Poisson equation

∂2 pn

∂xi ∂xi
= 2

3∆t

∂u∗
i

∂xi
. (5)

The use of a fully explicit scheme in both the time and the space is efficient in terms of computer stor-
age, but can be restricted by the viscous CFL limit if the computational grid is excessively fine near a solid
boundary. We have used the grid stretching function in the wall-normal direction given by

y =
[

aη+ (1−a)

(
1− tanh(b(1−η))

tanh(η)

)]
yl, (6)

for the precursor simulation, where y is the wall distance, yl is the domain height, η is uniformly spaced with
n cells in the range [0, 1], and the coefficients a and b are used to control the stretch ratio (a = 0.1 and b = 4.0
are used in the simulation). Here the near-wall grid size is O(1/n), as distinct from O(1/n2) for a cosine-type
grid (see, for example, Kleiser and Schumann, 1980), and in this case the CFL limit is not unduly restric-
tive. In the successor simulation uniform grids are used in all three directions for reasons of computational
efficiency, and the CFL restriction is essentially unchanged.

The solution methods for the Poisson equation (5) differ for the precursor and successor simulations;
the precursor uses the modified Fourier-based method described in Section 3.1, and the successor simulation
uses an efficient parallel multi-grid technique.

3. Boundary Layer Flow Simulation

The turbulent boundary layer (precursor) simulation is performed using the temporal DNS code of Sandham
(1994) with the modifications described below to enable a spatially developing boundary layer to be com-
puted. The spatial development breaks the streamwise periodicity assumed in the temporal plane channel
simulation code and the conventional technique of recycling the turbulence many times though the compu-
tational box has to be modified to incorporate some form of scaling transformation.

One method of reformulating the spatially developing boundary layer problem so that the computational
variables are effectively homogeneous in the streamwise direction is to use a similarity transformation, anal-
ogous to that used in the first-order laminar boundary layer theory, and to work in terms of the resulting
similarity coordinates. This has been done previously by Spalart and Leonard (1985) and Spalart (1988).
The method worked quite effectively as it permits the streamwise fast Fourier transforms (FFTs) to be re-
tained, although with the additional penalty of several extra (and also complicated) “growth” terms added to
the equations.

An alternative approach which avoids the extra terms is to use a feedback device with re-scaling (Lund
et al., 1996, 1998). In effect an approximate artificial inflow is constructed based on re-scaling the flow vari-
ables at a plane near the outlet. Such a re-scaling procedure is chosen to compensate for the spatial boundary
layer growth between the re-scaling and the inflow planes exactly. An additional complicating feature is that
the inner and outer parts of the boundary layer profile scale differently: the inner on the friction velocity,
and the outer on the defect velocity. The method has been shown to yield results that compare well with
those from other methods, but at a relatively lower cost (in terms of CPU and memory). Such a methodology
has been used successfully to generate the instantaneous turbulent inflow data for the LES of trailing edge
(Wang, 1997) and bump flows (Wu and Squires, 1998); the same method will be adopted in the precursor
simulation described.
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3.1. Solution of the Pressure Equation

It is clearly desirable, in terms of computational efficiency, to arrange for the solution of the Poisson equa-
tion to be done using the FFTs in the planes parallel to the wall, similar to that adopted in the homogeneous
plane channel flow simulation. However, it is not immediately clear that this can be done for a spatially de-
veloping flow simulation. The computational problem for the pressure field (in the streamwise direction)
resolves itself into the discretization of a ∂2/∂x2 operator with homogeneous boundary conditions for the
gradient ∂/∂x = 0 at the cell face at each end of the domain. This suggests either a cosine Fourier trans-
formation on the interval [0, π] or a Fourier transform on the interval [0, 2π] but with the imaginary part
enforced to zero in the Fourier space (equivalent to a cosine Fourier transformation). The latter treatments
are used at present in order to retain the methodology of FFTs which already existed in the code, although
it is obviously more efficient to use the former. As the pressure variables are stored at the cell centre and
subsequently are not coincident with the boundary conditions assumed on the cell faces, a phase shift with
half a grid spacing is then required. The solution process can be described as follows. The data is extended
by adding its mirror image to one end, thus constructing a periodic function in the extended box. The con-
ventional FFTs are then applied, followed by a forward phase shift by multiplying with a factor ei(k(∆x/2)),
where k is the wave number and ∆x is the grid spacing. In the Fourier space the imaginary part is set to
zero to satisfy the boundary conditions and also to enforce a cosine Fourier transformation. The data is then
backward phase shifted using a factor e−i(k(∆x/2)) and an inverse transformation back to physical space is
applied. The solution of pressure in the wall normal direction is carried out using a conventional tridiago-
nal inversion method. Finally the data of the mirror image part is removed and not used in the velocity field
calculations. This solution method has been validated by inspection of residuals as an independent routine
on a variety of source functions, and further in the complete code for a laminar Blasius boundary layer flow
simulation.

3.2. Simulation Parameter and Inflow Condition

The turbulent boundary layer (precursor) simulation is started with a laminar transitional process with ar-
tificial excitation at the inlet and using an extended box. The simulation is advanced in time and the flow
undergoes an artificial transition producing fine-scale turbulence. The additional resolution required is pro-
vided by shortening the box with a fixed number of grid points rather than extending the grid. This procedure
avoids the need to re-grid but introduces transients which require additional simulation time to disappear.
The whole simulation is able to run on a desktop workstation. Once the flow is fully turbulent the simulation
is continued using Lund’s re-scaling method. The final computation box size is 50×20×6 (in units of δ∗

in,
the boundary layer displacement thickness at the inlet) in the streamwise (x), wall-normal (y) and spanwise
(z) directions, respectively, and uses a 128×96×64 grid. The grid is stretched in the wall-normal direction
and provides a near-wall resolution of ∆x+ = 19, ∆y+

1 = 0.5, ∆z+ = 4.5 and thus gives about 10–12 points
in the viscous sublayer (y+ ≤ 10).

The boundary conditions are as follows: a periodic condition is applied in the spanwise direction; a no-
slip condition is used on the solid wall; a slip condition with mass continuity is used on the free surface plane;
a convective condition for the outflow plane; and instantaneous inflow conditions for the inflow plane.

The details of the re-scaling method can be found in Lund et al. (1996, 1998). Only the main procedures
of generating the inflow data are highlighted here.

(1) The instantaneous velocity ui is decomposed into a mean part Ui (i.e. averaged in time and the
spanwise direction) and a fluctuation part u′

i :

ui(x, y, z, t) = Ui(x, y)+u′
i(x, y, z, t). (7)

(2) The mean part is then re-scaled in both the inner and outer regions according to the wall and defect
laws, respectively. Taking the scaling process in the streamwise direction as an example, we have the law of
the wall in the inner region

U inner = uτ (x) f1(y+), (8)
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and the defect law in the outer region

Ue −Uouter = uτ (x) f2(η), (9)

where uτ (x) is the friction velocity, y+ = uτ y/ν represents the wall units coordinate, η = y/δ99 is the defect
coordinate and the functions f1 and f2 are assumed universal. Hence we can derive the relations between the
inlet plane (denoted inlt) and one downstream plane (denoted recy) as

U inner
inlt = γUrecy

(
y+

inlt

)
, (10)

Uouter
inlt = γUrecy(ηinlt)+ (1−γ)Ue, (11)

where γ = uτ,inlt/uτ,recy, and Urecy(y+
inlt) and Urecy(ηinlt), are the mean velocities at the recycling plane

but expressed on the grid coordinates (y+ and ηinlt, respectively) of the inlet plane. Some interpolation is
required in the wall-normal direction to match grids.

(3) The fluctuation part is also re-scaled by assuming that it can be decomposed as(
u′

i

)inner = uτ (x)gi(x, y+, z, t), (12)

(
u′

i

)outer = uτ (x)hi(x, η, z, t). (13)

The functions gi and hi are supposed to be approximately homogeneous in the streamwise direction and
therefore a “periodic” condition can be used. This results in(

u′
i

)inner
inlt = γ

(
u′

i

)
recy

(
y+

inlt, z, t
)
, (14)

(
u′

i

)outer
inlt = γ

(
u′

i

)
recy(ηinlt, z, t). (15)

(4) The whole velocity profile is finally reconstructed at the inlet plane through a weighted-averaging
procedure by combining the re-scaled inner and outer parts.

(5) To achieve a targeted quantity (e.g. the momentum thickness θ) at the inflow plane as the required
inflow condition, an additional procedure of correction is used at each time step by iteratively adjusting the
inlet boundary layer thickness to ensure this specified profile value at the inlet plane.

3.3. Results and Discussion

The efficient pressure solver with phase shifting and the re-scaling method described above are used to
perform the DNS of a spatially developing incompressible turbulent boundary layer with zero pressure gra-
dient in the streamwise direction. Results from this simulation are consistent with earlier studies. Figure 2
gives the friction velocity (uτ ) of the present DNS result (at a position where Reθ = 670), including com-
parisons with results from Spalart and Leonard (1985) for Reθ = 690 and experimental data (Purtell et
al., 1981) for Reθ = 500–860. In general a good agreement is achieved. The shape factors also compare
well, with 1.50 from the present simulation, 1.52 estimated from Spalart and Leonard and 1.49 estimated
from Purtell. Figure 3 shows the streamwise mean velocity profile U+ against the wall-normal coordi-
nate y+ (in wall units). Data from Spalart and Leonard’s calculation are re-plotted in the same picture,
which shows good agreement. Also both computations agree well with the linear and logarithmic profiles
(with κ = 0.39, b = 4.2). Figure 4 gives the root-mean-square (rms) value of turbulence statistics Urms,
Vrms and Wrms (normalized by uτ ) against the defect coordinate η (= y/δ99). Comparisons with the data of
Spalart and Leonard’s simulation and the experimental data of Klebanoff (1954) are also made. An overall
good agreement is again achieved. Figure 5 gives the instantaneous fluctuation velocity u′ contours (at the
plane of y+ = 10), where the streaks are clearly shown. In conclusion it is found that the method adopted
gives realistic turbulent boundary layer data to be used as the inflow conditions for the trailing edge flow
simulation.
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Figure 2. Comparisons of friction velocity (uτ ) in the turbulent boundary layer simulation. Star: present DNS; open square: DNS of
Spalart and Leonard (1985); solid line with open triangle: experimental data from Purtell et al. (1981). Reynolds number is based on
the momentum thickness θ.

Figure 3. Mean velocity profile in the turbulent boundary layer simulation in comparison with the data of Spalart and Leonard’s
DNS (star) and the linear (dotted line) and logarithm (dashed line, κ = 0.39, b = 4.2).

Figure 4. Turbulence statistics Urms, Vrms and Wrms profiles in the turbulent boundary layer simulation in comparison with the data
of Spalart and Leonard’s DNS and experimental data of Klebanoff (1954).
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Figure 5. Instantaneous fluctuation velocity u′(= u − ū) contours at a plane where y+ = 10. Dashed lines: low speed; solid lines:
high speed.

3.4. Sampling Procedure

After the turbulent boundary layer flow has fully developed, another two runs are made for the collection
of data in time sequences to be used for the upper and lower inflow boundary layers for the trailing edge
problem. These two data sets should be statistically converged but un-correlated in time. The collection is
taken at a plane where δ∗ ∼ 1. The wall-normal and spanwise sizes of the collection plane have to be the
same as those defined in the trailing edge flow simulation (see Figure 7(b) for reference). The coordinates
of grid points in the “precursor” and “successor” simulations are generally different and a bi-linear inter-
polation procedure is used. The interpolation errors will be minimized, provided that both the “precursor”
boundary layer simulation and “successor” trailing edge simulation have similar grid resolution especially in
the near wall region. The accuracy will be affected if a lower grid resolution is used in the latter. Also the data
in the boundary layer simulation has to be truncated in the wall-normal direction because the height (20δ∗

in) is
larger than that used later in the trailing edge simulation. The slice plane is divided into several panels (a total
number of 60 in the present simulation, which consist of 32 on the upper side and 28 on the lower side; see
Figure 7(b)), each corresponding to one face of the block at the inflow plane. A total of 4000 planes of data
(equivalent to 200 time units) from the turbulent boundary layer simulation are stored in the slice files. The
data can be used for fluid travelling at the freestream velocity to pass through the computational box for the
trailing edge simulation ten times, which is sufficient based on previous tests.

4. Trailing Edge Flow Simulation

The term DNS implies that turbulence eddy motions with all length scales in the flow have been properly
resolved. This requires the computational grid to be fine enough to represent the smallest turbulence eddy
motions and consequently large computer resources are generally required. For the present trailing edge flow
simulation we adopt a computational box of relatively small size, but large enough to include the trailing
edge geometry and also the development of the incoming turbulent boundary layer flow.

Simulations are made for comparison of the effects of changing the computational box size and im-
proving the grid resolution. Finally two high-resolution simulations are carried out for investigating the
key flow features in detail. Visualization of instantaneous flow structures are provided for a close look at
the interactions between the large-scale spanwise Kármán vortices and small-scale streamwise vortices in
the wake region. Turbulence statistics are compared, as well as the pressure distributions over the trailing
edge. A spectral analysis of the force coefficient in the wall-normal direction is performed, and finally the
turbulence kinetic energy budget is analysed.

4.1. Problem Definition and Computational Domain

The computational box for the trailing edge flow (successor) simulation is shown in Figure 6. The coordinate
origin is at the centre of the downstream face of the trailing edge. A baseline simulation (named case A) for
reference is set up with a box size of 20h ×16h ×6h in the streamwise (x), wall-normal (y) and spanwise (z)
directions, respectively. The length in the streamwise direction (denoted as L X) includes 5h along the trail-
ing edge plate and 15h in the wake region. The 5h distance of the plate is used for further development of
the incoming turbulent boundary layer, and the 15h length in the wake region comes from the experimental
observation (Gough and Hancock, 1996) that the spanwise Kármán vortices are weakened and decay away
at about 10h downstream of the trailing edge. The computational domain extends some distance upstream of
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Figure 6. Computational box for the trailing edge flow simulation.

the trailing edge, thus permitting the boundary layer flow upstream of the separation points to be influenced
by the large-scale unsteady motions in the wake. Hence it is possible to follow in a natural way the progres-
sion from a boundary layer flow to a wake flow. The box length in the wall-normal direction (denoted as LY )
is set to be 16h, with 8.5h in the upper side and 7.5h in the lower side individually. This asymmetric arrange-
ment was chosen because of the simple decomposition of the computational domain and the corresponding
high computational efficiency on the Cray-T3D and T3E parallel machines; the influence of this arrangement
on the computed flow has been checked and found to be minor.

Compared with the inflow turbulent boundary layer thickness δ99  6.42h, the box length is sufficiently
large to let the incoming boundary layers develop and grow along the 5h length plate before meeting at the
trailing edge. The spanwise length (denoted as L Z ) is 6h, the same as in the “precursor” turbulent boundary
layer simulation. The effects of the computational box size are examined in Section 4.2, especially for the
lower part of the box in the wall-normal direction where the domain is more restrictive.

To fit the simulation on a parallel computer such as the Cray-T3D/E the baseline computational box is
decomposed uniformly into 4 parts in the streamwise direction, 16 parts in the wall-normal direction and 4
parts in the spanwise direction. This results in a total of 256 blocks (see Figure 7(a)). The trailing edge geom-
etry occupies 4 blocks while 252 blocks are in the flow field. Such a domain decomposition is designed to
get a higher computational efficiency when using the Cray-T3D/E computer, which normally supplies the
processors in groups of 2n .

For the baseline computation a grid of 32×16×16, which leads to five grid levels in the multi-grid Pois-
son solver, is used in each block. The total number of grid points in the three directions is 128×256×64.
The grid spacing ratio in the three directions is 2.5 : 1 : 1.5. Based on wall units the grid scales of the inlet
turbulent boundary layer are ∆x+ = 7.81,∆y+ = 3.13,∆z+ = 4.69. It is not initially clear whether this grid
resolution is sufficient. Detailed studies on the grid resolution issues are carried out in Section 4.3.

The boundary conditions are set up as follows. At the inflow plane the velocities are prescribed in the
slice data taken from the “precursor” turbulent boundary layer simulation. A linear interpolation between
the neighbouring inflow planes is used to find out the instantaneous inflow data when performing the trailing
edge simulation, because different time steps have been used in the “precursor” and “successor” simulations.
The outflow is treated by the widely used convective boundary condition, which allows the disturbances in
the wake to leave the computational box smoothly. On the solid wall surface the no-slip condition is applied.
The upper and lower boundaries use a free-slip condition.

A parallel multi-block code is used for the trailing edge flow simulation, in which, except for the pressure
solution, the same numerical method as described in Section 2 is applied. The code is parallelized in a highly
efficient manner and a flexible multi-block mapping strategy is developed to deal with the flow domain
containing the complex-geometry. Based on these, a multi-grid algorithm is used for solving the pressure
Poisson equation. For details of the parallelization and multi-grid Poisson solver, refer to Thomas and
Williams (1997). The code has been applied to a variety of flow problems, giving results that are in agree-
ment with the published computational and experimental data well (see Thomas and Williams, 1999a,b). For
the rectangular trailing edge problem a test calculation has been carried out with a two-dimensional laminar
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Figure 7. Domain decomposition and slice arrangements for the trailing edge flow simulation in the X–Y plane (a) and at the inflow
plane (b).

incoming flow at a Reynolds number of 200 (based on the trailing edge thickness h) and results agree well
with those of Hannemann and Oertel (1989) for the same flow.

4.2. Effects of Domain Size

In order to obtain a general understanding of the wake development after the trailing edge, we first look at the
features revealed by statistical quantities. As an example, Figure 8(a) shows contours of the streamwise mean
velocity U in the X–Y plane. The flow past the rectangular trailing edge geometry produces a recirculation
zone. This can be observed more clearly by viewing the velocity vector field in the near trailing edge region
as in Figure 8(b). The size of the recirculation region is defined by the distance between the trailing edge end
plane and a stagnation point in the flow field labelled “S” (see Figure 8(b)) and it is about 2h.

To study in detail the effects of the domain size on the computational results, a baseline case A has been
carried out first, followed by two additional cases, namely case B, with a 50% longer box in the streamwise
direction, and case C, with a 50% wider box in the wall-normal direction (see Table 1). Figure 9(a) gives the
comparison of streamwise mean velocity U distributions along the centreline of the trailing edge. For three
cases the maximum reverse flow (10% free-stream velocity Ue), the size of the recirculation region (2h) and
the overall variations are very similar. The mean velocity U recovers quickly after the recirculation and then
more slowly down to 50% freestream velocity at about 10h downstream. The differences at the outlet plane
are most likely due to the effect of the numerical treatment there, but are generally very small.

Further comparisons are carried out along the wall-normal direction at seven streamwise stations in par-
ticular: two in the boundary layer region (i.e. x/h = −3.047, −1.016) and five in the wake region (i.e.
x/h = 1.016, 3.047, 5.078, 8.045, 12.109), including one location in the recirculation region.

Figure 9(b) shows a comparison of the streamwise mean velocity U against the axis y/h, which is meas-
ured from the centreline of the trailing edge with the origin of successive profiles shifted forward by one unit.
In the turbulent boundary layer only the upper part is plotted while the data in the wake region is drawn with
the upper half of the whole profiles. (Results from the lower part have been compared and they are similar to
those in the upper part. Hence the influence from the asymmetric arrangement in the wall-normal direction is
minor.) At stations 1 and 2 the profiles show typical turbulent boundary layer characteristics. In the recircu-
lation region at station 3 the streamwise velocity has negative values at the centreline where the reverse flow
happens. From stations 4 to 7, the wake profiles evolve and the velocity at the centreline position increases up
to about 55% Ue at the outlet plane. Figure 9(c) shows the square root of kinetic energy (

√
k) comparisons.

Small differences are found only at station 3 in the recirculation region otherwise the agreements of the three
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Figure 8. Mean velocity distributions in the X–Y plane (non-dimensionalized with Ue and h). (a) Contour plot; (b) Vector plot in
near wall region with “S” representing a zero-velocity point in the flow field (data plotted every second point).

cases are good. As observed from the above the domain size change does not produce obvious effects on the
main features of the wake development and the kinetic energy transport. The results appear more sensitive to
LY than L X , probably because this changes the potential flow slightly. Similar conclusions can be made from
the results in Figure 9(d) of the Reynolds stress −〈uv〉 comparisons, from which the maximum peak value of
the Reynolds stress appears at station 4 and then gradually diminishes downstream. Along the centreline it
is always zero as required by the symmetry condition.

It can be concluded that computations with a longer box length either in the streamwise or in the wall-
normal directions do not have a significant effect on the mean and turbulence statistics. Hence the basic box
length arrangement (i.e. 20h ×16h ×6h in all three directions) is concluded to be sufficiently large for the
present trailing edge flow simulations and is used for the following grid resolution studies.

4.3. Grid Resolution Studies

Normally we require ten or more grid points within y+ ≤ 10 (i.e. the viscous sublayer) for DNS of near wall
flow. This requirement comes from the experience with stretched grid methods. A better criteria may be the
number of grid points in the buffer layer 10 < y+ ≤ 30, where typical simulations have 10–15 points. In the
baseline simulation (case A) there are 256 points equally distributed in the length of 16h which results in
a ∆y+ of about 3.13 and only 3 points in the sublayer and 6 points in the buffer layer. This raises the question
as to whether the flow in the near wall region has been properly resolved.

A mesh doubling strategy has been used to investigate the grid resolution issues both in the boundary
layer and wake regions. Three cases have been run, namely case D, with double the number of grid points
in the streamwise direction, case E, with double the number of grid points in the wall-normal direction, and
case F, with double the number of grid points in the spanwise direction (see Table 1 for details).
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Figure 9. Results from domain size dependency study. (a) Streamwise mean velocity U distributions along the centreline where
y = 0. (b) Mean velocity U profiles at seven streamwise stations, i.e. x/h = −3.047, −1.016, 1.016, 3.047, 5.078, 8.045, 12.109.
(c) Square root value of turbulence kinetic energy. (d) Reynolds stress −〈uv〉.

Table 1. Run cases for the trailing edge flow simulation investigating the effects of domain size and grid resolution. (Note: there are
eight blocks in case H compared with four blocks in other cases in the streamwise direction.)

Case Domain size Domain grids Block grids
L X × LY × L Z Nx × Ny × Nz nx ×ny ×nz

A 20h ×16h ×6h 128×256×64 32×16×16
B 30h ×16h ×6h 192×256×64 32×16×16
C 20h ×24h ×6h 128×384×64 32×16×16

D 20h ×16h ×6h 256×256×64 64×16×16
E 20h ×16h ×6h 128×512×64 32×32×16
F 20h ×16h ×6h 128×256×128 32×16×32

G 20h ×16h ×6h 256×512×64 64×32×16
H 20h ×16h ×6h 512×1024×128 64×64×32

Figure 10 gives a comparison of the mean velocity distribution along the centreline and mean velocity,
square root of turbulence kinetic energy and Reynolds stress on various cross-sections (see Table 2 for the
definition of the seven stations).

In the boundary layer region (at stations 1 and 2), the agreement among cases A, D and F is good. This
gives the conclusion that the boundary layer flow of the baseline simulation (case A) has been properly re-
solved both in the streamwise and spanwise directions. By further grid refinement the results have not shown
much improvement. To check the grid resolution we may compare the grid spacing at station 1 (∆x+ = 7.81
and ∆z+ = 4.69) in the present simulation (case A) with that of Spalart and Leonard (1985) (∆x+ = 13 and
∆z+ = 6.5). Our simulation with a finite difference method has about 70% and 40% more grid points in the
x- and z-directions, respectively, compared with Spalart and Leonard who used a spectral method. However,
finite difference methods typically require about twice the number of grid points to achieve similar results.
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Figure 10. Results from grid resolution study. (a) Streamwise mean velocity U distributions along the centreline where y = 0.
(b) Mean velocity U profiles at seven streamwise stations (for definition see Figure 9). (c) Square root value of turbulence kinetic
energy. (d) Reynolds stress −〈uv〉.

With such a factor of extra points, the results from the simulation are expected to be comparable based on
our previous experience of channel flow finite difference simulation (Sandham, 1994). By contrast the flow
in the wall-normal direction is not better resolved in case A. Doubling the points (case E) does improve the
simulation results, but still may not be enough, and further refinement is desirable for this part of the flow in
the boundary layer region in particular.

In the wake region (at stations 3–7) clear differences are evident in the simulations, due to either influ-
ence from the upstream flow in the boundary layer or poor resolution locally in the wake region. It can be
seen from Figure 10(a),(b) that the streamwise mean velocity U of case E produces a narrower recircula-
tion region and a higher maximum reverse flow. It also recovers more quickly than other cases and reaches
a higher value at the outlet plane. Results from cases D and F are similar to those from the baseline simula-
tion (case A). In the kinetic energy comparison of Figure 10(c) the maximum difference happens at station 3
where a lower value appears in case D and a higher value in case E. Results from case F agree well with that
from case A. The difference appears to be reduced at station 4 and downstream, at stations 5–7, where the
agreement is generally good. Similar conclusions can be made from Figure 10(d). It is useful to develop rules
of thumb for the grid resolution requirement for the wake flow simulation to supplement those already known
and applied in the turbulent boundary layer flow simulation. We therefore present the grid size in wake units
denoted here in a form as ∆x̃i = ∆xi δUm/ν with the help of the grid spacing ∆xi , mean velocity deficit δUm
and the kinematic viscosity of the fluid ν. The plane wake DNS of Moser et al. (1998) could be regarded as
a good reference and the grid resolution from which has been estimated as ∆x̃ ≈ 98 and ∆ỹ ≈ 82. Results
in the z-direction are not available but it can be assumed to be of the same order as in the y-direction. Com-
paring with the present simulation, for example case A, we have the grid spacing in wake units of ∆x̃ = 167,
∆ỹ = 67 and ∆z̃ = 100 at station 3 and ∆x̃ = 126, ∆ỹ = 50 and ∆z̃ = 76 at station 4. It can be seen clearly
that in case A the flow in the near-wake region has not been properly resolved in the streamwise direction at
stations 3 and 4, while in the wall-normal (y) direction the flow is well-resolved at all stations with resolution
comparable with that estimated from Moser et al.’s simulation. This is due to the very strict requirement for
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Table 2. Comparisons of grid resolutions in wall and wake units at selected streamwise stations.

Cases

A D E F G H

Station 1 uτ (%) 4.986 4.799 5.132 4.823 5.097 5.085
(x = −3.047) ∆x+ 7.790 3.749 8.019 7.536 3.982 1.986

∆y+ 3.116 2.999 1.603 3.015 1.593 0.794
∆z+ 4.674 4.499 4.811 2.261 4.779 2.384

Station 2 uτ (%) 5.329 5.091 5.599 5.209 5.495 5.489
(x = −1.016) ∆x+ 8.326 3.978 8.748 8.139 4.293 2.144

∆y+ 3.330 3.182 1.749 3.255 1.717 0.857
∆z+ 4.996 4.773 5.250 2.442 5.152 2.573

Station 3 δUm 1.070 1.055 1.100 1.076 1.072 1.072
(x = 1.016) b 1.328 1.430 1.186 1.342 1.270 1.272

∆x̃ 167.179 82.450 171.960 168.146 83.809 41.887
∆ỹ 66.871 65.960 34.392 67.258 33.523 16.755
∆z̃ 100.307 98.940 103.176 50.444 100.570 50.264

Station 4 δUm 0.808 0.935 0.692 0.789 0.770 0.795
(x = 3.047) b 1.882 1.542 2.252 2.040 1.852 1.762

∆x̃ 126.270 73.009 108.171 123.236 60.174 31.068
∆ỹ 50.508 58.407 21.634 49.294 24.069 12.427
∆z̃ 75.762 87.611 64.903 36.971 72.208 37.282

Station 5 δUm 0.602 0.669 0.539 0.598 0.563 0.573
(x = 5.078) b 3.164 2.738 3.522 3.318 3.256 3.184

∆x̃ 94.011 52.267 84.204 93.497 43.993 22.394
∆ỹ 37.604 41.814 16.841 37.398 17.597 8.957
∆z̃ 56.407 62.720 50.523 28.049 52.791 26.873

Station 6 δUm 0.503 0.529 0.460 0.499 0.470 0.471
(x = 8.045) b 4.014 3.988 4.402 4.144 4.190 4.174

∆x̃ 78.681 41.335 71.802 78.101 36.761 18.404
∆ỹ 31.473 33.068 14.360 31.240 14.704 7.362
∆z̃ 47.209 49.602 43.081 23.430 44.113 22.085

Station 7 δUm 0.448 0.464 0.417 0.455 0.428 0.423
(x = 12.109) b 4.612 4.646 5.204 4.632 4.728 4.882

∆x̃ 69.990 36.238 65.128 71.208 33.441 16.521
∆ỹ 27.996 28.991 13.026 28.483 13.376 6.608
∆z̃ 41.994 43.486 39.077 21.362 40.130 19.826

the grid resolution in the boundary layer region, with the same grid points used in the wake. In the spanwise
direction the flow is less well-resolved at station 3 but well-resolved at station 4.

Based on the discussion of the three grid resolution studies above it was felt necessary to carry out further
simulations in which the flow in all three directions was better resolved both in the boundary layer, where
further grid refinement in the wall-normal direction is still required, and the wake region, where further grid
refinement in the streamwise direction is needed. Two high-resolution simulations were carried out, namely
case G, with 256×512×64 (∼ 8.4×106) grid points, and case H, with 512×1024×128 (∼ 6.7×107) grid
points, in which the simulation has double the number of points in all directions compared with case G (see
Table 1).

Figure 11(a) gives a comparison of the streamwise mean velocity along the centreline. Figure 11(b)–(f)
shows the comparisons of various quantities U, Urms, Vrms, Wrms and −〈uv〉 on seven cross-sections defined
as before.

In the boundary layer region (i.e. stations 1 and 2), the agreement between cases G and H is very good.
This gives the conclusion that the boundary layer flow in the case G simulation has been properly resolved
in all the streamwise, wall-normal and spanwise directions. The grid refinement even in the wall-normal di-
rection does not have much effect on the results. By looking at the grid resolution comparisons at stations 1
and 2 in Table 2 it is clear that in the case G simulation there are only 6 grid points in the sublayer but 13
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Figure 11. Results from high-resolution simulations. (a) Streamwise mean velocity U distributions along the centreline where y = 0.
(b) Mean velocity profiles at seven streamwise stations (for definition see Figure 9). (c) Turbulence intensity Urms in the stream-
wise direction. (d) Turbulence intensity Vrms in the wall-normal direction. (e) Turbulence intensity Wrms in the spanwise direction.
(f) Reynolds stress −〈uv〉.

points in the buffer layer. However, the results are comparable with those from simulation case H, which has
12 grid points in the sublayer and 24 points in the buffer layer. This conclusion gives further support to our
previous argument that the number of grid points in the buffer layer is more important than the number in the
sublayer.

In the near-wake region agreement between cases G and H is generally good (see Figure 11(a),(b)) with
small deviations near the recirculation region. In Figure 11(c) there are differences at stations 3, 4 and 5
where case H has a slightly lower value at centreline at station 3 and a higher peak at stations 4 and 5. The
differences are reduced at stations 6 and 7. Similar phenomena can be observed from Figure 11(d) as well.
It seems that the influence of grid refinement in the streamwise direction is slightly stronger than that in the
wall-normal direction in the near-wake region. Results from Figure 11(e),(f) agree well at all stations. Fig-
ure 12 gives a surface pressure comparison of cases A, G and H, from which the convergence on successive
grids is demonstrated. Although there is a lack of existing published experiments for a cross-plotting com-
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Figure 12. Mean pressure distributions over the trailing edge geometry along the plate (a) and at the base (b).

parison, results from the experimental study of Gough and Hancock (1996) (with more experimental data
available in Gao et al. (1996)), with different incoming flow conditions but the same configuration, have
been used for a qualitative comparison. Results from the present simulation show the correct order of mag-
nitude along the centreline and also the correct trends and profiles at streamwise stations for all the variables
analysed.

Results from this grid resolution study are summarized in Table 2, with data presented in terms of the
wake units defined above and compared at stations 3–7. Also given are the mean velocity deficit δUm and
the wake half-width b(x). Alternatively, the grid resolution can be expressed in terms of the Kolmogorov
microscale η ≡ (ν3/ε)1/4, where ε is the turbulence energy dissipation rate. As a reference we estimate
∆x̄ = ∆x/η ≈ 15 for a plane wake DNS (Moser et al., 1998). In the present simulations case G gives the
∆x̄ value of 13.79, 9.79, 6.72, 5.50, 4.99 at stations 3–7, and case H gives the value of 6.88, 5.07, 3.42, 2.76,
2.44, respectively. It is clear that in general the present simulation (case H) is better resolved in both the near-
and far-wake regions.

4.4. Visualization of Instantaneous Flow Structures

Figure 13(a)–(c) shows the instantaneous velocity (u, v and w) contours in an X–Y plane at z = 0. The flow
behind the trailing edge shows clear evidence of asymmetric vortex shedding. In particular steep gradients in
w-contours are found in the central part of the near wake (Figure 13(c)) which are believed to be related to
the distorted flow structures locally.

The three-dimensional flow structure is visualized by snapshots of the instantaneous flow in a region
close to the trailing edge. This section of the computational box has a size of X L = 10h (x = −2h ∼ 8h), YL =
6h (y = −3h ∼ 3h) and Z L = 6h (z = −3h ∼ 3h). In order to identify the large-scale spanwise Kármán vor-
tices and the small-scale streamwise vortices clearly, we define two vortex identifications: an iso-surface on
which the pressure has a constant value enclosing a low pressure core indicating the large-scale vortex struc-
tures, and an iso-surface of the second invariant of the velocity gradient tensor representing the small-scale
streamwise vortices, and given by

Π = ∂ui

∂xj

∂uj

∂xi
, (16)

which marks regions of fluid where the flow is locally dominated by rotation. Both identifications illustrate
vortex structures with the pressure indicator emphasizing the large-scale vortices and the second invari-
ant (Π) indicator giving the small-scale vortices. In the visualization the dark shading shows the spanwise
vortices and the light shading represents the streamwise vortices. Figure 14(a) shows a top view of the
flow. It can be seen that coherent large-scale spanwise vortices are formed just after the trailing edge and
the well-known Kármán vortex street exists in the wake region. The appearance of vortex shedding after
the trailing edge is mainly due to the reverse flow and is related to the existence of absolute instability
by linear stability theory (Hannemann and Oertel, 1989). This, in turn, causes the global oscillation of
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Figure 13. Contours of instantaneous velocity in the X–Y plane at z = 0.0. (a) Streamwise u-velocity, (b) wall-normal v-velocity
and (c) spanwise w-velocity.

the flow and the formation of Kármán vortex streets. It should be noted that although the vortices in the
wake all originated from the upstream turbulent boundary layer, they undergo further re-distribution and be-
come stronger in the near wake. As a result stronger streamwise vortices are visualized in the wake than
in the boundary layer region using the same indicator. The existence of Kármán vortices and their influ-
ence on the streamwise small-scale vortices is the main reason. From the visualization it can be seen that
the streamwise vortices are stretched between two neighbouring spanwise Kármán vortices along the direc-
tion of principal strain field. Further, the vortex shedding in the present simulation is not purely periodic
and not perfectly coherent in the spanwise direction over the whole wake region. This is due to the three-
dimensionality of the incoming turbulent flow and the evolution of the three-dimensional wake. The bending
of the Kármán vortices in the wake also illustrates a three-dimensional structure. Ultimately the span-
wise vortices are scrambled and eventually destroyed by the intense small-scale streamwise vortices in the
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Figure 14. Instantaneous flow structures from case G simulation. Dark shading: low pressure; light shading: second invariant.
(a) A top view and (b) a side view.

far-wake region. These vortex interactions between large-scale spanwise Kármán vortices and small-scale
streamwise vortices have also been observed by Najarr and Balachandar (1998) in a numerical investiga-
tion of flow over a normal flat plate at Reynolds number 250. The present observations are qualitatively
similar.

To assess the vortex shedding in the flow over the trailing edge with a finite thickness, a complementary
simulation was carried out with the same configuration and grids as case G but setting the trailing edge thick-
ness h to zero (i.e. an infinitely thin plate); with this geometry the flow is believed to possess only a weak
absolute instability in the near-wake region due to a lack of reverse flow region. Figure 15 gives a side view
of the instantaneous flow field with the same vortex indicators and shading defined as before. The streamwise
vortices in the turbulent boundary layer and wake regions are clearly shown. Due to the zero plate thickness
and consequent weak absolute instability, no clear spanwise vortex structures are observed after the trailing
edge. The strength of vortices in the wake region is not greatly increased when moving from the boundary
layer into the wake, whereas it does increase for a finite thickness trailing edge.

4.5. Spectral Analysis

To investigate the vortex shedding behind the trailing edge, we determine the shedding frequency using
a force coefficient defined by

CF  1
1
2ρU2

e Ao

∫ L Z

0

∫ 0

−5h
(pl − pu) dx dz, (17)
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Figure 15. Instantaneous flow structures from the simulation over an infinitely thin plate (a side-view). Shading defined as in
Figure 14.

where the integral is performed over the plate horizontal surface area of Ao = 5hL Z and (pl − pu) indi-
cates the difference of pressure between the lower and upper plates. We accept a slight error by truncating
the semi-infinite domain to 5h but this does not affect the interpretation of the results and is not considered
serious.

Figure 16(a) gives the time history of the force coefficient CF over a time interval of about 180h/Ue, from
which the unsteady and irregular shedding is quite clearly evident. The shedding period can be estimated by
measuring the average time between two neighbouring peaks; this is approximately 10h/Ue, hence the shed-
ding frequency fs is about 0.1Ue/h. The Strouhal number St ≡ fsh/Ue, based on the trailing edge thickness
and freestream velocity, is thus estimated as ∼ 0.1. A more precise estimate of shedding frequency can be
obtained from a spectral analysis of CF. The power spectrum of CF (see Figure 16(b)) shows the main shed-
ding frequency at the more precise estimate of 0.118, which is in good agreement with the value of ∼ 0.12
estimated from the experiment by Gough and Hancock (1996), but significantly smaller than typically found
in cylinder flows (typically in the range St ∼ 0.15–0.2). It is interesting to note that Najarr and Balachandar
(1998) found a Strouhal number of 0.143 when experimentally investigating the flow past a thin plate placed
normal to the flow at a Reynolds number (based on plate dimensions) of about 250. The shedding behaviour
exhibited in the simulation is quasi-periodic; it has a superficial appearance of periodicity, but never repeats
itself, and also exhibits short bursts of strong shedding with intervals of relatively weak shedding in between.
These characteristics are typical of observations made of turbulent experimental bluff body flows, see for
example Najarr and Balachandar (1998), and are qualitatively distinct from the almost perfectly periodic be-
haviour found in strictly two-dimensional calculations of turbulent flows (for example, by various unsteady
RANS methods). This suggests that three-dimensionality is an essential feature of turbulent bluff body flows
even when the flow structure appears capable of being represented in an essentially two-dimensional way.
These findings have implications for computational procedures that aim to predict unsteady loading patterns
on structures subjected to turbulent flow conditions.

4.6. Turbulence Kinetic Energy Budgets

Following the standard procedure as that described in Yao et al. (1999), an energy budget analysis can be
made based on the turbulence kinetic energy equation as

∂k

∂t
+ R = P − ε− (Ju

i,i + J p
i,i + Jν

i,i

)
, (18)

where R = ui(∂k/∂xi) is the convection term, P = −u′
iu

′
j(∂ui/∂xj) is the production,

ε = 1

Re

∂u′
i

∂xj

(
∂u′

i

∂xj
+ ∂u′

j

∂xi

)
(19)
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Figure 16. The time sequence of pressure coefficient in the wall-normal direction of the trailing edge geometry. (a) A time history
of about 180 time units. (b) A spectral analysis.

is the dissipation and

Ju
i,i = ∂(u′

iu
′
ju

′
j/2)

∂xi
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′
i)

∂xi
, Jν

i,i = − 1

Re

∂

∂xi

(
∂k

∂xi
+ ∂u′

iu
′
j

∂xj

)
(20)

are turbulence triple-moment, pressure and viscous transport terms, respectively. The turbulence kinetic en-
ergy budget analysis has been carried out for case G, results from which can be found in Yao et al. (1999)
and case H, results from which are given here in Figure 17, corresponding to stations 2–5.

In the boundary layer region alongside the plate at station 2 (see Figure 17(a)) the dominant term in the
energy balance is the production term; this takes its maximum value at about y+∼10. Closer to the plate,
y+<10, the viscous transport term dominates. The dissipation term remains the energy drain over the whole
thickness of the boundary layer, and outside the buffer layer, y+>30, the balance is (mostly) between the
production and dissipation terms, so that P ≈ ε. The overall energy balance indicated by the residual error
in the summation appears to be quite small.

In the middle of the recirculation region (Figure 17(b)) the production has a negative peak in the reverse
flow area and a positive peak away from the central region. Comparing Figure 17(b) with Figure 17(a) it can
be seen that the convection term and the pressure transport term grow rapidly and reach high values, ap-
proximately the same as the production term. In contrast, the viscous transport term approaches zero due to
the absence of the solid wall. The energy balance is dominated by the convective transport, pressure trans-
port and production terms. After the recirculation region (Figure 17(c)), the production continues to increase
and exceeds the magnitudes of other terms, and becomes the largest term in the budget. The triple-moment
transport term has increased in contrast to that of Figure 17(b), with a negative peak near the centreline and
a positive peak away from it. A useful observation is that the pressure transport term in the central part of
the wake changes sign when moving from a position inside the recirculation (x = h) to a position after that
(x = 3h). This is discussed further in Yao et al. (2000). Further downstream (Figure 17(d)) all terms are de-
creasing, and the production, convection and triple-moment terms are still dominant. Overall, good budget
balances are achieved.

5. Conclusions

A direct numerical simulation (DNS) has been used for the study of a turbulent flow over a rectangular trail-
ing edge geometry at a Reynolds number 1000, based on the freestream quantities and the trailing edge
thickness h. A turbulent boundary layer flow simulation was conducted to supply the inflow boundary condi-
tions for the trailing edge flow simulation. A parallel complex-geometry finite difference DNS code was used
for the latter. The effects of domain size and grid resolution were studied. It is concluded from the simula-
tions that the domain size change does not have a significant effect on the results and consequently the basic
computational box (with a size of 20h ×16h ×6h in the three directions) is sufficiently large for the present
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Figure 17. Turbulence kinetic energy budgets from case H. (a) At x = −h (in the boundary layer), (b) at x = h (in the recirculation
region), (c) at x = 3h (after the recirculation region) and (d) at x = 5h (in the wake region).

simulation. Using more points in the wall-normal direction the results are improved, especially in the near
wall and wake regions. Different flows present different requirements for grid resolution: in the boundary
layer flow the grid resolution in the wall-normal direction is crucial, while in the wake flow additional grid
resolutions in the streamwise and spanwise directions are further required. The far-wake region presents no
additional problems. A rule of thumb for the near-wake simulation is that the grid spacing in wake units ∆x̃i
(where ∆x̃i = ∆xi δUm/ν) should be less than 100, based on the present DNS and other simulations of plane
wake flow. Examination of the mean flow reveals that a recirculation zone exists after the trailing edge with
a length of about 2h. The turbulence quantities (

√
k, Urms, Vrms, Wrms) and Reynolds stress (−〈uv〉) results

have been compared at seven streamwise stations, in both the boundary layer and wake regions. Two high-
resolution simulations with grid points of 256×512×64 (∼ 8.4×106) and 512×1024×128 (∼ 6.7×107),
respectively, have been carried out to investigate the flow physics. The complex instantaneous flow structure
has been presented by both two-dimensional contours and three-dimensional flow field snapshots. The inter-
actions between the large-scale spanwise Kármán vortices and the small-scale streamwise vortices has been
visualized. The pressure distributions over the trailing edge are compared for the high-resolution cases and
a spectral analysis using the force coefficient in the wall-normal direction is also shown, illustrating the main
shedding frequency, characterized with a Strouhal number equal to 0.118, which is close to that found in ex-
periments with a similar flow condition. Finally a turbulence kinetic energy budget analysis has been carried
out. A good budget balance has been achieved, giving further validation for this DNS study, and key features
such as negative production and strong pressure transport effects have been identified.
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