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Abstract The coupling interactions between deformable structures and unsteady fluid flows occur across a
wide range of spatial and temporal scales in many engineering applications. These fluid–structure interactions
(FSI) pose significant challenges in accurately predicting flow physics. In the present work, two multi-layer
network approaches are proposed that characterize the interactions between the fluid and structural layers
for an incompressible laminar flow over a two-dimensional compliant flat plate at a 35◦ angle of attack. In
the first approach, the network nodes are formed by wake vortices and bound vortexlets, and the edges of
the network are defined by the induced velocity between these elements. In the second approach, coherent
structures (fluid modes), contributing to the kinetic energy of the flow, and structural modes, contributing to
the kinetic energy of the compliant structure, constitute the network nodes. The energy transfers between the
modes are extracted using a perturbation approach. Furthermore, the network structure of the FSI system is
simplified using the community detection algorithm in the vortical approach and by selecting dominant modes
in the modal approach. Network measures are used to reveal the temporal behavior of the individual nodes
within the simplified FSI system. Predictive models are then built using both data-driven and physics-based
methods.Overall, thiswork sets the foundation for network-theoretic reduced-ordermodeling of fluid–structure
interactions, generalizable to other multi-physics systems.

Keywords Fluid–structure interaction · Reduced-order modeling · Vortex dynamics · Data-based methods

1 Introduction

Fluid–structure interactions (FSI) occur in many engineering applications and over many spatial and temporal
scales from aircraft and buildings to heart valves and insect wings. In fact, any compliant structure immersed in
a fluid flow results in fluid–structure interaction. These interactions are often transitory in nature and lead to the
rich dynamical behavior of the fluid and structural components. For flight systems with compliant wings, the
structure can extract energy from the air stream leading to an unstable self-excited vibration called flutter, which
is not only difficult to predict but can have catastrophic effects such as potential structural failure [1–3]. Due to
their design characteristics, slender and High Altitude Long Endurance (HALE) aircraft wings are more prone
to experiencing this self-excited vibration, posing significant challenges in their safe and efficient operation.
[4–6]. The situation is similar forwind turbines, where increasing the aspect ratios driven by increases in turbine
name-plate capacity leads to a higher likelihood of flutter [7]. Furthermore, as the utility of a wind turbine is to
extract energy from the wind, any energy lost to or because of blade distortion is energy that could have been
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used to turn the generator, hindering the efficient extraction of power from the wind. Active flutter alleviation
systems which take advantage of the knowledge of the system interactions are of significant interest as they
provide the potential for significant weight savings when compared to traditional flutter-resistant structures
[8].

Interest in FSI extends to smaller scales as well. Agile natural flyers such as insects and birds are able to
maneuver in unsteady aerodynamic environments. Because many insects are unable to fully articulate their
wings, wing compliance plays a crucial role in the generation of flight forces [9–12]. This provides insights
into the design and control of autonomous flight vehicles [13,14], a topic of tremendous engineering interest.

Because of the prevalence of FSI and the potential for catastrophic phenomena, significant effort has been
made in modeling and predicting their behavior [15]. Efforts have ranged from simple analytical methods and
semi-empirical equations of prediction [16] to computationally-intensive high-fidelity numerical simulations
[17,18]. Perhaps the most commonly used analytic model is that of Theodorsen which was motivated by the
importance of understanding wing vibrations and flutter in the early years of flight. Improvements have been
made to the model in recent years including semi-empirical formulations [19], state-space models [20,21], and
insights from careful experiments [22,23]. Vortexmethods coupledwith low-fidelity structural models are used
to accelerate FSI computation to build fast solvers, but their speed comes at the expense of ignoring viscous and
compressible effects in theflow [24–27]. In high-fidelity simulations, it is common to employpartitioned solvers
for each component physics which are then coupled using implicit or explicit coupling schemes [28]. This
often increases the computational cost and the likelihood of numerical stability issues compared to simulating
each system separately [29–31]. In the present work, we propose two separate mathematical frameworks for
modeling coupled fluid–structure systems with a specific focus on capturing the interactions between the two
systems.

Network science and graph theory provide a concise and powerful mathematical framework for the inter-
actions between actors within a system. In a network representation of a system, actors within the system are
represented as nodes, and the interaction between the nodes (actors) is represented by edges connecting them.
Mathematically, a network is represented by a graph G = (V, E,W) where nodes V are connected via edges
E , each with an associated edge weight W [32].

Network science has found extensive usage in social sciences [33–35], biology [36,37], computer science
[38]. In the realm of physics and engineering, it has been employed to explore the interaction between global
climate modes [39], the study of turbulent and vortex-dominated flows [40,41] and the study of thermoacoustic
combustion instabilities [42] This work aims to build a scaffolding of network-based approaches for modeling
FSI systems. The advantage of the network approach is that it naturally allows for the incorporation of physics-
based insights in data-driven system identification strategies [43] such as those based on proper orthogonal
decomposition [44], dynamic mode decomposition [45], and eigensystem realization algorithm [46]. The
approach also naturally lends itself to the systematic reduction of the physical system via community detection
[47–49] and graph sparsification algorithms [50,51], along with identifying the key nodes controlling the
system dynamics [52,53].

In this work, we present two approaches for modeling FSI using a network-based framework. The first
approach characterizes the vortical interactions in FSIwith the network nodes in the fluid and structure domains
defined by discrete point vortices. The edge weights are based on the induced velocity of these point vortices
[51]. We also introduce a modal network representation of FSI where the network nodes are given by coherent
spatial modes of the unsteady fluid flow and velocity modes of the structure. Data collected from perturbations
of the structural modes are used to determine the interaction strengths (edge weights) between the nodes [54].
Both approaches not only highlight interactions within each component part of FSI but also extracts the cross-
coupling interactions in the form of a multilayer network [55], i.e., one network layer for the fluid and one for
the structure.

We demonstrate the network modeling approaches for a two-dimensional laminar flow over a compliant
flat plate at an angle of attack α = 35◦. A similar problem was investigated in the work by Hickner et al.
[21] for developing data-driven system identification models. However, system identification in that work was
restricted to flows in the steady regime with the angle of attack below the critical angle of attack of α = 27◦. In
this work, we analyze the FSI interactions in the unsteady regime as well as those on the introduction of large
disturbances to the flow caused by gust encounters. We discuss the numerical setup and methods in Sect. 2,
results in Sect. 3, and offer concluding remarks in Sect. 4.
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2 Methods

2.1 Direct numerical simulation

We perform direct numerical simulations of two-dimensional incompressible laminar flow over a thin deform-
ing flat plate of length c at an angle of attack of α = 35◦. These simulations are performed using the
strongly-coupled immersed boundary method [56,57]. The solver uses a multi-domain technique to accelerate
the computations [58]. We use five grid levels with the innermost domain fixed at −0.2 ≤ x/c ≤ 1.8 and
−1 ≤ y/c ≤ 1, with a grid spacing of �x/c ≈ 0.0077. We report a detailed grid convergence study for the
direct numerical simulations in “Appendix A”. Uniform flow with free-stream velocity U∞ is prescribed at
the far-field boundaries. An explicit Adam–Bashforth method is used for the discretization of the advection
term and an implicit Crank–Nicolson scheme is used for the viscous terms of the governing equations. The
flat plate is evolved using the Euler–Bernoulli equation with a co-rotational finite element discretization. Such
a co-rotational form allows for large displacements of the structure. The plate is discretized into 65 elements
(66 points) with the leading edge pinned at (x/c, y/c) = (0, 0).

The FSI system is characterized by three non-dimensional parameters: Reynolds number Re = U∞c/ν,
mass ratio Mρ = ρsh

ρfc
= 3, and bending stiffness KB = E I

ρfU2∞c3
. Here, ν is the kinematic viscosity, ρs, and

ρf are the densities of the structure and fluid, respectively. Also, h is the thickness, E is Young’s modulus,
and I is the second area moment of inertia of the plate. We fix Re = 100 and Mρ = 3, unless otherwise
stated. Data from numerical simulation of three different bending stiffness KB = {0.15625, 0.3125, 0.625}
are collected [21,59].

We show a snapshot of vorticity in the top panel of Fig. 1a and the flow field parameters and domain setup
of the structure in the bottom panel. The setup also highlights the position of a rigid body at an angle of
attack of α = 35◦ along with the deflected position for a complaint case. The transverse tip displacement �yt
is always negative for the cases considered in this work. By convention, we consider positive transverse tip
displacement of the trailing edge when the plate pitches down compared to the rigid plate position. We also
show the tip displacements for three different Reynolds numbers and the three bending stiffnesses in Fig. 1b.
With the choice of the parameters considered, the fluctuation of the tip displacement increases with Re and
KB, and the mean tip displacement increases with KB.

Fig. 1 Direct numerical simulation of 2D laminar flow over a compliant flat plate of length c at an angle of attack α = 35◦:
a vorticity snapshot (top) and the numerical setup of the flat plate (bottom). b The transverse tip displacement across different
Reynolds numbers Re and bending stiffness KB
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2.2 Fluid–structure vortical interaction networks

Due to the different physical nature of the fluid and structural components and their governing dynamics, we
model each of them into separate vortical network layers and then combine them later to form a multilayer
network. To construct the network, we collect snapshots of data from direct numerical simulations of the FSI
problem as described in Sect. 2.1. We then convert this data to a network-based representation as illustrated
below.

The fluid network layer is created with the method already described in previous work by Taira et al. [52],
andMeena et al. [48]. Here, spatial grid points serve as network nodes. The strength of each node is determined
by the circulation γ f

i corresponding to the grid cell it represents. The superscript f indicates the nodes in the
fluid layer. We only consider nodes in the fluid layer with vorticity values greater than 1% of the maximum
vorticity of the flow. The influence of these nodes on each other is given by their induced velocity [51]. The
velocity induced by node j on node i is given by ufi← j and helps define the fluid layer network Gf . The node

i does not induce velocity on itself. The network can be neatly summarized with an adjacency matrix Af as

Af
i j =

{
ufi← j if i �= j ∈ fluid layer

0 otherwise
where ufi← j = γ f

j

2π |rfj − rfi |
. (1)

where rf is the location of the grid cell. The above definition leads to a weighted, directed network. Here, we
consider N fluid nodes after vorticity thresholding to construct the adjacency matrix.

Vorticity is not a natural quantity to consider when dealing with structural mechanics. However, we can
represent the structure as a vortex line element formedof boundvortexlets, following themethodbyMountcastle
et al. [12]. In this formulation, for a flat plate, the flow separates tangentially from the trailing edge, enforcing
the Kutta condition, no-penetration boundary condition, and Kelvin’s circulation theorem. We define n control
points on the structure co-located with every bound vortexlet. To calculate the strength of bound vortexlets γ s

i
(superscript s indicates the nodes in the structural layer) corresponding to each point on the structure, a linear
system of equations is solved using the position and velocity of the structure and strength (circulation) of the
fluid nodes above obtained from high-fidelity numerical simulations as

⎡
⎢⎢⎣

γ s
1

γ s
2
...

γ s
n

⎤
⎥⎥⎦ =

⎡
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...
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⎤
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⎛
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vp
2 · n̂ p

2
...

0

⎤
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−

⎡
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M f 1,p1 . . . M f N ,p1
M f 1,p2 . . . M f N ,p2

...
. . .

...
1 . . . 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

γ f
1

γ f
2
...

γ f
N

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (2)

where the mass matrix is defined as

Ms( f )i,pj =
⎡
⎣−(y pj − ys( f )i )

2π(r2 + δ2)
,
(x p

j − xs( f )i )

2π(r2 + δ2)

⎤
⎦ . (3)

Here, (x p
i , y pi ), v

p
i , n̂

p
i , are the position, velocity, and normal vector of each control point along the body,

respectively. Also, (xs( f )j , ys( f )j ) is the position of bound (fluid) vortexlet j , r2 = (x − xi )2 + (y − yi )2 and
δ is a smoothing parameter preventing a divide by zero when r = 0. We chose δ = 0.001 as the smoothing
parameter. Experimentation shows that this value was sufficiently small so as to not significantly impact the
results and obtain consistent vortical strengths compared to other values. The nodes of the structural layer
consist of bound vortexlets. Once again, we use induced velocity to quantify the interactions between the
bound vortexlets which leads to the adjacency matrix As given by

As
i j =

{
usi← j if i �= j ∈ structure layer

0 otherwise
where usi← j = γ s

j

2π |rsj − rsi |
, (4)
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where rs are the location of points on the structure.
An important measure that describes the global influence of the nodes in the network is the node degree or

strength. The in-degree is defined as sini = ∑N
j=1 A

s( f )
i j , while the out-degree is given by souti = ∑N

i=1 A
s( f )
i j .

The nodes with the maximum out-degree influence the network the most, while those with the maximum
in-degree get influenced the most. With the fluid and structural layers defined, we reduce each network using
community detection before combining them into a multilayer representation.

Community detection groups the nodes within a network to form distinct communities. Nodes with a
community have a higher density of interactions amongst themselves thanwith nodes in the other communities.
Weutilize theLouvain algorithm [60] to find communities thatmaximizemodularity of the network [61] defined
as

Q = 1

2m

∑
i j

(
As( f )
i j − sini s

out
j

2m

)
δ(Ci ,C j ) ∈ [0, 1] (5)

wherem is the number of nodes and δ is the Kronecker delta operating on the community labelsCi . Modularity
provides ameasure of the relative connectedness of a group of nodes compared to their expected connectedness
produced by a null model. As the Louvain algorithm can only be applied to unsigned edge weights, we separate
the fluid and structural network layers into ones that contain positive or negative edge weights and apply
community detection.

The results of community detection applied to one snapshot of the flow field are shown in Fig. 2a. The
community detection of the structural layer yields nc = 3 communities while that of the fluid layer yields
Nc = 6 communities. For each community, we compute the community centroid shown by the filled black
circles. The size of the circle indicates the node degree or strength of the community centroid. Through
community reduction, we achieved a drastic reduction in the dimensionality of the FSI system from n = 66
to nc = 3 for the structural layer and from N = 67,600 to Nc = 6 for the fluid layer.

Using the community centroids identified above, we now are ready to define a community-reduced adja-
cency matrix for each layer as well as a combined multilayer adjacency matrix. Each community centroid ci
has an associated strength γ

s( f )
ci and position (xs( f )ci , ys( f )ci ). The community-reduced adjacency matrix for the

structural layer Ãs and the fluid layer Ãf are given by

Ãs
ci ,c j =

{
usci←c j if ci �= c j ∈ structure layer

0 otherwise

Ãf
ci ,c j =

{
ufci←c j if ci �= c j ∈ fluid layer

0 otherwise.

(6)

The combined network can be represented with a supra-adjacency matrix, Aα that contains the adjacency
matrices of both the fluid and structural layers along the block diagonal along with the inter-layer edge weight,
Wi j at the off-block diagonal as

Aα =
[

Ãs Ws←f

Wf←s Ãf

]
, (7)

where the inter-layer weightsWs←f are the velocity induced by the fluid community centroids on the structural
community centroids and inter-layer weights Wf←s are the velocity induced by the structural community
centroids on the fluid community centroids. The supra-adjacency matrix is highlighted in Fig. 2b. The edge
weights are normalized with the maximum edge weight for visualization. We see a lot of interactions among
the structural nodes and the near wake fluid communities.

2.3 Fluid–structure modal interaction network

To construct the modal interaction network, we perform proper orthogonal decomposition (POD) of the flow
velocity field data obtained from the direct numerical simulations in Sect. 2.1 to extract the most energetic
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Fig. 2 Fluid–structure vortical interaction network for 2D laminar flow over a flat plate (Mρ = 3, KB = 0.3125, Re = 100):
a community reduction of the fluid network layer and the structure network layer. b Supra-adjacency matrix containing edge
weights for the structure layer (topmain-diagonal block) and fluid (bottommain-diagonal block) and the inter-layer fluid–structure
coupling and structure-to-fluid coupling on the off-diagonal blocks. The edgeweights are normalizedwith respect to themaximum
edge weight for visualization

coherent structures (modes). In this work, we only extract the modal network for the most compliant case of
KB = 0.625. We employ the method of snapshots [62] to decompose the velocity fields q f as

q f (x, y, t) = q f (x, y) +
N∑
j=1

a f
j (t)φ

f
j (x, y). (8)

where N is the number of fluid modes, q f (x, y) is the mean flow, and φf
j (x, y) are the fluid modes with

temporal coefficients given by

a f
j (t) =

〈
q f (x, y, t) − q f (x, y),φ j (x, y)

〉
. (9)

Here, 〈·, ·〉 stands for inner project. We fix N = 8 to capture 99.9% of the total energy of the fluid flow given
by KE = q f · q f ≈ ∑N

j=1 a
2
j /2.

Similarly, principal component analysis (PCA) is performed on the time series of x- and y-velocities,
qs = (ẋs, ẏs) of each of the structural elements to yield p modes φs and associated temporal coefficients asj .
We fix p = 3 to capture 99.9% of the energetics of the structural deformations.

Fluid flow modes appear in complex conjugate mode pairs. We combine these mode pairs to form an
oscillator representation of their temporal dynamics as

zfm(t) = af2 j−1 + iaf2 j ≈ r fm exp(iθ fm) (10)

where j = 1, 2, . . . , N/2, rm = ‖zm‖, and θm = � zm . The oscillator number m is denoted with Roman
numerals to distinguish them frommode numbering j ∈ 1, 2, . . . , N . We consider M = N/2 fluid oscillators.
The oscillator representation is akin to the polar decomposition of the temporal coefficients of the mode pairs.
This helps in building a concise networked oscillator model, similar to the work of Nair et al. [54].

PCA of the structural velocity data does not yield modes in pairs as in the case of fluid data. To convert the
temporal coefficients of the structures to oscillator representation, we perform the Hilbert transform [63] of
the temporal coefficients time-series data. This transformation converts the real data sequence to an analytic
signal (i.e. complex helical sequence), where the real part is the original data and the imaginary part is a
version of the real sequence with a 90◦ phase shift. The transformed series, which leads to structural oscillator
representations, contain the same amplitude, frequency, and instantaneous phase information as the original
signal. The structural oscillators are given by zsm = r sm exp(iθ sm) corresponding to each temporal coefficient
with m = I, II, . . . , p.
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Fig. 3 Fluid–structure modal interaction network for 2D laminar flow over a flat plate (Mρ = 3, KB = 0.625, Re = 100): a
overview of the modal interaction network for fluid and structure oscillators and their inter-layer coupling. b Magnitude (top)
and phase (bottom) of the complex supra-adjacency matrix for modal interaction. Note the inter-layer edges between structure
nodes I and II and the fluid nodes (corresponding to the top of b) are omitted for clarity in a. The magnitude of the edge weights
is normalized with respect to the maximum edge weight for visualization in b

Once the fluid and structure oscillator representations are formed, we follow the procedure demonstrated in
Nair et al. [54] to extract modal interaction networks. In Nair et al. [54], impulse perturbations were introduced
to the temporal coefficients of the fluid to induce interactions among the modes. However, this approach relies
on exciting modes of the entire fluid domain, which is infeasible. In this work, impulse perturbations are
introduced to the structural dynamics, which are both physically meaningful and realistic. In particular, we add
phase and amplitude impulse perturbations to the structural oscillators The phase perturbations in the modes
range from −π to π shifts in the phase of the modes relative to the baseline and the amplitude perturbation
ranges from 0.1 to 100% of total kinetic energy.

To track the perturbations introduced and the spread among the fluid and structural modes, we normalize
the oscillator representations for the fluid and structure modes to yield oscillator perturbations as ξ fm = z f

m/z f,b
m

and ξ sm = zsm/zs,bm , respectively. Here, z f,b
m and zs,bm are the baseline fluid and structure oscillator trajectories,

respectively. Such a normalization yields zero perturbation amplitude at a steady state and a finite steady-state
phase shift. We collect data corresponding to three periods of baseline oscillation after the introduction of
impulse perturbation.

Once the data for the perturbations are tracked and collected, we can form a multilayer network with
structural and fluid oscillators as nodes. Unlike the vortical network, the modal network lends itself to a
combined representation automatically. A simple regression is performed on the perturbation datasets ξm =
{ξ sm; ξ fm} with M + p oscillators. This results in a complex adjacency matrix for both the intra- and inter-layer
interaction strengths between the structure and fluid oscillator layers as

d

dt
ξm =

M+p∑
n=I

Amn(ξn − ξm) = −
M+p∑
n=I

Lmnξn (11)

where the complex adjacency matrix A and Laplacian matrix L are given by

Amn = |ωmn| exp(i � ωmn), Lmn = sinm − Amn (12)

where sinm is the standard in-degree. As the adjacency matrix is complex-valued, the magnitude of each edge
|ωmn| highlights the overall influence and the � ωmn provides the phase relationship between the oscillators.
To incorporate the insights from different impulse perturbation tests, we separate the data into training and test
sets and perform model selection on the adjacency matrices obtained. The fluid-structure modal interaction
network is highlighted in Fig. 3a. Themulti-layer amplitude and phase coupling for this network representation
is shown in Fig. 3b.
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3 Results

3.1 Vortical interaction network

For the vortical interaction network described in Sect. 2.2 and illustrated in Fig. 2, we elaborate on the results in
this section.We first look at networkmetrics that highlight the role of the nodes in the network in Sect. 3.1.1.We
then develop a data-driven model using nonlinear regression capable of predicting the community-reduced FSI
vortical network structure over the limit cycle in Sect. 3.1.2. Finally, we present results from the physics-based
prediction of community centroids in 3.1.3.

3.1.1 Network metrics

To analyze the interactions between the fluid and structural components in the FSI system and how they
change with time, we analyze the supra-adjacency network structure via network metrics. As we are interested
in the overall inter-layer influence of the fluid on the structure and vice-versa, we construct the inter-layer
supra-adjacency Ainter

α as

Ainter
α =

[
0 Ws←f

Wf←s 0

]
, (13)

where the entries on block diagonals corresponding to the structural layer and fluid layer are zero. For the struc-
tural component, we define total out-degree = ∑Nc

i

∑nc
j Wfi←s j and total in-degree = ∑nc

i

∑Nc
j Wsi←f j .

This out-degree is the total influence of the structure on the fluid at a particular time and the in-degree is the
total influence of the fluid on the structure. We also examine Katz centrality of the inter-layer network defined
as C = (I − αAinter

α )−11, where I is the identity matrix, α is a hyper-parameter to account for nodes with
zero or low eigenvector centrality, and 1 is a vector of ones. Here, we choose α = 0.01. To quantify the total
strength of the influential community structures, we examine the measure K = ∑

i C .
We show the total in-degree, out-degree, and Katz centrality measure K for each snapshot in time for the

three different bending stiffness in Fig. 4a. On the top, we show the transverse tip displacement. In the time
between the dashed lines, a “1− cos” gust encounter is applied with a maximum pitch-down of the plate of 5◦.
Limit cycle oscillations are observed at other times. We see that there is significant noise in degree centrality
for the least compliant case of KB = 0.15625. As the structure becomes more compliant, repeating patterns in
the network measures can be seen through the phase progression of the limit cycle. The total Katz centrality
measure provides the lowest noise response signal during the limit cycle. The square wave spike and variations
in K indicate the detection of new communities caused by vortex shedding.

For the gust encounter, we see that the total out-degree spikes proportionally increase with compliance.
For the low and medium compliant cases, a strong in-degree spike is observed just after the gust starts and
just before it ends and a strong out-degree spike is observed during the middle of the gust encounter. This is
expected as the structure gets perturbed (influenced) during the gust encounter and as the structure deforms, it
influences the rest of the flow field. Thus, the in- and out-degree are opposite in phase during the gust encounter
for the two lesser compliant cases. Strong out-degree spikes are seen just after the gust starts and just before it
ends for the most compliant case KB = 0.625. Also, the Katz centrality measure K clearly detects the gust for
the two lesser compliant cases; however, shows only minor changes for the most compliant case. This indicates
the changes in the vortex shedding events and formation of the new communities for the less compliant cases
and not many changes in the formation of new communities for the most compliant case. The small amplitude
of the gust and relatively slow variation are masked by the oscillation of the structure in the most compliant
case.

In addition to the networkmeasures above, we also investigate our system using a participation score versus
z-score map (P–Z map) of the community-reduced supra-adjacency Aα . This provides a concise and visual
depiction of the interaction characteristics of nodes within a network. Z-score and participation coefficient are
defined using the out-degree of the community-reduced supra-adjacency matrix si = souti as

Zi = si − si
σsi

, Pi = 1 −
⎡
⎣(

Ss( f )

si

)2

+
∑
k,k �=i

(
sk
si

)2
⎤
⎦ (14)
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Fig. 4 Network metrics for fluid–structure vortical interaction network: a time evolution of centrality measures (in-degree, out-
degree, and Katz measure K for the structural components) for the inter-layer supra-adjacency matrix for three different bending
stiffnesses during the limit cycle and a 5◦ angle of attack gust encounter (between dashed lines). b P–Z map distribution of
supra-adjacency matrix showing the structure nodes (�) and fluid (◦) and the c corresponding adjacency matrix. The magnitude
of the edge weights is normalized with respect to the maximum edge weight for visualization in c

where Ss( f ) is the total out-degree strength of the nodes in the structure (fluid) and si is the mean out-degree
of all centroids and σsi is the standard deviation of the out-degree strength.

The P–Z map provides an intuitive visualization of the role that each community plays in the system as
seen in Fig. 4b. The corresponding supra-adjacency matrix is shown in Fig. 4c. Nodes with high participation
scores are called connectors, while those with low-participation scores are called peripherals [49]. High z-
score indicates hubs that exert maximum influence within their community but have little influence over other
communities. In fact, both peripherals and hubs do not have much inter-community influence. We clearly
observe that all of the structure nodes have high participation scores. Also, the centroid B which is close to
the center of the plate plays the most crucial role in the interaction dynamics. This indicates that the structural
nodes are the main influencers in the FSI vortical network. We also see that the first two communities of
the fluid have a high z-score and comparatively higher participation scores. These near-wake centroids have
the most inter and intra-community interactions. As communities are advected downstream we see that their
influence on the structure and on the fluid nodes diminish in a nearly linear fashion with low participation and
z-score.

3.1.2 Data-based prediction

In this section, the time-series data of the fluid and structure community centroids ci and their associated
strength γ

s( f )
ci and position (xs( f )ci , ys( f )ci ) are used to build a predictive dynamical model. We use sparse

identification of nonlinear dynamical systems (SINDy) [64] for generating this predictive model as shown in
Fig. 5a. A sensitivity analysis of the sparsity parameter is reported in “Appendix B”. The values predicted by
the SINDy model for the circulation of the first structure centroid compared to that from the direct numerical
simulation are presented in Fig5b. We see an acceptable agreement between the original data and the values
predicted by the SINDy model. The location and circulation trends for other centroids (not shown here) also
match reasonably with the DNS data.

With the SINDy model, we can now predict the evolution of the community-reduced supra-adjacency
matrix as well. We show the similarity between the predicted network structure of the adjacency matrix using
the model with that obtained from the direct numerical simulation at three characteristic times in Fig. 5c. This
demonstrates that the relative interaction between the communities is preserved by the predictive model. The
weights of edge weights are restricted to the same range to show the richness in the interactions over the
limit cycle. The three structure community centroids exert maximum influence over the first fluid community
centroid corresponding to the shed-positive vortical structure.
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Fig. 5 Data-based prediction of the fluid and structure community centroids of the vortical network: a construction of the SINDy
model for the evolution of circulation and position of centroids, comparison of the predicted b trajectories and c adjacency matrix
of the model with that from direct numerical simulation

3.1.3 Physics-based prediction

In this section, we advect the community centroids from a single flow realization using the potential flow code
developed by Darakananda et al. [65]. The plate coordinates at the time corresponding to the flow realization
are provided as input to the solver. The system is then allowed to evolve with the plate coordinates being
updated at regular intervals.

The potential flow code is initiated at t = 0 with the six vortices at the location of each community centroid
with strengths corresponding to the total vorticity within each community. The flowwas then allowed to evolve
for 1 s of simulation time. The starting position of each community centroid (vortices) is denoted by an ×
symbol while the position of each community centroid identified from direct numerical simulation is denoted
by an empty circle ◦.

In Fig. 6a, we show the physics-based advection of the community centroids by filled circles and compare
that with those from the direct numerical simulation at characteristic times. We see a good agreement between
the physics-based advection of the seeded community centroid vortices with that of the community detection
results from DNS data. As seen in the inset of panel (a), the shape of the body is changed at regular intervals.
Figure6b shows the RMS error associated with the predicted x-position of each of the six vortices.We note that
the fluid communities that are closest to the structure (1) and (2) have the largest error associated with them.
This behavior is due to the poor prediction of vortices that have not fully shed. The leading and trailing edge
suction parameters need to be tuned when a vortex is shed [66]. The remaining four vortices in the far wake
show good agreement with the DNS data. The error in the position increases in time which can be attributed
to the absence of viscosity in the potential flow solution. Both the data-based and physics-based strategies
are complementary to one another to obtain a fast prediction of FSI interactions and the dynamics of centroid
communities.

3.2 Modal interaction network

For the modal interaction network described in Sect. 2.3 and illustrated in Fig. 3, we elaborate on the results
in this section. We first discuss the modal decomposition results in Sect. 3.2.1. We then discuss the results of
predictions from the networked oscillator model of Eq. (11) in Sect. 3.2.2.
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Fig. 6 Physics-based prediction of the fluid community centroids of the vortical network using potential flow solver: a spatial
position of the fluid vortical community centroids at time t = 0, t = 0.5, and t = 1.0 s. Inset shows the starting position, t = 0,
and current position, t = 1.0, of the structure. bRMS error traces of the x-position for each of the six fluid communities compared
to DNS

3.2.1 Modal decomposition

The results of the principal component analysis of the time series of the velocity of the plate are shown in
Fig. 7a, b. For the structure, the singular values drop off rapidly after the third mode as seen in Fig. 7a. This
provides a clear threshold for modal truncation. The mode shapes for both the x- and y-velocity components
are similar to that of the bending modes of a cantilever beam, as seen in the top panel of Fig. 7b. We see typical
sinusoidal traces of the temporal coefficients for the first two oscillators in the bottom panel of Fig. 7b.

The singular values from the POD decomposition of the unsteady fluid velocity field snapshots are shown
in Fig. 7c.We choose eight fluid modes (4 mode pairs) to capture 99.9% of the kinetic energy of the flow. Phase
portraits of the temporal coefficient of the POD mode pairs along with the spatial modes are shown in Fig. 7d.
Each of the four mode-pair phase portraits shows a typical circular periodic attractor of varying amplitude,
characteristic of periodic laminar flows. The modal structures get smaller with increasing mode numbers and
the corresponding amplitude of the temporal coefficient decreases.

3.2.2 Networked-oscillator model

As discussed in Sect. 2.3, we introduce different ranges of amplitude and phase impulse perturbations to the
first two structural modes and collect data from direct numerical simulation. We perform simple regression on
the data to extract the adjacency matrix Amn in Eq. (12). We then evolve Eq. (11) to predict the amplitude and
phase perturbation trajectories.

The predicted amplitude trajectories compared to those extracted from direct numerical simulation for the
three structural and four fluid oscillators (after the immediate transients in direct numerical simulation die
out) are shown in Fig. 8a, b, respectively. The first two structure oscillators show excellent agreement with the
simulation data. While the third structure oscillator follows the trace of the true system, it has a high-frequency
oscillation throughout the 50s of simulation time. This high-frequency vibration is possibly due to the low
amplitude associated with the third structural oscillator. The fluid oscillators also show comparable agreement,
however, the results deviate slightly for fluid oscillator IV. A similar agreement is observed in the phase of the
perturbations (not shown).

We extract different network models; only considering data from perturbations on structure oscillator I,
only considering data from perturbations on structure oscillator II, and training from both perturbations. 20%
of the data from all perturbation cases are reserved for testing. For each of the training epochs, perturbations
on structure oscillator II shows the best agreement with the test data while oscillator one shows only a slight
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Fig. 7 Modal decomposition of the fluid–structure interaction system (Mρ = 3, KB = 0.625, Re = 100). Structure layer: a
singular values for the first ten PCA modes of the time series of the velocity of the structure, b mode shapes and temporal
coefficient traces for the three structural modes selected as nodes of the modal interaction network. Fluid layer: c singular values
for the first eight POD mode-pairs (16 modes), d vorticity of the spatial modes and temporal coefficient phase portraits for each
mode-pair for the four leading mode-pairs selected as nodes of the modal interaction network

Fig. 8 Network-oscillator model for fluid–structure interaction system (Mρ = 3, KB = 0.625, Re = 100): Trajectories of the
three a structure and four fluid b oscillators for the predictive model (red) and ground truth (black) for 50 s, c performance of
the single-oscillator-based models and the aggregate model (black). d modal interaction model magnitude and phase adjacency
matrices after training. e In- and out-degree for the network nodes (colour figure online)
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increase in error. The aggregate model shows the poorest performance, especially in structure oscillator III.
All models show similar errors for the two dominant structure modes and the dominant fluid mode pair.

The amplitude and phase relationship between the modal oscillators of the FSI system is shown in Fig. 8c.
The network structure captures the energy transfers between the modes of the structure and fluid on the
introduction of impulse perturbations. The associated network centrality measures are shown in Fig.8d. The
first two structure oscillators have the highest out-degree while the third structure oscillator has the highest in-
degree. The out-degree for the fluid oscillators decrease with oscillator number while the in-degree increases.
These results for the fluid oscillators are in agreement with that of Nair et al. [54].

4 Conclusion

In summary, we develop two reduced-order models of fluid–structure interaction, leveraging a multi-layer
network framework. The two approaches use distinctive vortical and modal features of the overall FSI system.
In the vortical approach, the nodes of the fluid layer are represented by the vorticity associated with each grid
cell in the Eulerian computational domain. On the other hand, the nodes of the structural layer are formed by
bound vortexlets. The edge weights in this approach are defined using induced velocity. Community detection
was used to construct a reduced representation of the vortical network. In the second approach, coherent
modes from the fluid and structure form the nodes of the network. A data-driven approach is then utilized to
construct the modal interaction network model after introducing impulse perturbation to the structural modes
and tracking the amplitude and phase of the modal perturbations.

Two-dimensional flow over a compliant flat plate at an angle of attack α = 35◦ was investigated using
the network-based approach. Data from direct numerical simulations of three different plate stiffnesses during
the limit cycle and gust encounters were converted to a community-reduced vortical network. The network
metrics were able to capture the dynamics of the limit cycle and the influence of gust encounters. A P–Z map
was constructed to illustrate the unique role of each node of the vortical network in the overall FSI system.
Prediction of vortex dynamics and the network interactions were performed using two different strategies: a
pure data-based strategy using SINDy and a physics-based strategy using a potential flow solver which was
initialized using the data of community centroids. Both methods show acceptable agreement between the
prediction and ground truth data.

Subsequently, we illustrate the process of extracting the modal-interaction network for flow past the most
compliant structure, KB = 0.625. Using principal component analysis of the velocities of the structure and
proper orthogonal decomposition of the fluid velocity fields, modal representations for the network were
obtained. Oscillators are formed from the fluid conjugate mode-pairs and a Hilbert transform of the structural
temporal coefficients. The two dominant structural modes are perturbed to track the energy transfer in the FSI
system.We then train our network model with 80% of the perturbation data using simple regression. Oscillator
amplitude trajectories are predicted from the model and showed close agreement with the retained testing data.

We see the possibility for this formulation to be extended into several areas. Firstly, it can be applied to
investigate the interactions between multiple bodies in an unsteady fluid flow such as that occurring between
the main wing and the empennage of an airplane. Secondly, it has the potential to facilitate the development
of a computationally efficient predictive model that is well-suited for online control applications, specifi-
cally for addressing gust alleviation requirements. Lastly, this approach offers a generalizable framework for
characterizing and modeling multiphysics systems, enabling its application to a wide range of engineering
disciplines.
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Appendix A: Grid convergence study

The immersed boundary projection methodology used in our study is based on the work by Taira and Colonius
[57] and Goza and Colonius [56]. It has been applied in numerous fluid–structure interaction investigations
[21,67,68]. We conducted a grid convergence analysis focusing on a Reynolds number of Re = 100, an angle
of attack α = 35◦, a mass ratio Mρ = 3, and a bending stiffness KB = 0.3125. This was accomplished by
implementing four different grid setups.
Our solver employs a multi-domain approach to expedite the computations [58]. The grid spacing we discuss
here pertains to the innermost domain featuring the finest grid. We illustrate the mean drag coefficient (CD),
its standard deviation, and the duration of a single iteration for each grid in Fig. 9. Additionally, Fig. 9 shows
the grid spacing for the various grids.
In our research, we use the grid denoted as G2 for simulations, with a corresponding �x/c = 0.0077, notably
highlighted in red. The subsequent level of refinement, grid G3, results in a mere 0.6% alteration in the mean
CD . The standard deviation for CD registers at 0.01845 for grid G2 and slightly less at 0.01815 for grid G3.
Notably, the computational time for a single iteration on grid G3 nearly doubles that of grid G2. Consequently,
grid G2 delivers acceptable precision and shorter computational time, making it our choice for all simulations
in this case, with a grid spacing of �x/c = 0.0077.

Fig. 9 Grid convergence study of direct numerical simulation of a flow past a flexible flat plate at Reynolds number Re = 100,
angle of attack α = 35◦, mass ratio Mρ = 3, and stiffness KB = 0.3125. The variation of the mean drag coefficient (left), the
standard deviation of the drag coefficient (middle), and the time required for a single time step (right) with different grid spacing
are shown. The grid resolution marked in red used in this work achieves a good compromise in simulation time and accuracy

https://github.com/nairaditya
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Fig. 10 (top) The mean square error in prediction of the test data with different models of sparsity in SINDy. (bottom) The
prediction of the vortexlet strength trajectory compared to DNS for λ > 0.6

Appendix B: Sensitivity of sparsity parameter

Sparse identification of nonlinear dynamics (SINDy) [64] employs an L1 regularization which allows to
construct a sparse model for the resulting dynamics. We present a sensitivity analysis of sparsity promoting
factor λ by first dividing the data set into training and test data. The mean square error in the prediction of test
data set for different λ is presented in Fig. 10. It is observed that λ > 0.6 produces minimum error for test data
prediction. We employed a value λ = 0.6 for the data-based prediction in the original manuscript.
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