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Abstract We present a Graphic Processing Units (GPU) implementation of non-Newtonian Hele-Shaw flow
that models the displacement of Herschel-Bulkley fluids along narrow eccentric annuli. This flow is char-
acteristic of many long-thin flows that require extensive calculation due to an inherent nonlinearity in the
constitutive law. A common method of dealing with such flows is via an augmented Lagrangian algorithm,
which is often painfully slow. Here we show that such algorithms, although involving slow iterations, can often
be accelerated via parallel implementation on GPUs. Indeed, such algorithms explicitly solve the nonlinear
aspects only locally on each mesh cell (or node), which makes them ideal candidates for GPUs. Combined
with other advances, the optimized GPU implementation takes ≈ 2.5% of the time of the original algorithm.

Keywords Yield stress fluid · Algorithm improvement · Parallelization · Non-Newtonian fluid

1 Introduction

The aim of this paper is the study the displacement of yield stress fluids in narrow annular gaps, developing
an implementation in parallel using Graphic Processing Unit (GPU) technology. Yield stress fluids are non-
Newtonian fluids that occur commonly in natural and industrial settings [1]. These fluids do not deform unless
the deviatoric stress exceeds a particular threshold, the yield stress. Often, yielding behaviour is accompanied
by other rheological behaviours. However, here we consider only simple yield stress fluids [2], as typified by
rheological models such as the Bingham, Casson and Herschel-Bulkley fluids.

A yield stress rheology introduces nonlinearity in the deviatoric stress tensor and typically a singularity
in the effective viscosity. One often wants to resolve the yielding behaviour exactly. Methods for doing so
were first pioneered by Glowinski in the 1970s [3], as outlined in the reviews [4,5]. Although there have been
many advances in meshing/discretization, implementations and applications (e.g. [6–8]), the basic method for
computing the exact yield stress flow retains its original framework, as follows. First, the flow problem on
each time step is rewritten as a velocity (v) minimization. The yield stress means that the minimization is non-
differentiable for flows that contain unyielded regions. To work around this, the strain rate tensor is replaced by
a new variable (q). The constraint arising from this relaxation is then enforced using a Lagrange multiplier (λ),
so that the original convex minimization is now a Lagrangian saddle point problem. For numerical stability the
Lagrangian is augmented with a penalty term that vanishes at the solution. The augmented Lagrangian problem
is solved using an iterative Uzawa algorithm, which has 3 steps, repeated iteratively until convergence. Step 1
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is an elliptic linear problem for v, solved over the whole flow domain. The second step is a nonlinear problem
for q, solved locally on each element. The third step is a simple projection/update of λ.

The inherent interest for GPU parallelization comes in the structure of the basic algorithm described above.
In solving a problem on N cells, the dominant cost might be thought to arise from the linear algebra problem
of step 1. However, this same linear problem is solved repeatedly within the Uzawa iteration. For a moderate
sized problem, one can use e.g. a QR decomposition, after which the step 1 problem requires O(N ) operations
at each iteration. For very large problems the linear step 1 might require an iterative solution but good initial
guesses and preconditioners are likely available to accelerate. Thus, although step 1 can be a significant cost
timewise, it is a standard problem and not the focus here.

In step 2 the problem ismore interesting. In a very simple application such as aBinghamfluid, this nonlinear
problem is a quadratic equation solved algebraically. In such cases step 2 is computationally trivial. However,
for more complex rheological laws and/or for modeling techniques common in long-thin geometries, as we
treat here, the local nonlinear problem in step 2 must itself be solved numerically. We then enter a regime
where step 2 is (by far) the dominant cost computationally. However, the beauty of the underlyingmathematical
framework is that step 2 can be solved locally on each cell, making this the perfect problem for a highly parallel
method such as GPU programming, although the ideal GPU efficiency is likely still limited by data transfer
to/from the CPU. In this paper, we indeed demonstrate the efficacy of such an implementation.

The class of flows that we consider are flows with small aspect ratios. These occur widely, in both thin
film flows and Hele-Shaw cell applications. Ours is a version of the latter and it is motivated by the industrial
process of primary cementing, used to complete oil & gas wells prior to production [9]. In the process a
sequence of fluids (mainly yield stress fluids) are pumped upwards along a narrow eccentric annulus formed
by the borehole and the outside of a steel casing inserted into the well. In practice the geometry varies due to
changes in eccentricity, that are a result of both geomechanical strains on the borehole and due to geological
and drilling induced defects (e.g. washouts). Thus, we have both a complex geometry and a complex rheology
to contend with.

To illustrate that quite different applications that lead to similar mathematical structure, see for example
the food processing flows modelled in [10], or some of the ice-sheet flows reviewed in [11], where analogous
“yielding” comes from frictional behaviour at the base of the ice sheet. Indeed, disregarding yield stress
applications, it is a common modelling technique to use asymptotic methods to reduce the momentum balance
to a simplified shear flow, so that more complex physical features can be added and resolved. This can include
multi-phase scenarios, heat transfer, species transport etc., as well as certain boundary layer flows. The main
point is that the narrow dimension has a physical model that should be solved (numerically) prior to being
able to compute the flow in the other 2 dimensions.

1.1 Primary cementing displacement flows

An example of the above is given by our work on cementing displacement flows. The model considered here
was derived by [12], and we outline it below. It assumes the flow is laminar, uses scaling arguments to reduce
the Navier–Stokes equations to a local shear flow, and then averages across the narrow annular gap to derive
an elliptic equation for the stream function (essentially a Hele-Shaw approach). The mathematical foundation
of this model was developed by [13], who put the model into its variational framework and established key
properties of the functions involved. Ideal cementing flows involve a steady state displacement, in which a
displacement front advances along the well at a uniform pumping speed. That such solutions exist and how to
predict themand incorporate them into process designs for verticalwellswas studied by [13,14].Using the same
variational formulation, [15] developed an augmented Lagrangian algorithm for the cementing displacement
flow model. This numerical solution is used to study the effects of increasing eccentricity, yield stress and how
the interface can become unsteady.

The early 2000’s also saw the rise of horizontal wells as a dominant architecture for oil and gas wells in
many parts of the world. The change in well orientation causes the annulus to be more eccentric and buoyancy
effects, due to fluid density differences, promote stratification. Carrasco-Teja et al. developed analyses, based
on the Bittleston et al. model [12], specifically designed for horizontal well cementing [16]. They were able to
show that steady displacements may still arise in horizontal wells, even with significant density differences,
and that the axial length of the interface would grow as the density difference increased [16].

Although these results are reassuring, in many situations a long slumping interface is simply not desirable,
e.g. because such stratified interfaces tend to destabilize. An industry practice developed to aid horizontal
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well displacements has been to rotate the casing during displacement, with the idea that the induced Couette
component will drag the fluids around in the azimuthal direction. This was first modelled by [17,18]. Although
it is relatively easy to model for Newtonian fluids [17], for non-Newtonian fluids the nonlinearity results in a
local closure problem that must be resolved as a 2D flow, i.e. the Poiseuille and Couette components of the
flow do not decouple. When yield stress fluid are present this local closure problem again is computed using
an augmented Lagrangian method, becoming painfully slow to compute.

More recently, this modeling approach has been extended to more complex cementing scenarios. For
example, turbulent, transitional and mixed regimes are modelled [19–22]. Such models must cover all flow
regimes, which means that the yield stress dominated behaviour at slow flow rates is augmented by other
nonlinear behaviours at high flow rates, eventually becoming turbulent. The augmented Lagrangian algorithm
is again used computationally. Both the rotating casing scenarios and dealing with mixed flow regimes require
progressively expensive models for the local closure problem, i.e. due to transitions between regimes or other
parametric variations. In all cases where the local closure problem is expensive, a GPU implementation is
progressively attractive.

This article is divided as follows. In Sect. 2 we briefly describe the theoretical framework of the annular
displacement flowmodel. In the next section we describe the software and hardware that we used to parallelize
our model and the criteria that we used to choose them. The fourth section is related to the modification of
the original algorithm that we developed to optimize the code, as well as the new parallel code. We explain
in detail this mathematical modification. We also show the pseudocode with its three variants. We included a
subsection with convergence analysis. The fifth section is devoted to show our results in serial and in parallel
and the corresponding comparison. We included error analysis and physically relevant examples to validate
the algorithm’s change and the parallelization.

2 Model framework

In the primary cementing operation, 100’s or 1000’s of metres of an oil/gas wells are cemented by pumping
fluids along a narrow, eccentric annular gap of typical width of 2–3cm; see Fig. 1a. This enormous disparity in
length-scales makes solution of the full Navier–Stokes equations unfeasible on the scale of the full wellbore.
Primarily for this reason, 2D gap-averaged approaches have evolved following [12]. The approach uses scaling
arguments to reduce the Navier–Stokes equations locally to a shear flow. The main consideration is that

annular gap � annular circumference � axial length-scale, (1)

together with some requirements that the geometry vary slowly along the well. The reduced equations are then
averaged across the annular gap, in the same way that a Hele-Shaw model is derived.

The geometry of the model is shown in Fig. 1, and the parameters are listed in Table 1. Dimensional
parameters are denoted by having a “hat” accent (·̂) throughout the paper, and dimensionless parameters
without. The dimensionless spatial coordinates are (φ, ξ) ∈ (0, 1) × (0, Z) where φ = θ/π is the azimuthal
coordinate and ξ measures axial distance, upwards from the bottom of the well. For simplicity, we assume that
the flow is symmetric azimuthally and therefore only half of the annulus is considered.
The annular gap half-width H(φ, ξ) is given by:

H(φ, ξ) = H̄(ξ)[1 + e(ξ)cosπξ ] (2)

where e(ξ) ∈ [0, 1] is the eccentricity. When the annulus is concentric e(ξ) = 0 and when the casing contacts
the wellbore wall e(ξ) = 1; see Fig. 2. The inclination from vertical is denoted by β(ξ), and the mean annulus
radius at each depth is denoted by ra(ξ). The gap-averaged velocities in the azimuthal and the axial directions
are respectively v̄ and w̄. Since the flows are considered incompressible, and assuming no-slip conditions at
the wall, these satisfy:

∂

∂φ
[H v̄] + ∂

∂ξ
[Hraw̄] = 0. (3)

As the gap-averaged flow is two-dimensional, the velocity components are best represented via a stream
function, automatically satisfying the incompressibility condition above.

∂	

∂φ
= Hraw̄,

∂	

∂ξ
= −H v̄. (4)
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Fig. 1 a Schematic of the transversal view of a well. b Schematic of a cross-section of the well that describes the eccentric annular
geometry

Table 1 List of parameters

Parameter Symbol

Eccentricity e ∈ [0, 1)
Angle of inclination β
Outer radii of the annulus r̂0 (m)
Inner radii of the annulus r̂i (m)
Mean velocity scale ŵ∗ (m/s)
Length of the casing l̂ (m)
Imposed flow rate Q̂ = π(r̂20 − r̂2i )ŵ∗ (m3/s)

Time t̂ = π r̂∗
a

ŵ∗ t (s)
Fluid j power-law index n j
Fluid yield stress τY, j = τ̂Y, j/τ̂∗ (Pa)
Viscous stress scale τ̂∗ = maxk=1,2{τ̂k,Y + κ̂k [ ˆ̇γ ∗]nk } (Pa)
Strain rate ˆ̇γ ∗ = 2ŵ∗/(r̂0 − r̂i ) (s−1)
Fluid j consistency κ j = κ̂ j [ ˆ̇γ ]nk /τ̂∗
Fluid j density ρ j = ρ̂ j/maxk=1,2{ρ̂ j }
Dimensional density ρ̂ j (kg/m3)
Stokes number St∗ = [2τ̂ ∗]/[maxk=1,2{ρ̂k}ĝ(r̂0 − r̂i )]

Determining a field equation for 	 is addressed in detail in [12]. It starts with the observation that the
streamlines are parallel to the modified pressure gradient of the flow, i.e. the pressure gradient minus the
mean static pressure gradient. This allows for a local re-orientation of the coordinates along the streamline.
In these local coordinates the flow is basically a Poiseuille flow through a plane channel. Cementing fluids
are characterized as Herschel-Bulkley fluids, with 3 parameters: yield stress τY , consistency κ and power-law
index n. For a plane Poiseuille flow the relationship between the modified pressure gradient G, and the area
flow rate |∇a	|, is given by:

|∇a	| =
⎧
⎨

⎩

0, χ � 0,
H2+1/n

κ1/n(2 + 1/n

χ1+1/n

(χ + τY /H)2

[

χ + (2 + 1/n)τY

(1 + 1/n)H

]

, χ > 0.
(5)

The variable χ measures the excess of the pressure gradient G over the critical value τY /H at which we
transition from flow to no-flow. The operator ∇a is defined as:

∇a =
(
1

ra

∂

∂φ
,

∂

∂ξ

)

.
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Fig. 2 a Schematic of the narrow eccentric annulus (b) Annulus unwrapped as a Hele-Shaw cell

To understand (5), note that GH gives the wall shear stress in the annular gap. If GH ≤ τY then the fluid
does not deform and consequently there is no flow, i.e. |∇a	| = 0. When χ = G − τY /H > 0, there is a flow
and, due to the nonlinearity of the fluid, the flow rate is no longer linearly related to the pressure gradient. This
nonlinearity is described by the second part of (5), which is an implicit equation for χ(|∇a	|). The properties
of χ(|∇a	|) determine the function space in which a weak solution may be found, as discussed in [13]. Note
that when the rheological parameters are: n = 1, τY = 0, we recover a Newtonian fluid behaviour.

The flow law (5) can be used to either define an equation for the pressure or for the stream function. As the
pressure gradient is not determined in regions where |∇a	| = 0, the latter is the preferred formulation. Indeed
determining regions where |∇a	| = 0 has practical relevance for the cementing process, often indicating
defective cementing. The stream function satisfies

∇a · S = − f, (6)

where ⎧
⎪⎨

⎪⎩

S =
[
raχ(|∇aψ |)

|∇aψ | + raτY
H |∇aψ |

]

∇aψ, ⇔ |S| >
raτY
H

,

|∇aψ | = 0, ⇔ |S| ≤ raτY
H

.

(7)

The term f represents the influence of buoyancy forces:

f = ∇a ·
(
raρ(c̄) cosβ

St∗
,
raρ(c̄) sin β sin πφ

St∗

)

= ∇a · f̃, (8)

where St∗ is the Stokes number, representing the balance of viscous to buoyancy stresses, as defined in Table
1; see also [12]. This term arises from cross-differentiating to eliminate the pressure, which results in taking
derivatives of the static pressure gradient components.

Equation (6) is solved for 	 at each time, in order to derive the velocity field. The flows considered are
however displacement flows. To model the different fluids a concentration vector c̄ is introduced, representing
the gap-averaged volume fraction of each fluid. Each individual fluid component c̄k satisfies

∂

∂t
[Hrac̄k] + ∂

∂φ
[H v̄c̄k] + ∂

∂ξ
[Hraw̄c̄k] = 0, k = 1, 2, .. (9)

Here we assume only 2 fluids, with fluid 2 displacing fluid 1. Conservation of volume means that c̄1 + c̄2 = 1.
Note that in some formulations, the above equation is supplemented by a diffusion term on the right-hand side
which can represent both molecular diffusivity and dispersion effects.

The fluid concentrations advance in time. Time dependency may also enter in the boundary conditions,
e.g. the amount of eachfluid that is pumped into the annulus.Couplingof c̄ and	 is two-way.The concentrations
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are used to define the (mixture of) rheological properties τY , κ and n, from those of the individual fluids. The
density ρ(c̄) also depends on the fluids, and hence the buoyancy comes from gradients in ρ(c̄). In the other
direction, the fluid velocities determine transport of c̄.

We impose the boundary conditions of symmetry at the wide and narrow sides for the concentration
equation:

∂ c̄k
∂φ

= 0, φ = 0, 1. (10)

At the bottom of the annulus, inflow concentrations are specified and at the top an outflow condition is used.
For the elliptic second-order Eq. (6), on the wide side of the annulus we impose:

	(0, ξ, t) = 0, (11)

and on the narrow side:
	(1, ξ, t) = Q(t), (12)

where Q(t) is an appropriately scaled flow rate. In the axial direction we impose Dirichlet conditions given
by:

	(φ, 0, t) = 	0(φ, t), 	(φ, Z , t) = 	Z (φ, t), (13)

with 	0 and 	Z specified. These boundary conditions can vary for different operational settings, or for slight
variants of the model. For example, when the full annulus is modelled, φ is extended to [0, 2] and all variables
are made periodic in φ.

3 Computational overview

We now describe what is the typical computational challenge of simulating a primary cementing displacement
flow. The model (4)–(13) is solved over a spatial domain of size 1× Z . Since oil and gas wells tend to be very
long, Z ∼ 5× 102 − 104, and even Z ∼ 102 for a laboratory experiment; see Eq. (1). As the aim is to displace
the drilling mud and replace it with the cement slurry, in any simulation the fluids must travel the length of
the well Z , and the transport Eq. (9) is advanced over a total time T ∼ Z , given that the velocities have been
scaled to be O(1). At each time step both the stream function Eq. (6) and the transport Eq. (9) must be solved.
Equation (9) imposes a CFL constraint on the time step used, but the computational time taken per timestep
scales linearly with the number of mesh cells. In more complex models of the mass transport diffusive effects
may also be included (molecular and turbulent diffusivities, Taylor dispersion, etc.; see [19]). Nevertheless,
in the dimensionless setting the (physically scaled) diffusivities remains small enough that an explicit method
can be used without compromising the time step restrictions, i.e. the CFL condition can be considered the
main time step restriction.

The above represent the unmovable constraints of the computational problem, in terms of number of time
steps that need to be executed, for any given spatial discretization. The spatial discretization is determined
by accuracy and resolution requirements. Here we will assume a simple rectangular mesh. Although one can
elongate the mesh spacing in ξ to help reduce the impact of Z 
 1, this comes with a loss of resolution.
Regarding azimuthal resolution, the point of the annular Hele-Shaw approach is to resolve 2D effects around
the displacement front (secondary flows), so that Nphi = 10 − 100 azimuthal meshpoints would be sensible.
Assuming a mesh dφ = 1/Nphi in the azimuthal direction, we will frequently want dξ ∼ dφ, to avoid
distorting the mesh too much. This might also be a reason for not selecting Nphi too large. Other factors in
selecting dξ include the fact that for industrial settings, the eccentricity, mean radius and gap width may all
vary considerably along a well and one wishes to capture these variations. On the other hand, as the Hele-Shaw
approach involves averaging across the annular gap, resolving flow features on the gap length-scale is the limit
of model validity. Thus having balanced all consideration, the number of meshpoints is N ∼ O(ZN 2

phi ), with
potentially a large constant of proportionality (reflecting the mesh aspect ratio).

The second-order Eq. (6) is elliptic and nonlinear. Broadly speaking, at each time step we must solve this
nonlinear problem of size N , and the usual methods involve repeatedly resolving a sequence of linear problems,
each of size N . Although of size N , these elliptic problems are sparse and the matrices are generally banded
with width 3Nφ . For now lets assume that (6) is solved in a time ∝ AALGNaALG on each time step, where
AALG & aALG(≥ 1) will depend on the algorithm used and its implementation. Lets now consider the total
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time required to simulate a displacement, Tcomp. We suppose an end time T ∼ Z and that a CFL condition is
imposed, which lead to:

Tcomp ∝ [AALGN
aALG + O(N )]ZNphi . (14)

The O(N ) term comes from the cost of solving (9), assumed of size N and relatively inexpensive. The main
cost at each time step is in resolving (6), which we discuss below and focus on improving in this paper.
Optimistically, we might be able to ensure that aALG = 1, as we will discuss, which leaves AALG to be
improved upon. Nevertheless, we see that at best we end up with:

Tcomp ∝ AALG Z2N 3
phi . (15)

Although we work on reducing AALG in this paper, the other terms above remain immovable and Z 
 1 is a
serious constraint to rapid computations in realistic well geometries. Simply put, the aim of the parallelization
is to reduce the dominant per-timestep cost (AALGN ), of solving (6), ideally by dividing by the number of
parallel GPU threads.

3.1 Finding the streamfunction

Although elliptic, the streamfunction Eq. (6) is not defined in regions where the velocity is zero, i.e. where
the gradient of 	 vanishes. Instead of the classical formulation, we adopt the weak formulation of (6) as a
variational inequality, as is discussed at length in [13]. This leads naturally to a minimization problem for the
streamfunction (at each time step), formally written as:

min
�∈V̄0(�)

{J (�)}, (16)

where � = (0, 1) × (0, Z). The functional only depends on the gradient of the streamfunction: q = ∇a�,
and can be split as follows.

J (q) = J0(q) + J1(q), q ∈ X, where (17)

J0(q) =
∫

�

(
1

2

∫ |∇a	
∗+q|2

0

χ(s1/2)

s1/2
ds + q · f̃

)

d�, q ∈ X, (18)

J1(q) =
∫

�

τY

H
|∇a	

∗ + q| d�, q ∈ X. (19)

We have homogenized the boundary conditions for 	, along φ = 0, 1, and at the ends ξ = 0, Z , by setting

	 = 	∗ + �, 	∗ ∈ V̄ (�), � ∈ V̄0(�), (20)

with suitably constructed 	∗. In the continuous setting we take

V0(�) = {� ∈ C∞(�) : �(0, ξ) = 0, �(1, ξ) = 0},

V (�) = {� ∈ C∞(�) : �(0, ξ) = 0, �(1, ξ) = 1},
and the test spaces V̄0(�) and V̄ (�) are the closures of V0(�) and V (�), respectively, with respect to the
W 1,1+n(�) norm. Hence, X = L1+n(�), and n would be the smallest value of n in �, (which may change
with time if the fluid mix). Nevertheless, practically speaking we work with finite dimensional spaces for the
numerical solution (when n = 1 is equivalent).

The functional J1(q) is non-differentiable in regions where ∇a(	
∗ + �) = 0, which correspond to

stationary parts of the flow. One approach is to regularize the problem to remove the non-differentiability,
which physically means that the fluids may move very slowly in these regions. However, from the industrial
perspective, it is of interest to determine which regions are truly stationary. Therefore, we fully resolve the
static regions by dealing directly with the non-differentiability. This is done using the algorithm developed in
[15] that employs the augmented Lagrangian algorithm of [23].
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This method replaces the minimization with a saddle point problem, that results from introducing an
additional variable for the gradient of the streamfunction. The Lagrangian saddle point problem is also
typically augmented with a stabilizing term. Thus, the augmented Lagrangian problem concerns the functional
Lr :

Lr (�,q, μ) = J (q) +
∫

�

μ · (∇a� − q)d� + r

2

∫

�

|∇a� − q|2d� (21)

The saddle point of Lr , ∀r > 0, is found using an iterative Uzawa algorithm, in which successive iterates solve
for one variable.

For example, holding {pk−1, λk−1}fixed,we solve for�k . The problem for�k minimizesLr (v,pk−1, λk−1)
with respect to v, which we see is a linear elliptic problem (a Poisson equation). The discrete matrix does not
change on each iteration, which means that this problem can generally be solved cheaply.

The second problem, to define pk , holds {�k, λk−1} fixed, and minimizes Lr (�
k,q, λk−1) with respect to

q. After some algebra, we find that ∇a	
∗ + q should be parallel to the vector (λk−1 + r∇a(	

∗ + �k) − f̃).
If x = |λk−1 + r∇a(	

∗ + �k) − f̃ | then (∇a	
∗ + q) has magnitude θx , where θ ≥ 0 minimizes

M(θ) = 1

2

∫ (θx)2

0

χ(s1/2)

s1/2
ds + τY

H
|θ |x + r

2
(θx)2 − θx2. (22)

This local minimization has two cases. First, if x ≤ τY /H then M(θ) is minimized by θ = 0, with solution
qk = −∇	∗, that represents an unyielded flow. The other case represents yielded flow, when x > τY /H . In
this second case we simply differentiate M(θ) and equate to zero to obtain the minimum:

χ(θx) + τY

H
+ rθx − x = 0 (23)

Recall that χ is defined by (5), Which is an implicit definition of χ as a function of the areal flow rate |∇a	|.
Thus, the problem for qk at each iteration is time consuming, i.e. we must solve (23) iteratively and each
evaluation of χ would require the implicit function χ in (5) to be inverted. This is a significant contribution to
the total computational time.

3.2 Computational improvements

We refer to the algorithm explained above as the serial algorithm. We explore the performance of this code,
which is predictably slow, and improve it. In order to accelerate the code, we have implemented two strategies:
GPU parallelization and algorithmic improvements.

3.2.1 GPU parallelization

As mentioned in the introduction, our code was parallelized using CUDA [24], and specifically CUDA Fortran
[25]. The CPU is an Intel� CoreT M i7-3770 CPU @ 3.40 GHz, with speed 3411 MHz and with 32768 MB
(DDR# 1333 MHz). The hardware added to our computer was a NVIDIA� graphic card, model GeForce
RTX 2080 Ti. All examples presented later are run using the same computer, with only specific functions
translated to CUDA and run on the GPU. All data passes through the CPU also. In Fig. 3 we present a test of
computational performance in Gigafloating-point operations per second (GFLOPS) for that particular model
of GPU vs. our CPU. We see an increasing difference between the GPU and the CPU performance with the
size of problem.

Generally, we have to apply two criteria to decide if an application is suitable to be parallelized via GPU:

1. It is computationally intensive. The time spends on transferring data to a GPUmemory is significantly less
than the time in computation.

2. The computation can be broken down into hundreds/thousands of independent units of work, which means
that they can be massively parallelized.

If the program does not satisfy both criteria, it may run slower on a GPU. A GPU is especially well-suited to
solve problems with data-parallel computation, i.e. the same operation or function is executed at the same time
or in parallel. This allows the memory access latency to be hidden with high arithmetic intensity instead of the
big data cache. Applications that process large data sets can use a data-parallel programming model to speed
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Fig. 3 Performance comparison between GPU and CPU using GeForce RTX 2080 Ti, using a standard matrix multiplication test

up computations. A multi-threaded program is partitioned into a block of threads that execute independently
of each other. Therefore, a GPU with more CUDA cores should execute code in less time than a GPU with
fewer multiprocessors, unless memory bound.

Turning to our annular model, the mathematical operations are varied. We will provide a profile of the
main computational costs below, but overall the main cost comes from the augmented Lagrangian algorithm
outlined in Sect. 3.1. The key point is that the most expensive step is solved locally (i.e. independently) on
each finite volume cell, allowing us to identify each with one thread on the GPU and making the parallelization
process very straightforward. Other parts of the algorithm are either not suitable for parallelization, or are not
costly enough to warrant this attention.

3.2.2 Algorithmic improvements

In addition to the code parallelization, we modified the way the nonlinear problem (23) is solved. Briefly, note
that the physical definition of χ is as the excess of the pressure gradient over its limiting value, given by

χ = G − τY

H
. (24)

Thus, when χ > 0 the fluid is flowing locally, meaning that |∇a	
∗ +qkrvert > 0. Also note that the function

χ(θx) increases monotonically, where θx = |∇a	
∗ + qk |. With a simple change of variable, we can rewrite

(23) not as an equation for θ , but rather as an equation for χ , i.e.

f (χ) = χ + r
H2+1/n

κ1/n(2 + 1/n)

χ1+1/n

(χ + τY /H)2

[

χ + (2 + 1/n)τY

(1 + 1/n)H

]

−
(
x − τY

H

)
= 0.

(25)

The function f (χ) is evidently monotonically increasing, and considering that x > τY
H we also see that

f (0) < 0. It is not hard to establish that (25) has a single zero, which needs to be found numerically. Note
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Table 2 Percentage of time by function

Function T ime(sec.)on124x256mesh %

Advancep 376.50 97.2
Advancelambda 9.41 2.42
AdvanceOneTimeStep 1.34 0.34
Advanceu 0.13158 0.035

however that this eliminates one level of nested iteration in defining χ . Having found the solution to (25), we
can use (5) to find θx explicitly, and as |∇ψ∗ + qk | = θx , then qk is found.

There are many options that can be used to solve (25), e.g. bisection method, regula falsi, Ridder’s method.
Although nonlinear, the properties of (5) are analyzed in depth in [15], which makes it relatively easy to find
bounds for the solution and iterate reliably. We shall refer to using (25) in place of (23) as the optimized
algorithm. For all results presented in the paper the bisection method has been used.

4 Results

Before presenting results of representative cases, we give an overview of the relative computational costs. We
have measured the runtime of the entire code and profiled runtimes of the different parts of the code. Apart
from the initialization steps in the code, the main subroutines that are called on each time step are as follows:

• advanceonetimestep: this calculates the concentration of each fluid inside the annulus, advancing
one time step using an explicit (flux corrected transport) method.

• advanceu: this calculates a new value of � from the saddle point problem.
• advancep: this calculates a new value of q from the saddle point problem.
• advancelambda: this calculates a new value of λ.

As we have noted in the prior discussion, advanceonetimestep, advancep and advancelambda
represent operations that naturally scale linearly with the size of the mesh. In general, advanceu involves
solving a linear Poisson problem on themesh. However, the Poisson problem remains unchanged for successive
time steps. Thus, here we have performed a QR decomposition at the start of the computation and used this
repeatedly on each time step to solve the Poisson problem. This ensures that advanceu will scale linearly
with the size of the mesh. This method is suitable for the moderate sized meshes that we use, but some form
of iterative method would be needed for very large problems.

Table 2 shows the percentage of computational time taken by each function for a typical computation using
yield stress fluids and with a mesh size 124x256. We see that advancep represents 97% of the runtime.
Although each function should scale linearly with time, the nested nonlinear iteration performed on each mesh
cell is the dominant cost. This explains our motivation for targeting our GPU implementation for this operation.

4.1 Case studies

We have developed and analyzed six different cases to illustrate typical rheological parameters and operational
variables. Our cases are greatly simplified compared to the ranges found in operations, by having only 2 fluids
present and in that the annulus is uniform. The fluid properties are specified in Table 3. All cases consider inner
and outer radii: r̂i = 0.15m and r̂o = 0.175m, and a length l̂ = 1000m. Each annulus has a constant standoff
(eccentricity). The annuli are all vertical, which would relate to a surface or intermediate casing operation. For
simplicity the flow rate is fixed at Q̂ = 0.002525 m3/s. Even though simplified, each case is described by 15
parameters in the dimensional setting, which can be reduced to 11 dimensionless parameters by scaling the
equations and variables. The dimensional parameters are described and discussed in [19].

In Table 4 we listed the dimensionless parameters used in our experiments. Note that ρ2 = 1 in all the cases
due to scaling, and the scaled length of the well is Z = 1958.86. We use Nξ = 1024 meshpoints in the axial
direction throughout. Cases A-C use Nφ = 64 and the remainder use Nφ = 32. All computations start with
the annulus completely full with displaced fluid (colored yellow below), and with the interface at the bottom
(ξ = 0) of the annulus.
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Table 3 Dimensional fluid properties: r̂i = 0.15m, r̂o = 0.175m, l̂ = 1000m, β = 0, Q̂ = 0.002525 m3/s. Fluid 1 (displaced
fluid), Fluid 2 (displacing fluid)

Case e κ̂1=1.0 (Pa.sn) κ̂2=1.0 (Pa.sn) n1 n2 τ̂Y,1 (Pa) τ̂Y,2 (Pa) ρ̂1 (kg/m3) ρ̂2 (kg/m3)

A 0.2 1.0 1.0 1.0 1.0 0 0 1200 1200
B 0.5 1.0 1.0 1.0 1.0 0 0 1200 1200
C 0.5 1.0 1.0 0.6 0.5 0 0 1200 1200
D 0.5 0.02 0.01 0.7 1.0 7.05 2.35 1440 1800
E 0.5 0.02 0.03 0.7 1.0 4.79 2.35 1440 1800
F 0.4 1.0 1.0 1.0 0.6 0.3 1.0 1200 1300

Table 4 Dimensionless parameters: ρ2 = 1, Z = 1958.86. Fluid 1 (displaced fluid), Fluid 2 (displacing fluid)

Case St∗ e κ1 κ2 n1 n2 τY,1 τY,2 ρ1

A 0.233 0.2 1.0 1.0 1.0 1.0 0.0 0.0 1.0
B 0.233 0.5 1.0 1.0 1.0 1.0 0.0 0.0 1.0
C 0.135 0.5 1.0 0.8123 0.6 0.5 0.0 0.0 1.0
D 0.143 0.5 0.0120 0.0336 0.7 1.0 0.9880 0.3290 0.8
E 0.143 0.5 0.0176 0.0492 0.7 1.0 0.6705 0.3290 0.8
F 0.0806 0.4 0.0773 0.0336 1.0 0.6 0.2899 0.9664 0.9

Cases A & B are Newtonian. The densities are the same for both fluids. In principle the augmented-
Lagrangian procedure is not needed for these linear cases. These are included for bench-marking purposes.
In Fig. 4 we show results from case A at 4 successive times through the displacement flow. The streamlines
(white) are plotted over the colormap of the fluid concentrations. For this base case, the only effect is due to the
eccentricity (e = 0.2), which causes the fluid to flow faster in the wider part of the annulus. From an initially
horizontal interface we observe that the interface elongates along the wide side of the annulus and exits. Case
B is a similar flow but with larger eccentricity (e = 0.5); see Fig. 5. The behaviour is qualitatively the same as
in Fig. 4, but as we increase the eccentricity the fluid in the wider part of the annulus increases and that in the
narrower part decelerates, so that the interface elongates in each frame.

Note that for these two cases there is no density difference. The 2 fluids rheologies are identical, and we
are viewing a pure dispersion problem. The degree of spreading of the concentration profile at the interface is
entirely indicative of numerical diffusion/dispersion in solving the concentration equation (9). Unlike in more
complex situations, the streamlines are entirely parallel and there is no secondary flow close to the interface.
It can be observed that there is relatively little spreading of the interface with the current algorithm. Note
that since the fluids upstream and downstream are identical, the streamlines should remain parallel across the
interface.

Case C represents the first displacement flow; see Fig. 6. The fluids are now shear-thinning (n1 = 0.5 and
n2 = 0.6) and the eccentricity is still e = 0.5. Recall that the flow rate imposed is identical for all cases,
to allow comparison. Due to the shear-thinning effect both fluids flow faster on the wide side, relative to the
Newtonian case B, i.e. faster flow shears the fluid more, reducing its effective viscosity. We observe this in that
the streamlines are now denser on the wide side than in case B. The consequence of the faster velocities is that
the interfaces advances faster on the wide side, making the displacement less effective than that of case B. Note
too that fluid 2 has smaller n and hence is effectively less viscous than fluid 1, which may contribute to the
finger-like phenomenon observed. The streamlines now distort slightly as they cross the displacement front,
only becoming parallel upstream and downstream of the front. We see that the wide side interface develops a
shock-like profile. Distortion of the streamlines from vertical becomes more apparent as we consider fluids
with larger physical differences below.

A different non-Newtonian phenomenon is introduced in case D, where both fluids are shear thinning,
n1 < n2 < 1, and both have a yield stress, that is larger in the displaced fluid, as is often the case for
drilling mud and cement slurry; see Fig. 7. The eccentricity is still e = 0.5, but there is a significant density
difference, ρ2 > ρ1, with the density of the displacing fluid being approximately that of cement. Similar to
the previous example, the shear-thinning of the fluids leads to a faster flow in the wide side of the annulus,
but this effect is countered by the buoyancy force coming from the density difference. The result is a more
efficient displacement. The distortion around the interface is more visible, and we see significant dispersion
ahead of the front close to φ = 0, the wide side of the annulus. It has been shown in Figs. 4 and 5 that the
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from left to right. The white lines show the streamlines 	 = 0, 0.1, 0.2, ..., 1



GPU computing of yield stress... 673

0 0.5 1

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 0.5 1 0 0.5 1 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Concentration

Fig. 6 Case C concentration colormap, computed in parallel. Sequence of times: 2042.14 s, 5105.26 s, 7147.33 s, 1010.59 s,
from left to right. The white lines show the streamlines 	 = 0, 0.1, 0.2, ..., 1

0 0.5 1

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 0.5 1 0 0.5 1 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Concentration

Fig. 7 Case D concentration colormap, computed in parallel. Sequence of times: 2042.14 s, 5105.26 s, 7147.33 s, 1010.59 s,
from left to right. The white lines show the streamlines 	 = 0, 0.1, 0.2, ..., 1



674 I. L. Medina Lino et al.

0 0.5 1

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 0.5 1 0 0.5 1 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Concentration

Fig. 8 Case E concentration colormap, computed in parallel. Sequence of times: 2042.14 s, 5105.26 s, 7147.33 s, 1010.59 s, from
left to right. The white lines show the streamlines 	 = 0, 0.1, 0.2, ..., 1

numerical method is able to preserve the sharpness of the front, so the dispersion is due to secondary flows that
emerge. On the wide side, near φ = 0, there is flow ahead of the front and on the narrow side, near φ = 1, the
secondary flow is behind the front. This secondary flow, which acts to flatten the interface, is due to buoyancy.

Note that ahead of the front, in the displaced fluid, in the narrowest part of the annulus, there are no
streamlines, |∇a	| ∼ 0; see (5). Interestingly, far behind the front, when fully in fluid 2, there is also static
fluid on the narrow side. However, buoyancy induces weak secondary flows on the narrow side, sufficient to
move fluid 1 away from φ = 1 in fluid 1 and towards φ = 1 in fluid 2. This allows the front to move along
the narrow side, albeit slowly. It is interesting to compare with case C, where there is also poor narrow side
displacement. The slow movement of the front on the narrow side is comparable between cases C and D.
However, case C has no density difference and no yield stress, thus the fluids are always moving on the narrow
side, and not just close to the front. Evidently, both cases C and D are poor displacements. In the preceding
figures the final time shown corresponds to approximately 1 annular volume pumped. During a cementing
operation, an excess of ∼20% annular volume may be pumped, but continuous pumping of cement is simply
not possible, due to environmental waste disposal and cost concerns. Thus, displacement simulations such as
cases C and D show wells that will have very poor cement coverage over significant lengths, likely leading to
leakage and giving concern for corrosion, i.e. the cement does not protect the narrow side of the casing.

Case E is similar to case D, but with a reduced yield stress in fluid 1 and an increased consistency in fluid
2. Both effects lead to a better displacement, albeit still poor, as we see that there remains a static channel
along the narrow side of the annulus; see Fig. 8. The residual channel of fluid 1 is narrower than in case D. In
order to displace a yield stress fluid fully, one needs a combination of features: reduced yield stress, increased
viscosity on fluid 2, significant buoyancy and reduced eccentricity. Finding the parametric ranges in which
displacements can be effective is a key engineering challenge, more so when the well geometries are not as
simple as those here. Case F illustrates a situation where the yield stress fluid 1 is fully displaced.

4.2 Benchmark comparisons

Cases A and B involve only passive advection, i.e. fluids 1 and 2 are identical. This situation admits an
analytical solution for the streamfunction and hence velocity; see [14]. The computed concentration may then
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Fig. 9 Case A: a computed solution; b analytical advected interface; c comparison

be compared with the advected interface. For identical Newtonian fluids the velocity depends only on φ and
is given by:

w̄(φ) = H2(φ)
∫ 1
0 H3(φ) dφ

(26)

with H(φ) = 1 + e cosπφ. This integral is readily evaluated and the (analytical) position of the interface is
simply advected from an initially flat initial condition. The comparison is made in Fig. 9 for case A. Note that
the blocky/blurring near the interface is a consequence of mesh resolution and possibly the shading graphics.
Figure9 corresponds to early in case A, which is depicted in Fig. 4 over the full 1000m of annulus. For this
comparison only the first few metres are shown.

Figure 10 shows comparisons of computed results using both the non-optimized serial and optimized
parallel codes, for cases E and F. The results are very close. Displacement flows are advective, hence small
differences in solution will flow downstream and can be amplified in doing so. Such differences in numerical
solution remain small in cases where there is some underlying stability to the solution, as here. However, this
might not always hold as many cementing displacement flows are unstable.

To give a quantitative comparison of the difference in solutions, we calculated the L2 norm between the
results from the non-optimized serial code and optimized parallel code, for meshes: 8x8, 8x16, 16x16, 16x32,
32x32, 32x64 64x64 and 64x128. We chose these specific size of meshes because the grids in the parallel
version of the code should be a power of 2, to match the number of threads in the GPU that run the functions
in parallel.

As we can verify in Figs. 11a and 12a, the difference is less than 10−13 for all the meshes, for the Newtonian
fluid computations. For the non-Newtonian cases this increases to � 10−11, as shown in Fig. 13a for case E.
Although the algorithm is the same for Newtonian and non-Newtonian cases, in general the non-Newtonian
flows require more iteration, which allows for larger error in convergence. As commented with regard to
Fig. 10, small numerical differences are transported with the displacement flow and hence the discrepancies
between methods will grow with time in most simulations, and more so in response to the flow complexity.

4.3 Computational times and scaling

For the same 3 cases, A, B and E, Figs. 11b, 12b and 13b show the computing time taken for various meshes.
The red line denotes the non-optimized serial code and the blue line is the optimized parallel code. Both codes
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runtime increase with the meshsize. The direct observation is that the blue line is taking less time than the red
line across all the meshes in all cases. The calculations in the GPU are intrinsically very fast and take very little
time, but only parts of the code are run on the GPU, i.e. those parts of the algorithm that have been parallelised.

Firstly, note that the decrease in computing time using the optimised parallel code appears to be more
significant for the non-Newtonian simulations (Fig. 13b), compared to the Newtonian simulations (Figs. 11b
and 12b). This is to be expected. In theory the augmented Lagrangian procedure should converge within a few
iterations when the problem is linear. Possibly it could be designed to converge in 1 iteration, but we have not
done so. In any case, this means that the GPU can not reach its full potential for the linear cases.
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Table 5 Benchmark for cases: in parallel and in serial

Benchmark mesh 32 × 1024 Serial Parallel

Case A 150 min 55 s 86 m 29 s
Case B 189 min 61 s 70 m 8 s
Case C 1197 min 46 s 78 m 49 s
Case D 2160 min 20 s 162 m 25 s
Case E 5755 min 30 s 177 min 1 s
Case F 6324 min 52 s 101 min 6 s

Table 6 Benchmark for cases: original algorithm and optimised algorithm

Benchmarktime mesh 32 × 1024 Optimized algorithm serial Optimized algorithm parallel

Case A 140 min 3 s 46 min 43 s
Case B 139 min 5 s 46 min 45 s
Case C 140 min 29 s 61 min 54 s
Case D 589 min 36 s 67 min 17 s
Case E 593 min 5 s 71 min 58 s
Case F 360 min 5 s 69 min 58 s

In Table 5 we show the computational times taken for all the cases ran in serial and in parallel with a
32X1024 mesh. In Table 6 we show the time of the optimized algorithm in serial and the optimized algorithm
in parallel. We notice the time reduction for all cases for the parallel version. We can also see that the time of
the optimized serial algorithm is lower than the original serial algorithm. The best results are obtained with
the code with both the optimized algorithm and in parallel.

To quantify the improvement we compared the average times of these cases, over the 3 different improve-
ment strategies. We calculated the percentage of the time taken with respect to the original serial algorithm.
The time in parallel is≈ 13% of the time in serial. The optimized algorithm in serial takes≈ 4.45% of the time
of the original code. The optimized algorithm in parallel takes ≈ 2.5% of the original code. These specific
numerical improvements will also depend on the mesh size, rheological and process parameters.

Noticeable here is that the very long runtimes (cases E & F, non-Newtonian fluids) improved the most.
As we know, Non-Newtonian simulations require more computational resources. Hence, the optimization
becomes more relevant and valuable in the light of the real-time simulations. Running 10–15 simulations of
1-hour duration to enhance the design of a well is feasible, but not when each takes 100h. The most important
point is that the improvements bring the simulations into the range of a single desktop machine with a good
GPU, as is available to practicing engineers.

A very general perspective on expected speed-up can be given in the sense of the theoretical concept
of scalability. The first definition of scalability is related to the size of the problem and the time it takes to
be executed. There are many possibilities to make this calculation. When we want to analyze the size of the
problem, the number of processors that are used to calculate the algorithm become relevant. The parallelization
in aGPUuses different kinds ofmemories, like sharememory, globalmemory, etc., and the arithmetic processor
units are set in different levels, (threads, blocks, warps, SM, etc). A simple expression we can use to anticipate
the scalability of our application it is Amdahl’s law that relates the number of processors, to the proportion of
the code in parallel and forecasts an approximation of the speed up S:

S = 1

f + (1 − f )/p
, (27)

where f is the part of the program running in serial and p is the number of processors. Looking at Table 2, we
see that the most expensive part of the code takes 97.2% of the (serial) computing time. It is this part that we
have coded on the GPU. Thus, if we were to crudely take: f = 2.8%, and p = 4532, we find that S = 35.4.
This speed up is similar to that we have observed. Although demonstrating consistency of our results, the
analysis is rather crude.

Although Table 2 resulted from profiling a relevant computation, different physical parameters would result
in variability of the profile values, which has not been explored (there are at least 10 relevant dimensionless
physical parameters). Specifying f in this way is also too simplistic. The CPU is used in the parallel codes and
there is always some limiting in passing data and allocating to the GPU threads. Such features would change
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with different CPU and GPU pairings, as they are related to the architecture, but would not be eliminated. The
focus of our paper is algorithmic and not hardware.

The other aspect to consider is that the best performance of our code comes from 2 independent improve-
ments: algorithmic and GPU. Checking Tables 5 and 6 for the cases D-F (non-Newtonian and requiring the
most iteration), illustrates the effects of the 2 improvements. Comparing the 1st column between the 2 tables
indicate that the algorithmic improvement is a speed up in the range of 5-20 times. Comparing the 2 columns
in each table, the GPU parts seem to speed the code by 12-60 times in the non-optimised cases and by a factor
of 5-10 after the algorithmic improvement. Thus, the speed ups of the two improvements are comparable.

In terms of a general scaling of computational times with the size of the problem N , the reader is referred
to the start of Sect. 3 for general comments regarding the expectations for the original serial code, while (27)
gives an idealised view of the speed-up possible from the GPU implementation. As we have seen, the actual
speed-ups are a combination of both improvements made. This brings us to the final point regarding scaling
and a key difficulty in anticipating: the physical nature of the problem. Different choices of fluid change the
nonlinearity and hence the computational times. This is also a time evolving problem (a displacement flow),
which means that the proportion of the annulus filled with fluid 1 or fluid 2 (each with different nonlinearities)
changes during the flow as different fluids are replaced.

5 Conclusions

In this study, we implemented a faster version of the annular displacement flows simulations first presented
in [26]. We parallelized the original code using a GPU, and modified the algorithm where it had the most
expensive computational cost. This resulted in an average reduction of the computing time to around 2.5% of
the original cost. The cost reduction appears to vary significantlywith the fluid rheologies: perhaps unsurprising
as these change the nature of the non-linearities.

The study serves as an example of a class of fluid flow problems that may be amenable to significant
GPU acceleration. It is fairly commonplace to use scaling arguments to reduce 3D Navier–Stokes problems
to simpler situations where the flow occurs in a thin film, slowly varying channel or similar geometry. Such
models are amenable to analysis and often are fast enough to compute, such that they may serve as a digital
twin for process design or control. In these models there is typically a reduced direction in which the equations
are integrated analytically (across a boundary layer, or thin film, etc). In dealing with complex fluids, these
reduced models are not always analytically tractable and their computation can quickly become the main cost.
Here we have shown that both GPU and smart consideration of the reduced models, can both lead to significant
savings in computational cost.
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