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Abstract Dynamic response characteristics of five tandem circular cylinders in laminar uniform flow are
studied numerically by fluid–structure interaction (FSI) computation. The Reynolds number of the incoming
flow is fixed at Re = 100. The five cylinders are elastically mounted in both transverse and streamwise
directions with an even center-to-center distance of 4, 6 and 8 times of the cylinder diameter. The non-
dimensional mass of each cylinder is m∗ = 5, 10 and 15, while the reduced velocity varies in the range of
Ur = 2–18. An FSI solver based on a modified characteristic-based split finite element method is developed
for computation, and its accuracy is validated by evaluating the flow around five stationary circular cylinder
and flow-induced vibrations (FIVs) of the one-cylinder and two-tandem-cylinder models against benchmark
solutions. By numerical experiments, dynamic behaviors of five tandem cylinders as well as the underlying
mechanisms are investigated by analyzing the generated vibration amplitude, frequency, fluid load and vortex
pattern in the flow field. Sub-harmonic wake-induced vibration that has not been revealed by the existing
two-cylinder and three-cylinder models is observed, and the underlying physics is discussed in detail. The
results obtained are insightful into the understanding and control of FIVs of an array of cylindrical structures
encountered frequently in various engineering applications.
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List of symbols

CD Drag coefficient
CD,mean Time-averaged drag coefficient
CL Lift coefficient
CL,max Maximum lift coefficient
D Diameter of the cylinder
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fCL Frequency component of the oscillating lift coefficient normalized by U/D
fY Dominant transverse vibration frequency normalized by U/D
FN Natural frequency of the cylinder normalized by U/D
L Center-to-center distance between neighbor cylinders normalized by D
m∗ Mass of the cylinder per unit length normalized by πρFD2/4
NE Total number of grid elements in the flow domain
NP Total number of grid nodes in the flow domain
p Pressure normalized by ρFU 2

Re Reynolds number, Re = UD/υ
ρF Fluid density
St Dominant vortex shedding frequency normalized by U/D
t Time normalized by D/U
T Vortex shedding period normalized by D/U
u1, u2 Streamwise and transverse component of fluid velocity normalized by U
U Velocity component of the free stream in x direction
Ur Reduced velocity, Ur = 1/FN
υ Kinematic viscosity of the fluid
x,y Coordinate components of the flow domain normalized by D
X , Y Streamwise and transverse displacements of the cylinder normalized by D
Xmean, Xrms Time-averaged and root-mean-square streamwise displacements of the cylinder normalized

by D
Ymax, Yrms Maximum and root-mean-square transverse displacement of the cylinder normalized by D
Ẋ , Ẏ Streamwise and transverse velocities of the cylinder normalized by U
Ẍ , Ÿ Streamwise and transverse accelerations normalized by U2/D
ζ Damping ratio of the structure

1 Introduction

In nature and engineering, cylindrical structures immerged in cross flows such as wind and water current are
ubiquitous, such as the trunk of trees, stalk of aquatic or terrestrial plants, overhead electric transmission lines,
offshore risers, tubes in power plant and heat exchangers, tall chimneys and cables of cable-stayed bridges, to
name a few. In general, Reynolds numbers of incoming flows with respect to the diameters of these cylindrical
structures are well above the threshold of vortex shedding, leading to oscillating fluids loads and flow-induced
vibrations (FIVs). Because FIVs may cause fatigue problem in long term or broken and damage in short term,
studying the underlying physics of fluid–structure interaction (FSI) of these cylindrical structures is of great
importance [1].

In last decades, FIV of an isolated cylindrical structure has been widely investigated, as seen in reviews
by Sarpkaya [2], Williamson and Govardhan [3], and Williamson and Govardhan [4]. For an isolated circular
cylinder, ‘lock-in’ appears when the structure’s natural frequency approaches the vortex shedding frequency.
In ‘lock-in’ region, the vibrating amplitude is amplified significantly, and the structure’s vibration dominates
the vortex shedding process. For Y-DOF model only allowing transverse response, there are two branches on
the amplitude curve at high Reynolds numbers and large mass ratio, namely the ‘initial’ and ‘lower’ branches,
which are related to the 2S and 2P vortex modes, respectively [5,6]. At small mass ratio, an ‘upper’ branch
with a maximum amplitude over 1D appears, which generates the deformed 2P vortex mode in the wake [7–9].
At low Reynolds number, however, only the ‘initial’ and ‘lower’ branches can be observed, and the maximum
amplitude is always below 0.6D[3]. For XY-DOF model having both streamwise and transverse responses,
the structure exhibits slightly larger response than the Y-DOF model following an ‘8’ trajectory [10–12], and
a ‘super-upper’ branch with a maximum transverse amplitude up to 1.5D can be observed along with a 2T
vortex mode when the mass ratio drops below m∗ = 6 [13,14].

In various engineering applications, cylindrical structures usually appear in group and undergo strong flow
interference. To study FIVs in such scenario, flow fields and dynamic behaviors of the two-cylinder model have
been studied extensively.Zdravkovich [15] ,XuandZhu [16], andZhou andYiu [17] investigated systematically
the unsteady flow past two tandem stationary circular cylinders at different Reynolds numbers and center-to-
center distances. According to the flow patterns observed, three flow regimes are roughly divided, that is,
‘extended body,’ ‘reattachment’ and ‘co-shedding’ regimes. Since fluid loads on the two cylinders change
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significantly among different flow regimes, dynamic behaviors of the two cylinders are quite different in three
regimes as well. Brika and Laneville [18], Hover and Triantafyllou [19], Assi et al. [20–22], Carmo et al.
[23] and Mysa et al. [24,25] investigated FIV of an elastically supported or flexible circular cylinder behind
a fixed circular cylinder. The downstream one was found to exhibit much larger transverse response than the
one-cylinder model. In ‘co-shedding’ regime, the downstream cylinder usually undergoes VIV at small Ur
while galloping-like wake-induced vibration (WIV) at highUr, which is characterized by the gradual built-up
of vibration amplitude. In ‘extended body’ and ‘reattachment’ regimes, the onset Ur of WIV reduces and
combined VIV and WIV or sole WIV occurs. Zdravkovich [26], Laneville and Brika [27], Papaioannou et al.
[28], Prasanth and Mittal [29], Borazjani and Sotiropoulos [30], Huera-Huarte and Bearman [31], Lin et al.
[32], Griffith et al. [33] and Qin et al. [34] investigated the scenario that both cylinders are free to oscillate.
In ‘co-shedding’ regime, the upstream cylinder exhibits similar response to the one-cylinder model, while
the downstream cylinder experiences larger-amplitude response as in the scenario behind a fixed upstream
cylinder. In ‘extended body’ and ‘reattachment’ regimes, the upstream cylinder could display galloping-like
vibration and attain larger vibration amplitude, depending on the flow state in the gap between two cylinders.

For the two-tandem-cylinder model, an interesting phenomenon observed is WIV, which leads to more
violent response on the downstream cylinder. To explain the underlying physics of WIV, Assi et al. [21,22]
indicated that WIV of the downstream cylinder is dependent on the unsteady wake of the upstream cylinder,
and WIV occurs when the ‘wake stiffness’ dominates over the structure stiffness at high Ur. Carmo et al.
[23] and Mysa et al. [23] stated that WIV of the downstream cylinder is highly related to the shift of its front
stagnation point under effect of the unsteady wake behind the upstream cylinder.

Based on studies on the two-cylinder model, some investigations have also been conducted on FIVs of
the three-cylinder model. Yu et al. [35] computed FIVs of three tandem circular cylinders at L/D = 4 and
Re =100 and 150. It was found that the response of the three-cylinder model is quite different from the two-
cylinder model, and the maximum transverse vibration amplitude is increased by about 25% compared with
the two-cylinder model under the same condition. Shaaban andMohany [36] studied numerically FIVs of three
tandem circular cylinders in uniform streamwith Re = 200. In their research, an elastically supported cylinder
was put behind two fixed cylinders; the distance between the first and third cylinders was fixed at 4D, while the
spacing between the first and second cylinders varied in 1.05D–2.95D. They found that the most downstream
cylinder experiences more violent response than the case with only one fixed cylinder upstream. Chen et al.
[37] simulated dynamic responses of three tandem circular cylinders at L/D = 1.2–5 and Re = 100. As L/D
is increased, two types of vibratingmodes were revealed, namelyWIV at L/D = 1.2 andVIV at L/D =1.5–5.

Recently, Hosseini et al. [38] conducted numerical studies on the case with more circular cylinders. In their
work, effects of cylinder number (n = 2–100) and center-to-center gap (L/D = 1.1–10) on the flow around an
array of stationary circular cylinders are investigated systematically at Re < 200, and a self-similar cascade of
flow regimeswas recorded, namely fluctuation development, vortex shedding, two-rowvortex structure (2RVS)
and breaking of 2RVS into fluctuation of longer length scale. As long as the tandem array contains sufficient
cylinders, this cascade repeats as the flow progresses downstream. For cases with larger gap (L/D > 4.4) and
Re < 200, a complete cascade of flow regimes was observed when the total number of cylinders was increased
beyond four. It means that, to understand dynamic behaviors of an array of tandem circular cylinders under
effect of the cascade of flow regimes, FIV model containing at least five cylinders should be investigated. To
the best of our knowledge, however, little work has been done on this subject.

In present paper, WIVs of five circular cylinders in tandem arrangement are studied numerically. In our
five-cylinder model, all five cylinders are elastically mounted and allowed to oscillate in both streamwise
and transverse directions. The Reynolds number and damping coefficient are fixed at Re = 100 and ζ = 0,
respectively. The mass ratio is set as m∗ = 5, 10 and 15, the center-to-center distance is changed among
L/D = 4, 6 and 8, and the reduced velocity varies in Ur = 2–18. By numerical experiments, dynamic
responses of the tandem circular cylinders in one cascade of flow regimes as mentioned above are analyzed
in detail using the computed fluid loads, vibrating amplitudes, vibrating frequencies, flow patterns and their
relationships. Special attention is paid to the sub-harmonicWIV of the downstream cylinders. This work could
reveal new dynamic characteristics of an array of tandem circular cylinders under effect of flow interference,
which is insightful for understanding FIVs of a group of cylindrical structures encountered frequently in various
engineering applications.
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Fig. 1 Mechanics model of FIVs of five tandem circular cylinders in a cross flow

2 Mathematical formulation

Figure 1 illustrates the FIV model involving five tandem circular cylinders. As seen in the figure, the incoming
flow is uniform with a streamwise velocity of U . All cylinders are elastically mounted on fixed foundations
and allowed to oscillate in both transverse and streamwise directions. Five cylinders have the same mass ratio,
damping coefficient and natural frequency. The distance between the neighbor cylinders is L .

For an isolated cylinder, Barkley andHenderson [39] found that thewake turns toweakly three-dimensional
at Re ≈ 190. For two tandem circular cylinders, Carmo et al. [40] revealed that the flow is still two-dimensional
(2D) at Re < 180. In present five-cylindermodel as shown in Fig. 1, the Reynolds number of the incoming flow
is set as Re = 100, which is well below above critical Reynolds numbers. Therefore, the 2D incompressible
Navier–Stokes equations are employed as the governing equations of the flow field, the non-dimensional form
of which can be expressed as
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The vibration of each circular cylinder is described by the spring–mass–damper model. The non-
dimensional equations in streamwise and transverse directions can be expressed, respectively, as

Ẍ + 4πFNζ Ẋ + (2πFN)2X = 2CD

πm∗ (4)

Ÿ + 4πFNζ Ẏ + (2πFN)2 Y = 2CL

πm∗ (5)

The flow field governed by Eqs. (1)–(3) and the structure field governed by Eqs. (4) and (5) interact with
each other. The drag and lift forces, i.e., CD and CL, in Eqs. (4) and (5) are obtained from the flow field. In
turn, the boundary conditions of Eqs. (1)–(3) are decided by the displacements (X and Y ) and velocities (Ẋ
and Ẏ ) on each cylinder. On the fluid–cylinder interfaces, the displacements, velocities and stresses of the flow
and structure field are identical.

3 Numerical methods

To simulate precisely FIV of each cylinder, three physical processes should be carefully treated, namely the
flow around the cylinder array, the vibration of each cylinder and the interaction between the flow and structure.
Unlike the traditional flow problems, in the present model the flow boundaries corresponding to five cylinders’
surfaces move with time due to FIVs. To solve this problem, an implicit flow solver proposed in our previous
studies is employed to compute Eqs. (1)–(3), which combines the modified characteristic-based split (CBS)
finite element method (FEM) for moving-boundary flows [41], dual-time stepping (DTS) method [42] and
spring analogy technique [43]. In this flow solver, following the CBS FEM, Eqs. (1)–(3) are discretized in time
first by three steps and then integrated spatially by the standard Galerkin FEM employing linear triangular
elements. Subsequently, Eqs. (4) and (5) are solved implicitly by the Generalized-α method [44]. Finally, the
loosely coupled partitioned scheme is introduced to combine the flow and structure solvers. In laminar flow
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Fig. 2 Solution domain and boundary conditions for the five-stationary-cylinder model

Table 1 Numerical results from the five-stationary-cylinder model at Re = 200 and L/D = 5

Mesh NP NE C1 C2 C3 C4 C5

Mesh_01 13,215 25,296 CL,max 0.6801 1.4420 0.5341 0.8492 1.1985
CD,mean 1.2580 0.4021 0.0404 0.2454 0.7010
St 0.1800 0.1804 0.1800 0.0925 0.0925

Mesh_02 17,729 34,262 CL,max 0.6785 1.4410 0.5405 0.8861 1.2075
CD,mean 1.2594 0.4032 0.0384 0.2721 0.7066
St 0.1825 0.1825 0.1825 0.0925 0.0925

Mesh_03 21,851 42,458 CL,max 0.6816 1.4482 0.5447 0.8986 1.2183
CD,mean 1.2601 0.4029 0.0355 0.2752 0.7085
St 0.1825 0.1825 0.1825 0.0925 0.0925

regime and at high structure mass ratio, such FSI solution procedure has been proved to have good stability
and accuracy in simulating VIV of a membrane wing [45–47], VIV of a flexible splitter plate in the wake
of a cylinder [48,49], FIV of a circular-plate assembly [50] and WIVs of two circular cylinders in tandem
arrangement [51]. More details of the employed FSI solution procedure can be found in references [45,50,52],
and will not be discussed in detail here.

4 Code validations

4.1 Flow past five fixed circular cylinders in tandem

To examine the accuracy of our flow solver, flow around five fixed circular cylinders in tandem arrangement is
computed first. The Reynolds number and gap distance are set as Re = 200 and L/D = 5, respectively, which
are as same as those in the five-cylinder model reported by Hosseini et al. [38] for purpose of comparison.
For this model, a completely varying process of flow structures including the vortex shedding, the 2RVS
and breaking of 2RVS into fluctuation of longer length scale has been observed. Figure 2 illustrates the
computational model for this flow problem. For convenience, the five cylinders are marked briefly as C1, C2,
C3, C4 and C5, respectively.

Three meshes are employed to simulate this flow model to obtain a grid-independence result, with a fixed
dimensionless time step of �t = 0.01. Table 1 provides grid information along with the computed fluid loads
(CL,max, CD,mean) and dominant vortex shedding frequency (St) at each cylinder, which are also displayed
in Fig. 3. As shown in Table 1 and Fig. 3, the numerical results are barely improved when the grid density
is further increased from Mesh_02 to Mesh_03. Moreover, the numerical results obtained by our flow solver
agree well with those computed by Hosseini et al. [38].

4.2 FIVs of one and two-tandem circular cylinders

To validate the FSI solver employed, FIVs of the one-cylinder and two-tandem-cylinder models are computed
next. Figure 4 shows the flow domains and boundary conditions for two cases. As seen in two figures, the
computational models are very similar to that in Fig. 2 except that the cylinder is no longer stationary and the
flow has same velocity with the oscillating cylinder on the fluid–cylinder interface.
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Fig. 3 Fluid loads and vortex shedding frequency from the five-stationary-cylinder model at Re = 200 and L/D = 5

Fig. 4 Solution domain and boundary conditions for FIVs of the elastically supported circular cylinder: a one-cylinder model,
and b two-tandem-cylinder model

For the one-cylinder model, the flow and structural parameters are defined as Re = 100, m∗ = 10,Ur = 6
and ζ = 0. For the two-tandem-cylinder model, the flow and structural parameters are Re = 100, m∗ = 10,
L/D = 5.5, Ur = 5.5 and ζ = 0. In each case, the grid-independence test is conducted with the time step
always kept constant at �t = 0.01. Tables 2 and 3 present the mesh information and computed vibration
parameters of the one-cylinder and two-cylinder models, respectively. As displayed in two tables, for the
one-cylinder and two-cylinder models the grid-independence results are obtained at Mesh_12 and Mesh_22,
respectively. Again, our results exhibit a very good consistency with those computed by other researchers
[29,53,54].



Sub-harmonic wake-induced vibration 677

Table 2 Numerical results of FIV of the one-cylinder model

Mesh NP NE Xmean Xrms Ymax fY

Mesh_11 5112 9879 0.1079 0.00448 0.4896 0.1650
Mesh_12 9748 19,099 0.1082 0.00458 0.5022 0.1650
Mesh_13 15,999 31,513 0.1082 0.00458 0.5035 0.1651
Prasanth and Mittal [53] 0.1115 0.00494 0.529 0.1643
He et al. [54] 0.1078 0.00465 0.503 0.1652

Table 3 Numerical results of FIVs of the two-tandem-cylinder model

Mesh NP NE Upstream cylinder Downstream cylinder

Ymax Yrms Ymax Yrms

Mesh_21 5725 10,898 0.5629 0.3983 0.2792 0.1934
Mesh_22 10,300 19,996 0.5655 0.4006 0.2993 0.2097
Mesh_23 18,377 36,051 0.5707 0.4042 0.3006 0.2095
Prasanth and Mittal [29] 0.6087 0.4304 0.2630 0.1859

Fig. 5 Computational model for FIVs of the five-tandem-cylinder model

5 FIVs of five tandem circular cylinders

Using validated FSI solution procedure, FIVs of five tandem circular cylinders with large gap distance are
studied. For purpose of comparison to the one-cylinder model and two-cylinder model as presented in Sect. 4.2,
theReynolds number of this five-cylindermodel is fixed at Re= 100. Themass ratio is changed amongm∗ = 5,
10 and 15, the dimensionless gap distance is set as L/D = 4, 6 and 8, and the reduced velocity varies inUr =
2–18. Moreover, the damping coefficient is set as ζ = 0 to induce large-amplitude response on each cylinder.

5.1 Grid independence test

Figure 5 illustrates the computational model for FIV of the five-tandem-cylinder model. As seen in the figure,
the solution domain and boundary conditions are identical to those shown in Fig. 2, except that the location
and velocity of the flow-cylinder interface become dependent on the cylinders’ responses. To examine the
effect of grid density on this model, responses of five cylinders at Re = 100, m∗ = 10, ζ = 0, L/D = 6
andUr = 5.5 are computed by three meshes of different grid densities. Table 4 presents the mesh information
and calculated maximum transverse amplitude (Ymax) of each cylinder. Figure 6 displays the time histories of
transverse displacements of C1 and C5 in t = 600–800. As shown in Table 4 and Fig. 6, the improvement turns
to very limited between Mesh_32 and Mesh_33. Therefore, Mesh_32 is applied to the rest of simulations.
As shown in Fig. 7, the grids around and behind the cylinder array are refined to compute more precisely the
vortex structures in these regions.
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Table 4 Numerical results of FIVs of the five-tandem-cylinder model at Re = 100, m∗ = 10, ζ = 0, L/D = 6 and Ur = 5.5

Mesh NP NE Ymax

C1 C2 C3 C4 C5

Mesh_31 13,617 26,100 0.5667 0.2248 0.05122 0.02698 0.02238
Mesh_32 16,865 32,534 0.5689 0.2283 0.05406 0.02793 0.02282
Mesh_33 20,368 39,492 0.5691 0.2311 0.05411 0.02811 0.02281

Fig. 6 Instantaneous transverse displacements at Re = 100, m∗ = 10, ζ = 0, L/D = 6 and Ur = 5.5: a C1 and b C5

Fig. 7 Computational mesh (Mesh_32) for FIVs of the five-tandem-cylinder model
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Fig. 8 Responses of the five-tandem-cylinder model at Re = 100, L/D = 6 and m∗ = 10: a maximum transverse vibration
amplitude, b dominant transverse vibration frequency

5.2 Dynamic response

Figure 8 displays the transverse vibrating amplitude and frequency of each cylinder at Re = 100, L/D = 6,
m∗ = 10, ζ = 0 and Ur = 2–18. As seen in Fig. 8a, all five cylinders exhibit VIV-like vibrations with first-
increase-then-decrease vibration amplitude, while the galloping-like response featured by amplitude build-up
with respect to the reduced velocity does not appear. InUr = 2–4.5, all five cylinders exhibit FIVs of negligible
amplitudes. The responses of C1–C4 are dominated by the vortex shedding frequency of C1 (St1 = 0.155),
while the vibration of C5 is dominated by the sub-harmonic frequency of St2 = 0.0775. In Ur = 4.5–
5.2, the dominant vibration frequencies of all five cylinders jump to the natural frequency. C1 attains the
maximum transverse displacement of Ymax = 0.58D at Ur = 5.2, while C2–C5 exhibit local peaks in their
Ymax curves. For C1–C4, their vibration frequencies begin to be locked to the natural frequency. For C5,
however, the vibration frequency drops back to the sub-harmonic branch atUr = 5.2. AsUr further increases,
the dominant vibration frequencies of C1–C4 decrease simultaneously with the natural frequency, while the
dominant vibration frequency of C5 first increases slowly toward St2 = 0.0775 while then jumps to the natural
frequency atUr = 6.8. Meanwhile, C2–C5 obtain large-scale responses sequentially. AtUr =7, the transverse
amplitude of C2 jumps to the high branch, attaining a maximum value of Ymax = 1.05D, and second local
peaks appear in the Ymax curves of C3–C5. Near Ur = 8, C3 attains its maximum transverse amplitude of
Ymax = 1.1D, which also induces local peaks on the Ymax curves of C4 and C5. At Ur = 8.8, the transverse
response of C4 jumps to the high branch, attaining a transverse amplitude of Ymax = 1.19D. At Ur = 9.5, the
response of C5 is amplified greatly, leading to a transverse displacement of Ymax = 1.29D. AtUr = 12, C4 and
C5 attain the maximum transverse amplitudes of Ymax = 1.34D and 1.49D, respectively. Once the reduced
velocity rises above the critical point, the synchronization of each cylinder ends. For different cylinders, the
critical points are different. As illustrated in Fig. 8b, C1 leaves the ‘lock-in’ regime at Ur = 8.2 where its
dominant vibration frequency jumps back to St1 = 0.155. For C2, the synchronization ends at Ur = 14 and
the vibration frequency also turns back to St1 = 0.155. For C3, the vibration frequency first approaches the
sub-harmonic branch of St2 = 0.0775 at Ur = 14 while then jumps back to St1 = 0.155 at Ur = 15. For C4
and C5, however, their dominant vibration frequencies eventually approach St2 = 0.0775 after they depart
from the natural frequency curve.

In general, C1–C3 exhibit similar dynamic response, which is dominated by the structural natural frequency
in the ‘lock-in’ region while by St1 = 0.155 out of the ‘lock-in’ region. This is consistent to the vibration of
the three-cylinder model at Re = 100 and L/D = 5 as reported by Chen et al. [37]. Unlike C1–C3, C5 enters
the ‘lock-in’ regime at a higher Ur and experiences a lower oscillating frequency of about St2 = 0.0775 in
the un-synchronization region, which is near the subharmonic of the usual Strouhal number of St0 = 0.17.
FIV of C4 can be taken as a transition between above two responses. In the pre-synchronization region, C4
vibrates at a dominant frequency of St1 = 0.155. In the post-synchronization region, however, its vibration is
dominated by St2 = 0.0775. Such sub-harmonic WIV of C4 and C5 has not been found in the two-cylinder or
three-cylinder model before.
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5.3 Fluid loads

Tounderstand the sub-harmonic response ofC4 andC5 in the five-tandem-cylindermodel, the fluid load on each
cylinder is studied in this section. Figure 9 illustrates the oscillating frequency of the lift on each cylinder, where
fCL is the frequency components extracted from the oscillating lift coefficient using Fast Fourier Transform
(FFT) method and the contour with color shifting from white to black indicates the dimensionless amplitude
of each frequency component. Since the lift on each cylinder is strongly associated with the vortex shedding
process, fCL can also be taken as the vortex shedding frequency.

As shown in Fig. 9a, the oscillating frequency of CL on C1 has a similar trend to its vibration frequency as
seen in Fig. 8b. In synchronization region, fCL jumps to the natural frequency, while in the un-synchronization
state fCL approaches St1 = 0.155.Atmost points only one frequency component dominates the lift ofC1,while
near the upper boundary of synchronization (Ur = 7.5–8.5) some harmonic frequency components appear. As
illustrated in Fig. 9b, the tendency of C2’s fCL is almost the same with C1’s, except that two sub-harmonic
frequency components are observed near the lower boundary of synchronization (Ur = 4.5–5). As displayed in
Fig. 9c, more harmonic frequency branches appear in the spectrogram of C3’s CL. In Ur = 5.5–6.5 and Ur =
13–15, the effect of St2 = 0.0775 begins to emerge. In Ur = 8–13, three higher harmonic branches and three
lower harmonic branches are observed above and below the St1 line, respectively. As displayed in Fig. 9d, for
C4 the strength of the sub-harmonic component (St2 = 0.0775) is increased significantly. In Ur = 2–4.5, the
effect of St2 = 0.0775 becomes comparable to that of St1 = 0.155, while in Ur = 14–18 St2 = 0.0775 starts
to dominate the lift oscillation of C4. Besides, a new branch with three times the natural frequency appears near
the top right corner of Fig. 9d. As observed in Fig. 9e, for C5 the influence brought by frequency component
St1 = 0.155 decreases a lot, while St2 = 0.0775 dominates the lift oscillation in the pre and post ‘lock-in’
regions.

Therefore, for C1–C3 the lift load is dominated by St1 = 0.155 near the Strouhal number in the un-
synchronization region and by the natural frequency of the structure in the synchronization region, respectively,
leading to the same vibrating frequencies in two regions. For C4, a sub-harmonic frequency (St2 = 0.0775)
of comparable strength to St1 = 0.155 appears in the lift spectrum and results in the sub-harmonic vibration
in the post ‘lock-in’ region. For C5, St2 = 0.0775 dominate the lift oscillation over St1 = 0.155, leading to
the sub-harmonic response in pre- and post-synchronization region.

5.4 Flow patterns

To understand the sub-harmonic lift oscillating frequency on C4 and C5, instantaneous flow pattern around the
cylinder array is further analyzed. Figure 10 displays the vorticity contours around the five-tandem-cylinder
system at representative reduced velocities ofUr = 4, 5.2, 7, 7.7, 8.8, 9.5, 12 and 14, when the cylinder having
the largest transverse amplitude is moving up and passing the equilibrium state with Y = 0 and Ẏ > 0. For
comparison, the instantaneous flow pattern around five stationary cylinders is also given in Fig. 10a.

As seen in Fig. 10a, for the case with five stationary cylinders at Re = 100 and L/D = 6, C1 behaves
as an isolated cylinder and sheds a pair of vortices with opposite signs alternatively, generating the 2S vortex
mode in the first gap. Subsequently, the vortices formed in the first gap impinge on the second cylinder (C2),
merge with the shear layers from C2 itself and then separate from C2, forming a two-row vortex structure
(2RVS). As reported by Hosseini et al. [55], 2RVS is convectively instable and can only carry disturbances
downstream as long as they are not close to C2. Therefore, C3 does not exhibit influence on the upstream
flow. Additionally, because the flow in the wake centerline of C2 is almost stationary and C3 further decreases
the flow velocity, the presence C3 does not bring significant disturbance to the downstream flow either. As a
result, C3 is completely immersed in the two-row vortex structure. As transported downstream, 2RVS begins
to fluctuate due to the secondary instability (breaking of 2RVS), resulting in the elongated recirculation in the
gap behind C4. Finally, 2RVS completely disappears near C5, and an elongated 2S vortex mode appears in
C5’s wake. In summary, a cascade of flow regimes around the five-tandem-cylinder model includes 2S, 2RVS,
breaking of 2RVS and elongated 2S. As reported by Hosseini et al. [38], if we put more cylinders behind C5,
such cascade of flow regimes repeats, forming a self-similarity flow pattern around the cylinder array.

As seen in Fig. 10b, at Ur = 4 FIVs of all five cylinders are too weak to show significant effect on the
flow around them. Therefore, the flow pattern in Fig. 10b is close to that in the stationary scenario as seen in
Fig. 10a. At Ur = 5.2, C1 attains the maximum transverse amplitude and the vortex street between C1 and
C2 becomes wider than that at Ur = 4, as observed in Fig. 10c. In this case, the vortices behind C1 no longer
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Fig. 9 Spectrograms of lift coefficient of each cylinder with respect to Ur at Re = 100, L/D = 6 and m∗ = 10: a C1; b C2; c
C3; d C4; e C5
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Fig. 10 Instantaneous vorticities around five circular cylinders in tandem at Re = 100, L/D = 6, m∗ = 10 and a stationary; b
Ur = 4; c Ur = 5.2; d Ur = 7; e Ur = 7.7; f Ur = 8.8; g Ur = 9.5; h Ur = 12; i Ur = 14

impinge directly on C2 but pass by its upper and lower sides. As a result, a broader 2RVS appears behind C2,
and the length scales of the fluctuation structure behind C4 and the elongated 2S vortex structures behind C5
increase accordingly. AtUr = 7, a large-amplitude response of C2 is excited. As shown in Fig. 10d, C2 begins
to shed vortices independently. The vortices shed from C2 merge with the vortices shed from C1, generating
a pseudo 2S vortex mode of the tadpole-like configuration behind C2. Subsequently, the ‘tail’ part of merged
vortex impinges directly on C3 while the ‘head’ part flows around it, generating a 2RVS behind C3. Compared
with that at Ur = 5.2, the 2RVS in this case is much wider, so that it completely embraces C4 and C5 and
extends to the far wake. At Ur = 7.7, C3 also exhibits large-scale response. As illustrated in Fig. 10e, the
interaction between C3 and the vortices behind C2 is more significant and the shear layers on C3 itself begin
to shed. Under C3’s disturbance, the 2RVS becomes more unstable and breaks just behind C5, generating the
elongated 2S vortex mode in the near wake. At Ur = 8.8, the flow pattern around the cylinder array becomes
more complex. With drops of the vibration amplitudes of C1 and C2, the interference between the vortices
behind C1 and shear layers on C2 is amplified, as displayed in Fig. 10f. Two vortex pairs are shed into the gap
behind C2 in each period, indicating the appearance of 2P vortex mode. Subsequently, the 2P vortex structure
impinges on C3 and results in the pseudo 2S vortex mode behind it. Finally, 2RVS forms behind C4 due to its
large-scale response and breaks into the 2S vortex mode behind C5. At Ur = 9.5, C5 attains large vibration
amplitude. As seen in Fig. 10g, 2RVS appears behind C5 and extends to the near wake. At Ur = 12, both C4
and C5 attain the maximum transverse amplitude. As displayed in Fig. 10h, the vortices behind C4 and C5
are elongated a lot by the large-scale displacement of the two cylinders. In this case, 2RVS disappears and a
2S-like vortex mode is observed behind C5. At Ur = 14, the response of the downstream cylinders as well as
their effect on the flow field drops a lot, and the vortex pattern around the cylinders almost returns back to that
at Ur = 4, as shown in Fig. 10i.

At most representative reduced velocities, the cascade of flow regimes including the 2S, 2RVS, breaking
of 2RVS and elongated 2S vortex structures still appears. In addition, new flow structures such as the pseudo
2S and 2P vortex modes are also observed under effect of large-scale vibrations. From Figs. 9 and 10, it is
clear that the fluid load on each cylinder is strongly correlated to the flow pattern around it. The more vortices
one cylinder interacts, the more frequency components appear in its lift spectrogram. The longer length scale a
vortex structure is, the lower the frequency of perturbation it introduces.Moreover, the sub-harmonic oscillating
frequency (St2 = 0.0775) in the lift spectrum of C4 and C5 is associated to the breaking of 2RVS and forming
of the elongated 2S vortex structure.

5.5 Effect of mass ratio

As it is well known, mass ratio is a key factor for the dynamic behavior of the cylindrical structure experiencing
external flow. To study its effect on the present five-tandem-cylinder model, FSI simulations at Re = 100,
L/D = 6, ζ = 0,Ur = 2–18 andm∗ = 5 and 15 are further computed. Figures 11 and 12 display the transverse
vibrating amplitudes and dominate frequencies at m∗ = 5 and 15, respectively. As seen in the figures, the
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Fig. 11 Responses of the five-tandem-cylinder model at Re = 100, L/D = 6, m∗ = 5: a maximum transverse vibration
amplitude, b dominant transverse vibration frequency

Fig. 12 Responses of the five-tandem-cylinder model at Re = 100, L/D = 6, m∗ = 15: a maximum transverse vibration
amplitude, b dominant transverse vibration frequency

transverse response curve of each cylinder at m∗ = 5 and 15 exhibits similar trend as that at m∗ = 10. As
decrease of the mass ratio, transverse vibrating amplitude of each cylinder is gradually amplified and the ‘lock-
in’ region becomes wider. At lower mass ratio of m∗ = 5, the vibrating frequency of C4 and C5 is increased
slightly in the post-synchronization region, while in the pre-synchronization region the sub-harmonic response
does not change much. At m∗ = 15, the response of C4 is dominated by St2 = 0.0775 atUr = 2 and 3, which
is different from that at m∗ = 5 and 10. As discussed in Sects. 5.3 and 5.4, the fluid load on C4 is affected by
both the vortices separated from the upstream cylinders and the breaking of the 2RVS, and St1 = 0.155 and
St2 = 0.0775 show comparable effects on it. Therefore, the vibrating state of C4 is more unstable than other
cylinders and is more sensitive to the mass ratio.

5.6 Effect of cylinder spacing

To study effect of cylinder spacing in ‘co-shedding’ regime, FIV of the five-tandem-cylinder model at Re
= 100, ζ = 0, m∗ = 10, Ur = 2–18 and L/D = 4 and 8 are further considered. Figures 13 and 14 provide
the transverse vibrating amplitudes and dominate frequencies at L/D = 4 and 8, respectively. Comparing
Figs. 13 and 14 with Figs. 8, 11 and 12, it can be found that the center-to-center distance has larger effect
on the dynamic response of the five-tandem-cylinder model than the mass ratio does. At L/D = 4, the onset
point of ‘lock-in’ of each cylinder is postponed a lot to Ur = 5.5, and all cylinders experience much lower
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Fig. 13 Responses of the five-tandem-cylinder model at Re = 100, m∗ = 10, L/D = 4: a maximum transverse vibration
amplitude, b dominant transverse vibration frequency

Fig. 14 Responses of the five-tandem-cylinder model at Re = 100, m∗ = 10, L/D = 8: a maximum transverse vibration
amplitude, b dominant transverse vibration frequency

oscillating frequency than the one-cylinder model, as seen in Fig. 13. Moreover, five cylinders almost have
the same oscillating frequency except in the de-synchronization region, and the sub-harmonic response branch
appearing at L/D = 6 is not observed. At L/D = 8, the effect of downstream cylinder on the upstream
cylinder is decreased, and C1 exhibits almost the same dynamic behavior as the one-cylinder model does, as
seen in Fig. 14. As seen in Fig. 14b, the sub-harmonic response branch turns to stronger than that at L/D = 6.
In pre-synchronization region, both C4 andC5 oscillate at the sub-harmonic frequency. In post-synchronization
region, besides C4 and C5, C3 also follows the sub-harmonic response branch.

To understand effect of cylinder spacing as presented above, Figs. 15 and 16 display the instantaneous flow
patterns at L/D = 4 and L/D = 8, respectively. At L/D = 4, the breaking of 2RVS always happens in the
wake of C5, as seen in Fig. 15. In most cases, the elongated 2S associated with the sub-harmonic frequency
does not interact with any of the cylinder. Therefore, the sub-harmonic response branch is not observed in
Fig. 13b. At L/D = 8, however, the breaking of 2RVS occurs in advance in the gap between C3 and C4, as
seen in Fig. 16. Therefore, C4 and C5 always interact with the elongated 2S vortex structure and experience
the sub-harmonic WIV, and C3 also exhibit sub-harmonic response in the post-synchronization region, as seen
in Fig. 14b.
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Fig. 15 Instantaneous vorticities around five circular cylinders in tandem at Re = 100, L/D = 4, m∗ = 10 and a stationary; b
Ur = 4; c Ur = 5.6; d Ur = 7; e Ur = 10; f Ur = 15

Fig. 16 Instantaneous vorticities around five circular cylinders in tandem at Re = 100, L/D = 8, m∗ = 10 and a stationary; b
Ur = 4; c Ur = 4.8; d Ur = 7.2; e Ur = 11; f Ur = 15

6 Conclusions

Flow-induced vibrations of five elastically supported circular cylinders in a tandem arrangement at Re = 100,
L/D = 4, 6 and 8, ζ = 0, m∗ = 5, 10 and 15, and Ur = 2–18 are investigated using FSI simulation. The
followings summarize the many observations made in the article:

(1) In the range of parameters considered, all five cylinders exhibit VIV-like responses, with the transverse
amplitude showing a first-increase-then-decrease trend and vibrating frequency locked to the natural
frequency in the ‘lock-in’ region, and the downstream cylinder can attain higher transverse displacement.
For the most upstream cylinder, the response is almost the same as VIV of the one-cylinder model at
large cylinder spacing of L/D = 6 and 8. For four downstream cylinders, however, the vortex shedding
frequency is not always locked to the natural frequency in the ‘lock-in’ region because of the flow
interference effect, which is inconsistent with the typical ‘lock-in’ process of the one-cylinder model.

(2) For the three upstream cylinders (C1–C3), the responses are similar to those of the three-tandem-cylinder
model as reported by Yu et al. [35] and Chen et al. [37], with the vibration frequency jumping between
the vortex shedding frequency of St1 = 0.155 and the natural frequency. For the two most downstream
cylinders (C4 and C5), however, their responses are affected significantly by the sub-harmonic frequency
of St2 = 0.0775 induced by the breaking of 2RVS and appearing of the elongated 2S vortex mode.

(3) As decrease of the mass ratio, the vibrating amplitude of each cylinder in the five-tandem-cylinder model
is increased, and the ‘lock-in’ region of each cylinder is broadened slightly, which is similar to the scenario
of one-cylinder or two-tandem-cylinder model.

(4) Compared with the mass ratio, the cylinder spacing showsmore significant effect on the dynamic response
of the five-tandem-cylinder model. At smaller cylinder spacing of L/D = 4, the breaking of 2RVS occurs
in the wake of the cylinder array, and the sub-harmonic response branch is not observed. At cylinder
spacing of L/D = 6, the breaking of 2RVS appears in the gap between the last two cylinders (C4 and
C5), leading to sub-harmonic response on C5 in the un-lock region and on C4 in the post-synchronization
region. At larger cylinder spacing of L/D = 8, the breaking of 2RVS move upstream to the gap between



686 X. Sun et al.

the third and fourth cylinders (C3 and C4), leading to sub-harmonic response on C4 and C5 in the un-lock
region and on C3 in the post-synchronization region.
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