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Abstract Sustained flight at hypersonic speeds is characterized by high pressure and aerothermal loads
imposed on the structure of the aerodynamic vehicle. A consequence of lightening the structural design per-
mits fluid–structure interaction phenomena that can significantly alter the flow and initiate unsteady structural
responses. We investigate the coupling between high-speed laminar boundary layer flows over a mechanically
compliant panel and analyze the dynamic system response of the coupled system to boundary layer instabilities
by means of local convective linear stability analysis. The resulting non-dimensional interaction parameters
describing the compliant system are shown to affect the boundary layer instabilities in the infinitely thin panel
limit, and the transition from the rigid limit is described by two distinctly different responses: (a) a piston-
like, one-dimensional panel deflection, or (b) a synchronization with flexural waves. Compliance is shown to
non-monotonically change convective wave growth rates and induce uncertainty in the integrated N-factors.

Keywords Linear stability theory · Compressible boundary layer flow · Compliant wall · Flat plate

1 Introduction

Wall-bounded flows with mechanically compliant walls have been of interest for incompressible flows for a
long time. Gray’s paradox [1] and his observation of the high swimming speeds of dolphins led to a series of
experiments of laminar and turbulent boundary layers over a layered compliant surface [2]. The introduction
of a rubber coating applied to a rigid surface mimicked the dolphins’ skin and reduced the drag by up to 60%
by delaying transition. Benjamin [3] and Landahl [4] tried to understand the transition delay mechanism by
applying linear stability analysis to the boundary layer flow over a spring-backed panel with damping and
categorized the resulting modes based on their energy transfer mechanism. Benjamin [3] also found that, due
to the existence of a compliant coating, flexural waves coalesced with the Tollmien–Schlichting instability to
stabilize the boundary layer via an irreversible energy transfer from the flow to the compliant coating [5]. A
wider parametric study of this problem was later investigated by [6,7] by introducing a spring-backed elastic
plate submerged in a fluid substrate to include damping effects. They found viscous and viscoelastic damping
to be destabilizing, whereas the reduction in flexural rigidity and spring stiffness, as well as an increase in
plate mass and the introduction of an inviscid fluid substrate, was stabilizing. The instability behavior for the
compliant system was found to be the coalescence of Tollmien–Schlichting waves and traveling wave flutter.
Further, they termed turbulent wave flutter to be a “flow-induced surface instability” (FISI) to distinguish it
from fluid instabilities present in the rigid limit. The coalescence of fluid and flexural instabilities with similar
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wave lengths was also found to be relevant by [8] in the coupled system, who found the compliant wall’s
response to be a superposition of four waves: fluid, flow-induced upstream-propagating flexural, flow-induced
downstream-propagating flexural, and local in-vacuo waves. Most recently, the linear stability analysis for the
incompressible flat plate flow was extended to include transient growth, which was found to have a significant
impact on the importance of viscous effects in the instability mechanism [9].

In the compressible flow regime, the design of super- and hypersonic aircraft in the mid-twentieth century
pushed the development of appropriate tools to focus on aeroelastic flutter and panel divergence, both instability
phenomena associated with finite-sized structural panels. The most widely used model has been a linear thin
panel description for the solid and inviscid first-order piston theory for the fluid domain [10], later extended
to capture nonlinearities in the solid and to higher-order piston theories [11]. These models were able to
provide flutter boundaries and are still powerful tools to roughly estimate panel scale instability behavior. The
description of the panel used has varied ranging from a simple Kirchhoff–Love plate to a nonlinear van Kàrmàn
plate for large deflections. Different problem formulations, such a assumed-mode Euler–Lagrange or direct
discretization of the linearized dynamics, have been employed and a temporal response, either in the limit
cycle oscillation or including transient behavior [10] have demonstrated the complex behavior of the system.
Early investigations showed that, for instance, the damping capabilities of the plate determine whether the
experienced instability is of the standing or traveling wave kind and found a close resemblance between finite
and infinite panels in that regard. [12] review modern approaches to panel flutter including higher-order fluid
and panel models.

However, the piston theory-based fluid model does not capture all instabilities within the fluid, specifically
within boundary layers, and thus omits possible mechanisms. These instabilities, specifically in the presence of
boundary layers, are relevant features that may influence the design of airframe structures and are not captured
in the fluid–structure coupled system analyses to date. In order to overcome the resulting uncertainty, design
engineers assume a worst-case scenario which leads to conservative, less performant designs and thus room
for optimization [13]. Empirical and linear stability methods have been used and properly calibrated to test
flight data in order to gain better insight into the system, but the substantial pressure and temperature loads,
especially in the highly compressible flow regime, result in an overly conservative prediction of boundary layer
state and airframe structure response [14].

Bondarev and Vedeneev [15] analyzed inviscid instabilities in supersonic boundary layer flow over a
nominally flat panel and formulated criteria for stabilized and destabilized systems depending on the boundary
layer profile. Sucheendran [16] formulated a reduced order model to predict the panel response under a grazing
flow due to acoustic loading and found a critical relation between the system damping and the Mach number
of the flow. Acoustic instabilities in super- and hypersonic flow, specifically a second-mode instability in a
M = 6 boundary layer grazing a wavy wall, are highly susceptible to local wall perturbation as was shown by
[17]. A hypersonic ramp configuration involving a boundary layer and structural model that are interconnected
with a linear stability tool for transition prediction has been developed [18] and has shown a significant impact
on the transition onset location. A fully nonlinear, coupled fluid–structure interaction of a M = 2.25 turbulent
flat plate boundary flow with a clamped panel by means of direct numerical simulation by [19] has shown a
rich coupling between the fluid and structural domain leading to the alteration of turbulent statistical properties
of the fluid domain under a flutter-like response of the panel. More recently, in the hypersonic regime, coupled
analyses have been extended to analyze application-specific flow scenarios, such as composite panels coupled
to fluid models of varying fidelity [20]. Additionally, the occurrence of strong shock systems in hypersonic
flows has led to the analyses of panel response in the presence of impinging shocks [21] and compression
ramps [22].

While incompressible boundary layers have been extensively analyzed and fairlywell understood, a broader
understanding of compressible boundary layers has yet to be established.A systematic, parametric investigation
of a flat plate boundary flow grazing a nominally flat panel presented here serves to establish the fundamental
mechanics of convective boundary layer instabilities and flexible panels.

2 Theory

2.1 Fluid-side linear stability theory

We consider the linear stability analysis of a zero pressure gradient laminar boundary layer (ZPGLBL) flowing
over a nominally flat plate and follow the local ansatz described in [23]. (See Fig. 1 for a schematic of the
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Fig. 1 Schematic of a two-dimensional boundary layer grazing a nominally flat panel

configuration.) We non-dimensionalize using freestream conditions

Ui = Ũi

Ũ∞
, ρ = ρ̃

ρ̃∞
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ρ̃∞Ũ 2∞
, L̃ ref = x̃√

Rex
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Ũ∞

where ˜(.) denotes a dimensional quantity, subscript ‘∞’ denotes freestream and ‘ref’ a reference quantity. This
leads to the non-dimensional equations
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where Stokes’ law is used to describe the second coefficient of viscosity λ and M∞ = Ũ∞/c̃∞ is the free

stream Mach number with c̃∞ =
√

γ RT̃∞ being the freestream speed of sound. In order to compute the

dynamic viscosity μ̃F = μ̃F (T̃ ), we make use of the two-part Sutherland’s law following [24].
We invoke the constant Prandtl number assumption and with the appropriate non-dimensionalization for

the thermal conductivity κ̃ = κ̃(T̃ ), we get κ(T ) = μF (T ). For the flow variables q = [U, V,W, p, T ]T, we
assume the decomposition

q = Q + q ′ with q ′(x, y, z, t) = q̂(y) · ei(αx+βz−ωt). (4)

Due to the convective nature of instabilities known to be present in laminar boundary layers, we employ a
spatial framework where the instabilities grow in space with the wave numbers α∈C and real-valued temporal
frequency ω∈R. Using these definitions in combination with subsequent linearization of Eq. (1)–(3), we can
write the coupled system of equations as an eigenvalue problem following [23] of the form

[
L0 + αL1 + α2L2

]
q̂ = 0. (5)

The components of the matrices [L0, L1, L2] can be found in “Appendix A”.
Wemake use of a self-similar solution of theNavier–Stokes equations for a ZPGLBL to serve as ameanflow.

We use the Mangler–Levy–Lees self-similarity transformation [25] which leads to the two coupled ordinary
differential equations
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(
C f ′′)′ + f f ′′ = 0 (6)
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where (...)′ = ∂
∂ζ
, ζ is the scaled wall-normal coordinate, C = μ̃ρ̃

μ̃∞ρ̃∞ is the Chapman parameter, and the
aforementioned two-part Sutherland’s law is used for the dynamic viscosity. The validity of the baseflow
tool was verified based on boundary layer and displacement thicknesses for both the incompressible and
compressible flow regime with [24].

2.2 Boundary conditions

For the baseline system with a rigid, isothermal wall, we set both wall and freestream values for [û, v̂, T̂ , ŵ]
to zero. It can be shown that thermal compliance, because of its long timescales relative to bending waves, is
dynamically unimportant but is critical in determining the effective material properties. For the mechanically
compliant, isothermal wall, we allow for a nonzero fluid velocity at the wall coupled to the motion of the plate.
For this we use the Kirchhoff–Love plate equation which in dimensional form reads
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with the bending stiffness B̃ = Ẽ h̃3/
[
12(1 − ν2)

]
the same wave-like perturbation ansatz for the plate deflec-

tion η as for the fluid perturbations, η(x, z, t) = η̂ei(αx+βz−ωt), where L̃ ref is used for non-dimensionalization.
For the interface treatment, we match both the fluid velocity perturbation with the plate deflection velocity on
the undeformed plate location following
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which leads to the impedance boundary condition
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the two resulting additional non-dimensional parameters that uniquely describe the coupled system.μ is known
as the weight ratio between fluid and solid domain, whereas the parameter φ describes the flexural behavior
of the panel. As this boundary condition involves quartic terms in α, the originally second-order becomes a
fourth-order eigenvalue problem that can be rewritten as a first-order linear system according to
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where I denotes the identity matrix and L4 is a matrix containing only zeros except for the interface points
where Eq. 10 is enforced. The components of the matrices

[
L0, L1, L2, L4

]
can be found in “Appendix A”.
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Fig. 2 Comparison of growth rate in the incompressible limit with NOLOT [27] and Fasel and Konzelmann [26] (left) as well as
velocity and temperature perturbations in the compressible regime with Marxen et al. [28] (right)

Fig. 3 Stability diagram (rigid) for the three baseflow considerations with the red dot indicating the frequency and Reynolds
number for the compliant investigations

2.3 Verification of rigid LST solver

The rigid LST solver has been verified in both the subsonic and super-/hypersonic flow regimes. For the
incompressible limit, growth rates for three perturbation frequencies that correspond to stable, neutrally stable,
and unstable boundary layer instabilities for M = 10−6 have been compared to [26] DNS results as well
as results employing the LST solver NOLOT by [27] and found to be within reasonable accuracy. For the
compressible limit, the solver has been verifiedwithMarxen’sDNSandLST results [28] for an unstable second-
mode boundary layer instability with non-dimensional temporal wave number F = 2π f̃ μ̃∞/(ρ̃∞Ũ 2∞) =
1.5 ·10−4 and M = 4.8 (see Fig. 2). The minor discrepancy for Marxen’s temperature perturbation distribution
is expected due to a discrepancy in baseflow, as his baseflowwas not a self-similar but rather a Direct Numerical
Simulation solution. Small difference in boundary layer thickness between the full Navier–Stokes equations
and self-similar solutions in the highly compressible flow regime shifts perturbation maxima but has only
minor effect on the growth rates themselves. While there has been work done in the incompressible, compliant
regime [9], the lower-speed structural physical models are different and limit meaningful verification for the
present case.

3 Results

We investigate the stability characteristics of three baseflows with fixed Reynolds number Re = 1000 and
frequency F = ω̃ν̃∞/ũ2∞ = 8 · 10−5 and M = [3, 5.8, 10] for two-dimensional perturbations (β = 0). These
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Fig. 4 Growth rate −αi of a M = 3 (top left), M = 5.8 (top right), and M = 10 (bottom middle) compliant system

parameters are chosen such that the boundary layer of a rigid system is convectively unstable for all Mach
numbers considered (see Fig. 3). A sweep across a wide range for φ and μ gives insight into different regions
of interest that correspond to the coupled system’s response.

3.1 Non-dimensional parameter space analysis

The fluid instability’s growth rate is shown for all cases investigated in Fig. 4. We can identify three features
that are valid for all Mach numbers: (1) There exists a converging rigid limit; (2) there exists a converging
free limit; (3) there exist two distinct regions transitioning from rigid to free limit behavior. For the free limit,
it can be observed that the fluid instability is damped as the growth rate −αi converges to a negative value.
The fact that the boundary layer instability converges to a finite value in the free limit is a consequence of the
impedance boundary condition in Eq. 10. For the limit of (μ, φ) → 0, p̂ → 0 in order for the wall-normal
velocity perturbation to be bounded. It can be shown that the compliant eigenvalue problem then reduces—in
the free limit—to the rigid eigenvalue problem where we impose p̂w = 0 instead of v̂w = 0 for the boundary
condition.

For the horizontal transition region (see Fig. 4), whichwe label correlation I, the systembehavior transitions
monotonically, whereas the other transition region, which we label correlation II, exhibits a non-monotonic
behavior. To quantitatively describe these transition regions of compliance based on the impedance boundary
condition (Eq. (10)), we define the approximations

correlation I: 1 � φ

(
α2 + β2

)2
ω2 → p̂ = iωμv̂

correlation II: 1 � φ

(
α2 + β2

)2
ω2 → p̂ = −iμφ

(
α2 + β2

)2
ω

v̂.
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Fig. 5 Approximation of rigid-compliant boundaries for M = 5.8 in non-dimensional parameter space (left) and phase relation
between p̂w and v̂w with both phase (dashed) and group (dotted) speed of flexural wave (right)

With a given relative deviation from the rigid system following

εαi =
∣∣∣ (αi − α

rigid
i )

α
rigid
i

∣∣∣, (13)

these relations can be quantitatively specified and used as boundaries for the rigid-compliant system behavior
(see Fig. 5). For the intersection of the two correlations, we can see that it occurs for log10(φ) ≈ 3 for all
Mach numbers considered. This independence of M∞ and μ is supported by considering the flexural phase
and group wave speeds, namely

cph = ω
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12ρ̃s
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)√
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√
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= 2 4

√
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It can be seen in Eq. (14) that both the phase and group speeds are independent ofμ and there seems to exist
a constant value φ for the intersection of correlation I and II across all Mach numbers considered. Boundary
layer instabilities are known to have wave speeds of the same order as the non-dimensional freestream velocity,
namely≈O(1), and we can compute a corresponding φ assumingmatching wave speeds of fluid instability and
flexural wave to find φ = 1/ω2 for cph ≈ 1 and φ = 1/(4ω)2 for cgr ≈ 1. For the given parameter analysis with
ω = Re ·F , we see that the resulting values log10(φ(cgr=1)) = 3.05 and log10(φ(cph=1)) = 1.84 correspond to the
intersection of correlations I and II (see Fig. 5). This intersection stems from a flexural wave that synchronizes
its phase with the fluid instability’s pressure perturbation and results in a 90o phase shift between wall-normal
velocity and pressure (see Fig. 5), θ( p̂wall) − θ(v̂wall), where θ(q̂) = arg(q̂) is the argument of the complex
amplitude distribution q̂, which is associated with a nonzero power flux at the interface. Additionally, we can
observe a shift in spatial wave structure of the fluid instability (see Fig. 6). Across the correlation I region,
we see a smooth decrease in spatial wave length, while there is a more pronounced undershoot across the
correlation II region, which is consistent with the observations for the growth rate. This supports the notion
of the synchronization of a flexural wave with the imposed pressure perturbation of the fluid instability at the
interface for a given critical value log(φcrit). For values above, fluid–structural interaction follows correlation
II, whereas for values below, it follows the piston-like behavior described by correlation I.

It isworthmentioning that for the tracking along constant values ofφ and varyingμ, we experience a general
movement of the boundary layer mode towards the continuous spectrum (see Fig. 6). This phenomenon is more
pronounced for lower values of μ and the transitioning behavior is confined to the correlation II region. While
the modes do not intersect in the complex plane, the modal shapes have found to be comparable suggesting a
potential synchronization with acoustic modes.

We next conduct an analysis of a M = 5.8 boundary layer flow with a convecting second-mode instability
with F = 2 · 10−4 for systems corresponding to correlation I/II and the free limit. We compute the resulting
N-factor
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Fig. 6 Eigenspectrum for the rigid case and tracked eigenvalue of boundary layer mode holding log10(μ) = −1.5 constant and
varying log10(φ) = [−4 . . . 6] (left); spatial wave number αr of second-mode instability for M = 5.8 (right)

Fig. 7 Varying relative growth rates for a M = 5.8 second-mode instability for correlation I/II and free limit cases

N (x) = −
∫ x

x0
αi (x)dx (15)

and visualize its deviation εN = N−Nrigid
Nrigid

from the rigid system. In Fig. 7, we can see that all three cases
converge to a constant value as Re → ∞, where the free limit with a value of εN ≈ 1 has the most pronounced
effect. Nevertheless, both correlation regions show a drastic deviation for lower Reynolds numbers which
suggests a shift of the neutral stability curve in the R-F-plane and that εN ≈ 0.1− 0.2 for larger values of Re.

It needs to bementioned that the ansatz for the perturbations (given in Eq. 4) breaks down for the converging
free limit region as the physical response of the panel in that domain would represent panel flutter. For
this aeroelastic instability, the streamwise domain length is critical as the instability coalesces into up- and
downstream propagating flexural waves that reflect off the finite panel’s boundaries. Hence, in this limit, the
proposed model of linearized Navier–Stokes and Kirchhoff–Love equation cannot fully capture the physical
response of the dynamical system. For a deeper discussion of flutter, please refer to the works of Benjamin
[5], Landahl [4], and Dowell [29].

3.2 Comparison to Piston theory

Tools used to investigate dynamic behavior in the presence of inviscid, compressible freestream flow grazing
over a compliant panel have primarily focused on employing reduced order models for the fluid domain. Most
commonly, this includes a thin plate model such as the Kirchhoff-Love plate equation coupled with Piston
Theory representing the grazing, inviscid, compressible flow. The latter is an approximation of the perturbed
pressure due to a local deflection velocity and angle which, with Eq. 9 and the perturbation ansatz for the
deflection η, can be written as the impedance condition
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Fig. 8 Pressure ratio magnitude |χ | (left) and pressure phase difference (right) between linear stability and piston theory for a
compliant system with a M = 5.8 grazing flow

p̂PTw = − 1√
M2 − 1

[
M2 − 2

M2 − 1
− α

ω

]
v̂w. (16)

As the inverse of phase speed α/ω only varies insignificantly for varying compliance parameters, the phase
angle between pressure and wall-normal velocity perturbation is constant and the magnitude difference is
predominantly a parameter of Mach number. With the use of Eqs. 10 and 16, we can compute the pressure
ratio for both piston theory and linear stability theory as

χ = p̂LSTw

p̂PTw

= iωμ
√
M2 − 1

(
α2+β2)2

ω2 φ − 1
M2−2
M2−1

− α
ω

. (17)

|χ | denotes the magnitude of the pressure ratio and arg(χ) the difference in pressure phase, which can be seen
Fig. 8.

Clearly, neither the phase nor the magnitude difference between pressure and wall-normal velocity per-
turbation is constant in the φ-μ-plane. The magnitude follows a similar pattern to the growth rates where
both correlations I/II are visible and the magnitude varies gradually between a converging value in the rigid
and free limit. More notably, the pressure phase difference experiences a jump from −π/2 to π/2 across a
constant value of log10(φ), which correlates to the intersection between correlation I/II. This is caused by a
shift between the dominant terms for the numerator (α2 + β2)2/ω2 − 1, which essentially causes a change
in sign and hence a phase shift of +π . Contrary to the piston theory, we can see that the compliant system
captured by the conjunction of linear stability theory and a mechanically compliant panel shows more complex
dynamics and allows for a nonzero phase relation between panel deflection and the pressure perturbation at
the wall.

4 Conclusion

For this work, the canonical flow problem of a compressible, laminar boundary layer over a flat plate has
been extended to account for mechanical compliance of the plate. We study the linear response of the system
due to boundary layer instabilities for super- and hypersonic Mach numbers that are known to be convectively
unstable. For this, we employ a locally parallel ansatz for the flow assuming spatially growing, two-dimensional
modes and couple the fluidal perturbation with the linear response of a Kirchhoff–Love plate. Two additional
non-dimensional parameters, μ and φ, allow for a unique description of the coupled, dynamical system.

To gain insight into the alteration of preexisting boundary layer instabilities, we consider an exemplary set
of flow parameters (F, Re) that corresponds to unstable boundary layer modes in the rigid limit for all Mach
numbers M = [3, 5.8, 10] considered. The resulting modal growth rates in the non-dimensional μ-φ-plane
show a converging rigid and free limit and two distinct correlation regions. The first corresponds to a piston-like
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movement of the panel where all streamwise variations of the panel response is negligibly small. The transition
onset from a rigid to compliant only depends on theweight ratioμ only, and its associated value is dependent on
the Mach number. The second correlation region corresponds to a flexural plate movement which is not Mach
number dependent. The intersection of these regions coincides with the flexural wave speeds of the plate being
of the order of the boundary layer instability’s wave speeds. This results in a phase change between pressure
and wall-normal velocity perturbations leading to a nonzero power input into the panel which destabilizes
the boundary layer mode. Comparison to a 1st-order piston theory model shows significant differences with
respect to pressure magnitude for a given plate deflection as well as a nonzero phase relation that experiences
a Mach-independent phase jump of π at a constant value φ.

Acknowledgements This material is based upon work supported by the Air Force Office of Scientific Research under Award
Number FA9550-18-1-0035.

A Eigenvalue problem

The quadratic eigenvalue problem described in Eq. 5 can be rewritten as a first-order system following
[
L1 L0

I 0

]
ẑ = α

[−L2 0
0 I

]
ẑ with ẑ =

[
αq̂
q̂

]
, (18)

where I denotes the identity matrix and 0 is a zero matrix. Similarly, the quartic eigenvalue problem for the
compliant system can be rewritten as a first-order system following
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∂y2
∂T

∂y

∂U

∂y

L0
22 = D2 + 1

μ

∂μ

∂T

∂T

∂y
D1 − i (βW − ω)

Re

l2μT
− β

l2

L0
23 = Re

l2μ
D1

L0
24 = i

l2μ

∂μ

∂T

∂U

∂y

L0
25 = iβ

l1
l2
D1 + iβ

l0
l2μ

∂μ

∂T

∂T

∂y
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L0
32 = D1 − 1

T

∂T

∂y

L0
33 = iγ M2 (βW − ω)

L0
34 = − i

T
(βW − ω)

L0
35 = iβ

L0
41 = 2Prγ M2 ∂U

∂y
D1

L0
42 = 2i (γ − 1) M2Prβ

∂W

∂y
− Pr Re

μT

∂T

∂y

L0
43 = i (βW − ω) (γ − 1) M2 Pr Re

μ

L0
44 = D2 + 2

k

∂k

∂y
D1 − i (βW − ω)

Pr Re

μT
+ (γ − 1)

Pr

μ

∂μ

∂y

[(
∂U

∂y

)2

+
(

∂W

∂y

)2
]

+ 1

k

∂2k

∂y2
− β2

L0
45 = 2Pr (γ − 1) M2 ∂W

∂y
D1

L0
52 = iβl1D1 + i

β

μ

∂μ

∂y

∂T

∂y
− Re

μT

∂W

∂y

L0
53 = −iβ

Re

mu

L0
54 = 1

μ

∂μ

∂T

∂W

∂y
D1 + 1

μ

∂μ

∂T

∂2W

∂y2
+ 1

μ

∂2μ

∂T 2

∂T

∂y

∂W

∂y

L0
55 = D2 + 1

μ

∂μ

∂T

∂T

∂y
D1 − i (βW − ω)

Re

μT
− l2β

2

L1
11 = −iU

Re

μT

L1
12 = il1D1 + i

μ

∂μ

∂T

∂T

∂y

L1
13 = −i

Re

μ

L1
15 = −βl1

L1
21 = i

l1
l2
D1 + i

μ

∂μ

∂T

∂T

∂y

l0
l2

L1
22 = −iU

Re

l2μT

L1
24 = −iU

Re

l2μT

L1
31 = i

L1
33 = iγ M2U

L1
34 = −i

U

T

L1
42 = 2i (γ − 1) M2Pr

∂U

∂y
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L1
43 = i (γ − 1) M2 Pr Re

μ

L1
44 = −iU

Pr Re

μT

L1
51 = −βl1

L1
55 = −iU

Re

μT

L2
11 = i

μ

∂μ

∂T

∂T

∂y

l0
l2

L2
22 = − 1

l2
L2
44 = −1

L2
55 = −1,

where D1 and D2 denote the discrete first and second derivative operator with respect towall-normal coordinate
y and li = i + k/μ. These submatrices arise from sorting the governing perturbation equations (Eqs. 1–3 in
conjunction with the perturbation ansatz Eq. 4) in the following order:

⎡
⎢⎢⎢⎣

continuity
x-momentum equation
y-momentum equation
z-momentum equation

energy equation

⎤
⎥⎥⎥⎦ (21)

In terms of the boundary conditions of the rigid system,we enforce [ûw, û∞] = 0 in the x-momentum equation,
[v̂w, v̂∞] = 0 in the y-momentum equation, [ŵw, ŵ∞] = 0 in the z-momentum equation, and [T̂w, T̂∞] = 0
in the energy equation. For the compliant system, we substitute [v̂w, v̂∞] = 0 with Eq. 10, which changes the
following components of above submatrices Li at the wall:

L0
22 = ω2 + iβ4μφ

L0
23 = ω

L2
22 = 2iβ2μφ

L4
22 = iμφ.
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