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Abstract. Fluid flows are very often governed by the dynamics of a small number of coherent structures,
i.e., fluid features which keep their individuality during the evolution of the flow. The purpose of this paper is
to study a low order simulation of the Navier–Stokes equations on the basis of the evolution of such coherent
structures. One way to extract some basis functions which can be interpreted as coherent structures from flow
simulations is by Proper Orthogonal Decomposition (POD). Then, by means of a Galerkin projection, it is
possible to find the system of ODEs which approximates the problem in the finite-dimensional space spanned
by the POD basis functions. It is found that low order modeling of relatively complex flow simulations, such
as laminar vortex shedding from an airfoil at incidence and turbulent vortex shedding from a square cylinder,
provides good qualitative results compared with reference computations. In this respect, it is shown that the
accuracy of numerical schemes based on simple Galerkin projection is insufficient and numerical stabilization
is needed. To conclude, we approach the issue of the optimal selection of the norm, namely theH1 norm,
used in POD for the compressible Navier–Stokes equations by several numerical tests.

1. Introduction

The natural ambition of the aerodynamic designer is to influence the structure of the flow (for example, by
local injection of fluid) with the aim of increasing or optimizing performance. For this reason automatic shape
design and active flow control are objects of intense theoretical and practical research. One central problem
in applications is the prohibitive amount of computational resources needed by repeated application of a
flow solver, in particular in the case of three-dimensional, unsteady (possibly turbulent) flows. A promising
technique to circumvent this difficulty is the adoption of low order models as governing equations. Such
models should provide a qualitative description of the main features of the flow, for example, in terms of lift
and drag versus time, while permitting a very economical numerical solution.

One way to devise a low order model is to use Proper Orthogonal Decomposition (POD), by which it is
possible to extract from a database of direct simulations a certain number of basis functions onto which the
Navier–Stokes equations are projected. The Navier–Stokes equations are thus reduced to a finite-dimensional
system of nonlinear ODEs. If the dimension of this system is reasonably small, the solution can be found
with very limited computational effort.

The POD was introduced in fluid mechanics by Lumley [8] in the study of turbulent flows (for a review
see [4]). In that setting, the basis functions obtained by POD were recognized to be coherent structures,
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i.e., spatial features which repeatedly appear in space and time. In those works, the basic assumption was
that a limited number of coherent structures capture most of the dynamics of the system, relying on the fact
that turbulence might be the manifestation in the physical space of a strange attractor of limited dimension
in phase space. We retain in the following the same assumption, i.e., that a limited number of coherent
structures (about 50 in our cases) suffices to describe the flow. In fact, this is verifieda posteriori.

It may be objected that such an approach is of limited applicability since the basis functions obtained
for a given configuration or parameter regime are not suitable for other simulations. Typically, this is the
case when the control is acting on the flow, so that new coherent structures, not present in the uncontrolled
flow, appear. Although this is true in general, there are many examples in which the coherent structures do
not qualitatively change for wide ranges of the flow parameters. In addition, there are techniques to enlarge
the computational database in order to include the effect of controls. For example, it is proposed in [13] to
simulate the flow under the action of a random control to generate a sufficiently rich database, which could
also encompass the coherent structures of the specific control subsequently used.

In this study we contribute in two ways to the construction of a robust scheme for the integration of the
system of ODEs resulting from the projection of the compressible Navier–Stokes equations. Firstly, on the
basis of what was done in [7] for the Euler equations, we show by numerical evidence that when a low
order model is constructed using POD to describe the main flow features, it is not necessary to model the
unresolved modes in some alternate way to achieve numerical stability. Aubryet al. [4] presented a model
for the flat plate turbulent boundary layer based on a Galerkin projection of the Navier–Stokes equations
onto POD eigenfunctions resulting from experiments. The unresolved modes have been accounted for by
a model for the small scales which ensures the proper amount of dissipation (and stabilization), so that the
system of ODEs obtained is stable. The energy budget of such a small scales model correctly reproduces
the dissipation due to neglected modes, as found by Berkoozet al. [5]. Also, in [3] a paragraph is dedicated
to the dissipation properties of truncated POD models to the Kuramoto–Sivashinsky equation. The main
observation is again that if the POD modes considered are not enough, the solution may blow up in finite
time.

However, in our perspective, POD can only enlarge the stability domain of the numerical scheme in the
complex plane. This is found by classical numerical analysis tools for a one-dimensional advection–diffusion
equation and verified by some numerical experiments for an unsteady laminar flow, in which a textbook
four-stage Runge–Kutta time integration scheme advances with a CFL number of 75! We conclude that
numerical stabilization of POD–Galerkin approximation of the Navier–Stokes equations can be attained by
judicious use of numerical dissipation as an alternative to modeling the unresolved modes as was proposed
in [2].

The second contribution of this work is the discussion concerning the canonicalL2 norm in the definition
of POD. For example, to retain the optimality of the POD basis functions, we show that in the simple case
of the linear advection–diffusion equation with Dirichlet conditions, it is preferable to include a weighting
function in the definition of the scalar product. In the case of the turbulent Navier–Stokes equations, a
numerical test involving POD basis functions obtained using theH1 formulation, showed that the resulting
low order model is more dissipative and hence less subject to numerical instability than the regularL2

formulation. Norms other thanL2 were already proposed in [1] basically to give an appropriate functional
setting for noncompact kernels relative to biorthogonal expansions. However, the context and the purposes
for which they were introduced are different from those characterizing our work.

We anticipate that greater sophistication in the devise employed for numerical stability will ultimately
contribute to applying optimal flow control techniques to the compressible Navier–Stokes equations as
successfully as in the incompressible case, for which more results have yet to be established in the literature.

The article is organized as follows. In Section 2 POD basis functions are determined in the setting of
the Hilbert–Schmidt theory of kernels. In Section 3 we analyze POD approximation of the one-dimensional
advection–diffusion with different boundary conditions. We show that POD can be interpreted as a filter
and we compare the constant coefficients system of ODEs with POD filtering. In Section 4 we present the
numerical experimentation setting and the results obtained with the POD filter for the case of the flow past
an NACA0012 at 20◦ of incidence, Mach = 0.2,Re = 2100 (laminar flow), and for the flow about a square
cylinder, Mach = 0.1,Re = 22000 (turbulent flow). For the same test cases we present the results obtained
with theH1 POD filter. To conclude, the results obtained with the constant coefficients system of ODEs are
compared with those obtained by POD filtering.
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2. POD of the Compressible Navier–Stokes Equations

The method of “snapshots” proposed by Sirovich [12] for the incompressible Navier–Stokes equations
is adapted here to the compressible Navier–Stokes equations. This method, briefly outlined below for
completeness, allows for the construction of the basis functions starting from a limited number of “snapshots”
of the flow at successive times.

Consider the nondimensional Navier–Stokes equations in two dimensions written in conservative form
with W = {ρ, ρu, ρv, ρe}:

Wt + Fx +Gy =
1
Re

(
Rx + Sy

)
; (1)

F = {ρu, ρu2 + p, ρuv, u(ρe + p)} and G = {ρv, ρuv, ρv2 + p, v(ρe + p)}
denote the convective fluxes while

R =
{

0, 4
3 ux − 2

3 vy, vx + uy, u ( 4
3 ux − 2

3 vy) + v (vy + ux) +
γ

γ − 1
Tx
Pr

}
and

S =
{

0, vx + uy, 4
3 vy − 2

3 ux, v ( 4
3 vy − 2

3 ux) + u (vy + ux) +
γ

γ − 1
Ty
Pr

}
denote the diffusive fluxes. In the above expressionsρ is the density,u andv are the cartesian components
of the flow speed,e is the total energy per unit mass, andT is the temperature. The pressure is given by
p = 1/2 (γ − 1) (2ρ e− ρ u2− ρ v2) andγ is the specific heat ratio.

Suppose that, from existing data, the solution atM different time stepstn is known in terms ofW (n) =
W (x, y; tn). It is required to find a function

φ(x) = (φ1, φ2, φ3, φ4) ∈ (L2(R2))4

which gives the best representation of the set ofW (n) in the following sense:

〈(W (n), φ)2〉
(φ, φ)

= max
ψ

〈(W (n), ψ)2〉
(ψ,ψ)

, (2)

where (ψ,ψ) denotes the canonicalL2 inner product and the brackets〈 · 〉 indicate the time average

〈(W (n), ψ)2〉 =
1
M

M∑
n=1

(W (n), ψ)2. (3)

In other words, one seeks a functionφ which is most parallel (correlated) in an average sense to the given
solution setW (n).

This problem finds its natural setting in the theory of linear integral equations (see Chapter III of [6]).
Here some results relevant to our study are sketched in the frame of such a theory. For omitted proofs we
refer the reader to [6].

Consider first the general quadratic integral form

J(ψ,ψ) =
∫

Ω
ψ(s)K(s, t)ψ(t) dt ds, (4)

whereK(s, t) = K(t, s) is a symmetric 4×4 matrix andψ ∈ (L2(R2))4. Suppose that the functionalJ takes
on positive values only, i.e.,∀ψ, J(ψ,ψ) > 0; in this caseJ(ψ,ψ) is said to be positive definite. Suppose
also that (ψ,ψ) = 1.

If the functionφ(l) satisfies ∫
Ω
K(s, t)φ(l)(t) dt = λl φ

(l)(s), (5)

then clearlyJ(φ(l), φ(l)) = λl, and it can be shown thatφ(l)(s) realizes a local maximum ofJ(ψ,ψ) subject
to the constraint (ψ,ψ) = 1.
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Now, with the particular choice of the kernel

K(s, t) =
1
M

M∑
n=1

W (n)(s)⊗W (n)(t), (6)

where⊗ is the tensorial product, we have

J(ψ,ψ) =
1
M

M∑
n=1

[∫
Ω
ψ(s)W (n)(s) ds

∫
Ω
ψ(t)W (n)(t) dt

]
= 〈(W (n), ψ)2〉. (7)

Therefore the maximum ofJ(ψ,ψ) with (ψ,ψ) = 1 solves the problem in (2). Substituting (6) into (5) we
have

1
M

M∑
n=1

∫
Ω
W (n)(s)⊗W (n)(t)φ(l)(t) dt = λlφ

(l)(s). (8)

This is an eigenvalue problem for the symmetric, degenerate, positive definite kernel in (6). In this respect,
recall that every continuous symmetric kernel that does not vanish identically possesses eigenvalues and
eigenfunctions. Also since the kernel in (8) is real, symmetric, and degenerate then the eigenvalues areM
in number and all real. The eigenvalues are positive sinceJ(ψ,ψ) in (7) is positive definite.

The totality of eigenvalues and eigenfunctions of (8) are found sequentially. Each new eigenfunction is
sought as the solution of the maximization problem for the functionalJ subject to the constraint of being
orthogonal to all previously found eigenfunctions. Anyr-fold degenerate eigenvalue is associated withr
linearly independent eigenfunctions.

In conclusion, once the eigenvalue problem of (8) is solved, we are left with a set ofM eigenvaluesλn
andM orthonormal eigenfunctionsφ(n) which give an optimal representation, in the sense made precise at
the beginning of this section, of the solution known at different time steps. In the following sections we use
similar arguments to determine a basis for the approximation of the compressible Navier–Stokes equations.

Sirovich [12] proposed an efficient and simple way to solve the eigenvalue problem based on the fact that
the eigenfunctions can be expressed in terms of the original set of data, i.e.,

φ(s) =
M∑
n=1

χnW
(n)(s), (9)

where theχn (n = 1, . . . ,M ) are scalar coefficients. Substituting (9) in (8) results in a linear algebra problem
consisting of finding the eigenvalues and the eigenvectors of

C K = λK, (10)

whereK = (χ1, . . . , χM ) is one of theM eigenvectors,λ is the corresponding eigenvalue, andC =
1/M (W (i),W (j)) for i, j = 1, . . . ,M . In the applications of the following sections we make use of the
POD-functions gradients, which we compute simply by

∇φ(s) =
M∑
n=1

χn∇W (n)(s). (11)

When the solutionW is sampled by means of a large number of snapshots, a certain number of eigenvalues
are very likely to be close to zero, so that the contribution of the corresponding eigenfunction to the description
of the flow may be considered negligible. In this case we can consider only the firstMc (normally about 50)
eigenvalues for the projection of the governing equations over the corresponding eigenfunctions, in order to
reduce the set of ODEs to be solved. In practical applications, we normally solve this eigenproblem by the
use of NAG library routines.

Before considering applications to flow simulations, in the next section we analyze general properties of
the POD approach when applied to single model problems representative of flow equations.
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3. Analysis of POD Applied to Model Equations

We consider first the periodic solutions of the pure advection equation

ut + ux = 0

with x ∈ [0,2π]. A semidiscretization over the uniform meshxi = i2π/N (i = 0, . . . , N ) results in the
following set of ODEs (“method of lines”):

Ut +
N

2π
AU = 0, (12)

whereU = {u(xi)} andA = {an i} is the spatial discretization operator. In this case the POD basis functions
are (unsurprisingly) the usual Fourier modes

φk(xi) =
1√
N

exp
[
ιk2πi
N

]
,

so that substituting in (12) the expression

U =
M∑

k=−M
wk(t){φk(xi)}, (13)

and making thel2 (discrete) projection over the modēφj yields the following reduced set of ODEs:

wjt +
M∑

k=−M
wk {φ̄j(xn)}{an i} {φk(xi)} = 0, j = 1, . . . ,M. (14)

The matrixΛ = {λj k} = {{φ̄j(xn)} {an i} {φk(xi)}} is diagonal as the{φj(xi)} are its eigenvectors. On
the diagonal ofΛ appear the eigenvalues ofA, the discrete operator.

From (14), multiplying byφj and subsequently summing overj, we reconstruct the PDE in the physical
space. We obtain

Ut +
N

2π
ÃAU = 0 (15)

with Ã = {ãn i} = {∑M
k=−M φ̄k(xn)φk(xi)}. The matrixÃ, which is circulant and symmetric, has the

same eigenvectors as the matrixA. Its firstM eigenvalues (not to be confused with the eigenvalues of the
correlation matrix which yields the POD basis functions) are 1, whereas the remainder are 0. Therefore, the
firstM eigenvalues of the spatial operatorÃA are equal to those ofA, the others are canceled out.

For example, suppose that the spatial operator is the usual upwind differentiation, and suppose that a
Runge–Kutta scheme is used to integrate (15) forward in time. Since the higher frequencies are filtered out
by the matrixÃ, the maximum CFL allowed is higher, see Figure 1. In this figure the eigenvalues of the
upwind spatial operator are plotted in the complex plane. They lie over a circleC of radius 1 tangent to the
imaginary axis, the lower frequencies corresponding to the eigenvalues closer to the origin. Suppose we
mapC onto a circleC′ which is tangent to the domain of stability of the time-integration scheme, e.g., the
four-stage Runge–Kutta scheme, by an homothetic transform. The radius ofC′ is equal to the maximum
allowed CFL number. Clearly, the smaller the number of retained frequencies, the higher the radius of
C′. In the following section we show that this is experimentally verified also in the case of the unsteady
Navier–Stokes equations.

This simple analysis should clarify why the POD model is not responsible for the stability degradation
of the numerical scheme observed, for example, in [16]. We ascribe the numerical stability degradation
of the cases that we studied to an improper treatment of the convective fluxes derivatives in the POD
model.
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Im

Re

RK stability region

r=1

Mth mode

Figure 1. Plane of the eigenvalues of̃AA. In this caseA is the upwind operator. For an explicit time integration the CFL bounds are
increased.

Also it is seen that POD can be viewed as a filter possibly adapted to the flow under consideration. We
use this interpretation to check if fairly complex flows can be conveniently represented by a reduced number
of basis functions.

The same type of analysis can be applied with some caution to other linear spatial operators with different
boundary conditions. For example, if we consider the advection–diffusion equation with homogeneous
Dirichlet boundary conditions

ut + c ux − ν uxx = 0,

if central differencing is used

A = Trid(−ν/h2− c/2h,2ν/h2,−ν/h2 + c/2h),

whereh is the mesh size. Themth eigenvector of matrixA is then given by its components

em = {ej}m = αj sin(jθm); α =

√
−ν/h2− c/2h
−ν/h2 + c/2h

,

θm = mπ/(N + 1) is the frequency parameter,N is the number of discretization points, andj = 1, . . . , N .
These eigenvectors approximate the eigenfunctions of the continuous spatial operator with Dirichlet bound-
ary conditions, i.e., exp(cx/2ν) sin (mπx). However, the eigenfunctions of the continuous spatial operator
as well as their discrete approximations are orthogonal only if an appropriate weighted scalar product is
used. In the discrete case the weight isα−2j and we have, for example,

(em, en) =
∑
j

emj e
n
j α
−2j = δmn.

Similarly, if the POD basis functions are to recover the advantageous decoupling of (12), it is necessary that,
in the definition of (2), the scalar products are defined accordingly using the same weighting function as the
continuous operator, i.e., exp(−c x/4ν) or its discrete counterpart. In this way the POD basis functions can
be found to be the discrete approximations of the eigenfunctions of the continuous operator, so that matrices
Ã andA commute the same as in the previous example.

In this linear case we see that the use of a more sophisticated euclidean norm induced by the discrete
operatorA, dramatically improves the approximation properties of the basis functions found by (2). In the
next section we show an attempt to extend such ideas to the compressible Navier–Stokes equations.

We conclude with a nonlinear example. Consider the case of the inviscid Burgers’ equation

ut + uux = 0 (16)

with u =
∑M
k=1w

k(t)φk(x). Projecting ontoφj(x) yields
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wjt +
M∑
k=1

wk wj(φkx, φ
j) = 0. (17)

Alternatively, using POD as a filter one obtains

Ut + ÃA(U )U = 0. (18)

In (17) the term (φkx, φ
j) can be computed once and for all, so that the solution of this system of ODEs is

very efficient. In this specific case, assuming an implicit time integration, the system is stable. Yet, if we
proceed in the same way for the Euler [7] and the compressible Navier–Stokes equations [16] the resulting
system of ODEs is unstable. The numerical stabilization of these ODE systems is still an open question,
although in [16] several interesting experiments were performed by adding artificial diffusion.

The POD-filter approach is the dual of the constant coefficients ODE system. It is easily implemented and
stable but inefficient. Nevertheless, it shows that low order modeling does not necessarily imply instability,
and it provides a simple way to study the quality of the approximation which can be obtained by a low order
POD–Galerkin formulation.

4. Compressible Flow Simulations

With reference to (1), we takeW =
∑M
j=1w

j(t)φj(x) wherewj(t) ∈ L2(R). In the case of the Euler and
laminar Navier–Stokes equations,φj ∈ (L2(R2))4, whereas for turbulent flows modeled using the Reynolds
averaged Navier–Stokes equations, we haveφj ∈ (L2(R2))6 in order to account forκ andε. In all of the
computations we tookPr = 0.72 andγ = 7

5. The code on which we base our analysis and computational
results combines the following features: a mixed finite volume/finite element formulation on unstructured
triangular meshes; the convective part of the Euler equations is discretized using an upwind finite volume
formulation based on an approximate Riemann solver [11]. Second-order spatial accuracy is obtained through
a MUSCL [15] technique which requires the construction of local solution slopes; the latter being computed
using a classical finite element formulation for P1 triangular elements. Linearized implicit formulation for
second-order time integration using a defect correction approach [9] is applied. For turbulent flows we
resort to aκ–ε model with wall laws. For the details concerning the test cases that we will present, we refer
the reader to [10] and [14]. They were selected as representatives of typical unsteady flows which may be
interesting to control.

4.1. POD Filter

Based on the code we described above, we use the POD filter constructed in a way similar to that explained
in the previous sections. At each time step we compute the flow variables update using the reference code,
then we filter and start the process all over again as explained in Figure 2. The POD basis functions are
obtained by the “snapshots method.”

FV NS code + k-e      POD filter
   n+1 n+1n

wn+1
j

~

Figure 2. Time integration scheme with a POD filter.
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Figure 3. NACA0012: 20◦ of incidence, Mach = 0.2,Re = 2100, laminar. Example of snapshots: density.

The first case we consider is an NACA0012 at 20◦ of incidence immersed in a flow at Mach = 0.2 and
Re = 2100. The flow field is discretized over a triangular mesh of 12 248 vertices. The flow over the airfoil
is laminar with periodic vortex shedding from the leading edge and from the trailing edge, see Figure 3. We
sample such a flow with about 100 snapshots over one period. Then we construct the basis functions and
retain 30 of them, those corresponding to the highest eigenvalues. In Figure 4 we see the first component of
the second to fifth basis function. Notice that the first basis function is not shown as in our case it is related
to the average flow. It is seen that a phase shift appears between the second and third basis functions as well
as between the fourth and fifth, whereas the length scale of the structures is constant from the first to the
last one. It may be noticed that the vortex street past the airfoil is out of phase in the first couple of basis
functions and in phase in the latter. Indeed, the corresponding eigenvalues also exhibit such a pairing. The
length scale of the spatial structures decreases with the subsequent basis functions, not shown here. The
pairing of the eigenvalues and the phase shift between coupled POD modes has been shown in [1] to be a
consequence of the translation symmetry in the traveling waves characterizing the flow.
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Figure 4. Example of basis functions for the laminar case: first component.

In Figure 5 we compare the results of the reference code with those obtained using the POD filter. The
results are given in terms of lift versus time; there is a slight increase in the oscillation amplitude, which
stays, however, bounded for all times, more remarkable as the number of basis functions used is decreasing
as is seen in Figure 6. The lift plateau due to the vortex shedding from the trailing edge is in all cases except
the last overestimated. The quality of the simulation is reasonable when ten basis functions or more are used.

The explicit reference code, which realizes the time integration with a classic four-stage Runge–Kutta
method, operates with a maximum CFL of about 2.5, whereas in the context of the POD filter code the same
Runge–Kutta routine can be stably operated with a maximum CFL of about 75, see Figure 6. It is remarkable
that in accordance with the one-dimensional linear analysis the POD filter code has a stability domain of
larger extent.
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Figure 5. Results of the reference code compared with the ones obtained by POD filtering in the laminar case. The reference computation
was pursued for only four periods.

Figure 6. Comparison between the results obtained using the reference code and the ones obtained with a different number of POD
basis functions at CFL = 75.



Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations 387

4.2. Constant Coefficients System of ODEs

Consider the Navier–Stokes equations rewritten in terms of the primitive variables{ς, u, v, p}, whereς = 1/ρ.
Other more usual forms of these equations introduce rational fractions of the unknowns leading to a system
of ODEs which is not polynomial, as, for example, in [16]. We have

ςt + u vx − ux ς − vy ς + v ςy = 0,

ut + uux + v uy + ς px =
1
Re

ς [( 4
3 ux −

2
3
vy)x + (vx + uy)y],

vt + u vx + v vy + ς py =
1
Re

ς [( 4
3 vy − 2

3 ux)y + (vx + uy)x],

pt + u px + v py + γ p
(
vx + uy

)
(19)

=
γ

Re Pr
[(p ς)xx + (p ς)yy] +

γ − 1
Re

[ux ( 4
3ux − 2

3vy) + vy ( 4
3vy − 2

3ux) + (uy + vx)2].

After projection over{φi1, φi2, φi3, φi4}, integrating by parts and discarding negligible boundary terms, we
obtain a system of the form

ẇi +
M∑
j,k=1

ai j k wj wk +
1
Re

M∑
j,k=1

bi j k wj wk = 0, (20)

where

ai j k =
∫

Ω

(
φi1φ

j
2
∂φk1
∂x

+ φi1φ
j
3
∂φk1
∂y
− φi1φk1

∂φj2
∂x
− φi1φk1

∂φj3
∂y

)
dΩ

+
∫

Ω

(
φi2φ

j
2
∂φk2
∂x

+ φi2φ
j
3
∂φk2
∂y

+ φi2φ
j
1
∂φk4
∂x

)
dΩ

+
∫

Ω

(
φi3φ

j
2
∂φk3
∂x

+ φi3φ
j
3
∂φk3
∂y

+ φi3φ
j
1
∂φk4
∂y

)
dΩ

+
∫

Ω

(
φi4φ

j
2
∂φk4
∂x

+ φi4φ
j
3
∂φk4
∂y

+ γ φi4φ
j
4
∂φk2
∂x

+ γ φi4φ
j
4
∂φk3
∂y

)
dΩ (21)

and

bi j k =
∫

Ω

(
4
3
∂φi2
∂x

φj1
∂φk2
∂x
− 2

3
∂φi2
∂x

φj1
∂φk3
∂y

)
dΩ +

∫
Ω

(
∂φi3
∂x

φj1
∂φk2
∂y

+
∂φi3
∂x

φj1
∂φk3
∂x

)
dΩ

+
γ

Pr

∫
Ω

(
∂φi4
∂x

φj1
∂φk4
∂x

+
∂φi4
∂x

φk4
∂φj1
∂x

)
dΩ +

∫
Ω

(
4
3
∂φi3
∂y

φj1
∂φk3
∂y
− 2

3
∂φi3
∂y

φj1
∂φk2
∂x

)
dΩ

+
∫

Ω

(
∂φi2
∂y

φj1
∂φk2
∂y

+
∂φi2
∂y

φj1
∂φk3
∂x

)
dΩ +

γ

Pr

∫
Ω

(
∂φi4
∂y

φj1
∂φk4
∂y

+
∂φi4
∂y

φk4
∂φj1
∂y

)
dΩ

+(γ − 1)
∫

Ω

(
4
3
∂φj2
∂x

φi4
∂φk2
∂x
− 2

3
∂φj2
∂x

φi4
∂φk3
∂y

)
dΩ

+(γ − 1)
∫

Ω

(
4
3
∂φj3
∂y

φi4
∂φk3
∂y
− 2

3
∂φj3
∂y

φi4
∂φk2
∂x

)
dΩ

+(γ − 1)
∫

Ω

(
∂φj2
∂y

φi4
∂φk2
∂y

+ 2
∂φj3
∂x

φi4
∂φk2
∂y

+
∂φj3
∂x

φi4
∂φk3
∂x

)
dΩ. (22)

The coefficientsai j k andbi j k are computed once and for all using the basis functions and their gradients
computed as in (11). The system of ODEs is integrated in time by the backward differentiation formula for
stiff systems of ODEs (Gear method).
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(a)

(b)

Figure 7. Constant coefficient system without additional dissipation: (a) second and third coefficient versus time, (b) phase–space
sections.

In the airfoil test case, the period (0.028 s) of the oscillations found by numerical integration of (19) is in
agreement with that obtained using the reference or the POD filter scheme. Yet, one can see in Figure 7(a)
for the coefficientsw2(t) andw3(t) that amplitude of the oscillation increases finally to stabilize. In the
same figure the phase–space cut on the plane of the coefficientsw2–w3 andw4–w5 is compared with what
is obtained by POD filtering. The ordered motion of Figure 8 is disrupted in Figure 7(b). We ascribe this
behavior to a lack of numerical diffusion. If additional stabilization is provided in a brutal way, i.e., increasing
the viscosity, the results of the constant coefficients system are in good agreement with those of the reference
numerical simulation, compare Figure 8 and Figure 9(b).

We now turn our attention to a turbulent test case: we consider a square cylinder immersed in flow at
Mach number 0.1 and Reynolds number 22 000. Aκ–ε model with wall laws was applied. The flow field is
discretized over a triangular mesh with 9274 vertices. The flow computation performed with the reference
finite-volumes code shows a periodic vortex shedding from the corners of the square. In order to build
the basis functions we took 100 snapshots of the flow over one period; the first component and the third
component ofφ2–φ8 are shown in Figures 11 and 10. We observe an odd–even decoupling of the modes as
well as a phase shift, as in the previous case.

The POD filter was constructed with 30 basis functions and the results are shown in Figure 12. Again the
low order model is in good agreement with the reference code. The phase–space sections forw2–w3,w4–w5

andw6–w7 are given in Figure 13. It is seen that the motion on this plane is ordered and that the shapes of
the closed orbits denote the presence of oscillation with increasing time frequency as the number of basis
functions increases.
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Figure 8. Projection of the numerical solution obtained by the FV code: phase–space sections.

(a)

(b)

Figure 9. System with increased viscosity: (a) second and third coefficient versus time, (b) phase–space sections.
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Figure 10. Square cylinder, Mach = 0.1,Re = 22 000, turbulent. 100 Snapshots; 10 basis functions. First component of POD basis
functions.

4.3. H1 Formulation

In the POD-filter code we used for the laminar and turbulent flow experiments, the numerical diffusion
is introduced by solving Riemann problems at control volume interfaces, ensuring sufficient stabilization
so that the low order model is also stable. In order to develop a rational method to introduce diffusion
in the constant coefficient system of ODEs (19), we explored the possibility of redefining the norms in-
volved in the POD definition of Section 2. Indeed, it seems to us that to increase the relevance of smaller
scales in the POD definition might enhance dissipation. This can be accomplished, for example, by re-
defining all the norms in the Sobolev spaceH1, so that the derivatives of the snapshots as well as that
of the basis functions are included in the POD average. The formula to compute the POD basis functions
becomes
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Figure 11. Third component of POD basis functions for the square cylinder case.

φ = max
ψ∈H1

〈(W,ψ)2〉

= max
ψ∈H1

〈(∫
Ω
W ψ dΩ + ε

∫
Ω
∇W · ∇ψ dΩ

)2〉
. (23)

Many metrics are possible forH1, so thatε can be conveniently chosen in different simulations. From
dimensional analysis considerations, one may guessε proportional toT/Re, whereT is some appropriate
time scale. The basis functions are found by linear combination of the solution snapshots as in theL2 case,
yet the coefficients of the linear combination are now the eigenvectors of the matrix

{cnm} =
{∫

Ω
W (n) W (m) dΩ + ε

(∫
Ω
∇W (n) · ∇W (m) dΩ

)}
, (24)
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Figure 12. Results of the reference code compared with the ones obtained by POD filtering in the turbulent case.

where the numerical evaluation of the nodal gradient∇W is computed as an average over the cell of the P1
gradients. Accordingly, the orthogonality condition is (φi, φj)H1 = δi j .

The numerical simulations which we now present are obtained based on the POD-filter code in which the
filter is built using the basis defined inH1. Our aim is to investigate the approximation properties of such
functions compared with those obtained with theL2 norm.

We expect that as the Reynolds number is increasing, the advantage of theH1 formulation over theL2

becomes more and more evident. In the laminar test case, which was studied forRe = 2100, we now double
the Reynolds number and compute the flow starting from a uniform initial condition with the basis functions
relative to theRe = 2100 case. This simulation is different from that of Figure 5, as the transitory solution
occurring before the establishment of the periodic vortex shedding does not belong to the database from
which we derive the POD basis functions. Nevertheless, it is seen in Figure 14(a) that POD basis functions
derived with theH1 norm are still in good agreement with the reference solution, whereas the theL2-norm
basis functions are unable to give a reasonable representation of the flow. If we initialize the computation
from the established periodic flow, still atRe = 4200, the solution obtained with theL2-norm basis functions
compare better with the reference flow, see Figure 14(b). Yet, it seen that the amplitude of the oscillation
tends to increase with time.

Indeed, the next example also shows that theH1 basis functions seem to allow better results even in
the case of a turbulent flow. The experimental setup is the following: in the cylinder case (Re = 22 000)
the convective fluxes are computed using a centered approximation. Then we compare theL2 POD filtered
solution and theH1 POD filtered solution. The reference code is in this case numerically unstable, as well
as theL2 POD filter code. On the contrary, theH1 formulation withε = 10 and ten basis functions provides
sufficient stabilization so that the computation is still in good agreement with the reference computation,
as is seen in Figure 15 where it is shown how the curve corresponding to theL2 basis (solid line) tends
to diverge from the reference, whereas the curve relative to theH1 basis (dashed line) has constant am-
plitude over six periods. Therefore, we observe a definite benefit in employing theH1 formulation of the
POD.
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Figure 13.Square cylinder: phase space sections.
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(a)

(b)

Figure 14. Re = 4200. Comparison between the results obtained using the reference code and the ones obtained by POD filtering with
basis functions relative toRe = 2100: (a) uniform flow initial condition; (b) initialization from the established periodic flow.



Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations 395

Figure 15. Square cylinder case: reference versus theL2 and theH1 POD-filter computations.

5. Conclusions

For the test cases we considered (airfoil atRe = 2100, Mach = 0.2, and square cylinder atRe = 22 000,
Mach = 0.1), finite-volumes codes need some kind of numerical stabilization. Indeed, if the convective fluxes
are computed by central approximations, the numerical residuals diverge. It is well known that this occurs
when the convective terms becomes preponderant over the diffusive terms.

The same way, as shown in the model problem of Section 3, POD–Galerkin approximations for convective
dominated problems need numerical stabilization, as they amount, for example, to central or upwind schemes
depending on the spatial differentiation operator used for the derivative of the POD basis functions.

We have shown that POD can be viewed as a filtering process. The results based on a POD-filter canonical
code are in good agreement with the reference, both in a laminar and a turbulent case. We conclude that the
expectation of simulating a complex flow on the basis of a limited number of degrees of freedom is well
founded. Through the canonical code on which we base our POD approach we are able to provide a rational
way to add numerical diffusion to the ODE system. We have derived the constant coefficients system of
ODEs relative to the compressible Navier–Stokes equations, and shown that, however, its judicious numerical
stabilization is crucial to retain the approximation properties found using the POD-filter code. Based on
numerical experiments, we suggest that one way to achieve stabilization improvements is to define POD in
theH1 Sobolev space, that is to incorporate gradients as well as function values in the definition of POD. It
turns out that taking into account derivatives in the definition of POD modes or representing the actions of
small scales through an “eddy” viscosity as is done in [2] are essentially two different ways to accomplish
the same result: recover the action of the small scales. In conclusion the perspectives opened are to devise
numerical expedients to include the optimal diffusion amount in the constant system of ODEs relative to the
compressible Navier–Stokes equations, taking advantage of the apparent benefits of theH1 formulation.
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