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Abstract In recent years, machine learning has been used to create data-driven solutions to problems for which
an algorithmic solution is intractable, as well as fine-tuning existing algorithms. This research applies machine
learning to the development of an improved finite-volume method for simulating PDEs with discontinuous
solutions. Shock-capturing methods make use of nonlinear switching functions that are not guaranteed to be
optimal. Because data can be used to learn nonlinear relationships, we train a neural network to improve the
results of a fifth-order WENOmethod. We post-process the outputs of the neural network to guarantee that the
method is consistent. The training data consist of the exact mapping between cell averages and interpolated
values for a set of integrable functions that representwaveformswewould expect to seewhile simulating a PDE.
We demonstrate our method on linear advection of a discontinuous function, the inviscid Burgers’ equation,
and the 1-D Euler equations. For the latter, we examine the Shu–Osher model problem for turbulence–shock
wave interactions. We find that our method outperforms WENO in simulations where the numerical solution
becomes overly diffused due to numerical viscosity.

Keywords Shock capturing · Machine learning · Fluid mechanics

1 Introduction

For some initial-boundary value problems (IBVP) in fluid mechanics, the solution of the partial differential
equations (PDEs) includes discontinuous initial data or a discontinuity that forms in finite time, i.e., shock
waves. Numerical methods for solving these PDE must be specially tailored to properly resolve these discon-
tinuities [19].

These shock-capturing methods are designed with the goal of sharply resolving a shock without inducing
spurious oscillations, while also giving accurate solutions in smooth regions of the flow. One major break-
through in this effort was the development of high-resolution methods [10], as these methods were capable
of achieving second-order accuracy without introducing spurious oscillations around shocks. These methods
gave rise to a class of high-resolution methods called essentially non-oscillatory (ENO) schemes [11] that
measure the smoothness of the solution on several stencils, and then compute the flux based on the smoothest
stencil to avoid interpolating through the discontinuity. These schemes are nonlinear (even when the PDEs are
linear) since the interpolation coefficients depend on the solution. These ideas were then modified to create
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WENO-JS (weighted ENO-Jiang Shu) methods [13], which again compute the smoothness on several stencils.
However, instead of taking only the smoothest stencil, these methods take a weighted average of the fluxes
predicted on each stencil to emphasize the smoother ones. When each stencil is equally smooth, the weights
are designed to cause the method to converge to the constant coefficient scheme that maximizes the order of
accuracy over the union of the sub-stencils, which gives these methods a high order of accuracy for smooth
solutions.

Many efforts have been built on the original WENO-JS schemes by modifying the smoothness indicators
[9,14,24], modifying the nonlinear weights [2,3,25], and using WENO-JS as part of a hybrid scheme [20,22].
While some of these references build off of each other rather than starting from WENO-JS, we will base
our method on WENO-JS because our strategy for developing the method does not resemble other methods.
However, our methodology could easily adopt various improvements that have been made to WENO-JS.

One commonality that has persisted since the original ENO scheme is a reliance on human intuition in
shock-capturingmethod design, particularly in the nonlinear aspects of the schemes, i.e., smoothness indicators
and weighting functions. While they have been well studied, there is no reason to believe that they are optimal.
Efforts have been made to develop optimal spatial discretization methods by minimizing wave propagation
errors [15,18,21,28] and minimizing error over certain frequency ranges [31], and some of these techniques
have even been combined with shock-capturing schemes [7,29]. However, designing the optimization problem
still requires human intuition with regards to balancing competing goals, rather than attempting to learn an
optimal scheme from data in an unbiased way.

Over the past decades, machine learning has become ubiquitous in data analysis and is increasingly seen
as having potential to improve (or reformulate) numerical methods for PDEs. Dissanayake et al. [6] exploit
the fact that neural networks are universal approximators to transform the problem of solving a PDE into
an unconstrained minimization problem. Lagaris et al. [17] parameterized the solution to a PDE as a neural
network and optimized the weights to minimize the residual of the solution. Yu et al. [30] trained a neural
network to classify the local smoothness and apply artificial viscosity based on this classification. Bar-Sinai et
al. [1] used simulation data to embed coarse-graining models into finite difference schemes involving neural
networks, allowing them to achieve low error on relatively coarse grids. Pfau et al. [23] parameterized the
eigenfunctions of eigenvalue problems as a neural network and cast the training as a bilevel optimization
problem to reduce bias, resulting in significantly decreased memory requirements. Hsieh et al. [12] attempted
to learn domain-specific fast PDE solvers by learning how to iteratively improve the solution using a deep
neural network, resulting in a 2-speedup compared to state-of-the-art solvers.

In the current work, we attempt to train a neural network to improve WENO5-JS. Our goal is to get closer
to the optimal nonlinear finite-volume coefficients while introducing a minimal amount of bias. Unlike other
references, we do not directly change the smoothness indicators or nonlinear weights of the method. Instead,
we use a neural network to perturb the finite-volume coefficients determined using the original smoothness
indicators and nonlinear weights of WENO5-JS. We attempt to learn an optimal function for this perturbation
using data generated fromwaveforms that are representative of solutions of PDEs. Thesemodifications result in
a finite-volume scheme that diffuses fine-scale flow features and discontinuities less severely thanWENO5-JS.
We start in the next section by giving a more detailed description of the proposed algorithm.

2 Numerical methods

2.1 Description of WENO-NN

Although we focus on WENO5-JS in this paper, our approach could generally be used to enhance any shock-
capturing method (or perhaps any numerical method). The proposed algorithm involves preprocessing the
flow variables on a stencil using a conventional shock-capturing method and feeding those results into a neural
network. The neural network then perturbs the results of the shock capturing method. Post-processing is then
applied to the output of the neural network to guarantee consistency [1] (or, more generally, could be used to
enforce other desirable properties). Hence, the augmented numerical scheme takes on many properties of the
original. For example, applying the method to WENO5-JS results in an upwind-biased finite volume method
with coefficients that depend on the local solution. The steps of the algorithm for enhancing WENO5-JS are
shown in Algorithm 1.

We use WENO5-JS to preprocess the input data, so that the input to the neural network is the set of
finite-volume coefficients found by WENO5-JS. We found that including this preprocessing step significantly
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Algorithm 1 WENO-NN Algorithm
1: procedure WENONN
2: Begin with cell averages ū j−2: j+2
3: Scale the cell averages
4: Compute coefficients c̃ j−2: j+2 with WENO5-JS
5: Compute change in coefficients Δc̃ j−2: j+2 with neural network
6: Compute new coefficients ĉ j−2: j+2 = c̃ j−2: j+2 − Δc̃ j−2: j+2
7: Compute final coefficients c j−2: j+2 by transforming ĉ j−2: j+2
8: Compute cell edge value u j+1/2 = c j−2: j+2 · ū j−2: j+2

improved performance. Once the nonlinear weightswi are determined according to theWENO5-JS algorithm,
the coefficients for each cell average are computed as

c̃−2 = 1

3
w1,

c̃−1 = −7

6
w1 − 1

6
w2,

c̃0 = 11

6
w1 + 5

6
w2 + 1

3
w3, (1)

c̃1 = 1

3
w2 + 5

6
w3,

c̃2 = −1

6
w3.

These five coefficients are the inputs to the neural network, which outputs a change in each coefficient, Δc̃i .
Our neural network uses three hidden layers, each with three neurons. We deliberately make the network as
small as possible to reduce the computational cost of evaluating it. We are able to use such a small network
because assuming that the WENO5-JS coefficients are a useful model input is a strong prior, so WENO5-JS
performs a significant amount of the required processing. L2 regularization is applied to the output of the
neural network to penalize deviations from WENO5-JS, which encourages the network to only change the
answer supplied by WENO5-JS when an improved result is expected. The new coefficients are computed by
subtracting the change in coefficients from the old coefficients.

Additionally, the size of the input space is reduced by scaling cell averages within the stencil as

ūs = ū − min ū
max ū − min ū

. (2)

If all the cell averages have the same value, the scaling equation fails, so the value at the cell edge is simply
set to the cell average value.

To guarantee that WENO-NN is consistent, we apply an affine transformation to these coefficients that
guarantees that they sum to one [1]. We derive this transformation by solving the optimization problem:

min
c∈R5

2∑

n=−2

(cn − ĉn)
2

s.t.
2∑

n=−2

(cn) = 1,

(3)

which can be reformulated with the substitution Δc = c− ĉ to pose the problem as finding the minimum norm
solution to an under-constrained linear system

min
Δc∈R5

2∑

n=−2

(Δcn)
2

s.t.
2∑

n=−2

(ĉn + Δcn) = 1,

(4)
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Fig. 1 Convergence of WENO-NN, WENO5-JS, and WENO1 for smooth solutions

which has the analytical solution

Δci = 1 − ∑2
n=−2 ĉn
5

. (5)

One can use the same approach to enforce arbitrarily high orders of accuracy since the optimization problem
has an analytical solution for any constraint matrix of sufficiently high rank

min
Δc∈R5

2∑

n=−2

(Δcn)
2

s.t. A(ĉ + Δc) = b.

(6)

This optimization problem has analytical solution Δc = AT (AAT )−1(b − Aĉ) when AAT is invertible.
We verify that our constraint is satisfied by looking at the convergence rate of WENO-NN for a smooth

solution. For this test case, we will simply use WENO-NN, WENO5-JS, and WENO1 to take the derivative
of u(x) = sin(4πx) + cos(4πx), and compare the results to the analytical solution ∂u

∂x
∗ = −4π sin(4πx) +

4π cos(4πx) using the error metric

E =
√

|| ∂u
∂x − ∂u

∂x
∗||2

N
. (7)

In Fig. 1, we can see that WENO-NN achieves the first-order accuracy, which confirms that the constraint
is satisfied. We also see that, as expected, WENO5-JS converges at fifth order and WENO1 converges at first
order asΔx → 0. However, when discontinuities are present it is not possible to achieve better than first-order
accuracy with any finite volume method [19]. Despite this fact, it is advantageous to use WENO5-JS over
WENO3-JS in such situations, as WENO5-JS still tends to give lower error in discontinuous problems [26],
which is why we chose to use WENO5-JS for processing the cell average values despite the fact that WENO-
NN ends up being first-order accurate. Similarly, we see that for some discontinuous problems, WENO-NN
gives lower error than WENO5-JS. If a higher order of accuracy is desired in smooth regions of the flow, one
could develop a hybrid method using WENO-NN and any high-order method.

2.2 Other numerical methods used

For all simulations shown, we use a third-order TVD Runge–Kutta scheme [8] as our time-stepping method

u(1) = u(n) + Δt L(u(n)),
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u(2) = 3

4
u(n) + 1

4
u(1) + 1

4
Δt L(u(1)), (8)

u(n+1) = 1

3
u(n) + 2

3
u(2) + 2

3
Δt L(u(2)).

For flux-splitting, we use a Lax–Friedrichs flux splitting procedure: [27]

f ±(u) = 1
2 ( f (u) ± αu),

α = max
u

| f ′(u)|.
(9)

In this expression, f (u) is defined as the flux of a 1-D hyperbolic conservation law ∂u
∂t + ∂ f (u)

∂x = 0. When
solving the 1-D Euler equations, we apply the flux splitting to the characteristic decomposition of the system.
For our numerical Riemann solver, we use the Lax–Friedrichs method [5].

3 Machine learning methodology

We construct our training data directly from known functions that we expect to represent the waveforms that
WENO-NN will encounter in practice. Note that the same dataset is used for every PDE, as we train only one
network and use it for every WENO-NN result shown in this paper. However, one could develop a problem-
specific dataset if desired. For each data point, we start with some function u(x) and a discretized domain of
n cells. The cell average is evaluated on each cell as

ū(xi ) = 1

Δx

∫ xi+ Δx
2

xi− Δx
2

u(x)dx, (10)

and because we chose the form of u(x) we can evaluate the cell average analytically. We also evaluate the
function value on the cell boundary as u(xi + Δx/2) analytically. We then move along the domain and form
the dataset based on the stencil size. So for WENO-NN, one data point involves 5 cell averages as the input
with the function value on the cell boundary as the output. The functions we use when creating the dataset are
step functions, sawtooth waves, hyperbolic tangent functions, sinusoids, polynomials, and sums of the above.
Sinusoids and polynomials broadly cover most smooth solutions that would be encountered in practice, and we
specifically chose hyperbolic tangent functions because theymimic smeared out discontinuities. Similarly, step
functions and sawtooth waves mimic contact discontinuities and shocks. We included sums of these functions
to mimic complex flow fields that may contain shocks within a turbulent flow. We found that including more
data made the resulting scheme less diffusive and less oscillatory.

When adding a new entry to the dataset, we first check to see if it is close to other points already present
in the L2 sense. Sufficiently close points are not added to the dataset to prevent redundant data that will slow
down the training process. The resulting dataset has 75,241 entries.

When training the network, we use the Adam optimizer [16], split the data into batches of 80 points to
estimate the gradient, and optimize for 10 epochs using the Keras package in Python [4]. We trained the
network from many different randomly chosen initial guesses of the parameters and chose the best one based
on performance in simulating the linear advection of a step function.We apply L2 regularizationwith a constant
of λ = 0.1 to the neural network output and find that when splitting the data into a training set of 80% of the
data and a validation set of the other 20% of the data our in-sample error is 0.569 and the out-of-sample error
is 0.571, averaged from 100 trials of training on the dataset, so overfitting within the generated dataset is not
a concern. This difference is so small because the model we are training is of relatively low complexity and is
essentially underfitting the generated dataset. We use mean squared loss as our objective function to minimize.

Despite the fact that we do not see overfitting within the generated dataset, we still observe overfitting when
we apply the method to an actual simulation. Figure 2 shows the average training error, average validation
error, and average error when using the method to simulate a PDE for different regularization values λ of the
neural network output. The training and validation errors are computed using the mean square error:

Edata =
∑N

i=1(yi − y∗
i )

2

N
, (11)
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(A) (B)

Fig. 2 Comparing error trends between a exact generated data and b simulation results

while the simulation error is computed by using the learned numerical method to linearly advect a step function
and computing the L2 error at the end of the simulation:

Esimulation =
√∫ L

0
(ū(x, T ) − ū∗(x, T ))2dx . (12)

One can see that adding regularization causes error to increase in both the training and validation datasets,
but decreases the error in the simulation results. Hence, we can see that we are overfitting to the training data,
but because the validation data do not show this, we can conclude that the dataset does not exactly match the
distribution we are trying to approximate.

The following paragraph describes our model development process and can be skipped without loss of
continuity. Initially, ourmodel involved constant coefficients rather than a neural network.We eventually found
that the added flexibility of a neural network improved the performance of the numerical method. Initially,
the neural network simply took the local solution values as the input and returned FVM coefficients as the
output. Adding the affine transformation that guarantees consistency was found to significantly improve the
performance of our numerical method. We initially enforced consistency by setting the neural network to
output only four of the five coefficients and choosing the last coefficient such that the method is consistent. We
ultimately changed this constraint to the optimization framework seen in this paper, as it seemed more elegant.
However, this change had a very little effect on performance. Using the neural network to perturb theWENO5-
JS coefficients was found to significantly improve performance over having the neural network directly output
the coefficients. When the neural network directly outputs the coefficients, the trained numerical method is
empirically unstable. To fix this issue, we applied L2 regularization to the coefficients to add damping by
biasing the coefficients to take on similar values. We then realized that we could instead bias these coefficients
toward a scheme that we already know is stable, and modified the network architecture to perturb the fifth-
order, constant coefficient method that WENO5-JS converges to in the presence of smooth solutions. We then
decided to have the neural network perturb the WENO5-JS coefficients, which we found greatly improved the
performance of themethod.We also found that using these coefficients as the input to the neural network instead
of the local solution values offered further improvement. Finally, we also experimented with the network size.
We found that past a certain point, increasing the depth of the network and the number of nodes per layer did
not improve performance, even with optimized regularization parameters. In order to minimize computational
cost, we chose the smallest network that offered maximum performance, as this network is small and further
decreasing its size was found to rapidly harm performance while offering very little speedup.

4 Results

4.1 Advection equation

These results will focus on comparing WENO5-JS to WENO-NN. Every WENO-NN result we show in this
paper was generated using the same neural network with the same weights. As such, our numerical method
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(A) (B)

Fig. 3 Numerical solutions of the advection equation at t = 0, 20, 50, and 100 using aWENO-NN and bWENO5-JS. Note that
the curves in a for t > 0 are indistinguishable

is broadly applicable to problems not discussed in this paper, in contrast to many machine learning solutions
that are problem specific. No additional training is necessary to use this method for other PDEs. The first test
case we look at is the linear advection of a step function on a periodic domain. Mathematically, this IBVP is
posed as

∂u

∂t
+ c

∂u

∂x
= 0,

u(0, x) =
{
1, if x ≥ L/2,
0, otherwise,

u(t, 0) = u(t, L).

(13)

For this simulation, we set c = 1 and L = 2. We split the domain into 100 cells, use a CFL number of 2/3,
and run the simulation for 50 periods for a total time of T = 100. Figure 3 shows the solution of this PDE for
WENO5-JS and WENO-NN at t = 0, 20, 50, and 100. The solution at t = 0 is also the exact solution at all
the other times plotted.

One can see that the solution usingWENO-NNprovides a closer visual fit to the exact solution, asWENO5-
JS diffuses the discontinuity more significantly thanWENO-NN.WENO5-JS also introduces noticeable over-
shoot behind the discontinuity. The neural network has the interesting property that the waveform is nearly
invariant to its propagation, whileWENO5-JS continues to diffuse the solution. This behavior can be explained
by examining the artificial fluid properties associated with the modified equation obtained by Taylor series
expansion (assuming linearity of the scheme). The modified PDE is

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
+ δ

∂3u

∂x3
− σ

∂4u

∂x4
+ · · · . (14)

The expansions give expressions for the artificial viscosity, dispersion, andhyperviscosity, ∂ ū
∂t +

u(x+ Δx
2 )−u(x− Δx)

2
Δx

= 0 after making the substitutions u(x + Δx
2 ) = ∑2

n=−2 cnū(x + nΔx) and u(x − Δx
2 ) = ∑2

n=−2 cnū(x +
(n − 1)Δx), and are computed as

ν = Δx
2∑

n=−2
cn

(n−1)2−n2

2 , (15)

δ = Δx2
2∑

n=−2
cn

(n−1)3−n3

6 , (16)

σ = −Δx3
2∑

n=−2
cn

(n−1)4−n4

24 . (17)
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(A) (B) (C)

Fig. 4 Influence of a artificial viscosity, b dispersion, and (C) hyperviscosity of WENO5-JS

(A) (B) (C)

Fig. 5 Influence of a artificial viscosity, b dispersion, and c hyperviscosity of WENO-NN

Figure 4 shows these quantities for WENO5-JS. In order to estimate the contribution of each term, we
approximated the higher-order spatial derivatives using standard finite-volume methods, and scale each by the
magnitude of that derivative. For example, the influence of artificial viscosity is computed as

Iν(x) = ν(x + Δx/2) + ν(x − Δx/2)

2

∣∣∣∣
u′(x + Δx/2) − u′(x − Δx/2)

Δx

∣∣∣∣ . (18)

Hence, we ignore regions of the flow where the coefficient may signify that artificial viscosity (or other
properties) is being added when they would have a negligible effect because the derivative is small.

One can see that forWENO-JS there is no viscosity or dispersion, as themethod is designed such that on each

substencil
∑2

n=−2 cn
(n−1)2−n2

2 = 0 and
∑2

n=−2 cn
(n−1)3−n3

6 = 0, so WENO5-JS applies only hyperviscosity.
The method applies a small amount of negative hyperviscosity near the discontinuity. As time goes on and the
discontinuity continues to diffuse, the influence of hyperviscosity decreases.

Figure 5 shows that unlike WENO5-JS, WENO-NN adds both artificial viscosity and dispersion to the
solution. We see that near the discontinuity, negative viscosity is being added, which apparently provides the
anti-diffusion that causes the discontinuity to retain its steepness, while hyperviscosity is applied to stabilize
the solution.

We obtain a quantitative picture of the error in Fig. 6. We plot the L2 error over time (measured to the exact
solution), as well as the total variation, T V = ∑N

i=1 |u(Δxi) − u(Δx(i − 1))|, to indicate when oscillations
have been induced in the solution. We also measured the width over which the discontinuity is spread by
counting the cells that have an error above a certain threshold (in this case chosen to be 0.01) and multiplying
this number by Δx/2 since there are two discontinuities in the simulation.
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(A) (B) (C)

Fig. 6 Comparing a L2 error, b total variation, and c discontinuity width over time for WENO-NN and WENO-JS

(A) (B)

Fig. 7 L2 error at the end of the simulation for a WENO-NN and b WENO5-JS

The figure shows that WENO-NN decreases the error by almost a factor of 2.1 Although the total variation
spikes at the start of the WENO-NN simulation, it is damped out and returns back to approximately the true
value of 2, while the WENO5-JS total variation steadily climbs to above 2.04. We see a similar behavior in the
discontinuity width, whereWENO-NN reaches its steady value relatively quickly, whileWENO5-JS continues
to spread.

In order to determine howWENO-NNperforms in different settings, the spatial and temporal discretizations
were varied, and the L2 error at the end of the simulation was measured. We again use a domain of length 2
and simulate for 50 periods. These results are shown in Fig. 7.

We can see that WENO-NN tends to outperform WENO5-JS in regions where the spatial discretization is
fine, but results in a larger L2 error for coarse discretizations. To further compare the methods, Fig. 8 shows
the error against the run time for the two methods within a range of CFL values. We will only look at moderate
CFL numbers, between 0.25 and 0.75, as stability becomes a concern for both methods above this range, and
it becomes inefficient to run the simulation with CFL numbers below this range. We will also restrict the cell
width to be below 0.025, as coarser meshes cause the final waveform to be unrecognizable compared to the
exact solution for both methods, so the error comparison becomes meaningless. We see that when the CFL
number is of a moderate value and the grid is sufficiently refined, WENO-NN typically achieves lower errors
with smaller run time than WENO5-JS.

We also examine the convergence of each method for this problem in Fig. 9. Here, we fix CFL = 0.5 and
measure the L1 error of each numerical solution. We find that WENO1 achieves a slope of 0.5, WENO5-JS
achieves a slope of 0.82, and WENO-NN achieves a slope of 1. Despite having a lower order of accuracy for
smooth problems, WENO-NN is able to achieve a faster convergence rate for this discontinuous problem.

1 Note that the error oscillates between two different values because in the exact solution the discontinuity switches between
being on the edge of a cell and 1/3 of a cell width away from either the left or right of a cell edge since the CFL number is 2/3.
To get a smooth curve, we apply a filter to the error and plot E(i) = e(i)+e(i−1)+e(i−2)

3 .
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Fig. 8 Comparing the L2
2 error and run time of WENO-NN, WENO5-JS, and WENO1 for 0.25 < CFL < 0.75 and Δx < 0.025

Fig. 9 Comparing the convergence rates of WENO-NN, WENO5-JS, and WENO1 for advection of a step function

4.2 Inviscid Burgers’ equation

We next consider the inviscid Burgers’ equation. Unlike the linear advection equation that included only
contact (initial) discontinuities, the inviscid Burgers’ equation results in shocks from smooth initial data.
The distinction here is important: For a shock, the dynamics of the PDE will drive the solution toward a
discontinuity, countering any diffusive effects associated with the numerics. We will again consider periodic
boundary conditions, though we will start the simulation with a Gaussian as the initial condition. Hence, the
IBVP is posed as

∂u

∂t
+ 1

2

∂u2

∂x
= 0, (19)

u(0, x) = exp

(
−k

(
x − L

2

)2
)

, (20)

u(t, 0) = u(t, L). (21)

We simulate the problem for a time of T = 4 on a domain of length L = 2 and a value of k = 20. We first
approximate the exact solution by solving this simulation with Δx = 3.125 ·10−4 and Δt = 1.5625 ·10−4 for
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Fig. 10 Comparing error versus grid spacing of WENO-NN and WENO5-JS for the inviscid Burgers’ equation

a total of 6400 cells and 25,601 timesteps. What we see is that the L2 error is roughly the same for WENO5-JS
and WENO-NN, as shown in Fig. 10. Hence, we should expect the method to perform similarly to WENO5
in the presence of a shock.

4.3 1-D Euler equations

The last test case we will look at is the Shu–Osher problem, a test case involving the 1-D Euler equations. Note
that the method was also tested on the Sod problem, but because this test case did not lead to any conclusions
not drawn from either the advection equation or the inviscid Burgers’ equation, these results have been omitted.
The Shu–Osher problem is a model problem for turbulence–shock wave interactions. It involves the following
equations and initial conditions:

∂ρ

∂t
+ ∂(ρu)

∂x
= 0, (22)

∂ρu

∂t
+ ∂(P + ρu2)

∂x
= 0, (23)

∂E

∂t
+ ∂((E + P)u)

∂x
= 0, (24)

P = (γ − 1)

(
E − 1

2
ρu2

)
, (25)

ρ(0, x) =
{
3.857143, if x ≤ 1
1 + ε sin(5x), otherwise

, (26)

u(0, x) =
{
2.629369, if x ≤ 1
0, otherwise

, (27)

P(0, x) =
{
10.33333, if x ≤ 1
1, otherwise

. (28)

The simulation takes place on a domain of length L = 10 and is run until a final time of T = 2. ε is set to
0.2. We first obtain an approximately exact solution by discretizing the solution into 12,800 cells and 10,240
timesteps and use WENO5-JS for the simulation. This grid is fine enough to consider the solution exact. We
then solve the problem using 300 cells and 240 timesteps using bothWENO5-JS andWENO-NN and compare
the numerical results to the exact solution. Figure 11 shows the density, pressure, and velocity at the end of
the simulation.
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(A) (B) (C)

Fig. 11 Comparing a density, b pressure, and c velocity of WENO-NN and WENO5-JS to the exact solution for the Shu–Osher
problem

(A) (B)

(C) (D)

Fig. 12 Zoomed-in view of the turbulent section for different grid resolutions of a 250, b 300, c 800, and d 3200 cells for the
Shu–Osher problem

The most interesting aspect of the solution is the highly oscillatory section of the density profile, which
is considered to behave similarly to turbulence. Figure 12 shows a zoomed-in view of this section at different
grid resolutions.

One can see that the neural network diffuses the oscillations significantly less than WENO5 for coarse
grids, which is an encouraging result in terms of simulating actual turbulence. As the mesh is further refined,
the WENO-NN appears to add too much anti-diffusion, which inflates fine features of the solution. On the
very fine grid, both WENO5-JS and WENO-NN are similar (provided WENO-NN is stable, and then it is
constrained to converge as at least first order).
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5 Discussion and conclusions

By training a neural network to process the outputs of the WENO5-JS algorithm, we were able to improve its
accuracy, particularly in problemswhere the artificial diffusion introduced inWENO5-JSwas excessive.While
WENO-NN ismore expensive per evaluation thanWENO5-JS, it achieved lower errors on coarser grids, which
indicates some potential to be useful more generally. We trace these performance improvements to increased
flexibility in the neural network compared to WENO5-JS, as it can add artificial viscosity and dispersion,
while WENO5-JS coefficients are constrained to make these quantities zero. By analyzing the advection of
a step function, we found that WENO-NN applies negative artificial viscosity near the discontinuity, which
allows it to maintain its sharp profile (this takes place sometime into the simulation after the initial profile
has been slightly smoothed due to artificial viscosity that prevents spurious oscillations). We then observe
similar behavior in the Shu–Osher problem, where we see that WENO5-JS diffuses the fine features of the
solution more than WENO-NN. However, we also found that at certain resolutions WENO-NN applies too
much negative artificial viscosity, resulting in too much amplification of these fine-scale features, though this
amplification does not develop into an instability. For true shocks, as opposed to contact discontinuities, we
found that our method performs very similarly to WENO5-JS.

One drawback ofWENO-NN is that it does not inherit the high-order convergence ofWENO5-JS. It would
be an improvement to the method to be able to structure the network such that its coefficients more quickly
converge to those of either WENO5-JS or the constant coefficient scheme that maximizes order of accuracy in
the presence of smooth solutions. However, this must be done in a way that does not interfere with predictions
in non-smooth regimes that benefit from low-order behavior, which is a non-trivial task. Until such a method
is developed, one would need to use WENO-NN as part of a hybrid scheme if higher-order convergence is
desired in smooth regions [20]. Another outstanding issue with machine-learned schemes is stability. The
WENO-NN scheme used here seemed to inherit the stability of the underlying WENO5-JS scheme that it was
based on, but this need not have been the case, and we cannot offer proof or an estimate for the maximal CFL.

In future work, we aim to test the method on large-scale, multidimensional problems. We would expect the
benefits seen in 1-D problems to be more significant when multiple spatial dimensions are present, as WENO-
NN allows for a coarser mesh, so the improvement scales exponentially with the number of dimensions.
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