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Abstract. A numerical procedure for the direct numerical simulation of compressible turbulent flow and
shock–turbulence interaction is detailed and analyzed. An upwind-biased finite-difference scheme with a
compact centered stencil is used to discretize the convective part of the Navier–Stokes equations. The scheme
has a uniformly high approximation order and allows for a spectral-like wave resolution while dissipating
nonresolved wave numbers. When hybridized with an essentially nonoscillatory scheme near discontinu-
ities, the scheme becomes shock–capturing and its resolution properties are preserved. Diffusive parts are
discretized with symmetric compact finite differences and an explicit Runge–Kutta scheme is used for time-
advancement. The peculiarities of efficient upwinding and coupling procedures are described and validation
results are given. Using direct numerical simulation data, some aspects of turbulent supersonic compression
ramp flow are studied to demonstrate the effectiveness of the simulation procedure.

1. Introduction

A major problem in modeling turbulent supersonic flows is the correct assessment of viscous–inviscid
interaction problems. These encompass most of the critical issues of gas-turbine design and supersonic
aircraft design. Of particular interest is the interaction of turbulent boundary layers with shocks. Here, all three
ingredients, mean flow, turbulent fluctuation, and shock, interact strongly, a situation which poses a stringent
requirement for accurate turbulence modeling when the Reynolds-averaged Navier–Stokes equations are
solved.

A standard test case for turbulence models are compression corner flows. Generically they appear in
many aeronautical configurations. They give rise to a particularly interesting combination of phenomena,
all of which are more or less confined to a relatively narrow region about the corner. First, the turbulence
in the oncoming boundary layer responds to a rapid distortion. Second, for large enough Mach numbers
and deflection angles there is a shock-induced unsteady separation. The area of separated flow is contained
by a detached, curved shear layer, and fluctuations in this shear layer, subject to high strain, are strongly
amplified. Third, there is an unsteady shock motion related to the unsteady separation. Present turbulence
models in most cases give unsatisfactory results in the region of rapid distortion and in the separation region,
in particular with regard to mean flow profiles and turbulence quantities. A representative account of the
prediction capability of present turbulence models for the supersonic compression ramp has been given,
e.g., by Wilcox (1990).

The objective of this work is the direct numerical simulation (DNS) of a shock–boundary layer interaction
along a supersonic compression corner. It is expected that DNS data will shed light on the validity of basic
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modeling assumptions. Also of concern is the impact of three-dimensionality and unsteadiness on the solution
of the Reynolds-averaged Navier–Stokes equations with turbulence models. This report summarizes the first
phase of the work during which a numerical method suitable for this problem has been developed and a
computer code has been written and tested.

In Section 2 we address the fundamental equations, boundary conditions, and grid generation. We focus
in Section 3 on the discretization of the fundamental equations. Code validation is summarized in Section 4.
Finally, in Section 5 several aspects of supersonic turbulent compression ramp flow are studied using DNS
data in order to assess the effectiveness of the simulation procedure.

2. Mathematical Model

2.1. Governing Equations

The fundamental equations solved are the conservation equations for mass, momentum, and energy in
generalized coordinates:
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where the conservative variables areU = {ρρuρvρwE}, withE = p/(κ− 1)+ρ(u2+v2+w2)/2. Considering
only essentially two-dimensional configurations we limit the coordinate generalization to the (x, z)-plane.
The physical space (x, y, z) is mapped onto the computational space (ξ, η, ζ) which is Cartesian and equis-
paced (y is mapped ontoη linearly). The convective fluxes are then given by

FE =


ρ(uξx +wξz)

ρu(uξx +wξz) + pξx
ρv(uξx +wξz)

ρw(uξx +wξz) + pξz
(E + p)(uξx +wξz)

 ,

and similarly forGE andHE. The viscous fluxes are given by

FS =


τxxξx + τxzξz
τxyξx + τyzξz
τxzξx + τzzξz

−qxξx − qzξz + (uτxx + vτxy +wτxz)ξx + (uτxz + vτyz +wτzz)ξz

 ,
and similarly forGS andHS. The Jacobian of the coordinate transformation isJ = ξxζz− ξzζx. The stresses
are defined as
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with analogous definitions forτyy andτzz, and
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and similarly forτxz, τyz, andτxz. The heat fluxes are defined as
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qy andqz analogously. The viscosity is calculated according to Sutherland’s law. We also assume the thermal
equation of state for perfect gases to be valid,κM2

∞p = ρT . The abbreviationsξx, ξz, ηy, ζx, ζz are used for
the metric coefficients∂ξ/∂x, ∂ξ/∂z, ∂η/∂y, ∂ζ/∂x, ∂ζ/∂z.
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2.2. Boundary Conditions

At the inflow all dependent variables are imposed. At the no-slip wall all velocities are set to zero and
either the wall temperature or the wall-normal gradient of temperature is prescribed. Given a wall-normal
temperature-gradient distribution∂T/∂n, a Neumann condition for the temperature can be imposed by
setting

Tζ =

√
ζ2
x + ζ2

z (∂T/∂n)− (ξxζx + ξzζz)(∂T/∂ξ)
ζ2
x + ζ2

z

whenever it appears during the computation of heat flux and stress terms (due to the temperature dependence
of the viscosity).

At the outer truncation plane, Dirichlet boundary conditions fixing all variables at their free-stream values
are prescribed. A nonreflecting condition for the temporal derivative of incoming Riemann variables, as in
Thompson (1987), has been found occasionally to give rise to viscous instability. These inviscid nonreflecting
boundary conditions are well-posed only if viscous terms are negligible. This is not necessarily the case if
the shock, for instance at the exit, reaches close to the truncation plane, where the mesh spacing is coarse.

As for all spatially developing flows the outflow boundary requires special treatment. A buffer domain
approach has been used successfully by Pruettet al. (1995). The drawback of that approach is that the
viscous terms of the basic equations need to be manipulated in the buffer region. Here, we resort to a simpler
approach as proposed by Guoet al. (1996) and introduce a sponge layer at the outflow boundary, typically
about one boundary-layer thickness long. In doing so a vector quantityZ = −σ(x)(U −U0) is added to the
right-hand side of the Navier–Stokes equations. HereinU stands for the vector of conservative variables and
U0 for a given steady basic flow (e.g., laminar or turbulent mean flow). The damping functionσ(x) is set to
zero outside of the sponge region and

σ(x) = As(Ns + 1)(Ns + 2)
(x− xs)Ns(Lx − x)

(Lx − xs)Ns+2
(1)

within the sponge region,xs ≤ x ≤ Lx, following Israeli and Orszag (1981), whereLx is the streamwise
length of the computational domain. The parameters are typically chosen asAs = 4 andNs = 3. The
damping effect is not very sensitive to the parameter choice, see Section 4.2. At the outflow plane, inviscid
nonreflecting boundary conditions of Thompson (1987) are then applied toU . Guoet al. (1996) found that
this approach is about as effective as a well-tuned buffer-domain approach, although significantly simpler
to implement.

2.3. Grid Generation

For the generation of an analytic mapping of the computational domain onto the physical domain we follow
a simple algebraic procedure. We restrict our interest to channel-like geometries where the lower and the
upper boundary can be approximated by simple functions and inflow and outflow boundaries are straight.
The mapping is nonconformal and the orthogonal partition of the computational domain in general will
be mapped onto a nonorthogonal partition of the physical domain. The mapping consists of two steps: (1)
the computational domain (ξ, ζ) ∈ [0,1] × [0,1] with a uniformly spaced partitioning is mapped onto an
intermediate space with nonuniform partitioning (s, r) ∈ [0,1]× [0,1]; (2) the intermediate space (s, r) is
mapped onto the physical space (x, z), see Figure 1.

Using a linear blending function between the lower and upper boundaries we define this latter mapping
function by

x(ξ, ζ) = (1− r) xl (s) + r xu(s), z(ξ, ζ) = (1− r) zl (s) + r zu(s).

The indices l and u indicate that the functions are to be taken at the lower and upper boundaries, respectively.
The metric coefficientsξx, ξz, ζx, ζz are the components of the inverse Jacobi matrix∂(ξ, ζ)/∂(x, z).

For the mesh-point distributions along the parameter liness(ξ) at the lower and upper boundaries we
define

s(ξ) = aξ + b + c1 sinh[g3(ξ)].

The following abbreviations are used:
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Figure 1. Sketch of the mapping between computational (ξ, ζ) and physical space (x, z).
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If we consider compression corner geometries, thenc1 andc3 are given parameters which tune the grid-
point condensation around the given corner pointxc. This point coincides with the zero of sinh[g3(ξ)] which
is the condition used to computec2 by solvingxc − x(c2) = 0 for c2. Given all parameters, we define the
variation ofx along the lower or upper boundary in terms of the parameters asx(s) = Ls, whereL is the
maximum value whichx can assume on the lower and upper boundaries, respectively. Having obtainedx(s)
we getz(s) by

z(x) = d2

[
x +

1
d1

ln (cosh(d1x− xc)) + d3

]
. (2)

A corner singularity in the mapping is avoided by prescribing a finite curvatureRc at (xc,0). The same is
done for the upper boundary but using a much larger curvature radius. Doing so, the mapping between the
computational and physical domains remains regular and an order degradation due to a corner singularity
can be avoided. Also, the resolution of the highly curved mesh at the corner is facilitated by grid-point
condensation. The ramp endpoint is given by (L, sin(ϕ)(L − xc)), whereϕ is the ramp angle in physical
space (x, z). The parameterd2 is computed from the condition thatz(L) = sin(ϕ)(L − xc), which defines
d2 implicitly. The symbolsd1 andd2 in (2) are defined as

d1 =
(1 +d2

2)3/2

Rc
, d3 = −d2

d1
ln(cosh(d1xc)).

In the transversal direction we introduce the parameter functionr(ζ),
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,

which allows us to stretch the mesh in the transversal direction and to cluster mesh points aroundzmv. The
following abbreviations and parameters are used:e1 ande3 control the grid stretching at a point (0, zmv),
in a similar manner as dod1 andd3; about half of the grid points are located between (0,0) and (0, z1/2).
(0, z1) is the upper-left corner point. The auxiliary functionsh1 andh2 are defined as

h1(ζ) = cζ + d + e1 sinh(h2(ζ)), h2(ζ) =
ζ − e2

e3
.

The constantsc andd are given by
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.



Direct Numerical Simulation of Turbulent Compression Ramp Flow 113

Table 1.Typical grid mapping parameters.

Given parameter Value

ϕ 18
xc 50
L 50 + 40 cosϕ
h1 15
h2 25
xmv 50
c1 3
c2 0.8
z1/2 3
zmv 3
d1 0
d2 0.8
Rc,l 0.5
Rc,u 80

Computed parameter Value

c2 0.5452
d2 0.5820

Givenzmv, the parametere2 is computed from the condition that the argument ofz(ζ) = zmv coincides with
h2(ζ) = 0, i.e.,e2 is obtained by solvingzmv − z1r(e2) = 0. Typical parameter values for the grid used in
Section 5 are given in Table 1.

3. Discretization

3.1. Spatial Discretization

A family of symmetric compact finite-difference schemes with spectral-like resolution has been introduced
by Lele (1992). They are being widely used for DNS of transitional and turbulent shear flows, e.g., Adams and
Kleiser (1996), Pruettet al.(1995), and aeroacoustic problems. As with spectral schemes symmetric compact
schemes are sensitive to boundary condition formulation and aliasing errors. The latter is of particular concern
for the discretization of convective terms in the Euler or Navier–Stokes equations, where triple products
appear in the conservative form of the momentum equations.

In this study we use compact upwind schemes for the discretization of convection terms, a class of
which has been derived from a generalized formulation of compact schemes by Adams and Shariff (1996).
The schemes have a centered stencil but become upwind biased due to nonsymmetric coefficients. The
upwind biasing introduces a certain amount of numerical dissipation at nonresolved wave numbers which
allows us to contain aliasing errors. Two particular schemes, called CUHD and CULD, out of that class of
compact upwind schemes have been derived by Adams and Shariff (1996). Here we also introduce a slightly
more dissipative scheme, obtained using the same procedure as in Adams and Shariff (1996), which we
call CUVB. It additionally satisfies Assumption 2.4 of Cockburn and Shu (1994) and thus allows for total
variation boundedness in the means by introducing appropriate limiters (a strategy which we do not pursue
here for reasons detailed in Adams and Shariff (1996)).

3.2. Fundamentals of Compact Upwind Schemes

Defining ML as theleft-handmatrix andMR as theright-handmatrix of the scheme, which is used to
compute spatial derivatives in the convective terms, an approximationf̃′ of the vector of derivative values
of a functionf on a grid is obtained from

ML f̃′ = MRf, (3)
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Figure 2. Dispersion (a) and dissipation (b) for scheme CUVB. LB1: scheme at the left boundary; RB1: scheme at the right boundary;
LB2: scheme at the next-to-left boundary point; RB2: scheme at the next-to-right boundary point; ZS: scheme at interior points.

wheref is the vector of function values at the grid points. By numerically minimizing a norm of the dispersive
error, under the constraint of nonvanishing dissipation, we derive a scheme of consistently fifth order (fourth-
order boundary closures) following the procedure described in Adams and Shariff (1996). The stencil width
is five points. For an assessment of the resolution properties we resort to a scalar advection equation, the
exact solution of which is exp(iωt − iξx). By replacing the spatial derivative in the advection equation by
its approximation, the frequencyω = ξ is modified toω̃(ξ), which is complex in general. The real part of ˜ω
represents the numerical dispersion, the imaginary part the numerical dissipation of the scheme. The scheme
is designed to be about as dissipative at nonresolved wave numbers as the noncompact upwind scheme used
in Rai and Moin (1993), while giving a significantly better representation of the dispersion relation for wave
numbers (normalized with the grid-spacingh) up toξ ' 2. Figure 2 shows the dispersion relation of scheme
CUVB.

For a bounded nonperiodic domain the scheme’s stencil needs to become one-sided at the boundaries
and telescopes toward the stencil of the inner scheme. Accordingly the scheme’s coefficients are different
close to and at the boundaries. These boundary closures we call LB1 at the left boundary, LB2 next to the
left-boundary, RB2 next to the right boundary, and RB1 at the right boundary, the inner scheme we call
ZS. They do not include boundary conditions yet. The contribution of the boundary schemes to the overall
resolution is small, they merely needed to be tuned to give stable global discretization. The coefficients of
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scheme CUVB are given in the Appendix and more of its properties are discussed, following the guidelines
of Adams and Shariff (1996).

3.3. Upwinding for Hyperbolic Conservation laws

Considering a hyperbolic conservation law

∂U

∂t
+
∂F (U )
∂x

= 0, (4)

the flux-Jacobian∂F (U )/∂U is similar to a diagonal matrixΛ = S(∂F (U )/∂U )S−1. The matricesML and
MR in (3) of the upwind scheme, which is stable for positive eigenvaluesλ of ∂F (U )/∂U , are calledM+

L
andM+

R. The ones which are stable for negative eigenvalues are calledM−L andM−R . M−L is obtained from
M+

L by multiplication with the unit permutation matrix andM−R from M+
R by multiplication with the negative

unit permutation matrix. A simple form of flux splitting is used. First we compute an approximationPN of
∂F/∂x by each of the schemes:

P +
N = M+

L
−1M+

RF, P−N = M−L
−1

M−RF.

These approximate flux derivatives are then projected onto the local characteristic directions by

C+
N = S−1P +

N , C−N = S−1P−N .

Defining the sign function to return the sign ofλ and zero ifλ = 0 we compute

CN = 1
2[(1 + sign(Λ))C+

N + (1− sign(Λ))C−N ]

which is then projected back onto the computational space to give

PN = SCN .

This procedure results in a stable upwind approximation for the flux derivative. The implicitly added nu-
merical dissipation is apparent from an equivalent formulation:

PN = 1
2(P +

N + P−N ) + 1
2[S sign(Λ)S−1(P +

N − P−N )].

The last term is proportional to the scheme’s truncation error, which is dominated for the present schemes
by a sixth-order derivative term (Adams and Shariff, 1996, equation (8)) and resembles a hyperviscosity of
sixth order.

3.4. Compact Essentially Nonoscillatory Coupling

Linear compact schemes are not suited for the computation of weak solutions of advection problems which
contain discontinuities. Here, we couple the nonconservative compact upwind scheme with a conservative
shock-capturing scheme around discontinuities. As has been pointed out in Adams and Shariff (1996),
heuristic evidence for this type of hybridization shows that the main proposition of Hou and Le Floch (1994)
holds for the compact upwind schemes, which are used here, as well. This proposition asserts that a certain
class of nonconservative schemes gives solutions which converge to the viscosity solution of a conservation
law if the schemes are corrected toward a conservative scheme in a neighborhood of discontinuities (see
also the Appendix).

We use a finite-difference type essentially nonoscillatory (ENO) scheme as proposed by Shu and Osher
(1989). In a first step, a discontinuity detection algorithm scans the instantaneous solution. A simple detection
algorithm is employed: if a flux gradient is larger than a certain threshold and assumes a local maximum,
the respective cell is marked to be treated by the ENO scheme. The marked regions are padded by a certain
additional number of cells to allow the compact scheme on each side of the discontinuity to decouple and to
allow the ENO scheme to expand its stencil fully. The fluxes at the centers of the marked cells are calculated
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with the ENO procedure, and the flux derivatives at the corresponding cell faces are reconstructed. Scheme
(3) is modified to return the ENO flux derivatives at the marked cell faces and the compact flux derivatives
at all other points. For details see Adams and Shariff (1996).

It has been shown among others by Casper and Carpenter (1995) and Arora and Roe (1997) that shock-
capturing schemes suffer from a post-shock reduction of accuracy, which only can be avoided by subcell
resolution. Tests of the hybrid scheme (Adams and Shariff, 1996, Sections 6.2 and 6.3) and of a pure ENO
scheme by Maheshet al. (1996) demonstrate that the effect of the postshock oscillations on small-scale
fluctuations is acceptably small, provided that the fluctuations are sufficiently well resolved.

The actual implementation in a DNS code with a reasonable capability of vector optimization is more
involved. An efficient implementation of the compact ENO coupling is possible by using a correction formula
for the inverse ofML. We consider the one-dimensional, one-component problem. Given the fluxF on the
grid {xj}, its derivative forx is approximated by

∂F

∂x

.
= PN [F ] = M−1

L MRF. (5)

Assume that{x}E = {xp, . . . , xq}1∪· · ·∪{xr, . . . , xs}nE is the union of contiguous regions of points where
the flux derivatives are approximated by the ENO scheme. If the shock-detection algorithm has detected a
pointxi to be treated by the ENO scheme, we set theith component of a maskΥ equal to 1. The other entries
of Υ are 0. The vectorΥ hasnE unity blocks with dimensions larger or equal to (2Nsep+ 1) each, where
Nsep is the dimension of the padding on each side of an ENO region (Adams and Shariff, 1996). Whenever
Υi = 1 for a certain grid point, thenPN [F ]i = PENO

N [F ]i is computed by the ENO scheme.
The effect of the compact ENO coupling on (5) is that theith component ofMRF is replaced by the flux

derivative ati calculated with the ENO scheme wheneverΥi = 1. The rowi of ML has then to become unity
so that the ENO flux derivativePENO

N [F ] is returned exactly. We define a correction matrix from the product
BCD of three matrices which changes the rowsi of ML to unity wheneverΥi = 1. It can by decomposed
into the matricesB, D, andC, the dimensions of which are given below. With this definition the fundamental
equation for the computation of flux derivatives for the hybrid scheme can be written as

(ML − BDC)PN [F ] = MRF + Υ(PENO
N [F ] −MRF ). (6)

The rank of the correction matrixBCD is
∑nE

ν=1Nν = mE. It is evident that (6) returns the ENO flux
derivatives exactly at pointsi wheneverΥi = 1.

To solve (6) efficiently we make use of an identity by Frobenius and Schur (Zurm¨uhl and Falk, 1984, pp.
308, 312) which allows us to compute (ML −BDC)−1 from the inverse ofML, corrected by the inverse of a
rankmE matrixR. Since the precomputed inverse ofML can be used this procedure is, for multidimensional
problems, more efficient than inverting the left-hand side matrix of (6), ifmE¿ N .

The matricesB, D, andC are defined as follows :

B︸︷︷︸
N×mE

=
mE∑
ν=1

ΥeTν , D︸︷︷︸
mE×mE

= I︸︷︷︸
mE×mE

= ImE, C︸︷︷︸
mE×N

= BT (ML − I ).

Here we defineeν as themE-component vector, theνth component of which is equal to unity, the rest being
zero.

The solution algorithm for (6) is the following, according to Zurm¨uhl and Falk (1984):

(0) calculate the uncorrected solution vectory from

MLy = MRF + Υ(PENO
N [F ] −MRF )

by direct inversion using the precomputed LU-decomposition ofML;
(1) compute matrixV from

MLV = B

by direct inversion using the precomputed LU-decomposition ofML ;
(2) generate the rankmE correction matrixR from

R = ImE − CV ;
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(3) get the solution correction vectorz from

Rz = Cy

(note thatR is usually fully occupied so that this procedure is only efficient ifmE << N );
(4) find the solution vector from

PN [F ] = y + Vz.

For a multidimensional problem all points in index planes normal to the derivative direction are
gathered and a vector loop is spanned over these points.

4. Code Validation

DNS codes are required to resolve all scales appearing in a flow problem. So it seems reasonable to perform
two different kinds of test, the first of which is to assess how well fluctuations about a mean flow are
represented, the second is to see how well the mean flow itself can be computed. Concerning the first, we
follow a procedure which has been used by Adams and Kleiser (1996), where linear stability theory is used
as a reference. For the second, we compare with the steady-state computations and experimental results for
laminar compression ramp flow of Simeonideset al. (1994), in this case the ENO scheme is active around
the shock.

4.1. Temporally Growing Instability

To assess the effectiveness of the compact upwind schemes the code is validated by comparison with linear
stability theory. The laminar mean flow is superimposed with an eigensolution of the linearized Navier–
Stokes equations. For low amplitudes the instability should evolve in accordance with linear theory. We
derive a growth rate from the kinetic energy content of the instability wave as was done by Adams and
Kleiser (1996). The growth rate which is observed in the DNS is required to match linear theory.

We consider the case of a temporally growing (streamwise and spanwise periodic) three-dimensional
instability in a boundary layer. The parameters are given in Table 2. The reference length is the laminar
displacement thickness,α andβ are the streamwise and spanwise wave numbers, respectively, andA is
the initial maximum amplitude of the streamwise velocity fluctuation. The exact growth rate from linear
stability theory (LST) isωi = 6.433554· 10−3. In Table 3 the growth rate after one time step (imaginary

Table 2.Parameters for temporally growing instability.

M∞ 3
Reδ1 7500
α 0.25
β 0.45
A 10−4

Table 3.Growth rates for a linear instability wave, DNS compared with LST.

Scheme

Discretization CUHD CUVB

10× 10× 50 6.42030× 10−3 6.16112× 10−3

20× 20× 50 6.43817× 10−3 6.42900× 10−3

10× 10× 100 6.41529× 10−3 6.15629× 10−3

20× 20× 100 6.43314× 10−3 6.42412× 10−3

40× 40× 100 6.43363× 10−3 6.43328× 10−3

40× 40× 200 6.43352× 10−3 6.43320× 10−3

Linear theory 6.43355× 10−3
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Figure 3. Local growth rate for scheme CUHD.

part of the complex temporal eigenvalue) with schemes CUHD and CUVB are shown (note that since the
solution is shock-free the ENO scheme is inactive). Since here we are concerned only with the accuracy of
the spatial discretization only one time step is performed. Integration over longer time intervals is considered
in Section 4.2.

Figures 3, 4 and 5, 6 show the local growth rate and frequency distribution across the boundary layer for
schemes CUHD and CUVB, respectively. We use the fact that the eigenfunctions maintain their shape in
a parallel boundary layer. Note that the computation of growth rate and frequency from the eigenfunctions
is ill-conditioned near the wall, where the amplitude becomes very small. This affects in particular cases
with low wall-normal resolution. An increased resolution inz allows also for a better resolution of the
boundary-layer edge where the mean-flow profile curvature is maximum. Strong near-wall oscillations are
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Figure 4. Local frequency for scheme CUHD.
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Figure 5. Local growth rate for scheme CUVB.

caused by numerical round-off due to small local perturbation amplitudes. From the figures it is evident that,
for sufficient resolution, the numerical solution accurately resembles linear theory.

4.2. Spatially Growing Instability

A similar procedure as before is used to assess the effectiveness of the outflow boundary treatment and the
accuracy of the time integration. A two-dimensional spatially evolving second mode instability wave, see
Adams and Kleiser (1996), of a maximum streamwise velocity amplitudeA is superimposed on a laminar
boundary layer. The test-case parameters are given in Table 4:αr is the streamwise wave number,−αi is the
spatial growth-rate, andω is the frequency of the instability wave. The streamwise size of the computational
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Figure 6. Local frequency for scheme CUVB.
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Table 4.Parameters for spatially growing instability.

M∞ 4.5
Reδ1 10000
αr 2.25
ω 2.05
−αi 0.030821
A 10−4

domain is about eight primary-instability wavelengths. Since the efficiency of the spanwise discretization
has been assessed by the previous test we consider here only two-dimensional flow and the spanwise wave
numberβ is zero. A parallel basic flow is enforced by adding a forcing term to cancel its residual, see Adams
and Kleiser (1996). The local growth rate atz = 0.5 is computed by a Fourier transform of 48 samples
from data spanning over 8 primary-instability periods. Resolution isNx = 160,Nz = 50 andNx = 320,
Nz = 100 cells, respectively. For these computations the sponge parameters, equation (1), areNs = 3 and
A = 4. A change of the sponge parameters toNs = 6 orA = 10 has been found to have only a minor effect
on the efficiency of the sponge layer. Figure 7 gives an illustration of the sponge-layer effect. It can be seen
that the density wave is suppressed in a narrow region close to the outflow boundary without distorting the
oncoming wave.

The amplitude of an instability wave is a much less sensitive measure of discretization accuracy than the
local growth rate, which we use in the following. Figures 8 and 9 compare the effect of grid refinement for
schemes CUHD and CUVB, respectively. For comparison, the growth rate as predicted by linear stability
theory is given in the figure caption. The sponge layer at the end of the computational domain is indicated by
gray shading. Note that the growth rate is ill-defined in the sponge region since the perturbation amplitude is
forced toward zero. A small inflow transient region appears as a consequence of imposing the time evolution
of the instability from an LST result. This transient diminishes with increasing resolution. The issue whether
the outflow boundary treatment could cause spurious reflections which increase in time is addressed in
Figure 10. Increasing the integration time from 1 period to 80 periods shows no increased error in the local
growth rate so that the existence of spurious amplified waves can be excluded. Since scheme CUVB behaves
essentially as scheme CUHD we restrict the following sponge-layer tests to scheme CUHD.

The error in the local growth rate also remains unchanged at a given position for an unchanged resolution
if the computational domain size is doubled, as can be seen from Figure 11. This means that there is no
artificial coupling between the inflow and outflow boundaries. The same holds when the sponge region is
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Figure 7. Density fluctuation att = 0 and after two periods.
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Figure 8. Local growth rate for scheme CUHD withNx = 160,
Nz = 50 and withNx = 320,Nz = 100; LST:−αi = 0.030821.

Figure 9. Local growth rate for scheme CUVB withNx = 160,
Nz = 50 and withNx = 320,Nz = 100; LST:−αi = 0.030821.

extended so that it starts atx = 18, the growth-rate distribution in the valid part of the domain remains
essentially unchanged (Figure 11).

Without showing figures we note that if the fluctuation amplitude is increased by two orders of magnitude,
then weak nonlinear effects cause larger excursions of the local growth rate from the linear value (maximum
about 10% error) but there is no noticeable reflection increase from the sponge region.

4.3. Steady-State Solution

As an example for the second kind of test we compare our results with the experimental and computational
results of Simeonideset al.(1994). As a test case we select their 7.5◦ ramp atM∞ = 6. The flow is laminar
over the whole extent of the ramp. Figure 12 shows the residual history (rms value of the density derivative).
After 13 000 time steps with a third-order pure ENO scheme the computation is continued for an additional
16 000 time steps using the hybrid scheme (combining the fifth order compact scheme with a fourth-order
local-Lax–Friedrichs-flux ENO scheme). About 1.5% of all points are, on average, treated by the ENO
procedure when the flux derivatives are computed with the hybrid scheme. We emphasize that our scheme is
time-accurate and of low overall dissipation. Only for validation purposes is it used to obtain a steady-state
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Figure 10. Local growth rate for scheme CUHD withNx = 160,
Nz = 50 after 1 period and after 80 periods; LST:−αi = 0.030821.

Figure 11. Local growth rate after 80 periods for scheme CUHD
withNx = 320,Nz = 50 and extended (doubled) domain and with
Nx = 160,Nz = 50 and extended sponge region.
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Figure 12. Residual history (rms of∂ρ/∂t) for schemes CUHD and CUVB.

solution. The low dissipation is reflected in the large number of time steps needed to reach a steady-state
solution.

Note also that we do not include the leading edge within the computational domain, but prescribe a simi-
larity boundary layer at the inflow, so we observe some inflow transient. This is done to match the procedure
used in later DNS computations. The agreement of the results with the finest-mesh-level computational data
and experimental data of Simeonideset al. (1994) is reasonable (Figure 13). No attempt has been made to
improve the results further by continuing the computation or by grid refinement.
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Figure 13. Skin friction and surface pressure compared with computational and experimental results of Simeonideset al. (1994).
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5. Turbulent Supersonic Compression Ramp

In this section we discuss some technical issues concerning DNS of the turbulent boundary layer along
a compression ramp and demonstrate the effectiveness of the simulation procedure using part of a DNS
database.

We consider a plane compression ramp with a deflection angle of 18◦. The free-stream Mach number of
the flow along this configuration isM∞ = 3 and the momentum-thickness Reynolds number at the inflow is
Reθ = 1685. As reference quantities the free-stream values ofu, ρ, T , andµ and the displacement thickness
of the mean boundary layer at the inflow are used. During a preliminary simulation its has been found that
inflow data have a significant impact on the large-scale unsteady behavior (Adams, 1997). Here, we generate
inflow data from a separate spatial boundary layer DNS, which in turn is fed with temporal DNS inflow data as
described in Adams (1997). At a cross-flow plane, about six mean-boundary-layer thicknesses downstream
of the inflow, the conservative variables are sampled 1000 times in an interval∆t = 167, corresponding to
about 2.5 “flow-through” times (the time the free-stream flow needs to pass the ramp configuration). The
sampled data are made periodic in time by smoothly blending the interval ends. Contrary to the procedure
in Adams (1997), where the inflow data were sampled only over about∆t = 6 this procedure allows the
flow in the interior to be sufficiently decorrelated (about 150 large-eddy turnover times) before the inflow
data repeat.

Figure 14 shows a side view of the computational mesh (each 10th grid line is shown). The streamwise
and spanwise mesh resolution in terms of wall units at the inflow is on the average∆+

x ' 6 and∆+
y ' 3.3,

respectively. The first grid point off the wall in the wall-normal direction is at the inflow at∆+
z(z1) = 1.4.

Within the mean boundary layer at the inflow there are 97 of 181 grid points which give on the average
∆+
z ' 2.3.
An issue mentioned in Section 2.3 was the effect of the corner-rounding employed to avoid a coordinate-

mapping singularity. Figure 15 shows a close up of the corner region with contours of spanwise vorticity
ωy (color coding stops to indicate the mean boundary-layer edge). It is apparent that the curved corner
segment is small compared with the flow structures (note that the mesh as shown is half as fine than for the
computation).

Figure 16 shows a visualization of an instantaneous shock surface (div(u) = −0.4) where the bottom and
back of the computational domain are color coded according to the local density. It is evident that the shock
forms essentially outside of the boundary layer where its tip fringes into the boundary layer. We choose an
isothermal-wall boundary condition, since it appears more reasonable to expect the wall (as the boundary of
a body with relatively high heat capacity) to be unable to react to fast temperature changes due to turbulent
fluctuations. Experimental data of Zheltovodovet al., see Settles and Dodson (1991), support the assumption

Figure 14. Computational mesh (each 10th grid line); numbers in circles indicate stations where profiles are shown in Figure 18.



124 N.A. Adams

Figure 15. Close-up at the corner, contours ofωy .

Figure 16. Density at the wall, in the planey = 2.9 and shock-surface with div(u) = −0.4.
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Figure 17. Skin friction and surface pressure for 150 samples.

of a constant wall temperature. Since the wall temperature is kept constant, density remains low close to the
wall but increases behind the deflection shock.

From 150 time samples spanning a time interval∆t = 172 spanwise-averaged and time-sampled distri-
butions of the skin friction coefficientCf and the surface pressurepsurf have been obtained and are displayed
in Figure 17. TheCf distribution indicates an incipient separation around the corner, which is located at
x = 36.23. The evolution of Favre-averaged longitudinal velocity profiles is shown in Figure 18. The down-
stream positions of the profiles are indicated by the numbers 0–10 and correspond to the markers in Figure 14.
Note that only the part of profile 10 which is beneath the shock is shown, so that it approaches the postshock
value of the free-stream velocity.
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Figure 18. Favre-averaged (150 samples) longitudinal velocity profiles at different downstream stations as marked in Figure 14 (profiles
are staggered by an offset of 0.25 for clarity).
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6. Concluding Remarks

A novel hybrid shock-capturing scheme is used to discretize the compressible Navier–Stokes equations with
an accuracy required by DNS for transitional and turbulent flow. The prominent feature of this procedure
is a new compact upwind scheme of consistently high order (fifth order) which is coupled with an ENO
scheme to capture shocks. The coupling makes the resulting hybrid scheme nonlinear. An efficient coupling
algorithm has been devised which essentially works as a correction to the underlying linear compact upwind
scheme. The hybrid scheme is used as a building block of a solution method for the unsteady compressible
Navier–Stokes equations. The numerical method has been validated by comparison with linear stability
theory and with steady-state solutions.

DNS data for the turbulent boundary layer along a compression ramp show reasonable results. A quan-
titative comparison with available experimental results is not possible for the foreseeable future due to the
fact that experimental Reynolds numbers are significantly higher than those which can be achieved with
DNS. Further DNS-data analysis is in progress.

Appendix

For the nomenclature of this appendix we refer to Adams and Shariff (1996). For completeness all relevant
parameters, stability analysis, and validation results for scheme CUVB are given here, along the same line as
in Adams and Shariff (1996) for schemes CUHD and CULD. Unlike schemes CUHD and CULD of Adams
and Shariff (1996), the inner scheme of CUVB also satisfies Assumption 2.4 of Cockburn and Shu (1994).

The parameters of the target functional, equation (31) of Adams and Shariff (1996) for scheme CUVB are
given in Table 5. Table 6 summarizes the initial guesses for optimization. Constrained numerical optimization
as described in Adams and Shariff (1996) gives the coefficients of scheme CUVB (Table 7). The truncation

Table 5.Target functional parameters.

Scheme∗ α β Ξ γ Π(ξ0)

ZS 5 0 2.3 0.04 ωi(2)2

LB1 1 0 2.1 0 —
LB2 1 0 2.3 0 —
RB2 1 0 2.3 0 —
RB1 1 0 2.3 0 —

∗ ZS stands for the scheme at the interior points, LB1 for the scheme
at the left boundary, RB1 for the scheme at the right boundary, LB2
for the scheme at the next-to-left boundary point, and RB2 for the
scheme at the next-to-right boundary point.

Table 6. Initial guesses for optimization. Abbreviations same as in Table 5.

Scheme Coefficient CUVB

ZS a−2 0.2
a0 0.2
a2 0.2

LB1 a3 −1
a4 −1

LB2 a2 0
a3 −0.2

RB2 a−3 1.
a−2 −1.

RB1 a−4 −1.
a−3 −1.
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Table 7.Coefficients for scheme CUVB. Abbreviations same as in Table 5.

Scheme αµl , . . . , αµr

ZS −0.152087544263 0.2375084218594 1 −0.104175088526 0.018754210929673
LB1 1 1.344856712172 −1.655143287828 — —
LB2 −1.384173201496 1 6.620636755258 −2.122934969145 —
RB2 15.74839515424 27.04931646417 1 −0.3211206221354 —
RB1 4.850969558221 7.826957363797 1 — —

Scheme aνl , . . . , aνr

ZS 0.354175088526 −1.550033687437 1.025050531156 0.1832996458959−0.012491578140655
LB1 −2.557476118695 3.982714931742 −0.9827149317416 −0.4425238813046 0
LB2 3.362325146817 −11.84525146073 8.836922058206 0.2990810938894−0.6530768381839
RB2 −1.846602572079 −30.2283794418 21.15923086495 12.27649588754 −1.36074473861
RB1 0.0020010162019952 −0.6538343569155 −8.740436045696 5.756444175312 3.635825211098

Table 8.Truncation error estimate. Abbreviations same as in Table 5.

Scheme Ẽc

ZS 0.104455
LB1 2.00482
LB2 3.35575
RB2 9.33802
RB1 7.16414

error estimateẼc from equation (10) of Adams and Shariff (1996) for the different schemes is given in
Table 8.

Figure 19 shows the pseudo-eigenspectra for three different realizations ofE for scheme CUVB with
N = 40 andN = 160 cells. Here,E is a matrix of unit norm and with random elements. Since the maximum
absolute value of the real parts of the pseudo-eigenvalues is bounded by a linear function, Figure 20, evidence
for algebraic stability is given (Adams and Shariff, 1996).

If the solution develops discontinuities the hybrid scheme switches locally to an ENO scheme as described
by Adams and Shariff (1996). For the hybrid scheme with CUVB as the underlying compact scheme the
same tests as in Section 6 of Adams and Shariff (1996) have been performed and the results are similar to
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Figure 19. ε-pseudo-eigenspectra for three different realizations ofE for eachε with N = 40 (a) andN = 160 (b).
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Figure 20. Bound of|<(λε)|. Figure 21. Error norms for Burgers’ equation att = 2/π.

those with CUHD. As an example the convergence rate of scheme CUVB for the test with Burgers’ equation
is shown in Figure 21.

The coefficients of schemes CUVB, CUHD, and CULD can be obtained as a Fortran source by anonymous
ftp from spartakus.ifd.mavt.ethz.ch.
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