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Abstract. In this paper we discuss two types of acoustic streaming, to which Lighthill (1978a,b, 1997) has
made significant contributions, namely the “quartz wind” and Rayleigh streaming. Both are associated with
flows that are dominated by their fluctuating components, and owe their origin to the action of Reynolds
stresses. In the former, these stresses arise within the main body of the fluid when an ultrasonic beam
propagates into it; in the latter they act in the Stokes shear-wave layer that forms at a solid boundary in a
fluctuating flow. In spite of its acoustic origins, we show that streaming of the Rayleigh type is a phenomenon
that occurs more widely than those origins suggest.

1. Introduction

The term “acoustic streaming” has become a generic term to describe the time-averaged streaming that is
induced in any fluid flow that is dominated by its fluctuating components. Its acoustic origins may be traced
to the work of Rayleigh (1883, 1896). He considered the streaming motion that is induced by standing
sound waves between plane walls. In more modern times streaming of another kind, often referred to as
the “quartz wind”, was observed when ultrasonics came into general use. Such streaming, which may be
generated by any source that projects a high-intensity beam of sound into a body of fluid, was originally
associated with quartz oscillators in liquids (Meissner, 1926). Both types of streaming owe their origin to
the action of Reynolds stresses; and as Lighthill (1978b) points out it is the dissipation of acoustic energy
flux which permits the gradients in momentum flux that force the acoustic streaming motions. In the case of
the quartz wind this takes place in the main body of the fluid, whilst in Rayleigh streaming it is associated
with boundary layers at solid surfaces. In this paper we build on the work of Rayleigh (1883, 1896) and
Lighthill (1978a,b, 1997) to discuss both the quartz wind and the Rayleigh type of streaming. It is the latter
that has implications beyond its acoustic origins.

We consider first, in Section 2, the quartz wind. A thin ultrasonic beam propagates into an unbounded
volume of fluid. The Reynolds stresses are generated at second order, and are shown to represent an expo-
nentially decaying force distributed along the jet from its origin. If the attenuation rate is sufficiently high
this force becomes, for all practical purposes, a point force. For very small values of a suitably defined
streaming Reynolds number, the creeping motion generated by this can be represented by a stokeslet, whilst
for large streaming Reynolds number the flow assumes a jet-like character, as described by Squire (1951).

In Section 3 we discuss Rayleigh streaming that is characterized by acoustic energy dissipation within the
Stokes boundary layer adjacent to a solid boundary. We develop a theory for incompressible flow, valid for
large values of a suitably defined Strouhal number. The requirement of incompressibility restricts acoustic
applications to situations in whichkl ¿ 1, wherek is the wave number andl is a typical length. The flow
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region divides into an outer and inner, or Stokes-layer, region. The steady streaming originates in the latter
through the direct action of Reynolds stresses, and persists at its edge (Rayleigh’s law of streaming, see, for
example, Lighthill (1997)). In the outer region the vorticity associated with the streaming motion is governed
by a Helmholtz-type equation, but with convection of vorticity effected by the Lagrangian mean velocity,
with a suitably defined streaming Reynolds number. As an example we consider the flow about a circular
cylinder, induced by orthogonal sound waves which have phase difference1

2π, and amplitude ratioλ.
As already intimated, Rayleigh-type streaming arises in any fluid flow that is dominated by its fluctuating

components, which provides for wider application than that originally associated with acoustics. Longuet-
Higgin’s paper (1953) of free-surface waves over a plane boundary provides a non-acoustic example. In
this same context Riley and Yan (1996) and Yan and Riley (1996) have considered the flow induced about
a circular cylinder beneath a free surface, over which waves propagate, on fluid of infinite depth. This finds
application in ocean engineering which, as Lighthill (1995) points out, has gained special importance in the
twentieth century. Lighthill himself (1991, 1992) has advanced theoretical arguments, based on the type of
streaming discussed herein, to suggest that this transforms acoustic signals to neural activity, via the hair cells
within the inner ear. Amongst other applications we make brief mention of only a few. Rectified diffusion is
influenced by the presence of acoustic streaming (Gould, 1974; Church, 1988; Davidson, 1971). Davidson
(1973) also demonstrates the significant enhancement of heat transfer, from a heated body, when acoustic
streaming is present at large streaming Reynolds number, an area that has also been studied experimentally
by Leung and Wang (1985). The role of acoustic streaming in acoustic levitation and positioning, to which
the example of Section 3 finds application, has been studied by Busse and Wang (1981) and Lee and Wang
(1988). Whilst in biophysical transport processes Secomb (1978) and Thompson (1984) have discussed the
role of acoustic streaming that develops in a purely oscillatory flow field.

2. The Quartz Wind

For many, the terms “acoustic streaming” and “quartz wind” are synonymous. The streaming known as the
quartz wind was observed when ultrasonics came into general use, and may be generated by any source
that projects a high-intensity beam of sound into a body of fluid. It was originally, in the 1920s, associated
with quartz oscillators in liquids, but subsequent observations were made in air by Walker and Allen (1950).
The streaming motion is forced by the action of a Reynolds stress, but it may be noted that the gradient
in momentum flux that forces this acoustic streaming is associated with the dissipation of acoustic energy
flux. For the cases considered in this section, that takes place entirely within the body of fluid. An in-depth
analysis of the quartz wind has only recently been given by Lighthill (1978a,b), and it is on this work that
the following is based.

Consider a plane sound wave, propagating in thex-direction, from a source atx = 0. If non-
dimensionalization is carried out with respect to timeω−1, whereω is the frequency, lengthc/ω, wherec is
the sound speed, and velocityU0, the unattenuated sound-wave velocity amplitude, then the velocityumay
be shown to satisfy (Rayleigh, 1896)
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3
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In (1), ε = Uc/c, δ = ων/c2, whereν is the kinematic viscosity; thus only the dissipative action of viscosity
has been included in the “diffusivity of sound,” contributions from heat conduction and irreversibility due
to delays in attaining thermodynamic equilibrium have been ignored. For a further discussion, see Lighthill
(1978a). Bothε¿ 1 andδ ¿ 1, and indeed these two parameters may be comparably small. However, the
termO(δ) is properly included with the other linear terms of (1) if changes on the attenuation length scale,
as well as on the acoustic length scale, are to be correctly incorporated.

The first-order solution of (1) is
u0 = e−2δx/3 cos(x− t). (2)
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Figure 1. Streamlines for an axisymmetric jet due to a point force.
Ft/ρν2 = 3282.

whereρ0 is the undisturbed fluid density. For a narrow ultrasonic beam, of cross-sectional areaSb, (3) may
be integrated across the beam to give the force acting, per unit length,Fl. A further integration along its
length gives the total force acting,Ft. Thus

Fl = 1
3ρ0U

2
0Sb

δω

c
e−4δx/3, Ft = 1

4ρ0U
2
0Sb. (4a,b)

Now, Lighthill (1978a,b) shows that ifP is the power, measured in watts, emitted by the acoustic source
in a narrow beam thenFt = P/c from which, using (4b), we may deduce thatU0 = 2(P/ρcSb)1/2. If
the total force produces acoustic streaming with typical velocityUs in a system whose length scale isl,
thenUs = U0Sb/l

2 = 2(PSb/ρ0cl
4)1/2 which, in turn, gives a streaming Reynolds numberRs = Usl/ν =

2(PSb/µνcl2)1/2 = O(QSb)1/2, assuming typical values forµ, ν, andc in air, with l = 0.1 m, for a source of
QµW. ForS1/2

b ¿ l andc3/ω2ν ¿ l, corresponding to frequencies in excess of 1 MHz, the applied force
is essentially a point force which may be represented asFtδ(x).

As examples consider first the case ofQ = 1µW,Sb = 2×10−4 m2, which corresponds toRs = O(10−2).
This is in the slow-flow regime where the applied force is resisted by viscous stresses only. In that case, on
a velocity scaleFt/8πµl, the streaming velocity

v(s) =
(
r2 + x2

r3
,
xy

r3
,
xz

r3

)
is the stokeslet velocity field. AsRs increases, with sources of greater power, the inertia terms in the
governing equations become increasingly important. Ultimately the streaming flow due to the point force
assumes an axisymmetric jet-like character. Such flows have been studied by Squire (1951). Lighthill (1978b)
displays a sequence of such flows for increasingQ. Here, in Figure 1, we show the streamline pattern
for Ft/ρν2 = 3282 resulting from an acoustic power sourceQ = 335µW. For a beam of cross-section
Sb = 2× 10−4 m2 this corresponds toRs = O(1). For sufficiently highQ, and henceRs, the induced jet
flow becomes turbulent. Lighthill (1978b) presents a theory for these turbulent jets in which the point-force
approximation is abandoned, and the exponential variation of the force, (4a), is accommodated.

3. Rayleigh Streaming

Streaming in the form of the quartz wind is a relatively modern phenomenon. For the origins of acoustic
streaming we must push the clock back to the nineteenth century and work of Rayleigh (1883). In this work
Rayleigh was concerned with the streaming induced by standing waves between plane walls. However the
term “acoustic streaming” has subsequently come into general use to describe the time-averaged motion
induced in any fluid flow that is dominated by its fluctuating components. Here we develop a theory for
incompressible flow; the acoustic application is then associated with situations for whichkl ¿ 1, wherek
is the wave number andl is a characteristic length.

Suppose, then, we have a fluctuating flow, frequencyω, produced, for example, by free-surface waves or
sound waves, in the presence of a solid boundary. IfU0 is again taken as the fluctuating velocity amplitude, and
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non-dimensionalization is carried out with respect to timeω−1, lengthl, and velocityU0, then Helmholtz’s
equation for the vorticity, in two dimensions,ζ = ∇∧ v = (0, 0, ζ) = (0, 0, −∇2ψ), whereψ is the stream
function, is

∂ζ

∂t
+

1
S

(v · ∇)ζ =
1

SRs
∇2ζ, (5)

whereS = ωl/U0 is the Strouhal number andRs = U2
0/ων = U0a/Sν will again be identified as a streaming

Reynolds number, first identified as such by Stuart (1963). In what follows we develop a solution in the
formal limit S →∞, withRs = O(1), and write

v = v0 + S−1v1 + · · · ,
ζ = ζ0 + S−1ζ1 + · · · .

}
(6)

At leading order we have, from (5) and (6),∂ζ0/∂t = 0 from which we may inferζ0 ≡ 0; and then we
may writeψ0 = ψ0p(x)eit whereψ0p is the stream function of an appropriate irrotational flow. If now, at
a solid boundary, we introduce local co-ordinates (x, y) wherex is measured along the boundary andy is
perpendicular to it, then there is a velocity of slip

u =
∂ψ

∂y
= U (x)eit at y = 0. (7)

This is corrected in the classical Stokes layer at the boundary where we write

Ψ = (1
2Rs)

1/2Sψ, Y = (1
2Rs)

1/2Sy (8)

so that, from (5) and (8), we have
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1
2
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As in (6), we now write
Ψ = Ψ0 + S−1Ψ1 + · · · , (10)

and hence, at once, the classical Stokes-layer solution

Ψ0 = U (x)[Y − 1
2(1− i){1− e−(1+i)Y }]eit, (11)

in which the no-slip condition is now correctly satisfied. Remaining within the Stokes layer we have, from
(9) and (10), atO(S−1),

1
2
∂4Ψ1

∂Y 4
− ∂

∂t

(
∂2Ψ1
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)
=
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. (12)

The terms on the right-hand side of (12) are the Reynolds stress terms; and in this case we see that the
gradient of momentum flux is associated with the dissipation of acoustic energy flux within the Stokes layer
at the boundary. In solving (12) it is convenient to write

Ψ1(x, y, t) = Ψ(s)
1 (x, Y ) + Ψ(u)

1 (x, Y, t). (13)

Our main concern is with the time-averaged flow induced by the Reynolds stresses, represented byΨ(s)
1 in

(13). Taking a time average,〈 · 〉, of (12) and assuming that all fluctuating elements have zero time average,
gives

1
2
∂4Ψ(s)

∂Y 4
=
〈
∂(∂2Ψ0/∂Y

2,Ψ0)
∂(x, Y )

〉
. (14)

We may write the solution of (14) as

Ψ(s)
1 =

d(UU∗)
dx

f (Y ) +U∗
dU

dx
g(Y ), (15)
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where an asterisk denotes the complex conjugate. The functionsf , g are given, for example, by Lighthill
(1997). The streaming velocity created by the Reynolds stresses persists beyond the Stokes layer. Thus we
have

lim
Y→∞

{
Re
(
∂Ψ(s)

1

∂Y

)}
= us = −3

8

{
(1− i)U∗ dU

dx
+ (1 + i)U

dU∗

dx

}
, (16)

known as Rayleigh’s law of streaming. The situation is, then, that the action of the Reynolds stresses within
the Stokes layer drives a steady streaming beyond it, which we now investigate.

Consistent with (13) we write (6) as

v(x, t) = v0(x, t) + S−1{v(s)
1 (x) + v(u)

1 (x, t)} + · · · ,
ζ(x, t) = ζ0(x, t) + S−1{ζ (s)

1 (x) + ζ (u)
1 (x, t)} + S−2ζ2(x, t) + S−3ζ3(x, t) + · · · .

}
(17)

The termsO(S−1) in (5) give∂ζ (u)
1 /∂t = 0 from whichζ (u)

1 ≡ 0. AtO(S−2) we have∂ζ2/∂t = −(v0 ·∇)ζ (s)
1 ,

from which
ζ2 = −(vt0 · ∇)ζ (s)

1 , (18)

where a superscriptt indicates integration with respect to time. Finally, atO(S−3),

1
Rs
∇2ζ (s)

1 − (v1 · ∇)ζ (s)
1 =

∂ζ3

∂t
+ (v0 · ∇)ζ2, (19)

and a time-average of (19) gives

1
Rs
∇2ζ (s)

1 − (v(s)
1 · ∇)ζ (s)

1 = 〈(v0 · ∇)ζ2〉. (20)

With ζ2 given by (18) it may be shown that

〈(v0 · ∇)ζ2〉 = {〈(vt0 · ∇)v0〉} · ∇ζ (s)
1

= (vd · ∇)ζ (s)
1 , (21)

where

vd =
〈(∫ t

v0 dt · ∇
)

v0

〉
is the Stokes drift velocity. Equation (20) may then be written as

1
Rs
∇2ζ (s)

1 − (v(s)
L · ∇)ζ (s)

1 = 0, (22)

wherev(s)
L = v(s)

1 + vd. We see then, from (22), that vorticity in the outer region is convected with the mean
Lagrangian velocity, and thatRs does indeed fulfil the role of a streaming Reynolds number.

Examples in which the Stokes drift velocityvd vanishes include the flow due to transverse oscillations of
a cylinder (see, for example, Davidson and Riley, 1972), and the flow beneath standing free-surface waves
over finite depth when a cylinder sits beneath a node (Wybrowet al., 1996). Whilst for flows withvd 6= 0,
the so-called orbital flow, we cite the examples of progressive free-surface waves over a circular cylinder
for infinite fluid depth (Yan and Riley, 1996), and free-surface-wave flow over a rippled bed (Riley, 1984).

As a simple illustrative example of the foregoing we consider the situation in which plane, orthogonal
sound waves, wave numberk, are incident on a circular cylinder, radiusa, as illustrated in Figure 2. There is
a phase difference of12π between the incident waves, their amplitude ratio isλ, andka¿ 1. An alternative
interpretation is that the flow is induced by the cylinder when its centre moves on an elliptic path with minor
to major axes ratioλ, but maintains a fixed orientation. In that case, forλ = 1 the cylinder performs a purely
orbital motion, for which a geophysical application has been advanced by Longuet-Higgins (1970), and for
λ = 0 transverse vibrations alongθ = 0.

Following the development outlined above we have the leading-order solution

ψ0 = −i
(
r − 1

r

)
{(λ− 1) cosθ + eiθ}eit, (23)
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Figure 2. Definition sketch. Figure 3. The slip velocityus, equation (25), for various values
of λ.

from which, as in (7),
U (x) = −2i{(λ− 1) sinx + ie−ix}, (24)

which, in turn, from Rayleigh’s law of streaming (16), leads to a streaming velocity at the edge of the Stokes
layer given by

us = 3
2(1− λ2) sin 2x + 3λ, (25)

which is depicted in Figure 3 for various values ofλ. Equation (25) provides an inner boundary condition
for the solution of (22). We consider next the solution of (22); in particular we concentrate on the case
Rs À 1 since, as Lighthill (1978b) has remarked, all worth-while streaming takes place at large streaming
Reynolds numbers, a point that will already have been noted in Section 1. WithRs À 1 we have, from (22),
ζ (s)

1 = −∇2ψ(s)
1 = 0, from which we deduce

ψ(s)
1 =

γ

2π
logr. (26)

In (26) the circulationγ is not uniquely determined, but we have anticipatedγ > 0. The circulation may
only be determined following a consideration of the flow in an outer boundary layer at the cylinder surface
of thicknessO(R−1/2

s ). Accordingly we write, in this boundary layer, ˜y = R1/2
s y, ṽ(s)

1 = R1/2
s v(s)

1 so that (22)
becomes

(v(s)
L · ∇)ζ (s)

1 =
∂2ζ (s)

1

∂ỹ
where v(s)

L = {u(s)
1 + 2λ, ṽ(s)

1 },

or, integrating this equation once with respect to ˜y,
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1 + 2λ)

∂u(s)
1

∂x
+ ṽ(s)

1
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1
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,

with
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1
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+
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1

∂ỹ
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 (27)

the solution of which must satisfy

at ỹ = 0: u(s)
1 = us = 3

2(1− λ2) sin 2x + 3λ, ṽ(s)
1 = 0,

and as ˜y →∞: u(s)
1 →

γ

2π
,

together with the periodicity condition

u(s)
1 (x + 2π) = u(s)

1 (x).


(28)
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Figure 4. The circulationγ versusλ. Figure 5. The normal velocity ˜v(s)
1 |ỹ=ỹ∞ for various values ofλ.

First note that forλ = 1 the solution of (27), subject to (28), is simplyu(s)
1 ≡ 3, ṽ(s)

1 ≡ 0 with γ = 6π. In
other words the Stokes layer matches directly with the outer inviscid flow without a further, intermediary,
boundary layer. Forλ < 1 we have completed the solution of (27), (28) numerically. Contrary to what
might be thought the periodicity requirement does not determineγ uniquely for any givenλ. With an outer
boundary fixed for sufficiently large ˜y = ỹ∞, we have been able to establish a periodic solution for various
values ofγ. What is required, to fixγ, is that the boundary-layer solution correctly matches the outer flow,
which in turn requires thatζ (s)

1 → 0 most rapidly as ˜y → ỹ∞. To implement this requirement we minimize

Iγ =
∫ 2π

0

∣∣∣∣∂u(s)
1

∂ỹ

∣∣∣∣
ỹ=ỹ∞

dx, (29)

asγ varies, for a given ˜y∞. As we increase ˜y∞, the estimate of the required value ofγ becomes sharper. The
values ofγ so determined are shown in Figure 4. In fact, the problem defined by (27) and (28) can be recast
in the form of “Batchelor’s sleeve problem” (Riley, 1992), forλ > 0.28, andγ(λ) determined explicitly. The
result confirms those determined from min(Iγ) of (29). In Figure 5 we show ˜v(s)

1 |ỹ=ỹ∞
, for various values

of λ, which may be interpreted as a measure of the displacement thickness of the boundary layer. We see a
pronounced maximum in this quantity asλ decreases, and our calculations show that max( ˜v(s)

1 |ỹ=ỹ∞
)→∞,

asλ → λc, whereλc ≈ 0.213. The interpretation of this is that fluid erupts from the boundary layer and
forms a jet, forλ < λc, in the manner that is well-established for the case of purely transverse vibrations,
λ = 0. When there is a jet-like eruption from the streaming boundary layers the scenario set out above is
inappropriate.

A characteristic feature of acoustic streaming that has emerged in both this section and Section 2 is the
development of jet-like flows. The name of Lighthill is closely linked to the production of noise from jets,
but the symmetry of this, with which he has also been closely associated, is the generation of jets by sound.
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