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Abstract A novel surface tracking, and advection algorithm for incompressible fluid flows in two and three
dimensions is presented. Thismethod based on the volume-of-fluid (VOF)method, is namedVOF-with-center-
of-mass-and-Lagrangian-particles (VCLP), and it uses spatially and temporally localized Lagrangian particles
(LPs) inside a finite volume framework. The fluid surface is recaptured and reconstructed piecewise using the
mean slope and curvature. The fluid mass inside each cell is discretized spatially by LPs and distributed as
blue noise. LPs are then advected cell by cell with a choice of two different advection schemes in time using
interpolated velocity and approximated acceleration fields. VCLP continuously tracks the center of mass of
the fluid parcels in the Lagrangian way and this helps to reduce the errors due to numerical acceleration that
results from lack of information to reconstruct the interface accurately. VCLP’s performance is evaluated using
standard benchmark tests in 2D and 3D such as translation, single vortex, deformation, and Zalesak’s tests
from the literature. VCLP is applied to TSUNAMI2D, a 2D Navier–Stokes model to simulate shoaling and
breaking of waves.

Keywords VCLP · Surface tracking · Fluid advection · VOF · TSUNAMI3D

1 Introduction

While modeling two-phase immiscible flows with a significant difference in molecular viscosity and density,
the presence of the lighter phase can be neglected, and then the interface is considered as free-surface or
surface. This assumption is valid for modeling liquid-gas flows such as ocean waves because of the significant
difference in pressure and inertia. Free surface flows are commonly solved using Lagrangian and Eulerian
approaches. The early work with the Lagrangian approach for interface tracking is found in the Marker and
Cell method (MAC) [1]. In the MAC method, the velocity field models the fluid flow, while the markers
represent the fluid in space, and fluid flow is simulated by moving the marker particles through space as per
the interpolated velocities from the velocity field. Peskin [2] used the immersed boundary method to analyze
the blood flow in the heart where the moving heart walls were treated as inner boundaries. Other Lagrangian
methods use a deformable mesh that conforms to the interface at all times as in the front-tracking method
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[3] and Arbitrary Lagrangian Eulerian (ALE) methods [4–6]. In the front-tracking method, the flow field
is discretized on a stationary grid using conservative finite difference approximation, while the interface is
identified using an unstructured grid that can move through the stationary grid along with it. The Lagrangian
approach is not be suitable for fluid flows with large deformations, fragmented interfaces, and fluid-structure
interactions as the interfaces are defined as internal boundaries [7]. Even though re-meshing is a solution, it
comes with higher computational cost and interpolation errors. Another Lagrangian method called Particle-in-
cell (PIC) method, have discrete mass points representing the fluids, and it has been used since the 1960’s [8,9].
Differential equations of mass and momentum characterize flow and energy in this method, and mass points
move by weighted velocities. Eulerian and Lagrangian frameworks have been coupled previously to avoid
shortcomings and to complement each other. Semi-implicit surface tension formulation with a Lagrangian
surface mesh on an Eulerian simulation grid by Schroeder [10] and enhancement of pressure calculation by
the incorporation of background mesh scheme by Wang [11] are some cases. For interface reconstruction, an
extension of theVOFmethodwas introducedbyDyadechko&Shashkov [12] called themoment of fluidmethod
(MoF) that keeps track of the cell-wise material centroids and uses this information to reconstruct interface
by minimizing the defect of the first moment along with volume conservation constraint. This method allows
the reconstruction of the interface with no information on neighboring cell fluid volume. Very recent work by
Wenzel andGarrick [13] introduced the point-mass particlemethod,which is an Eulerian–Lagrangian approach
where Navier–Stokes equations are solved in the Eulerian grid while Lagrangian particles discretize the fluid
mass and phase information. Further review on interface trackingmethods can be found in [14–17]. Among the
interface capturing methods for incompressible fluids, the volume-of-fluid (VOF) method introduced by Hirt
and Nichols in 1979 is the most popular [18,19]. VOF’s computational efficiency, straightforward treatment
of changes in interface topology, and mass conservation makes it a success [20]. VOF is characterized by a
static or moving mesh and a discontinuous scalar function that gives the percentage of fluid present inside each
mesh cell.

VOF can reconstruct the interface from the f values. The mean normal direction of the interface could be
found out from the spatial gradient of the f function. The evolution of the f function is given by Df/Dt = 0,
which states that the F moves with the fluid. One of the main advantages of the VOF method is that it stores
the minimum number of variables and follows the region instead of an interface, and avoids the problems
associated with the intersecting and breaking surfaces. In the original VOF advection, the piecewise constant
scheme was used, i.e., the interface inside each cell is parallel to one of the axes. An improvement to this
method can be seen in Nichols et. al. [21], Hirt and Nichols [19], Torrey et al. [22] and Duff [23]. Improvement
is facilitated via an additional degree of freedom to form a stair shaped profile within a cell, according to the
local spatial distribution of fluid mass. Piecewise-linear schemes are an improvement in terms of accuracy to
piecewise-constant schemes, even though they are more complex and computationally expensive. Since the
fluid volume is conserved, the interface is located uniquely from interface normal. Interface normal can be
estimated using many algorithms in the context of VOF, but all of them rely on the material volume data from
the neighboring cells for interface reconstruction. Some notable piecewise linear schemes include Rider and
Kothe [20], Harvie and Fletcher [24,25], Geuyffier et al. [26], and Scardovelli and Zaleski [27,28].

We present a novel surface tracking, and advection algorithm based on the VOFmethod for incompressible
fluid flows in two and three dimensions. This method is named VOF-with-center-of-mass-and-Lagrangian-
particles (VCLP), and it uses spatially and temporally localized Lagrangian particles (LPs).

The scope of VCLP is the need for a surface tracking and advection algorithm that combine the strengths of
Eulerian methods, such as computational speed and fewer memory requirements and the higher accuracy and
surface tracking ability of Lagrangian methods with customizable speed vs. accuracy using a single parameter.
The following sections explains its methodology and validation in detail.

2 VOF with the center of mass and Lagrangian particles (VCLP) method

The computational domain � is discretized into nX , nY , nZ Cartesian grid cells in positive X, Y, Z directions.
The space occupied by any cell is identified by s(i,j,k) and its dimensions are δxi , δy j , and δzk). (i,j,k,m)
identifies the cell at s(i,j,k) during the mth time step of simulation. Now, a binary value function F(x,m) with
outputs zero and one, based on the VOFmethod, is defined at every point in computational domain. For the cell
space s(i, j, k,m) where F is defined everywhere, the average of value of F function gives another function
f known as fractional fluid volume which is a scalar value defined for every cell in the domain with values
between 0 and 1. fm is a matrix of dimension nX × nY × nZ filled with f (i, j, k,m) values, of all cells. Now,
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consider three matrices of same dimension containing the velocities u(i, j, k,m) corresponding to every cell
in �, represented asUX,m ,UY,m , andUZ ,m . Together these three matrices is denoted asUm . Similarly the CM
matrices is denoted as cm . Then the entire purpose of VCLP can be conveyed by the simple relation between
input and output parameters given by Eq. 1.

VCLP (input parameters) = (output parameters)

VCLP( fm, cm,Um) = ( fm+1, cm+1) (1)

Thus VCLP needs velocity field, fluid distribution, and the CM location of the given time step to provide
the fluid distribution, and the CM for the next time step. So it takes seven/four scalar input/output in 3D and
five/three in 2D.

VCLP procedure

The VCLP procedure can be summarized as follows.

1. Entering time step tm
2. Receives velocity field, fluid distribution ( f ), and center of mass locations from the solver.
3. Classification of all cells in to five; Empty, Surface, Inner I, Inner II, Inner III.
4. Interface reconstruction calculation of all Surface cells using PLIC or proposed PCIC method.

• Finds interface normal(shape parameter) using proposed T- Slope Method.
• Finds interface curvature using proposed methods.
• Locates interface using proposed sorted surface constant (SSC) methods.

5. Create an empty copy of the domain for time step tm+1 (empty f matrix and center of mass locations)
6. Starts working on a single cell

• Fill the selected cell (Surface, Inner I, Inner II) with LPs using the blue noise template created at the
beginning of simulation. Surface cells have PLIC or PCIC interfaces

• Center of mass of the filled cell is estimated and corrected using the center of mass location that is being
tracked and obtained from solver

• LPs (Fluid) in the selected cell is advected usingTaylor’s second-order advection scheme or the proposed
TJSM scheme.
– Velocity field of LPs are estimated via trilinear interpolation
– Acceleration field of LPs are calculated using proposed method

• The advected LPs are received by one or more cells in the domain created for tm+1
• The center of mass of all cells that received LPs are updated
• Moves on to the next surface, inner I, or Inner II cell to advect

7. Once advection of all cells are completed, filters are applied and steps required for skip core optimization
is carried out.

8. The domain for tm+1 is complete with new fluid distribution and center of mass location
9. m = m + 1

Notes: The blue noise template of LPs needs to be created only once at the beginning of simulation. The
center of mass locations of cells for the first time step is calculated from the geometry and initial conditions
using LPs and hence doesn’t require correction.

2.1 Classification of cells

In typical VOF method there are empty (E), surface (S), and interior cells (N ) respectively. In VCLP, interior
cells are further classified in to three levels, Inner I, Inner II, and Inner III and all classifications are based on
cell-type value denoted by CT ( Table 1 ) and estimated using the following steps 1 to 6, where q is the ceiling
function value of the Courant-Friedrichs-Lewy (CFL) number (q = �CFL�) and the CFL number is given by

CFL = umax�t

δx
. C∗

T is the temporary CT value which gets updated along the steps.

1. C∗
T = � f (i, j, k,m)�

2. CT 1 = ∑k=k+q
k=k−q

∑ j= j+q
j= j−q

∑i=i+q
i=i−q C

∗
T
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Table 1 Classification of cells in the computational domain �

Class Notation CT

Empty E 0
Surface S 1
Inner I N1 2
Inner II N2 3
Inner III N3 4
Interior N 2,3,4

Fig. 1 Cell Classification: Top: Rectangular block is a simplified 1-D translation diagram with CFL = 0.75 showing if N3 is
not advected the N3 mass gain equals N2 mass loss. Hatched is before advection and filled is after. Left: an ellipsoidal fluid
body with a circular hole before advection. Right: fluid body after advection with q = 1 and a uniform velocity field of
cos(3π/4)î + sin(3π/4) ĵ . Left: Classification of cells before advection. Right: cells with changes in classification after advection
and the corresponding change

3. CT =
{
2 where CT 1 = (2q + 1)3, f > 0.5
C∗
T otherwise

4. CT 2 = ∑k=k+q
k=k−q

∑ j= j+q
j= j−q

∑i=i+q
i=i−q C

∗
T

5. C∗
T =

{
3 where CT 2 = 2(2q + 1)3

C∗
T otherwise

6. CT =
{
4 where CT 3 = 3(2q + 1)3

C∗
T otherwise

Figure 1 shows an ellipsoidal fluid body with a circular hole in it inside a square computational domain and
the classification of cells before and after advection based on steps above.

2.2 Interface reconstruction

Interface is reconstructed for all cells classified as surface cell according toCT value. There are two choices for
interface reconstruction calculation; Piecewise Linear Interface Calculation (PLIC) method and the Piecewise-
Circular-Interface-Calculation method (PCIC). PLIC is used by many models and it creates a line segment
representing the interface in 2D and a plane in 3D, whereas PCIC which we propose creates a circular arc for
the interface in 2D and a spherical surface in 3D. Linear interface reconstruction denoted as Eq. 2,

L(i, j, k,m) : nx x + ny y + nzz + a = 0 (2)

needs interface normal vector n = (nx , ny, nz) and a, the planar constant. PCIC is build on top of PLIC
meaning PLIC calculation is required for PCIC. The PCIC reconstruction (C) is given by Eq. 3,
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Fig. 2 a Reconstructed PLIC interfaces and b Reconstructed Piecewise Circular Interface Calculation (PCIC), using f values.
Center of mass locations are shown as dots. Fluid body is circular with a radius of 0.15 inside a unit square domain with a
resolution of 32 × 32

C :(x − x0)
2 + (y − y0)

2 + (z − z0)
2 − R2 = 0

⎧
⎪⎨

⎪⎩

xi−1 < x ≤ xi
y j−1 < y ≤ y j
zk−1 < z ≤ zk

(3)

where (x0, y0, z0) is the sphere’s center and R its radius. The additional information required for PCIC than
PLIC is the radius of the sphere R, or equivalently the interface curvature which is the reciprocal of R denoted
by κ .

Figure 2a depicts the reconstructed fluid domain along the interfaces using PLIC and Fig. 2b shows the
fluid domain reconstructed with PCIC.

It can be seen that the PCIC interface reconstructions are more accurate and the radius of curvatures are
close to the true value (circle of radius 0.15 m is on cell size of 1/32 × 1/32 m).

Interface normal and T-slope method

The interface normal is given by Eq. 4,

n = ∇F

|∇F | ≈ ∇ f

|∇ f | (4)

but since F is discretized into f , numerically its approximate value (X component) is obtained using Eq. 5.

∇nX f = f(x)(i + 1) − f(x)(i)

δxi+1 + δxi

+ f(x)(i) − f(x)(i − 1)

δxi−1 + δxi

(5)

where,

f(x)(i) =
∑k=k+1

k=k−1
∑ j= j+1

j= j−1 f (i, j, k)δy jδzk
∑k=k+1

k=k−1
∑ j= j+1

j= j−1 δy jδzk

In literature, the two common ways to estimate the interface normal are by finding the ∇n f using above
mentioned equations and by using a method that deals with minimum slope with respect to the axes. We
may call these numerical gradient method and the minimum slope error method which can be learned from
[19]. VCLP uses a new method that we propose, called T- Slope method to find the interface normal and
Eqs. 6–12. shows how the interface normal is estimated in 2D based on the calculated intermediate parameters
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Sx , Sy, Hx , Hy, Fx , Fy, α and θ . The first two parameters Sx and Sy having units of length represent the change
of volume with distance and they are given by Eqs. 6 and 7 .

Sx =
j= j+1∑

j= j−1

δy j

(
fi+1, jδxi+1 − fi, jδxi

δxi + δxi+1

)

+ δy j

(
fi, jδxi − fi−1, jδxi−1

δxi + δxi+1

)
(6)

Sy =
i=i+1∑

i=i−1

δxi

(
fi, j−1δy j−1 − fi, jδy j

δy j + δy j−1

)

+ δxi

(
fi, jδy j − fi, j+1δy j+1

δy j + δy j−1

) (7)

Then, Eq. 8 is used to estimate the two slopes parameters Hx and Hy which are non-dimensional.

Hx =
j= j+1∑

j= j−1

δy j

(
fi+1, j − fi, j
δxi + δxi+1

+ fi, j − fi−1, j

δxi + δxi+1

)

Hy =
i=i+1∑

i=i−1

δxi

(
fi, j−1 − fi, j
δy j + δy j−1

+ fi, j − fi, j+1

δy j + δx j+1

) (8)

Equation 9 estimates two non-dimensional parameters which are independent of the cell dimensions.

Fx =
∑ j= j+1

j= j−1 fi+1, j − ∑ j= j+1
j= j−1 fi−1, j

∑ j= j+1
j= j−1 fi, j

Fy =
∑i=i+1

i=i−1 fi, j−1 − ∑i=i+1
i=i−1 fi, j+1

∑i=i+1
i=i−1 fi, j

(9)

The magnitudes of these two parameters Fx and Fy are used to estimate another parameter α as in Eq. 10.

α =
{
1 if |Fx | < |Fy |
0 else

(10)

The calculated parameters Sx , Sy, Hx , Hy, Fx , Fy and α are used as in Eq. 11 to estimate θ which is the angle
of rotation of interface with respect to the X-axis.

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan−1(Hy) + π if α = 0 & Sx ≥ 0
− tan−1(Hy) if α = 0 & Sx < 0

tan−1(Hx ) + π

2
if α = 1 & Sy ≤ 0

− tan−1(Hx ) − π

2
if α = 1 & Sy > 0

(11)

Finally, the components on the interface normal are estimated using Eq. 12.

nx = cos θ, ny = sin θ (12)

A two-dimensional circular fluid domain is reconstructed from the actual f values, i.e., from the intersection
area of the circle and cell boundaries using PLIC with the three methods, numerical gradient, minimum slope,
and T-Slope. Methods are tested for two aspect ratios and the results are compared in appendix A.
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Fig. 3 Interface curvature in 2D for the PCIC reconstruction. Normals are drawn from the mid points of nearest four neighboring
PLICs to the normal of the surface cell in consideration, passing through its PLIC reconstruction’s midpoint. Neighbor curvatures
are averaged to get the PCIC interface curvature

Interface curvature and PCIC

The Piecewise-Circular-Interface-Calculation (PCIC) is a proposed alternative to PLIC, but with a higher
order. It constructs a circular arc (2D) or a spherical surface (3D) for surface cells and a PLIC reconstruction
is equivalent to a PCIC reconstruction with infinite radius. As PCIC have higher order than PLIC, improved
accuracy is expected in the reconstructed interface, and subsequently in the simulated flow. Since the curvature
information can also be used to estimate the surface tension force, it is expected to improve accuracy in related
scenarios also.

The procedure developed in 2D to estimate the interface curvature is shown in Fig. 3, where normals drawn
at the four neighbor surface cells and their intersection with the normal of the surface cell in consideration
provides the neighbor radius’. The interface curvature is estimated by taking average of four neighbor curvatures
and its reciprocal gives the radius for the PCIC as given in Eq. 13,

Rm = 4
∑k=4

k=1
1
rk

(13)

where Rm is the mean radius of curvature and rk is the neighbor radius.
Neighbor radius rk is found using Eq. 14,

rk = |nex (y0 − my) − ney(x0 − mx )|√
nxney − nynex

(14)

where (x0, y0) is the mid point of the PLIC reconstruction and (nx , ny) is its normal passing through its
midpoint, (mx ,my). (nex , ney) is the normal of the neighbor’s PLIC reconstruction. For estimating interface
curvature in 3D, a new method is developed using the interface normals located at the centroids of PLIC
reconstructions inside the cell and inside its three nearest neighbor surface cells. Let’s consider the centroid of
the cell of consideration as e0 and its three neighbors as e1, e2 and e3. Similarly four normals at the centroids
are denoted as n0 to n3. Interface curvature (κ̄) is given by Eq. (15) where ∇ · n is the divergence of normal at
the PLIC centroid.

R = 1

κ̄
= − 2

∇ · n , ∇ · n = ∂nx
∂x

+ ∂ny
∂y

+ ∂nz
∂z

(15)
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Fig. 4 Estimation of planar constant a using the Sorted Surface Constant (SSC) method for the surface cell given the interface
normal and the f -value

The three components of ∇ · n are found using set of Eq. 16,

D
∂nx
∂x

= X1(y2z3 − y3z2) + X2(y3z1 − y1z3)

+ X3(y1z2 − y2z1)

D
∂ny
∂y

= Y1(x3z2 − x2z3) + Y2(x1z3 − x3z1)

+ Y3(x2z1 − x1z2)

D
∂nz
∂z

= Z1(x2y3 − x3y2) + Z2(x3y1 − x1y3)

+ Z3(x1y2 − x2y1)

D = x1(y2z3 − y3z2) + x2(y3z1 − y1z3)

+ x3(y1z2 − y2z1)

(16)

Note that here n0 − nk = (Xk, Yk, Zk) and e0 − ek = (xk, yk, zk) where k =1, 2, and 3 representing the three
nearest neighboring surface cells.

Locating interfaces and SSC

The planar constant ‘a’ in PLIC and the center of the sphere for PCIC needs to be calculated as the next step.
Two common approaches to locate the interface are the analytical and the numerical iterative methods like
the bisection method [29]. Analytical solution is accurate but computationally intensive, especially in 3D.
Bisection method is an iterative method stopped when the error is below a predefined limit. VCLP uses a new
numerical method named the Sorted-Surface-Constant method (SSC) which works on the principle that planar
constants along interface normal vary linearly as illustrated in Fig. 4.

SSC method works for structured, unstructured grids in 2D and 3D with the same efficiency given bound-
aries are well defined. The application of SSC method for PCIC is depicted in the Fig. 5. Detailed explanation
and steps are provided in “Appendix A”.

2.3 Lagrangian particles and center of mass tracking

While advecting in VCLP, the fluid inside the cell is represented using Lagrangian particles (LPs) as concen-
trated mass points. A single template of fluid mass points generated with blue noise distribution is used. Here,
LPs representing the fluid are advected cell by cell, and after advection of one cell, the same LPs template is
used for the next cell advection. This is an important difference to the common Lagrangian approaches, where
the entire fluid domain or interface are represented simultaneously by LPs and all LPs are tracked through the
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Fig. 5 Sorted Surface Constant (SSC) method for PCIC. Each N points inside cell is mapped to the normal through the PLIC
midpoint such that intersecting point is at distance R. Points are then sorted (color) according to the signed distance(surface
constant value) from PLIC midpoint to the intersecting point (example: points 1, 2). f N th surface constant provides the center
of circle ’c’, making fraction of number of points inside PCIC to be f

Fig. 6 Blue noise and white noise templates

simulation time, requiring very large number of LPs proportional to the domain size for the same resolution.
VCLP uses only one blue noise template of LPs with custom number of particles, and hence only a total of
100–1000 LPs are required for the entire simulation irrespective of the domain size in 2D, and 1000 to 8000
LPs in 3D.

2.3.1 Lagrangian particle creation

The creation of LPs in 2D and 3D is simple as creating two and three arrays of uniformly distributed random
numbers within 0 and 1 (white noise) that represent the coordinates of their location. As LPs represent the
fluid with uniform density, the ideal scenario is uniformly distributed LPs without any spatial bias. But most
arrangements such as LPs at the vertices of rectangles or hexagons have directional bias but not for a uniformly
distributed white noise and blue noise (Poisson disk sampling) [30]. The difference between these sampling
techniques can be seen in Fig. 6.

It can be noted that the blue noise has no clusters and every small region looks similar representing uniform
density in a better way. Tests were conducted with white and blue noise and proved the same and hence a blue
noise template is used. This template is created only once at the start of simulation and can be reused in each
cell to advect the fluid for all time steps. If a finer resolution is opted, then a template with larger number of LPs
or density is generated. Blue noise template is generated using a new procedure and is provided in appendix.
The template is used to populate the fluid region in one cell, and is then advected, then the code moves on to
the next cell till entire fluid domain is advected for the given time step. The template is used to fill the cell
completely or partially after which LPs outside the PCIC reconstruction C are removed representing the fluid
region. Figure 7 shows the modification of blue noise template on the left side into a representation of fluid
in a surface cell with a PCIC interface and elimination function E as defined in Eq. 17,

E =
{
sgn

{
nx px + ny py + nz pz + a

} : L
sgn

{‖p − x0‖ − R2
}
sgn {∇ · n} : C (17)
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Fig. 7 Modification of the LPs template: a Initial Lagrangian particles unit square template with N = 25 particles per cell
dimension uniformly distributed. b Region of particles from the template is scaled in to rectangle that fills fluid region with no
change in the aspect ratio. The orange colored LPs represent the fluid inside PCIC reconstruction. The blue colored LPs outside
the interface are removed

Fig. 8 Center of mass (CM) tracking: A rectangular fluid body (A tm ) is inside a square cell of 1 m dimension with a velocity
field uy= 0.5 m/s. The ideal state of fluid body at the start (lower panel) and after one second (upper panel) is shown in A. B
the numerical simulation of fluid flow for a CFL value of 0.5 without CM tracking. C the numerical simulation of fluid flow for
a CFL value of 0.5 with CM tracking. Blue dot is the true CM (c) which is tracked in the Lagrangian way, while red dot, the
estimated CM (c̃m+1). The reconstructed fluid region is translated to match the true CM shown by the arrow

is used to determine whether a LPs are retained or not. LPs are eliminated if the elimination function value is
negative. A limiting cell subdomain is constructed to improve the accuracy and efficiency in the calculations
pertaining to advection. The subdomain is the smallest rectangle that can accommodate the fluid region. The
subdomain boundary is shown by the dashed line in the Fig. 7.

2.3.2 Center of mass tracking

Accuracy of an interface reconstruction is increased by tracking of the center of mass(CM) of fluid cell
following the Lagrangian approach. In theory if the grid cell size is infinitesimal, this converges to pure
Lagrangian method. So for control volumes, tracking CM in Lagrangian way is essentially tracking the entire
fluid whole time, but with minimal number of points, one per cell. This is the one of the main idea behind
the VCLP method. During an interface reconstruction CM mostly will not be match exactly due to different
reasons, mainly due to the simplification of the interface into PLIC or PCIC, that too reconstructed from the
mean slope and curvature that itself is an approximation. These errors make the fluid move slower or faster in
the wrong direction, depending on the errors and velocity-field.

At a given time step, there are two CMs for a cell, the tracked CM denoted as c, and the estimated CM
after the reconstruction given by c̃(i, j, k,m). The LPs representing the fluid inside the cell before the CM
correction is given by 
̃(i, j, k,m). The X, Y , and Z coordinates of LPs are 
̃x (i, j, k,m), 
̃y(i, j, k,m),
and 
̃z(i, j, k,m). The LPs after CM correction is denoted by 
. Estimated CM location (c̃) is found using
the Eq. 18. 
 is the average of the positions all LPs inside the cell space s(i, j, k,m).

c̃(i, j, k,m) = 
(i, j, k,m) (18)
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Once c̃ is known, the positions of the LPs representing the fluid are corrected using the following Eq. 19.


 = 
̃ + c − c̃ (19)

When the fluid inside the cell is represented by LPs, each LP would represent a fraction of the total mass of
that fluid within the cell. That mass denoted by mp is estimated using Eq. 20, where N
(i, j,k,m) is the number
of LPs in 
(i, j, k,m).

mp(i, j, k,m) = ρ
|s(i, j, k,m)| f (i, j, k,m)

N
(i, j,k,m)

(20)

2.4 Fluid advection

VCLP have two choices numerical advection schemes to advect the LPs representing fluid; Taylor’s second-
order numerical advection scheme and a new proposed scheme named Tracking Journey in Spiral (TJSM)
method. Taylor’s second order method is given by Eq. 21,

pm+1 = pm + u(pm, tm)�tm + 1

2
a(pm, tm)�t2m (21)

but note that the acceleration field in this equation is not available from solver. This equation considers a
single LP whose position at time step tm is denoted by pm = px (m)î + py(m) ĵ + pz(m)k̂. The velocity and
acceleration is denoted by u(pm, tm) and a(pm, tm), respectively with time step �tm = tm+1 − tm .

2.4.1 TJSM advection scheme

TJSM integrates the equation of motion like others, while trying to capture rotational effects inside a velocity
field more effectively. Instead of a linear motion, TJSM assumes that the particle undergoes a circular motion
with a constant angular velocity during the time step intervals. In the higher-order TJSM, thus particle could
move following a spiral path, hence the name. The developed TJSM advection scheme is given by Eq. 22,

pm+1 = pm + {(β × um) (1 − cos θm) − um‖β‖ sin θm} ‖um‖2
‖β‖2 (22)

where β = um × am and θm given by Eq. 23.

θm = ‖ωm‖�tm = �tm‖um × am‖5
‖um‖2‖β × um‖2 (23)

If um = 0, or um × am = 0, then Taylor’s second order advection method is to be used to advect LPs. The
performance is tested using the deformation benchmark test for the interface tracking in 2D and 3D. As the
advection scheme alone is tested, LPs are moved in purely Lagrangian way. The derivation of TJSM scheme
in 3D and test results are provided in the appendix.

2.4.2 Acceleration field for advection

For second-order advection methods described in Eqs. 21 and 22, velocity and acceleration terms are required
to advect the particle. Figure 9 shows a LP at position (px , py, pz) within the cell.

Velocities at the eight vertices are u1 to u8. V1 to V8 are the eight weight factors (proportional to the volumes
of the blocks) used in the trilinear interpolation. The velocity at position p is thus determined using Eq. 24.

u(p) = 1
∑k=8

k=1 Vk
(V1u7 + V4u6 + V5u3 + V8u2

+ V2u8 + V3u5 + V6u4 + V7u1) (24)
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Fig. 9 Trilinear interpolation with partial volumes as weights to interpolate advection velocity for a LP at (px , py, pz) using
known velocities at the vertices

The acceleration of a particle in the compact Eulerian form is written in Eq. 25.

a = ∂u

dt
+ (u · ∇)u (25)

The partial derivative terms of ua ,
∂ua
∂x

,
∂ua
∂y

, and
∂ua
∂z

in Eq. 25 are estimated using Eq. 26 to Eq. 28 where

a takes x, y and z depending on the component axis.

− ∂ua
∂x

= ua1,2
δxi

+ p′
y E1a

δxiδy j
+ p′

z E2a

δxiδzk
+ p′

y p
′
z E0a

δxiδy jδzk
(26)

−∂ua
∂y

= ua1,4
δy j

+ p′
x E1a

δxiδy j
+ p′

y E3a

δy jδzk
+ p′

z p
′
x E0a

δxiδy jδzk
(27)

−∂ua
∂z

= ua1,5
δzk

+ p′
x E2a

δxiδzk
+ p′

y E3a

δy jδzk
+ p′

y p
′
x E0a

δxiδy jδzk
(28)

The terms E0a to E3a seen in the above equations are calculated using the set of Eqs. 29 given below.

E0a = (ua1 − ua2 + ua3 − ua4
− ua5 + ua6 − ua7 + ua8)

E1a = (−ua1 + ua2 − ua3 + ua4)

E2a = (−ua1 + ua2 + ua5 − ua6)

E3a = (−ua1 + ua4 + ua5 − ua8)

uab,c = uab − uac

p′
x = px − xi

p′
y = py − y j

p′
z = pz − zk

(29)

Finally the partial derivative of acceleration with respect to time (Eq. 25), is determined by Eq. 30,

∂a

∂tm
= um − um−1

tm − tm−1
(30)

Term

(
∂a

∂t

)

requires the velocities from the previous time step. Having obtained all terms described in the

Eqs. 25, the approximate acceleration for all LPs are obtained. Thus, LPs are advected by either the Taylor’s
second order (Eq. 21) or the TJSM (Eq. 22) numerical advection schemes.
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Fig. 10 Mass transfer and CM Update: Left: LPs representing the fluid before advection. f - value and center of mass is shown
for the surface cell(middle cell). Right: advected LPs from the middle and neighbor cells into the middle cell (orange color) and
their transferred CMs. The updated f - value and CM is also shown. Note that cells are advected one by one and this figure is an
combined representation of the process

2.5 Updating mass and center of mass

After advection the next step is The updating of f value and the CM.An new copy of the computational domain
� is created to receive the fluid mass advected, denoted by �∗

m . This new domain receives the advected LPs
from cell-by cell and new values for the fluid mass and CM keeps updating. ‘*’ denotes that the functions and
parameters belongs to �∗. After advection of all the fluid in the cells, this updated domain copy, �∗

m becomes
the next time step value, �m+1. A typical interface before and after advection along with the LPs are shown
on the left and right panels, respectively. Transferred mass and transferred CM from three neighbor cells into
the surface cell in the middle are shown on right panel of Fig. 10, along with the final CM location and the f
value (right panel).

If a cell space receives n LPs from a cell with mass per point mp as indicated in Eq. (20), then the updated
f value is estimated by Eq. (31) as

f ∗
up(i, j) = f ∗(i, j) + nmp

ρδxiδy j
(31)

Finally, Eq. 32 provides the updated CM, where (ctr ) is the transferred CM.

c∗
up = c∗

e f
∗δxiδy jρ + ctr nm p

nmp + δxiδy jρ
(32)

Filters and optimization

When the velocity field is interpolated to advect LPs the divergence of the interpolated velocity field at certain
location become non-zero. Hence, it can be said the f value larger than one at times is the result of the non-zero
divergence resulting from the necessity to interpolate the discretized velocity field. As this is unavoidable, a
filter is used for cells having f > 1 and takes the excess and redistributes mass to non-empty neighboring cells
uniformly. VCLPmethod proposes an optimization technique named skip core optimization (SCO) to increase
computational efficiency. This technique allows us to skip the computation for a portion of cells which are far
(three times CFL distance) from the interface. SCO can be understood as follows. Cells are classified before
advection in to empty (E), surface (S), and interior cells (N1, N2, N3) based on q as explained in Sect. 2.1.
This classification ensures cells always appear in the order E, S, N1, N2, N3 and during advection cell of one
class can interact only with the neighboring ones as restricted by CFL number. if we denote Ai, j as mass of
fluid advected from cells of class i to class j , then the Table 2 is obtained.

So, if we use SCO, some of N3 cells will have f > 1 and the additional mass will be exactly AN3N2 .
Also, some of N2 cells will have f < 1 and the deficiency would be exactly AN3N2 . Now, because of CFL
number based classification, an N3 cell can only become N2 and N2 can become either N1 or N3. In all of
these scenarios f will be equal to one and this shows that we can skip advection in N3 cells and by setting
f = 1 for N3 cells with f > 1 and N2 with f < 1 after advection and by skipping CM update in N3 and N2
cells. The application of filters is the final step of VCLP producing the final outputs the new f value matrix
( fm+1) and the new CM matrices (cm+1).
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Table 2 Fluid mass before and after advection

Before After advection

E E + ASE
S S + AN1S − ASE − ASN1
N1 N1 + ASN1 + AN2N1 − AN1S − AN1N2
N2 N2 + AN1N2 + AN3N2 − AN2N1 − AN2N3
N3 N3 + AN2N3 − AN3N2
Before After Advection with SCO
E E + ASE
S S + AN1S − ASE − ASN1
N1 N1 + ASN1 + AN2N1 − AN1S − AN1N2
N2 N2 + AN1N2 − AN2N1 − AN2N3
N3 N3 + AN2N3

Fig. 11 Translation of a circle (rows A and C) and a square (rows B and D) in two different velocity fields u = ĵ ( rows A and
B) and u = 2î + ĵ ( rows C and D). a Initial condition, b Hirt and Nichols without local height function, c Hirt and Nichols with
local height function, d Young’s without local height function, e Young’s with local height function, f VCLP- with PLIC and g
VCLP+ with PCIC Note: Results from column (b) to (e) are obtained from [29]

3 Benchmark tests

To evaluate the accuracy of VCLP method for interface reconstruction and advection, three benchmark tests in
2D and one in 3D from literature are conducted. The tests in 2D are translation, single vortex, and Zalesak’s test
while in 3D deformation test is done. In each of these tests, a well defined 2D fluid body inside a computational
domain with specified grid resolution and dimensions is allowed to flow according to a specified solenoidal
(non-divergent) velocity field. The flow is then simulated till the given time T , using the proposed method with
the specified time intervals. The ideal final state of the fluid body at time T is known and the performance of
the proposed method is evaluated on the basis of its qualitative and quantitative similarity with the simulation
result. In the following sections, VCLPwith PLIC is written as ‘VCLP-’ and with PCIC as ‘VCLP+.’ ’VCLP+’
with Skip Core Optimization is given as ’VCLP+ SC’ and ’VCLP+’ while using Eq. 21 for advection it is
shown as ’VCLP+ T2’. Advection using TJSM is denoted as ‘TJ’.

3.1 Translation test

For translation tests, a circular and a square fluid body are placed inside two different velocity fields. The fluid
bodies are transported in 1000 time steps over a distance approximately five times the diameter of the fluid.
The number of grid cells along the diameter or the size of the fluid body is equal to 15. The test results are
shown in Fig. 11.

3.2 Single vortex

The single vortex test for evaluating the accuracy of a surface tracking and advection method was proposed
by Rider and Kothe [31] and the solenoidal flow velocity field was suggested by Bell et al. [32]. For this test, a
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Fig. 12 Single vortex test result: Advection of a circular body of fluid placed in a single-vortex field. The maximum simulation
time is equal to T = 8 except for rows A and B, where T = 2. Snapshot are shown at time T/2 (rows A, C, and E) and at time
T (rows B, D, and F). The computational grid consists of 60 × 60 cells (rows A,B,C and D) or 100 × 100 cells (rows E and F).
a Fluid body at time t = 0 or initial state, b Hirt and Nichols results without local height function, c Hirt and Nichols with local
height function, d Young’s without local height function, and e Young’s with local height function, f VCLP with PLIC and g
VCLP with PCIC. Note: Results from column (a) to (e) are obtained from [29]

circular fluid body of radius 0.15 m, centered at (0.5,0.75) is placed inside a time reversing solenoidal velocity
field given by 33

ux = − sin2(πx) sin(2πy) cos

(
π t

T

)

uy =sin2(πy) sin(2πx) cos

(
π t

T

) (33)

where the T is the time period of the single vortex and t is the time. In an ideal case, the initial circular fluid
body in a solenoidal velocity field gets stretched into a filament spiraling around the vortex center till time
t = T

2 , and gets back into the initial circular shape at t = T . Similarity of the final state to the initial state is
the measure of accuracy for the surface tracking and advection method. Figure 12 depicts the single vortex
test results of the VCLP methods along with that of H&N and Young’s methods.

Single vortex tests area also conducted for CFL = 0.5 and T = 8s with two grid resolutions of 64×64 and
128 × 128 to compare VCLP results with two newer methods, moment of fluid (MOF) and coupled level set
volume of fluid (CLSVOF). Figure 13 shows the test results at time t = T for the grid resolution of 64 × 64
where the circle drawn in black color is the ideal case, whereas the dashed red lines are the test results. Single
vortex test results a and b are obtained from [33].

Quantitative analysis of single vortex tests

Geometric error is used to quantify advection tests’ accuracy by comparing the initial and final fluid distribution
or the f -matrix. The f -matrix error is integrated over the computational domain, to account for the error in
geometry of the fluid body. Geometric error in 2D is estimated using the Eq. 34,

Egeo =
i=nx∑

i=1

j=ny∑

j=1

| f (i, j, T ) − f (i, j, 0)| dxidy j (34)
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Fig. 13 Time reversed single vortex test results for grid resolution 64 × 64 and CFL = 0.5 for T = 8 s. Results at t = T = 8s
for a Moment of Fluid (MOF) and b Coupled Level Set Volume of Fluid (CLSVOF) c VCLP- and d VCLP+. Results a and b
are obtained from [33]

Table 3 Geometric errors Egeo for single vortex time reversible tests with time period T = 8s (lower panel)

T = 8s 32 × 32 64 × 64 128 × 128

H&N– 1.01E–1 7.96E–2 6.76E–2
H&N+ 8.39E–2 6.05E–2 3.17E–2
Young’s– 5.95E–2 2.00E–2 8.25E–3
Young’s+ 1.10E–1 4.49E–2 8.02E–3
Rider & Kothe 4.78E–2 6.96E–3 1.44E–3
PLIC [34] 6.5E–2 1.6E–2 2.5E–3
UB [34] 5.5E–2 2.5E–2 1.6E–2
EB [34] 5.5E–2 2.8E–2 1.2E–2
THINC [34] 1.5E–1 6.2E–2 2.5E–2
SW [34] 8.8E–2 5.7E–2 2.0E–2
SB [34] 1.0E–1 7.6E–2 4.1E–2
AR [34] 1.1E–1 8.5E–2 6.0E–2
VCLP – TJ 9.03E–3 2.10E–3 7.25E–4
VCLP – T2 8.14E–3 1.97E–3 6.90E–4
VCLP + TJ 9.49E–3 2.03E–3 7.93E–4
VCLP + T2 1.02E–2 2.24E–3 7.10E–4
VCLP + T2 SC 8.32E–3 2.43E–3 6.53E–4

H&N and Young’s method with ‘+’ sign denotes the application of local height function and ‘–’ denotes without, while for VCLP,
‘+’ means PCIC is used for interface reconstruction and ‘-’ means PLIC is used. The Taylor second order advection scheme is
denoted as ‘T2’ and TJSM as ‘TJ’. ‘SC’ denotes the use of skip core optimization. Results for all tests except VCLP are obtained
from literature [20,29]

Table 4 Geometric errors Egeo for single vortex time reversible tests with a grid resolution of 64 × 64 and CFL = 1

Method T = 2s T = 4s T = 6s

1st OU 5.96E–2 9.66E–2 1.14E–1
PPM 3.48E–3 1.26E–2 3.42E–2
Level Sets 4.42E–3 1.35E–2 2.45E–2
SLIC 1.70E–2 3.52E–2 7.05E–2
PLIC 7.00E–4 1.55E–3 4.03E–3
VCLP – TJ 1.39E–3 8.59E–4 1.40E–3
VCLP – T2 8.74E–4 6.47E–4 1.29E–3
VCLP + TJ 1.35E–3 8.63E–4 1.53E–3
VCLP + T2 9.11E–4 6.76E–4 1.42E–3
VCLP + T2 SC 9.16E–4 6.79E–4 1.36E–3

VCLP+ denotes VCLP with PCIC and VCLP- denotes VCLP with PLIC.‘T2’ is Taylor second order advection and ‘TJ’ is the
TJSM method while ‘SC’ is the Skip Core Optimization. Results for all tests except VCLP methods are taken from literature
obtained from [31]. PPM is Piecewise Parabolic Method and 1st OU is 1st Order Upwind

where t = T is final time. Table 3 shows the single vortex test results of VCLP and five other surface tracking
and advection methods. The tests are conducted for three grid resolutions: 32 × 32, 64 × 64 and 128 × 128.

Single vortex tests for time periods T = 2, 4 and 6 are conducted for a grid resolution of 64 × 64 and
CFL= 1 to compare with results from five other methods, obtained from [31]. The test results are presented
in Table 4.

VCLP results are compared with newer methods such as MOF and CLSVOF in Table 5 which gives the
geometric errors for the single vortex tests for the three grid resolutions, 32× 32, 64× 64 and 128× 128 with
CFL=0.5.
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Table 5 Geometric errors Egeo for single vortex time reversible tests with CFL = 0.5 and T = 8s

Method 32 × 32 64 × 64 128 × 128

MOF 4.06E–2 1.61E–2 5.62 E–3
CLSVOF 6.46E–2 1.73E–2 3.45E–3
VCLP – T2 7.58E–3 2.93E–3 7.44E–4
VCLP + T2 SC 7.63E–3 2.79E–3 8.69E–4

VCLP+ denotes VCLP with PCIC and VCLP- denotes VCLP with PLIC.‘T2’ is Taylor second order advection and ‘TJ’ is the
TJSM method while ‘SC’ is the Skip Core Optimization. VCLP test results are compared against MOF & CLSVOF results
obtained from [33]

Fig. 14 Comparison of Zalesak’s rigid body rotation test results for 100 × 100 resolution obtained from [28] with VCLP result.
a ELVIRA reconstruction (solid line) and the linear best fit (dashed line) b with the quadratic fit alone (solid line) and with the
continuity algorithm (dashed line) c VCLP. Dotted line is the ideal result

The relative mass losses (RML) found out using Eq. 35,

RML =
∑

A(i, j, 0) − ∑
A(i, j, T )

∑
A(i, j, 0)

(35)

where A(i, j, T ) = f (i, j, T )δxi δy j and
∑

denotes summation of all cells during the single vortex tests using
VCLP are of the order 10−15, with nearly perfect mass conservation. In contrast, the relative mass loss using
CLSVOF method are 1.42 × 10−5 by Zhao et al. [35], 4.0 × 10−4 by Wang et al. [36], and 1× 10−4 Menard
et al. [37].

In conclusion, according to the single vortex test results, VCLP method have lesser geometric and relative
position error along with negligible mass loss.

3.3 Zalesak’s disk test

Zalesak’s test problem (Zalesak et al. [38]) is a modified version of the rigid body rotation test where a circular
fluid body a slotted disk (Zalesak’s disk ) is used. The slotted disk centered at (0.5, 0.75) have a radius r =
0.15 m. The slot in the disk is defined such that it satisfies the relations, |x − 0.5| ≤ 0.025 and y ≤ 0.85. The
slotted fluid is placed inside the velocity field for rigid body rotation given by Eqs. 36.

ux = −2π(y − 0.5)

uy = 2π(x − 0.5)
(36)

The slotted disk undergoes a rigid body rotation of 2π radian (one complete circle) during 628 time-steps.
Figure 14 compare the results for 100× 100 resolution with the work of Scardovelli et al. [28] using ELVIRA
reconstruction method and its variations.

Quantitative analysis of Zalesak’s disk tests

Table 6 gives the relative error of Zalesak’s disk test results for the 200×200 grid resolution. The relative errors
of 10 other methods are presented from literature. VCLP methods have the least error, even lesser than purely
Lagrangian methods. TJSM advection scheme have slightly lesser error than Taylor’s second-order scheme.
PCIC reconstruction performs better than PLIC with lesser error. So, overall VCLP methods performs very
well in the Zalesak’s disk test.
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Table 6 Relative error for Zalesak’s disk rigid body rotation test for resolution of 200 × 200

Reconstruction/advection methods Rel. error

Higher-order bounded convection/Eulerian [39] 5.72E–3
Youngs/Stream (unsplit) [28] 1.07 E–2
Puckett/Stream /Eulerian [28] 1.00E–2
ELVIRA/Lagrangian (split) [28] 1.00E–2
Linear fit/Lagrangian [28] 9.42E–3
gVoFoam/Eulerian [40] 1.36E–2
interFoam/Eulerian [40] 6.61E–2
OpenFoam�/Eulerian [41] 7.03E–2
Quadratic fit/Lagrangian [28] 5.47E–3
Quadratic fit+continuity/Lagrangian [28] 4.16E–3
PLIC [34] 1.20E–2
THINC [34] 2.92E–2
EB [34] 3.44E–2
UB [34] 3.78E–2
SW [34] 5.15E–2
SB [34] 6.87E–2
AR [34] 1.89E–1
VCLP – TJ/ Eulerian–Lagrangian 4.21E–3
VCLP – T2/ Eulerian–Lagrangian 4.36E–3
VCLP + TJ/ Eulerian–Lagrangian 3.79E–3
VCLP + T2/ Eulerian–Lagrangian 3.96E–3
VCLP + T2 SC/ Eulerian–Lagrangian 4.05E–3

Fig. 15 3D Deformation test results of VCLP with T = 3 s and CFL = 0.5 for a grid resolution of 64 × 64 × 64. Left panel:
initial state at t = 0, middle panel: maximum deformed state at t = T

2 = 1.5s, Right panel: final results for t = T = 3 s

3.4 3D deformation test

In the 3D deformation test a spherical fluid body centered at (0.35, 0.35, 0.35) with a radius of 0.15 m is
placed inside a time reversing solenoidal velocity field with vortices. Equations 37 gives the velocity field for
the deformation test proposed by LeVeque [42].

ux = 2 sin2(πx) sin(2πy) sin(2π z) cos(π t/T )

uy = − sin(2πx) sin2(πy) sin(2π z) cos(π t/T )

uz = − sin(2πx) sin(2πy) sin2(π z) cos(π t/T )

(37)

This test use 20 LPs per dimension for two grid resolutions, 323 and 643 cells. Figure 15 displays the result for
resolution 643. The spherical fluid body on the left panel is the initial state, the middle panel is the maximum
stretched shape at t = T = 1.5 s. The final result at t = T = 3 s, is the right panel. Table 7 provides the
geometric error comparison with Moment of fluid method (MOF) [43] and CLSVOF [44] obtained from [33].

3.5 Computational performance of VCLP

A parametric study was conducted for LPs per dimension distributed as blue noise to evaluate the optimum
number of LPs. The single vortex test with resolution of 64×64 and T = 8s was chosen for the study. Absolute
errors and relative computational times were obtained as indicated in Fig. 16. The total computational time for
time-steps is normalized with the case using 89 LPs.
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Table 7 Geometric errors Egeo and order of convergence for 3D deformation tests with CFL = 0.5 and T = 3 s. MOF and
CLSVOF test results are obtained from [33]

Method 32 × 32 × 32 Order 64 × 64 × 64

MOF 5.62E–3 1.26 2.35E–3
CLSVOF 7.77E–3 1.15 3.50E–3
PLIC [34] 7.8E–3 0.89 4.20E–3
EB [34] 9.0E–3 1.68 2.8E–3
VCLP– 4.40E–3 1.34 1.73E–3
VCLP+ 4.35E–3 1.33 1.73E–3

Fig. 16 Geometric error and relative computational time for VCLP-PCIC with skip core optimization with respect to number of
Lagrangian particles for the single Vortex test with T = 8s in a 64 × 64 grid

Table 8 Computational time and error compared of VCLP method compared with original VOF method for Single Vortex T= 8,
δx = δy = 1/60 with the circle

Method Comp. time (s) Geo. error m2

No advection 07.359 –
VOF 14.078 0.0851
VCLP T2 10 16.594 0.0396
VCLP T2 33 38.484 0.0169
VCLP TJ 10 19.875 0.0393
VCLP TJ 33 79.250 0.0168
VCLP T2 CM 10 16.765 0.0066
VCLP T2 CM 33 40.141 0.0042
VCLP TJ CM 10 20.438 0.0063
VCLP TJ CM 33 83.219 0.0045
VOF (120 × 120) 105.50 0.07924

Last row have resolution have δx = δy = 1/120

The following Table 8 compares the computational time and accuracy for the single vortex test. The
resolution of the VCLP tests is 60 × 60 and are conducted for 10 and 33 LPs per dimension. In the Table 8,
non-advective means the advection is entirely skipped from calculation to account for the computational time
all methods have in common.

The computational performance study of the VCLP method for the single 2D vortex test for resolution of
60×60 shows that theVCLPmethodwith 10LPs, Taylor 2nd order advection, andCM tracking takes 19%more
time than SOLA-VOF, but the error reduced by 1289 %. The CM tracking seems to reduce the error from 2.68
to 6 times with less than five percent more of computational time. For a resolution of 120× 120, SOLA-VOF
takes 105.5 s with an error of 0.07924, which is 629 % more computational time and 1200 % times more error
than VCLP with 10 LPs per dimension. This supports the claim that using VCLP at lower resolution obtains
better results than SOLA-VOF with lesser computational time. Overall, from the computational performance
analysis in 2D, the VCLP method shows considerable improvement with a slightly more computational time.
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Fig. 17 Comparison of the evolution of a solitary wave model using TSUNAMI2D-VCLP and FNPF-BEMmodel by Grilli et al.
[46] with Ho/ ho = 0.45, over a slope of 1:15. The solid lines are FNPF-BEM model results and dotted lines are TSUNAMI2D-
VCLP

4 VCLP application

A validated CFD code, TSUNAMI2D by Horrillo [45] with the VCLP advection module is used to simulate
the breaking wave problem from literature. Additional information on the TSUNAM2D model can be found
in [45].

4.1 Breaking wave problem

The breaking wave is a challenging transient multiphase problem to numerically simulate and solve for con-
verging breaker jet free surfaces. Grilli et al. [46] have numerically modeled shoaling and breaking of 2D
solitary waves generated by a moving lateral boundary and traveling over a plane slope. This experiment is
replicated using TSUNAMI2D-VCLP, where a solitary wave of height H0 = 0.45 m in a 1 m deep wave tank
shoals and breaks over a slope of 1:15.

The movement of the piston wavemaker to generate the solitary waves is defined by Eq. 38,

xp(t) = H0

κ

[

tanh
κ

h0
(ct − xp(t) − λ + tanh

κλ

h0
)

]

(38)

where κ = 1

2

√
3H

′
0 Here H0 is the solitary wave height in constant depth h0, and c is the celerity of the

solitary wave. The motion of the piston wavemaker corresponds to a wave profile that is cut at λ distance on
both sides of the wave crest. More detailed information about the piston wavemaker can be found in [46].
The TSUNAMI2D-VCLP results till the breaking point is compared with the FNFP-BEM results by Grilli
et al. [46] obtained from [47] and are given in Fig. 17. The dotted line is FNFP-BEM, while the solid line
represents the TSUNAMI2D-VCLP results. The solitary wave at locations ‘a’ to ‘f’ matches well in terms of
height position and shape.

5 Conclusion

A surface tracking and advection method for incompressible and immiscible fluid flows, named VCLP is
proposed. Mathematical description of VCLP method is provided in detail and the accuracy of the VCLP
method for interface reconstruction and advection is evaluated based on benchmark tests such as translation,
single vortex, and Zalesak’s disk test in 2D and deformation test in 3D. The benchmark test results show
that VCLP performs qualitatively well compared to conventional methods such as Hirt and Nichols (H&N),
Young’s, and newer methods such as the moment of fluid (MoF) and Coupled Level Set Volume of Fluid
methods (CLSVOF). Later, the quantitative error comparisons support this observation. From the 2D single
vortex field test results, VCLP has lesser geometric error than H&N, Young’s, 1st order upwind, PPM, Level
sets, SLIC, and PLIC. Quantitative results of the Zalesak’s disk test and deformation tests using VCLP also
show less or similar error than the other presented methods. From the Zalesak’s test result for grid resolution
of 200 × 200, VCLP errors are smaller than successful methods from literature such as Youngs, Puckett,
ELVIRA, gVoFoam, interFoam, OpenFoam, Quadratic fit, and Quadratic fit with continuity. For deformation
and Zalesak’s disk tests, newly proposed TJSM advection scheme performs better than Taylor’s second order
advection scheme. Also, VCLP-PCIC have lesser error thanVCLP-PLIC for Zalesak’s disk tests. This suggests
that the proposed advection scheme TJSM and the new reconstruction method, PCIC are successful.
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The challenging breaking wave problem was simulated using TSUNAMI2D-VCLP and results were com-
pared with the FNFP-BEM and the results are very comparable. Thus, the applications of the VCLP method
in the TSUNAMI2D solver shows overall satisfactory results.

Data availability statement The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.

Appendix A Comparison of T-slope with other methods to find the interface normal

A two-dimensional circular fluid domain is reconstructed from the actual f values, i.e., from the intersection
area of the circle and cell boundaries using PLIC with the three methods, numerical gradient, minimum slope,
and T-slope. The circular domain is centered at (1,1) with a radius of 0.15 units. The grid resolution for two
cases are (1) δx = 0.025, δy = 0.025, with aspect ratio 1:1, and (2) δx = 0.05 and δy = 0.01 with aspect
ratio 5:1. The qualitative results are shown in Figs. 18 and 19 . The numerical gradient method interfaces are
not smooth and have significant discontinuities in both cases with different aspect ratios. The minimum slope
method works well with 1:1 aspect ratio, however for the larger or smaller aspect ratios it is biased and have
larger errors. It can be seen that the estimated slope near the top and bottom parts of the circular fluid are more
horizontal than the true slope for the aspect ratio of 5:1. The introduced T-slope method seems to resolve this
issue, producing good result for both scenarios as can be seen from Fig. 19.

Appendix B Sorted surface constant method

The algorithm to apply SSC method for the PLIC in 2D and 3D follows.

1. Fill the surface cell uniformly with N points with a blue noise distribution.
2. Calculate planar constants for all N points by simply substituting coordinates of each points in Eq. (B1).
3. Sort the planar constants in ascending order and find f N th planar constant.

If f N is not an integer, find weighted average of � f N�th and {� f N� + 1}th planar constants. Here ‘��’ is the
floor function which gives the largest integer smaller than the next integer.

Fig. 18 Circular fluid domain reconstructed from the f values using PLIC with interface normal calculated using. a Normal
Gradient Method. b Minimum Slope Method
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Fig. 19 Circular fluid domain reconstructed from the f values using PLIC with interface normal calculated using the T-Slope
Method

Fig. 20 Piecewise Circular Interface Calculation (PCIC) in 3D. The rectangular plane is the PLIC interface, and the spherical
surface has some portion above and below the plane to have the same f - value. For each point in the cell, ‘a’ is the surface-constant,
signed distance from the centroid of L to the intersection of normal through centroid and of a sphere of signed radius R (mean
radius of curvature) centered at that point

a = −(nx xi + ny y j + nzzk) (B1)

Sorted surface constant method for PCIC

The first step is to fill the cell with random points of blue noise distribution. Then all points are mapped to
the PLIC normal line passing through the PLIC mid point. For a given point, (example: 1 or 2 in Fig. 5) the
mapped point on the normal line is located at distance R from it. The mapped points are then sorted based
on the surface-constant ‘a’ which is the signed distance from the midpoint to the mapped point to locate the
interface.

Now while mapping, there are two possible location along the normal. If R is negative, the point with
minimum surface constant value is chosen else the maximum. After sorting, we find the f N th (surface
constant), which gives the sphere’s center. Thus, the final equation of C (Eq. 3) is achieved. There is an
alternative approach for the SSC, which is SSC*. The steps for SSC* is the following.

1. N uniformly distributed random points are created inside a unit square with blue noise distribution but
sorted in positive y direction. Random points need to fill a larger volume or area than the cell. For example:
a square or cube with a side length equal to the length of the cell’s largest diagonal.

2. Rotate and orient points such that sorted direction align with the normal direction.
3. Remove points outside the cell ending up with M points.
4. Find ( f M)th point’s planar constant.

If f M is not an integer, find weighted average of � f M�th and {� f M� + 1}th planar constants.
Figure 20 shows PCIC reconstruction with spherical surface. Parts of PCIC surface would lie on both sides

of equivalent L as both have same f value in comparison with Fig. 4.
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The computational speed of SSC is depended on the speed of sorting the array (surface constant ‘a’). This
is a one step process. It does not require to solve any equations as in the analytical case, which usually gets
complicated in 3D and for unstructured and curvilinear systems. SSC is flexible because speed vs. accuracy is
dependent only on number of points N, which can be customized. While using large number of points, SSC*
may be more efficient than SSC as sorting is required in the latter.

Appendix C Blue noise template

Blue noise

Creation of blue noise template with N LPs along each dimension using the proposed method is as follows.

• Estimate the radius r , where r = 1√
2N

in 2D and r =
√
3

2N
in 3D.

• Divide the cell equally with δx = δy = 1

N
creating N 2 square cell division in 2D and into N 3 cell divisions

in 3D with δx = δy = δz = 1

N
• Generate 2-tuple of N 2 uniformly distributed random numbers multiplied by δx in 2D and 3-tuple of N 3

uniformly distributed random numbers multiplied by δx and place one LP inside each cell divisioin using
the random numbers.

• Check through all cell divisions if shortest distance between the LPs inside the neighbor cell is less than r ,
in which case delete the LP in the cell division (not the LP in neighbor cell).

• Consider the cell division from which LP was deleted in the previous step. Fill those cell divisions with
30 to 100 random particle in 2D and 200 to 1000 in 3D and remove newly generated LPs that are within
distance r from the neighbors. Select just a single LP from the remaining set of newly generated LPs that
makes sure every cell division have one LP and shortest distance between any two LPs are larger than r .

Appendix D Derivation of TJSM advection scheme and its comparison with other popular schemes in
2D and 3D

Derivation of TJSM

In a 3D domain, the position, velocity and acceleration of the particle at time step tm within �tm are pm , um ,
and am . This is written as Eq. D2.

pm =x(tm)î + y(tm) ĵ + z(tm)k̂

um =ux (pm, tm)î + uy(pm, tm) ĵ + uz(pm, tm)k̂

am =ax (pm, tm)î + ay(pm, tm) ĵ + az(pm, tm)k̂

(D2)

Now impose a small time duration much smaller than the time step �tm , δt for which the particle is advected
in a straight line. The position and velocity of the advected particle after δt are given by pm′ and um′ (Eq. D3).
From the Taylor series expansion, their approximate values can be evaluated as shown in .

pm′ = pm + umδt

um′ = um + amδt
(D3)

Now we assume that during δt particle is undergoing a uniform circular planar motion which means then there
would be a center of rotation (cr ), a plane of rotation, a radius (r ), and an angular velocity (ω). The center
of rotation should pass through the plane which is parallel to the planes that can carry both um′ and um and
passes through the point pm . We name this as plane P1. The cr would also pass through a plane with normal
as um and passing through point pm , plane P2. Finally cr passes also through a plane with normal as um′ and
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through point pm′ , plane P3. The intersection of P1, P2, and P3 uniquely identify the center of rotation, cr .
The equations for the three planes are given by Eqs. D4–D6.

P1 : (um × um′) · (x − pm) = 0 (D4)

P2 : um · (x − pm) = 0 (D5)

P3 : um′ · (x − pm′) = 0 (D6)

Substituting Eqs. D3 and D2 in Eq. D4, we get Eq. D7

P1 : (um × (um + amδt )) · (x − pm) = 0

(um × am) · (x − pm) = 0
(D7)

Substituting Eqs. D3 D5 and in Eqs. D4, D8 is obtained.

P3 : (um + amδt ) · (x − (pm + umδt )) = 0

(am · x) − (am · pm) − ‖um‖2 = 0
(D8)

The term multiplied by δt is neglected as it tends to zero. The three equations Eqs. D5, D7 and D8 where ‘‖‖’
is the Euclidean norm is solved for cr . After simplification using identities we get Eq. D9 for cr .

cr,m = pm + {(um × am) × um} ‖um‖2
‖(um × am)‖2 (D9)

From Eqs. D9, D10 for radius vector is obtained as indicated below.

rm = − {(um × am) × um} ‖um‖2
‖(um × am)‖2 (D10)

Once radius vector and velocity vector is known, angular velocity vector ω can be estimated from D13, by
using Eqs. D11 and D12 indicated below.

ωm = (rm × um)

‖rm‖2 (D11)

ωm =
− [{β × um} × um]

‖um‖2
‖β‖2

‖β × um‖2 ‖um‖4
‖β‖4

(D12)

where β = um × am .After simplification using identities, the angular velocity vector is obtained as

ωm = − β‖(β‖4
‖um‖2‖β × um‖2 (D13)

Now, the angular rotation θ during the time step and normalized vector ω is given by Eq. D14 and Eq. D15

θm = ‖ωm‖�tm = �tm‖β‖5
‖um‖2‖β × um‖2 (D14)

ω̂m = − β

‖β‖ (D15)

Using Rodrigues’ formula given by Eq. D16 [48], after simplification using vector identities, we get the final
advected location of the particle as given by Eq. D17.

pm+1 = cr,m + rm cos θm + (ω̂m × rm) sin θm

+ ω̂m(ω̂m · rm)(1 − cos θm)
(D16)

pm+1 = pm + {(β × um) (1 − cos θm) − um‖β‖ sin θm} ‖um‖2
‖β‖2 (D17)

If um = 0, or um × am = 0, then Taylor’s second order advection method is to be used to advect LPs.
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Fig. 21 Deformation test results t = 1 = T/2 (Top), t = T = 2 s (Bottom). a Taylor’s first order (left) and Taylor’s Second
order (right). b Taylor’s third order (left) and Runge-Kutta fourth order (right) order c TJSM second-order (error �t3)

Comparison of TJSM advection scheme with other methods

The performance of the proposed numerical advection scheme, the TJSM method is tested using one of the
deformation benchmark test for the interface tracking. In this test, a circular fluid body of radius 0.15 centered
at (0.5,0.75) inside a square domain of unit size with its left bottom corner at the origin (0,0). The fluid body
is inside a solenoidal velocity field that deforms the circular fluid body. Deformation test induces radical
deformation and topology change of fluid bodies, which is more challenging than single vortex test [20]. There
are sixteen vortices in the domain, and flow fields are time-reversed. Time reversed flow field means that for
half of the simulation time, the fluid body undergoes deformation and then for the next half the velocity field
is time-reversed causing the circular fluid to go back to its original shape and location. For the numerical
case where time is discretized, final state of the fluid body is not exactly same as the starting state. Thus the
similarity of the final state to the initial state is the measure of goodness for the advection method. The stream
function for this velocity field is given by Rider et al. [31] as shown in Eq. (D18).

� = 1

4π
sin

{

4π

(

x + 1

2

)}

cos

{

4π

(

y + 1

2

)}

(D18)

The velocity field is given by Eq. D19.
The time-varying field have its maximum magnitude of velocity at t = 0 and t = T and zero at t = T/2
where it reverses.

ux = sin(4πy) sin(4πx) cos

(
π t

T

)

uy = cos(4πx) cos(4πy) cos

(
π t

T

) (D19)

The 2D test is conducted by putting marker particles on the circle perimeter, and each particle is advected
in time using several numerical advection schemes. The numerical advection schemes tested are (1) Euler’s
Method, (2) Taylor 2nd order, (3) Taylor 3rd order, and (4) Runge–Kutta 4th order, and (5) TJSM 2nd order.
The number of time steps is 256 for a simulation time of T = 2 s. The deformation test results are depicted in
the Fig. 21 where marker particles bound the fluid area to improve the contrast.
The 2D deformation test results for the numerical advection schemes show that at t = T/2 difference between
methods are not easily noticeable except for the T-shaped tip of the top part in the Taylor’s first order method,
which is shorter than other methods (see top panels of Fig. 21). At t = T , the final shape is ideally the initial
circle itself, however all methods show some deviations from it. Taylor’s first order have large deviation from
circular shape, while other cases are closer to the initial circle. Taylor’s second and third order have an elliptical
shape at the bottom and the third order have slightly closer shape to the initial circle than the second order.
The Runge-Kutta fourth order have an overall circular and symmetric shape, however edges are flatter over the
bottom half of fluid body and is similar to a polygon like shape. The TJSM result looks very close to the initial
circle and very slight deformation can be noticed at the top and bottom part. While comparing all methods
qualitatively, the closeness to the circular shape is in the order (1) TJSM second order, (2) Runge-Kutta fourth
order, (3) Taylor’s third order, (4) Taylor’s second order, and (5) Taylor’s first order. So, as per the test results,
the proposed advection method, TJSM performs well. The deformation test in 3D is carried out in the similar
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Fig. 22 Deformation test results for three numerical advection schemes a) Euler’s method b) Taylor’s second order c) TJSM

second order. Column A: t = T

2
= 6s, B: t = T = 12 s

way as in 2D, where the spherical fluid body of radius 0.15 centered at (0.5,0.5,0.5) is placed inside a solenoidal
time-reversing velocity field. The velocity field for this test is given by given by Eqs. D20–D22.

ux = 2 sin2(πx) sin(2πy) sin(2π z) cos

(
π t

T

)

(D20)

uy = − sin2(πy) sin(2πx) sin(2π z)

(
π t

T

)

(D21)

uz = − sin2(π z) sin(2πx) sin(2π z)

(
π t

T

)

(D22)

The simulation time of T = 12 s is completed in 32 time steps. Figure 22 shows the deformation test results
of the fluid body. Qualitatively, the resemblance of the final results to the spherical shape are in the order (1)
TJSM second order, (2) Taylor’s second order, and (3) Taylor’s first order. So, as per the test results in 3D,
the proposed numerical advection scheme, TJSM seems to perform well in comparison with the two standard
methods.
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