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Abstract. Jet noise research was initiated by Sir James Lighthill in 1952. Since that time, the development
of jet noise theory has followed a very tortuous path. This is, perhaps, not surprising for the understanding
of jet noise is inherently tied to the understanding of turbulence in jet flows. Even now, our understanding
of turbulence is still tenuous. In the fifties, turbulence was regarded as consisting of a random assortment
of small eddies. As a result, the primary focus of jet noise research was to quantify the noise from fine-
scale turbulence. This line of work persisted into the eighties. The discovery of large turbulence structures
in free shear flows in the early seventies led some investigators to begin questioning the validity of the
then established theories. Some went further to suggest that, for high-speed jets, it was the large turbulence
structures/instability waves of the flow that were responsible for the dominant part of jet mixing noise.
Development of a quantitative theory of noise from large turbulence structures/instability waves took place
during the next 15 years. Precision instrumentation and facilities for jet noise measurements became available
in the mid-eighties. This permitted a large bank of high-quality narrow band jet noise data to be gathered
over the subsequent years. Recent analysis of these data has provided irrefutable evidence that jet noise, in
fact, is made up of two basic components; one from the large turbulence structures/instability waves, the
other from the fine-scale turbulence. This is true even for subsonic jets. In this paper, some of the crucial
research results of the past 44 years, that form the basis of our present understanding of jet noise generation
and propagation, are discussed.

1. Introduction

The year 1952 was a very special year for jet noise research, for it was this year when Sir James Lighthill
published the first of his two-part paper (Lighthill, 1952, 1954) on aerodynamic sound in theProceedings
of the Royal Society of London. This paper has since been regarded as marking not only the beginning of jet
noise research but also the birth of the research area “Aeroacoustics.” Forty-four years have now elapsed.
During that time, the development of jet noise theory has followed a very tortuous path. This is, perhaps,
not surprising, for the understanding of jet noise is inherently tied to the understanding of turbulence in jet
flows. Even today, our understanding of turbulence is still tenuous.

The aim of this paper is to highlight the important developments of jet noise theory since Lighthill’s
original work. Special emphasis is given to the more recent findings that appear to offer a new perspective
on jet noise characteristics and generation mechanisms.

1 This work was supported by the NASA Langley Research Center Grant NAG 1-1776.
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2. The Fifties to the Seventies

2.1. The Acoustic Analogy Theory

To develop a jet noise theory, intuitively, it seem that the first thing to do is to identify the sources of
noise. In his 1952 and 1954 papers, Lighthill tackled this problem by establishing the renowned Acoustic
Analogy Theory. The basic idea is to cast the compressible equations of motion into a form representing the
propagation of acoustic waves. Whatever terms that are left are then moved to the right side of the equation.
The result is an inhomogeneous wave equation of the form

∂2ρ

∂t2
− a2
∞∇2ρ =

∂2Tij
∂xi ∂xj

(1)

whereρ is the density,a∞ is the ambient sound speed, andTij = ρvivj + (p− ρa2
∞)δij − τij is known as the

Lighthill stress tensor,vi, p, andτij are the velocity, pressure, and viscous stresses.δij is the Kronecker delta.
Within the framework of the Acoustic Analogy Theory, the following reasoning is advanced. By design, the
left side of (1) represents acoustic wave propagation. It follows, therefore, that the right side of the equation
must be the sources that generate the noise field. The source terms involve second spatial derivatives. They
are referred to as quadrupoles.

During the fifties, the prevailing view of turbulence was that it consisted of a random assortment of
small eddies. Thus, although no formal relationship between quadrupoles and small turbulent eddies was
ever established, the implication was that the quadrupoles were related in some way to the small eddies. In
present day terminology, we call the small eddies the fine-scale motion of the turbulent flows.

One important result that can be derived from the Acoustic Analogy Theory is the noise scaling law.
By using Green’s function of the wave equation, Lighthill obtained a formal solution of (1). On applying
dimensional analysis to the formal solution, he established that the acoustic power radiated by a jet should
vary as the eighth power of the jet velocityVj . This became the celebratedV 8

j Law.

2.2. The Source Convection Effect

In jets, the quadrupoles are convected downstream by the mean flow at a relatively high speed. That is,
these are moving sources. It is easy to verify that moving sources tend to radiate more noise in the direction
of motion. This is somewhat analogous to synchrotron radiation. Lighthill recognized immediately the
significance of the source convection effect on the directivity of jet noise. At higher jet speeds, this effect is
more pronounced. This was investigated by Ffowcs-Williams (1963). By extending Lighthill’s dimensional
argument including the effect of source convection, Ffowcs-Williams found that for very high-speed jets,
the power of the radiated noise should vary as the third power of the jet velocity. That isP ∼ V 3

j where
P is the acoustic power radiated. This and the LighthillV 8

j Law are the two most important results of the
classical Acoustic Analogy Theory.

2.3. Effect of Refraction

Once sound is generated by the quadrupoles, the acoustic waves have to propagate through the jet flow
to reach the far field. The mean flow of the jet is highly nonuniform. Thus, the radiated sound undergoes
refraction in its passage through the jet.

Figure 1 illustrates the refraction of a ray of sound emitted by a point sourceSlocated in the mixing layer
of a jet. To see why the ray bends outward, one needs only to consider the propagation of the wave front
AB. The pointA moves at a speed equal to the local sound speed plus the local flow velocity of the jet. So
does the pointB. If the jet is nearly isothermal, the speed of sound is the same atA andB. However, the
flow velocity atB is higher. As a result, as the wave front propagates, it becomes tilted asA′B′. Obviously,
this effect of refraction is even more severe for hot jets. In this case, the sound speed atB is higher than that
at A. One of the important consequences of mean flow refraction is that less sound can be radiated in the
direction of jet flow. This creates a relatively quiet region around the jet axis commonly known as the “cone
of silence.” Experimentally, the presence of a cone of silence in which the noise intensity drops by more
than 20 dB has been demonstrated by Atvarset al. (1965).
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Figure 1. Schematic diagram showing a localized noise source at
S in the mixing layer of a jet. Also shown are the core, transition,
and developed region of the jet.

2.4. Variants of the Acoustic Analogy Theory

In the years after the work of Lighthill, there have been many attempts to modify or improve the Acoustic
Analogy Theory. Many of these efforts involved modifying the wave propagation operator on the left side
of (1). One immediate result is that each new theory produces a slightly different set of noise source terms.
Just as in the original theory, the noise source terms of all the modified theories are themselves unknowns.
In other words, these theories are not self-contained. A good deal of turbulence information has to be input
into the theory before a prediction can be made.

One good reason to modify the wave propagation operator is to account for the mean flow refraction effect.
Lilley (1974) suggested that the correct wave propagation operator was the linearized Euler equations. In his
paper, the linearization was performed over the mean flow of the jet. In this way, a version of the Acoustic
Analogy Theory designed to include mean flow refraction effect was developed. Although it is not clear
why the full Euler equations, which, in principle, not only account for the mean flow refraction effect,
but also the nonlinear propagation effects, are not the more appropriate wave propagation operators. This
must have been rejected because it would leave almost no noise source terms. Lilley’s proposal received
immediate acceptance. It has been followed by numerous subsequent investigators. This approach formed
the main direction of jet noise research throughout the seventies and early eighties. Further discussions and
references to other jet noise theories built around the Acoustic Analogy concept of Lighthill may be found
in a review article by Lilley (1991).

3. The Seventies and the Eighties

Turbulence research took an abrupt turn in the early seventies when it was discovered independently by
Crow and Champagne (1971), Brown and Roshko (1974), and Winant and Broward (1974) that turbulence
in jets and free shear layers is made up of large turbulence structures as well as fine-scale turbulence. The
large turbulence structures are somewhat more deterministic than the fine-scale turbulence motion. They
dominate the dynamics and overall mixing processes of jets and free shear layers.

Soon after the discovery of the large turbulence structures, Crow and Champagne, who studied subsonic
jets, and others began to propose that they were important jet noise sources. It took a few years of investigation
before it became clear that the large turbulence structures are definitely important direct noise sources of
supersonic jets. However, they are not as important for subsonic jets. For imperfectly expanded supersonic
jets, a shock cell structure automatically develops in the jet plume. In the presence of the shock cells, the
jets emits two additional components of noise. They are referred to as screech tones and broadband shock
associated noise. In this paper, we do not consider these shock-related noise components. Our attention is
confined to turbulent mixing noise alone.
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3.1. Large Turbulence Structures Model

To predict the noise radiated by the large turbulence structures in jets, a mathematical description of these
entities is necessary. The familiar turbulence modeling approach (see, e.g., Speziale, 1991) is inappropriate.
It has no large structures in its formulation.

The first statistical description of the large turbulence structures in free shear flows in the form of a
stochastic instability wave model was proposed by Tam and Chen (1979). This stochastic model approach
has since been used and extended by Plaschko (1981), Morriset al.(1990), Viswanathan and Morris (1992),
Tam and Chen (1994), and others in their mixing layers, jet flows, and jet noise studies. The crucial observation
that forms the basis of the model is that the turbulent jet flow spreads out very slowly. This means that the
flow variables as well as the turbulence statistics change only very slowly in the downstream direction;
i.e., the turbulence statistics are nearly constants locally. If, indeed, all the turbulence statistics are true
constants, the flow is statistically stationary in time and in the flow direction. This implies that dynamically
the turbulence fluctuations are locally in quasi-equilibrium. For a system in dynamical equilibrium, statistical
mechanics theory suggests that the large scale fluctuations of the system can be represented mathematically
by a superposition of its normal modes. In the case of high-speed jets, the large-scale fluctuations are the
large turbulence structures while the dominant normal modes are the instability wave modes of the mean
flow. The turbulence statistics and mean flow of jets and mixing layers are well predicted by the stochastic
instability wave model. More detailed descriptions and references of large turbulence structure models can
be found in the two reviews by Tam (1991, 1995).

3.2. Mach Wave Radiation

It may seem natural and reasonable to represent large turbulence structures by the instability wave of the mean
flow. However it is well known that instability wave solutions decay to zero exponentially away from a jet or
mixing layer. In other words, there is no acoustic radiation associated with instability waves. Tam and Morris
(1980) recognized this difficulty. They correctly pointed our that the difficulty arose because of the locally
parallel flow assumption. This assumption is routinely used in classical hydrodynamic stability analysis.
They showed that to determine sound radiation, a global solution of the entire instability wave propagation
phenomenon along the jet is necessary. Earlier, Saric and Nayfeh (1975), Crighton and Gaster (1976), and
others had succeeded in accounting for the slow divergence of the mean flow by using a multiple-scales
expansion method. Tam and Morris, however, demonstrated that the multiple-scales expansion instability
wave solution is not uniformly valid outside the jet or the mixing layer. Thus, it is not surprising that the
multiple-scales type solution still produces no acoustic radiation.

To construct a uniformly valid instability wave solution inside and outside the jet, Tam and Burton (1984)
employed the method of matched asymptotic expansions. The inner solution is the multiple-scales instability
wave solution. This solution is valid inside and in the neighborhood immediately outside the jet. The outer
solution is essentially a solution of the acoustic wave equation taking into consideration the growth and
decay of the instability wave amplitude in the flow direction. The outer solution is valid in the near field
outside the jet all the way to the far field.

The matched asymptotic expansions solution reveals the basic mechanism by which sound in the form of
Mach wave radiation is generated by the large turbulence structures/instability waves of the flow. The inner
solution, which is the instability wave solution, is valid out to the near field immediately outside the jet.
This means that the influence of the instability waves extends beyond the mixing layer of the jet flow. The
change-over from instability wave solution to acoustic wave solution takes place near the edge of the jet and
is contained in the outer solution. The sound field of the Mach wave radiation may, therefore, be regarded to
be generated near the edge of the jet flow. Physically an instability wave behaves like a wavy wall moving at
a high speed in the downstream direction. When the wave speed is supersonic relative to the ambient sound
speed, Mach waves are generated (see Figure 2). This Mach wave radiation is highly directional. Since this
sound field is generated near the edge of the jet, it is, therefore, not subjected to the mean flow reaction
effect. In other words, there is no cone of silence for larger turbulence structures noise. The near field sound
pressure level contours predicted by the matched asymptotic expansions solution of Tam and Burton for
a Mach 2.1 moderate Reynolds number jet agree well with the measurements of Troutt and McLaughlin
(1982). Recent work by Hixsonet al. (1995) using direct numerical simulation clearly shows strong Mach
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Figure 2. Schematic diagram showing Mach wave radiation gen-
erated by the large turbulence structures/instability waves of a
high-speed jet.

wave radiation associated with the instability waves of the jet. Their computed sound pressure level contours
are in good agreement with the analytical results of Tam and Burton and the experimental measurements of
Troutt and McLaughlin.

Tam and Burton (1984) pointed out that the wavy wall analogy must be modified to account for the growth
and decay of the instability wave as it propagates downstream. The growth and decay of the wave amplitude
are important to the noise radiation process. For a fixed frequency wave of constant amplitude, the wave
spectrum is discrete. With a single wave number there is only a single wave speed, so the Mach waves are
radiated in a single direction. The growth and decay of the instability wave amplitude lead to a broadband
wave number spectrum. This results in Mach wave radiation over large angular directions. Furthermore,
a single frequency subsonic wave of constant amplitude would not radiate sound according to the Mach
wave radiation mechanism. However, with growth and decay of the wave amplitude, a part of the broadband
wave number spectrum could have supersonic phase velocity. These supersonic phase disturbances will lead
to noise radiation. The single instability wave matched asymptotic expansions solution has recently been
extended by Tam and Chen (1994) to include a broad frequency spectrum in a stochastic model theory of
supersonic jet noise from the large turbulence structures. Their calculated noise directivities for Mach 2 jets
at different temperatures are in good agreement with the measurements of Seineret al. (1992).

The Mach wave radiation mechanism discussed above relies on the existence of supersonic phase compo-
nents (relative to ambient sound speed). For highly supersonic jets, especially at high temperature, this is an
extremely efficient noise generation process. However, if the jet speed is subsonic, the efficiency is greatly
reduced. Thus, for subsonic jets the fine-scale turbulence is probably the more dominant noise source, except
in the cone of silence.

Mach wave radiation by the large turbulence structures/instability waves of high-speed jets discussed
above is not to be confused with eddy Mach wave radiation considered by a number of investigators in the
sixties (e.g., Phillips, 1960; Ffowcs-Williams and Maidanik, 1965). The eddy Mach waves proposal is that
eddies moving supersonically relative to ambient sound speed would generate strong Mach wave radiation.
However, a closer examination reveals that this is physically an untenable process. Eddies are, by definition,
localized entities with a limited range of influence spatially. While an eddy may be moving supersonically
relative to the ambient gas outside the jet, it is definitely moving subsonically relative to the fluid in its
immediate surroundings (eddies are convected downstream by the mean flow). That being the case, no Mach
waves can be produced.

4. The Nineties

Until the late eighties, jet noise was, invariably, measured in1
3-octave bands. The experimental facilities

available were generally incapable of producing high-speed jets at a high jet temperature. A1
3-octave

band spectrum artificially enhances the importance of the high frequency noise component. This inevitably
complicates the physical interpretation of the data. With improvements in instrumentation and experimental
facilities beginning near the end of the eighties, jet noise data, for research purposes, has since been routinely
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Figure 3. Measured noise directivities at selected Strouhal num-
bers of a Mach 2 jet at a total temperature of 500 K (St = fD/Uj ):
◦ St = 0.067;¤ St = 0.12;M St = 0.20;♦ St = 0.40.

processed in narrow bands. Also, very high temperature data, up to a temperature ratio of five, have been
measured at the Jet Noise Laboratory of the NASA Langley Research Center. This new data offers the
aeroacoustics community an unprecedented opportunity not only to study the characteristics of the noise of
high-speed jets but also to test the validity of jet noise theories developed since Lighthill’s original work.

With the coming of the nineties, a number of investigators (e.g., Tam and Chen, 1994; Seiner and Krejsa,
1989; Tam, 1995; and others) suggested that turbulent mixing noise from supersonic jets actually consists of
two distinct components. One component is produced by the large turbulence structures/instability waves
of the jet flow in the form of Mach wave radiation. The other component is generated by the fine-scale
turbulence of the jet. Figure 3 shows the noise directivities measured by Seineret al. (1992) at selected
Strouhal numbers of a Mach 2 perfectly expanded jet. It is clear in this figure that the dominant part of jet
noise is radiated in the downstream direction in the sector with an inlet angle,χ, larger than 125°. Tam and
Chen (1994) showed that this highly directional noise component was generated by the large turbulence
structures of the jet flow. They also observed that for an inlet angle,χ, less than 110° (see Figure 3) the
jet noise radiation was almost uniform without a strongly preferred direction. They suggested that this low-
level, almost uniform, background noise was generated by the fine-scale turbulence of the jet flow. In other
words, the fine-scale turbulence noise is dominant over inlet angles smaller than 110° for the experiment of
Figure 3. By implication, in the intervening angular directions 110°< χ < 125°, both noise components
are important.

4.1. The Similarity Spectra

In the mixing layer of a turbulent jet, there is no inherent geometrical length scale. Also, it is well known
that at high Reynolds number, viscosity is not a relevant parameter. Based on these observations, it is easy
to see that there are no intrinsic length and time scales in the mixing layer in the core and the transition
regions of a jet flow (see Figure 1). As a result, the mean flow as well as all the turbulence statistics of the
flow must exhibit self-similarity. Over the years, that the mean flow and turbulence statistics of a high-speed
turbulent jet possesses a similarity profile has been well verified experimentally. Since noise is generated
by the turbulence of the jet, the above facts and reasonings strongly suggest that the noise spectra of the
two independent turbulent mixing noise components should also exhibit similarity. In the absence of an
intrinsic time or frequency scale, the frequencyf must be scaled byfL, the frequency at the peak of the
large turbulence structures/instability waves noise spectrum, orfF, the frequency at the peak of the fine-scale
turbulence noise spectrum.

The noise of a high-speed jet naturally depends on the jet operating parametersVj (the fully expanded jet
velocity),Tr (the reservoir temperature),Dj (the fully expanded jet diameter),T∞ (the ambient temperature),
χ (the direction of radiation), andr (the distance of the measurement point from the nozzle exit). On
accounting for the contributions of the two independent noise components, the jet noise spectrum,S, may,
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Figure 4. Similarity spectra for the two components of turbulent
mixing noise. ——, large turbulence structures/instability waves
noise; — - —, fine-scale turbulence noise.

therefore, be expressed in the following similarity form:

S =
[
AF

(
f

fL

)
+BG

(
f

fF

)](
Dj

r

)2

, (2)

whereF (f/fL) andG(f/fF) are the similarity spectra of the large turbulence structures noise and the fine-
scale turbulence noise. These spectrum functions are normalized such thatF (1) =G(1) = 1. In (2),A andB
are the amplitudes of the independent spectra; they have the same dimensions asS. The amplitudesA andB
and the peak frequenciesfL andfF are functions of the jet operating parameters,Vj/a∞, Tr/T∞, and inlet
angleχ.

To provide concrete experimental evidence that turbulent mixing noise from supersonic jets is, indeed,
made up of two distinct components, Tamet al. (1996) performed a careful analysis of all the jet noise
spectral data (1900 spectra in all) measured in the Jet Noise Laboratory of the NASA Langley Research
Center. By means of this set of data, they were able to identify the similarity spectrum functionsF (f/fL) and
G(f/fF). Figure 4 shows the shapes of the empirically determined spectrum functions in dB scale versus
log(f/fpeak), wherefpeak = fL for the large turbulence structures noise andfpeak = fF for the fine-scale
turbulence noise. (Note: In a log(f/fL) plot, the graph of 10 logF should fit the entire measured spectrum,
if it is dominated by the large turbulence structures noise, when the peak of the graph is aligned with the
peak of the measured spectrum. The same is true for the fine-scale turbulence noise). The two spectrum
shapes are distinctly different. The 10 logF function has a relatively sharp peak and drops off linearly as
shown. The 10 logG function, on the other hand, consists of a very broad peak and rolls off extremely
gradually.

Figure 5 shows typically how well the spectrum function 10 logF fits the measured data. In these examples,
the jet Mach numbers,Mj , are 1.5 and 2.0. The jet to ambient temperature ratio increases from 1.11 to 4.89.
The direction of radiation,χ, varies from 138° to 160°. As can be seen, there is good agreement in all the
cases. Figure 6 illustrates typical comparisons between the spectrum function 10 logG and the measured
data for perfectly expanded supersonic jets atMj = 1.5 and 2.0 in directions for which the noise from
fine-scale turbulence dominates. The jet to ambient temperature ratio covers the range of 0.98 to 4.89. The
inlet angle,χ, varies from 83.3° to 120° Clearly, there is good agreement over the entire measured frequency
range.

For angular directions neither too far upstream nor downstream both mixing noise components are
important. Figure 7 shows examples of how the two noise spectra can be added together to reproduce the
measured spectra. To obtain a good fit to the data, the amplitude functionA andB as well as the peak
frequenciesfL andfF are adjusted in each case. The separate contributions from each of the two noise
components are shown in the figure.

The similarity spectra have been checked by comparing the entire data band (1900 spectra). They fit all
the measured spectra over the entire range of Mach number and temperature ratio of the NASA Langley
data.
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Figure 5. Comparison of the similarity spectrum of large tur-
bulence structures/instability waves noise and measurements.
(a)Mj = 2.0, Tr/T∞ = 4.89,χ = 160.1°, SPLmax = 124.7 dB,
(b)Mj = 2.0, Tr/T∞ = 1.12,χ = 160.1°, SPLmax = 121.6 dB,
(c)Mj = 1.96,Tr/T∞ = 1.78,χ = 138.6°,SPLmax = 121.0 dB,
(d)Mj = 1.49,Tr/T∞ = 1.11,χ = 138.6°,SPLmax = 106.5 dB.

Figure 6. Comparison of the similarity spectrum of fine-scale tur-
bulence noise and measurements. (a)Mj = 1.49,Tr/T∞ = 2.35,
χ = 92.9°, SPLmax = 96 dB, (b)Mj = 2.0, Tr/T∞ = 4.89,
χ = 83.8°, SPLmax = 107 dB, (c)Mj = 1.96, Tr/T∞ = 0.99,
χ = 83.3°, SPLmax = 95 dB, (d)Mj = 1.96, Tr/T∞ = 0.98,
χ = 120.2°,SPLmax = 100 dB.

4.2. Turbulent Mixing Noise from Subsonic Jets

Tamet al. (1996), in their data analysis effort, found thatMj , the fully expanded jet Mach number, is not a
useful parameter for characterizing turbulent mixing noise. However ifMj is unimportant, then the finding
that turbulent mixing noise consists of two distinct components should be true regardless ofMj . In other
words, it must be valid for supersonic jets (Mj > 1) as well as subsonic jets (Mj < 1).

It has been discussed before that the mean flow refraction effect creates a cone of silence for the fine-scale
turbulence noise around the direction of the jet flow. On the other hand, as pointed out above, this is the
principal direction of Mach wave radiation by the large turbulence structures. Thus, the noise spectrum and
characteristics inside the cone of silence of the fine-scale turbulence noise of a subsonic jet should be those
associated with Mach wave radiation. They would, therefore, be distinctly different from noise radiated at
angles outside the cone of silence. The experimental measurements of Lush (1971) and Ahuja (1973) prove
that this is, indeed, the case. Inside the cone of silence, their measured noise intensity is not only not small
but is the highest. Moreover, the spectrum shape is distinctly different from those in directions at larger
exhaust angles.

To provide concrete experimental evidence that turbulence mixing noise from subsonic jets, just as their
supersonic counterparts, consists of two distinct components, comparisons between the measured data of
Ahuja (1973) and the two similarity noise spectra have been carried out. Figure 8 shows the noise spectrum
of a Mach 0.98 jet measured by Ahuja atTr/T∞ = 1.0 andχ = 160° (inside the cone of silence). The smooth
curve in this figure is the similarity spectrum 10 logF . It is evident that the curve is an excellent fit to the
data providing irrefutable evidence that this is, in fact, the noise from the large turbulence structures of the
subsonic jet. Figure 9 shows the corresponding measured noise spectrum atχ = 90°. In this direction, the
noise is from the fine-scale turbulence. Here the smooth curve is the similarity noise spectrum of 10 logG.
The agreement between the data and the similarity noise spectrum is very good, giving strong support to
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Figure 7. Comparison of the sum of the similarity spectra of both
large and fine-scale turbulence noise and measurements at the inter-
mediate direction of radiation. — - —, large turbulence structures
noise;– – – –, finescale turbulence noise; ——, total. (a)Mj = 1.49,
Tr/T∞ = 2.25,χ = 112.6°,SPLmax = 101.5 dB, (b)Mj = 1.49,
Tr/T∞ = 1.33,χ = 126.9°,SPLmax = 100.5 dB, (c)Mj = 1.96,
Tr/T∞ = 1.79,χ = 120.2°,SPLmax = 107.0 dB.

the contention that the second component of turbulent mixing noise from subsonic jets is, as in the case of
supersonic jets, fine-scale turbulence noise.

4.3. Noise Intensity Scaling Formulas

In decibel scale, the directional dependence of the large turbulence structures noise amplitude turns out
to be quite simple. A typical case is given in Figure 10. Here SPL is effectively 10 log(A/p2

ref) − 40 dB

Figure 8. Comparison of the similarity spectrum of large tur-
bulence structures/instability waves noise and subsonic jet noise
measurement of Ahuja.Mj = 0.98,χ = 160°,Tr/T∞ = 1.0.

Figure 9. Comparison of the similarity spectrum of fine-scale
turbulence noise and subsonic jet noise measurement of Ahuja.
Mj = 0.98,χ = 90°,Tr/T∞ = 1.0.
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Figure 10. Variation of the peak amplitude of the noise spectrum
of large turbulence/instability waves with direction of radiation.
Mj = 1.8,Tr/T∞ = 1.0.

Figure 11. Variation of the peak amplitude of the noise spectrum
of fine-scale turbulence with direction of radiation.Mj = 2.24,
Tr/T∞ = 1.0.

(pref = 2× 10−5 N/m2 is the reference pressure for the decibel scale). This quantity increases linearly with
χ until a plateau is reached where the noise amplitude is practically constant. In the plateau region, the
noise intensity is maximum. This maximum intensity is a function of the jet operating parameters,Vj/a∞
andTr/T∞. Figure 11 shows a typical dependence of the amplitude of the fine-scale turbulence noise,
10 log(B/p2

ref)− 40 dB, on directivity. Again, there is a linear increase withχ. The slope of the straightline
relationship is a function of the jet operating parameters.

To obtain an idea of how the intensity of the large turbulence structures noise varies with the jet velocity
and temperature, Tamet al.concentrated their attention onχ = 160°. Figure 12 is a plot of 10 logS versus

Figure 12. Variation of the peak amplitude of the noise spectrum of large turbulence structures/instability waves atχ = 160° with jet
velocity and temperature ratios.

Tr/T∞ 1.0 1.4 1.8 2.2 2.7 3.3 4.1 4.9
Measurements ◦ M ¥ ⊗ O MO
Equation (3) —— – – – —·— · · · · · · — - —
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log(Vj/a∞) with Tr/T∞ as a parameter atχ = 160° andr/Dj = 100. One obvious feature of this figure is
that data corresponding to the same jet to ambient temperature ratio align themselves along nearly parallel
straight lines. A good fit to the entire set of data is (in dB per 1 Hz band)

10 log
(
A

p2
ref

)
= 75 +

46
(Tr/T∞)0.3

+ 10 log
(
Vj

a∞

)n
, (3)

where

n = 10.06− 0.495
Tr

T∞
. (4)

For cold jets, the velocity exponentn is approximately equal to 9.5. That is significantly larger than 8 or 3,
the velocity exponents predicted by the Acoustic Analogy Theory. (Note: Although the velocity exponent is
large, the noise power radiated by a jet expanding to its maximum velocity, i.e., into a vacuum, is still only
a small fraction of its mechanical power).

To assess the correct scaling formula for fine-scale turbulence noise Tamet al. focused on the noise
radiated atχ = 90°. In this direction, there is practically no large turbulence structures noise. Figure 13
shows a plot of 10 logS versus log(Vj/a∞) with Tr/T∞ as a parameter atr/Dj = 100. Again the data
corresponding to different jet temperature ratios can be adequately approximated by straight lines. A good
fit to the data is (in dB per 1 Hz band)

10 log
(
B

p2
ref

)
= 83.2 +

19.3
(Tr/T∞)0.62

+ 10 log
(
Vj

a∞

)n
, (5)

where

n = 6.4 +
1.2

(Tr/T∞)1.4
. (6)

Figure 13. Variation of the peak amplitude of the noise spectrum of fine-scale turbulence atχ = 90° with jet velocity and temperature
ratios.
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According to this empirical fit, the velocity exponent is equal to 7.6 for cold jets. This is close to the well-
known subsonic jet value of 8. However, the jet temperature exerts a fairly strong effect. At a jet temperature
ratio of 2, the value ofn drops to 6.85.

It is worthwhile to point out that in Figures 12 and 13, the subsonic jet data of Ahuja (1973) forms a
natural extension of the supersonic jet noise data from the NASA Langley Research Center. This reinforce
the belief that the noise generation mechanisms are the same regardless of whether the jet is subsonic or
supersonic.

5. The Future

It is clear that considerable progress has been made in our understanding of jet mixing noise since the work of
Lighthill. As yet we are still unable to predict, even with a good deal of empirical input, the noise spectra of
the two basic components. Given our limited understanding of jet turbulence at the present time, the prospect
of successfully formulating a first principle noise prediction theory is not very encouraging. However, it
seem possible, perhaps, in a few years time, that a semi-empirical theory based on the turbulence modeling
approach could be developed. At the present time, the noise generation processes of the large turbulence
structures of the jet flow appears to be reasonably well understood. It is hoped that future work will clarify
how fine-scale turbulence produces noise.

Recently, computational aeroacoustics has made impressive advances. This new methodology should be
able to assist in the simulation of large turbulence structures in jet flows. It would not be surprising that,
before too long, jet noise from the large turbulence structures can be accurately predicted by direct numerical
simulation. However, the same may not be true for fine-scale turbulence noise. To be able to resolve this
type of turbulent motion accurately, an exceedingly large computer memory is required. It seems that the
requirement far exceeds what could become available in the near future. Thus, it is likely that jet noise, just
as turbulence, well remain an unfinished business for quite some time to come.
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