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Abstract We propose a method to construct a reduced order model with machine learning for unsteady
flows. The present machine-learned reduced order model (ML-ROM) is constructed by combining a convo-
lutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM), which are trained
in a sequential manner. First, the CNN-AE is trained using direct numerical simulation (DNS) data so as to
map the high-dimensional flow data into low-dimensional latent space. Then, the LSTM is utilized to establish
a temporal prediction system for the low-dimensionalized vectors obtained by CNN-AE. As a test case, we
consider flows around a bluff body whose shape is defined using a combination of trigonometric functions
with random amplitudes. The present ML-ROMs are trained on a set of 80 bluff body shapes and tested on a
different set of 20 bluff body shapes not used for training, with both training and test shapes chosen from the
same random distribution. The flow fields are confirmed to be well reproduced by the present ML-ROM in
terms of various statistics. We also focus on the influence of two main parameters: (1) the latent vector size in
the CNN-AE, and (2) the time step size between the mapped vectors used for the LSTM. The present results
show that the ML-ROMworks well even for unseen shapes of bluff bodies when these parameters are properly
chosen, which implies great potential for the present type of ML-ROM to be applied to more complex flows.

Keywords Reduced-order modeling · Machine learning · Unsteady wake

1 Introduction

In recent years, a huge amount of detailed flow field information has been accumulated as fluid big data thanks
to high-resolution numerical simulations and image-basedmeasurements. Understanding essential phenomena
and controlling flows based on such big data—as they are—are difficult due to their complexity. Therefore,
reduced order models (ROMs) have been utilized as one way to tackle such problems. One of the beauties of
ROMs is that they can map a flow field with high dimensions into a low-dimensional space [1]. Lumley [2]
introduced the proper orthogonal decomposition (POD), which can express a flow field with several principal
modes and the corresponding eigenvalues. Schmid [3] proposed the dynamic mode decomposition (DMD)
that extracts the information from flow fields by focusing on a specific frequency. These ROMs are considered
to have deepened our understanding [4] and enabled us to control flow phenomena at low computational costs
[5]. Despite the great advantages of these linear methods, an annoying problem may be that the number of
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modes required to represent a flow often becomes too large to handle because nonlinear phenomena must
be approximated by a linear superposition of orthogonal modes. Even for a turbulent channel flow at a low
Reynolds number, for instance, 7260 POD modes are required to reconstruct 95% of its total energy [6]. In
order to reduce the number of modes, use of the novel nonlinear dimension reduction technique that brought
innovation to image recognition [7], i.e., machine learning, can be considered as a good candidate.

In recent years, machine learning techniques, which can automatically extract key features from tremen-
dous amount of data, have achieved noteworthy results in various fields including fluid dynamics owing to
the advances in the algorithms centering on deep learning [8–13], which has been enabled by the recent
development of computational power. For instance, Ling et al. [14] proposed a tensor basis neural network to
predict the Reynolds stress anisotropy tensor for Reynolds-averaged Navier–Stokes simulations. The proposed
method was applied to the duct and wavy flows, and it showed substantial merits over the conventional eddy
viscosity models. Fukami et al. [15] utilized convolutional neural networks (CNN) [16] for a super-resolution
reconstruction of two-dimensional turbulence and reported that the customized CNN model can recover the
maximum wavenumbers of energy spectrum from grossly coarse low-resolution flow data. A machine learn-
ing method was also applied to the flow around a circular cylinder so as to predict the flow fields at various
Reynolds numbers from the pressure drag coefficient distribution [17]. Moreover, Viquerat and Hachem [18]
have proposed a CNN-based method to predict drag coefficients in a two-dimensional low Reynolds number
flow around various random shapes generated by Bézier curves. In this way, capability of machine learning
has been demonstrated for different kinds of fluid dynamics problems, although it should be noted that the
literature on this topic is vast and many other applications exist despite the references provided here.

Of particular interest concerning the machine learning for fluid dynamics is its applications to nonlinear
reduced-order modeling. San and Maulik [19] proposed an ROM for quasistationary geophysical turbulent
flows based on the extreme learningmachine. Srinivasan et al. [20] proposed amachine learningmodel based on
a multilayer perceptron and a long short-termmemory (LSTM) [22] to successfully predict temporal behaviors
of the coefficients in the nine-equation turbulent flow model. More recently, Murata et al. [21] have proposed
nonlinear mode decomposition via CNN autoencoder (CNN-AE) and reported its great advantage over POD
for the flow around a circular cylinder and its transient process in terms of the feature extraction of flow fields
in lower dimensions.

The objective of the present study is to propose a method of reduced-order modeling using CNN-AE and
LSTM, which have been separately shown to have great potentials as introduced above. The machine-learned
reduced order model (ML-ROM) proposed here is constructed by combining a CNN-AE and an LSTM, which
are trained in a sequential manner. The CNN-AE part is trained first to map the high-dimensional flow field
obtained by direct numerical simulation (DNS) into a low-dimensional latent space. Then, the LSTM part is
trained to predict the temporal evolution of the low-dimensionalized vectors obtained by the CNN-AE. As a
test case, we consider two-dimensional unsteady flows around a bluff body. We randomly define the shapes of
bluff bodies in order to assess the performance of the present ML-ROM for unseen data. Moreover, the effects
of the two key parameters are examined to unveil their influence on the model performance.

The remainder of the paper is organized as follows. Section 2 introduces the details of the training data and
the theory of the machine learning models. The results and case studies on the prediction of flows around bluff
bodies of various shapes are presented and discussed in Sect. 3. Finally, the concluding remarks are provided
in Sect. 4.

2 Methods

2.1 Training data

Two-dimensional direct numerical simulation (DNS) of flows around various bluff bodies, whose shapes are
defined randomly, is performed to obtain the flow fields used for training, validation, and assessment of the
ML-ROM. The governing equations are the incompressible continuity and Navier–Stokes equations, i.e.,

∇ · u = 0, (1)
∂u
∂t

+ ∇ · (uu) = −∇ p + 1

ReD
∇2u, (2)

where u= [u, v]T , p, and t denote the velocity, pressure, and time, respectively. All variables are made
dimensionless by the fluid density ρ∗ , the uniform velocityU∗∞, and the frontal length D∗ of the body, where
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Fig. 1 The computational domain used for DNS (black lines), its subdomain used for the machine learning (red lines), and the
shapes of the bluff bodies. Blue lines indicate the example of the bluff bodies defined randomly following Eqs. 3 and 4

the superscript ∗ represents dimensional variables. The Reynolds number is set to ReD = U∗∞D∗/ν∗ = 100,
where ν∗ is the kinematic viscosity.

The computational domain is shown in the left part of Fig. 1. The center of the bluff body is located 9D
from the inflow boundary. The uniform velocity U∞ = 1 is given at the inflow boundary, the convective
boundary condition is used at the outflow boundary, and the free-slip condition is imposed on the top and
bottom boundaries.

The present DNS code is basically the same as that used by Anzai et al. [23] for flows around a square
cylinder, except that a ghost-cell method [24] is used to satisfy the no-slip boundary condition on the bluff
body surface. The spatial discretization is done by using the energy-conservative second-order finite difference
method on a staggered grid system [25], which is uniform in both streamwise (x) and transverse (y) directions
with the grid sizeΔx = Δy = 0.025. The number of computational cells is (Nx , Ny) = (1024, 800). The time
integration is done using the low-storage third-order Runge–Kutta/Crank–Nicolson (RK3/CN) scheme [26]
with a velocity–pressure coupling similar to the simplified marker and cell (SMAC) method [25]. The time
step is set to Δt = 2.5× 10−3. The pressure Poisson equation is solved by means of the fast Fourier transform
(FFT) in x direction with the mirroring technique [27] and the tridiagonal matrix algorithm (TDMA) in (y)
direction. We have verified for some selected cases that the present grid resolution is sufficiently fine, and we
have validated that the time-averaged drag and rms lift coefficients as well as the Strouhal number computed
for a circular cylinder (for which references are available) are in good agreement with the references.

As mentioned above, the flows around bluff bodies with various shapes are considered in order to exam-
ine whether we can construct a single ML-ROM approximating the function F corresponding to the time-
discretized Navier–Stokes equation q(n+1)Δt = F(qnΔt ) (where q = [u, v, p]T and the superscript denotes
time), which is valid even for unseen shapes. The shape of a single bluff body is defined as

r = 0.5 +
4∑

n=1

an sin nθ +
4∑

n=1

an+4 cos nθ, (3)

8∑

n=1

an = 0.5, (4)

where r is the distance between the center and the surface, θ represents the angle from the inflow (i.e., x)
direction, and an denotes random numbers normalized to satisfy equation (4). The bluff body shapes generated
using equations (3) and (4) are rescaled so that the frontal length becomes unity and ReD = 100 in all cases.
Fifty different shapes are defined, and the flows around them are produced using the DNS. Moreover, the flow
fields are rotated around the x-axis symmetry to increase the amount of training data. In this way, hundred
kinds of flows are prepared as the data sets. Note in passing that the achievable range of shapes generated using
equations (3) and (4) is limited, and the use of this formulation is intended to be a proof of concept.

In order to focus on the flow around the bluff body, the velocities and pressure (u, v, p) in the region
enclosed by the red line in Fig. 1 are extracted to use for machine learning. The size of the instantaneous
field data used for ML-ROM construction is (N̂x , N̂y, Nφ) = (384, 192, 3), where φ represents the considered
physical quantities. An example of the flow fields is shown in Fig. 2. In this study, we do not apply any
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Fig. 2 An example of the velocity and pressure fields around the randomly defined bluff body

Fig. 3 Operations in the convolutional layer and the sampling layer: a convolutional operation using a weighted filter W ; b the
computation in the convolution layer with M = 3; c max pooling operation; d upsampling operation

data preprocessing such as normalization or standardization since the order of magnitude is unity for all the
quantities thanks to the nondimensionalization, and the bluff body shapes are adjusted to have the equal frontal
length (i.e., unity) as mentioned above.

2.2 Machine learning

2.2.1 Convolutional neural network autoencoder (CNN-AE)

The convolutional neural network (CNN) [16] has been widely used in the field of image recognition, and
it has also been applied to fluid dynamics in recent years [15,17,28] due to its ability to deal with spatially
coherent information. The CNN is formed by connecting two kinds of layers: convolution layers and sampling
layers.

The convolutional operation performed in the convolution layer can be expressed as

si jm =
K−1∑

k=0

H−1∑

p=0

H−1∑

q=0

zi+p, j+q,kWpqkm + bm, (5)

where zi jk is the input value at point (i, j, k), Wpqkm denotes the weight at point (p, q, k) in the m-th filter,
bm represents the bias of the m-th filter, and si jm is the output of the convolution layer. The schematics of the
convolutional operation and a convolution layer without bias are shown in Fig. 3a and b, respectively. The
input is a three-dimensional matrix with the size of L1 × L2 × K , where L1, L2, and K are the height, the
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Fig. 4 Schematic of the MS-CNN-AE. The layers represented by cubes in the encoder part include the convolutional layer, the
batch normalization layer, the ReLU layer, and the max pooling layer in order. As for the decoder part, the cubes include the
convolutional layer, the batch normalization layer, the ReLU layer, and the upsampling layer in order

width, and the number of channels (e.g., K = 3 for RGB images), respectively. There are M filters with the
length H and the K channels. After passing the convolution layer, an activation function f (·) is applied to
si jm , i.e.,

zi jm = f (si jm). (6)

Usually, nonlinear monotonic functions are used as the activation function f (·). The sampling layer performs
compression or extension procedures with respect to the input data. Here, we use a max pooling operation for
the pooling layer, as summarized in Fig. 3c. Through the max pooling operation, the machine learning model
is able to obtain the robustness against rotation or translation of the images. In contrast, in the convolutional
neural network autoencoder [29] (CNN-AE) explained below, the upsampling layer in the decoder part copies
the values of the low-dimensional images into a high-dimensional field, i.e., the nearest neighbor interpolation,
as shown in Fig. 3d.

TheCNN-AE is composedof aCNNencoderFe,whichmaps high-dimensional data into a low-dimensional
space, and a CNN decoder Fd , which extends the data low-dimensionalized by the encoder part. If a CNN-AE
Fc having a smaller latent vector q̃ than the input q can generate the output identical to the input, it means that
the dimension can be successfully reduced while retaining the original information. Summarizing above, the
procedures of the CNN-AE are expressed as

qdeco ≈ Fc(q), q̃ = Fe(q), qdeco = Fd(q̃), (7)

where qdeco denotes the decoder output.
In the present study, a multi-scale CNN-AE model (MS-CNN-AE) shown in Fig. 4 is proposed to reduce

the spatial dimension of flow field data. The MS-CNN-AE is inspired by the multi-scale CNN [30] developed
for image-based super-resolution analysis to capture multi-scale sense of images. The size of three scales of
filters is 3×3, 5×5, and 9×9, respectively. As an example, the structure of the part to map the flow fields into
the latent vector q̃ ∈ R

6×3×4 (viz., the size of encoded values is nz = 72) is summarized in Table 1. There are
batch normalization [31] layers between the convolution layer and the activation layer (ReLU) [32] to avoid the
overfitting. The batch normalization, which normalizes the output of each unit based on the mean and variance
in each training minibatch, is known to accelerate learning by suppressing so-called internal covariate shift.
The left and right parts of Fig. 4 are the encoder and the decoder, respectively. The flow fields fed as the input
are mapped by these three scales of filters, and then, three encoded values ∈ R

6×3×4 are obtained. These three
encoded values are added in the add layer shown in Table 1 and fed into 7th Conv. layer to obtain the encoded
values representing the flow field in the low-dimensional space. Then, the decoder reconstructs the flow fields
in the physical space from the encoded values using upsampling layers.

Usually, the objective of regression tasks with supervised machine learning is to obtain optimized weights
W by minimizing the predefined error function ε such that W = argminW ||ε||γ , where γ is the parameter of
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Table 1 Structure of each CNN-AE

Encoder Decoder

Layer Output shape Layer Output shape
Input (384, 192, 3) 8th Conv. (6, 3, 4)
1st Conv. (384, 192, 16) Batch normalization (6, 3, 4)
Batch normalization (384, 192, 16) ReLU (6, 3, 4)
ReLU (384, 192, 16) Dispersion layer (6, 3, 4)
1st Max pooling (192, 96, 16) 1st Upsampling (12, 6, 4)
2nd Conv. (192, 96, 8) 9th Conv. (12, 6, 4)
Batch normalization (192, 96, 8) Batch normalization (12, 6, 4)
ReLU (192, 96, 8) ReLU (12, 6, 4)
2nd Max pooling (96, 48, 8) 2nd Upsampling (96, 48, 8)
3rd Conv. (96, 48, 8) 10th Conv. (24, 12, 8)
Batch normalization (96, 48, 8) Batch normalization (24, 12, 8)
ReLU (96, 48, 8) ReLU (24, 12, 8)
3rd Max pooling (48, 24, 8) 3rd Upsampling (48, 24, 8)
4th Conv. (48, 24, 8) 11th Conv. (48, 24, 8)
Batch normalization (48, 24, 8) Batch normalization (48, 24, 8)
ReLU (48, 24, 8) ReLU (48, 24, 8)
4th Max pooling (24, 12, 8) 4th Upsampling (96, 48, 8)
5th Conv. (24, 12, 8) 12th Conv. (96, 48, 8)
Batch normalization (24, 12, 8) Batch normalization (96, 48, 8)
ReLU (24, 12, 8) ReLU (96, 48, 8)
5th Max pooling (24, 12, 8) 5th Upsampling (192, 96, 8)
6th Conv. (12, 6, 4) 13th Conv. (192, 96, 16)
Batch normalization (12, 6, 4) Batch normalization (192, 96, 16)
ReLU (12, 6, 4) ReLU (192, 96, 16)
6th Max pooling (6, 3, 4) 6th Upsampling (384, 192, 16)
Add layer (6, 3, 4) 14th Conv. (384, 192, 3)
7th Conv. (6, 3, 4) Batch normalization (384, 192, 3)
Batch normalization (6, 3, 4) ReLU (384, 192, 3)
ReLU (6, 3, 4) 15th Conv. (Output) (384, 192, 3)

the norm. Here, we use a combination of the mean squared error εm and the gradient difference loss εg [33] as
the loss function ε, i.e.,

ε = εm + εg,

εm = 1

N̂x

1

N̂y

1

Nφ

N̂x∑

i=1

N̂y∑

j=1

Nφ∑

k=1

(q(i, j,k) − qdeco(i,j,k))
2, (8)

εg = 1

N̂x

1

N̂y

1

Nφ

N̂x∑

i=1

N̂y∑

j=1

Nφ∑

k=1

(|(q(i, j,k) − q(i−1, j,k)) − (qdeco(i, j,k) − qdeco(i−1, j,k))|

+|(q(i, j−1,k) − q(i, j,k)) − (qdeco(i, j−1,k) − qdeco(i, j,k))|), (9)

where the subscripts represent the data indices. The gradient differential loss directly penalizes the gradient
among grid points of the flow field data, and this feature enables the model to avoid blurry prediction [34]. Note
that tuning of the weight between the mean squared error εm and the gradient differential loss εg is required,
and its optimal weight varies depending on the problem. In this study, the weight is set to εm : εg = 1 : 1
following our preliminary test.

The Adam algorithm [35] is applied as the optimizer for weight updating, and a fourfold cross-validation
is applied to train the models and avoid overfitting [36].

Theminibatch size is set at 100—changing theminibatch size had no significant influence in our preliminary
test. The number of epochs is fixed at 200 (i.e., no early stopping). Figure 5 shows an example of the learning
curve, which presents the relation between the number of epochs and the loss value. The curve shows good
convergence, and no overfitting is observed. In the model evaluation, we use the best model which provides
the lowest validation loss.
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Fig. 5 An example of learning curve for the CNN-AE part

Fig. 6 Internal procedures of an LSTM

2.2.2 Long Short-Term Memory (LSTM)

The long short-term memory (LSTM) [22] is a machine learning algorithm suited to handle time-series prob-
lems, e.g., speech recognition [38]. The LSTM layer is composed of a cell, an input gate, an output gate, and
a forget gate, as illustrated in Fig. 6. The input gate is represented by d , output gate by o, and forget gate by g.
The cell state is C and the cell output is given by ht , while the cell input is denoted as xt , where the subscripts
represent a time step. In sum, the internal procedures of the LSTM are formulated as

dt = σ(Wd · [ht−1, xt ] + βd), (10)

ot = σ(Wo · [ht−1, xt ] + βo), (11)

gt = σ(Wg · [ht−1, xt ] + βg), (12)

C̃t = tanh(Wc · [ht−1, xt] + βc), (13)

Ct = gt × Ct−1 + dt × C̃t , (14)

ht = ot × tanh(Ct), (15)

where W represents the weights for each gates and β is the bias; the subscripts to C , e, and h represent the
time indices, and σ is the sigmoid function. Although readers are referred to literature [22] for further details,
this structure enables the LSTM layer to deal with the time-series problem by keeping the previous input
information in the cell state.

In this study, an LSTM model is employed to predict the temporal evolution of low-dimensionalized flow
fields generated by the CNN-AE as illustrated in Fig. 7. In the diagram, q̃ denotes the low-dimensional field,
and the superscript represents time indices. The arbitrary number of the flowfields are fed into the LSTMmodel
as the initial encoded fields. Next, the field predicted from these initial fields is recursively incorporated as the
input data to the LSTM model keeping the cell state. The details of the present LSTM model are summarized
in Fig. 8. A dropout (DO) [39] is applied in order to avoid overfitting. A flag map of the bluff body (i.e., 1
for the bluff body region, 0 for the fluid region) is provided to the LSTM model as the information including
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Fig. 7 Schematic of the prediction using the LSTM model. The encoded values in black letters are the initial fields generated by
applying the CNN-AE to the DNS data. The encoded values indicate the predicted fields by the LSTM from the previous outputs
of the LSTM or the initial fields. The number of the initial fields is α + 1 in this figure

Fig. 8 Schematics of the LSTMmodel. DO and FC in this figure represent dropout layers and fully connected layers, respectively.
The values above the arrows indicate the number of input/output of those layers, and ne represents the number of encoded values.
Note that each LSTM layer has 128 units; viz., the output size of these layers is 128

the shape and boundary condition. Our preliminary test has shown that the model with the shape information
outperforms the machine learning model without that information.

The mean squared error is used as the loss function ε̃ to train the LSTM model, i.e., ε̃ = (q̃true − q̃pred)2,
where q̃ true is the true encoded field, q̃pred is the field predicted by the LSTMmodel, and the overbar represents
the average similar to equation (9). The solution data set is prepared from the output of the CNN-AE, and
the LSTM model is trained using teacher forcing [40]. Following our preliminary test, the number of time
sequences used for the training process is set to 20. Hence, the training for the LSTM model is equivalent to
optimizing the weights in the LSTM model wL such that

wL = argminwL
||q̃(n+1)Δt − FL(q̃nΔt , q̃(n−1)Δt , q̃(n−2)Δt , ..., q̃(n−19)Δt )||2, (16)

where the subscript of “true” is omitted for brevity. Similarly to the CNN-AE above, the Adam algorithm [35]
is applied as the optimizer, a fourfold cross-validation is used, and the best model which provides the lowest
validation loss in the learning process is used for the model evaluation. Both the minibatch size and the number
of epochs are set to 100. An example of learning curve for the LSTM part is presented in Fig. 9, which shows
good convergence and no overfitting.

For the model evaluation, the number of time steps used for the input to the LSTM FL is set to 1 such
that q̃(n+1)Δt = FL(q̃nΔt ) except for the first iteration. For the first iteration, the latent vector at the next time
step is obtained from the solution data of the 5 initial time steps (i.e., α = 4 in Fig. 7). In sum, the temporal
evolution of the mapped vector in the LSTM is formulated as

q̃5Δt = FL(q̃4Δt , q̃3Δt , q̃2Δt , q̃1Δt , q̃0Δt ), (17)

q̃(n+1)Δt = FL(q̃nΔt ), n ≥ 5. (18)
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Fig. 9 An example of learning curve for the LSTM part

Note that our preliminary test has shown that the results are not sensitive to the number of time steps used for
the first iteration.

2.2.3 Machine-learning-based reduced order model (ML-ROM)

As illustrated in Fig. 10, the proposed machine-learning-based reduced order model (ML-ROM) is a combi-
nation of the MS-CNN-AE model and the LSTM model introduced above. The initial flow fields generated
by DNS are fed into the trained CNN encoder to map those into the latent space. By feeding the obtained
latent vectors to the trained LSTM model, it predicts the latent vector at the next time step. The LSTM model
recursively predicts the temporal evolution of the encoded fields by using the previous output as the input. The
temporal evolution of the flow field in the physical space can be recovered by using the trained CNN decoder.
Note that the number of initial flow fields in this figure is set to 1 for simplicity of illustration.

3 Results and discussion

3.1 Assessment of ML-ROM for wakes behind various random shapes

As a proof of concept to establish an ML-ROM for unseen data, we use the data sets of bluff bodies with
various random shapes, as explained in Sect. 2. In this subsection, the MS-CNN-AE is developed first to map
the high-dimensional flow R

∈384×192×3 into a latent space R∈6×3×4. Then, the LSTM part is trained to learn
the temporal evolution of the obtained latent vectors. Note that the dependence on the latent vector size will
be examined in the next subsection.

The MS-CNN-AE is trained by using the data set which consists of flow data for 80 different bluff bodies
with the 500 instantaneous time-series fields prepared for each bluff body shape. This model is evaluated by
the test data set, which are different from those used for training. The test data set includes flows around bluff
bodies for 20 different shapes shown in Fig. 11.

The flow fields computed by the DNS and those reconstructed by the MS-CNN-AE are summarized in
Fig. 12. In this figure, the flows with shape numbers of 1, 3, 5, 7, 9, 11, 13 and 15 are shown as the examples.
The reconstructed flow fields show good agreement with the reference DNS fields. Although not shown here,
the results with other bluff body shapes have similar trends to Fig. 12. Time-averaged local squared error fields
for shape number 1 are shown in Fig. 13. Although the error is concentrated near the bluff body, the error is
sufficiently small in the wake region.

The mean streamwise velocities on the centerline of the wake are presented in Fig. 14a. The reconstructed
centerline velocities are in excellent agreement with the reference DNS data. The mean squared errors, the
time-averaged drag and lift coefficients are also summarized in Fig. 14b, c and d, which indicate that the mean
squared errors are sufficiently small and the averaged force coefficients of the reconstructed fields reasonably
match the DNS values.
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Fig. 10 Schematic of the ML-ROM with the latent space size of 6 × 3 × 4. The number of time steps of the initial field is set
to 1 for illustration purpose. The compressed vector obtained by using the CNN encoder evolves temporally using LSTM. The
temporal evolution of the flow field is recovered by using the CNN decoder

Fig. 11 The bluff body shapes of the test data set used to evaluate the machine learning models. The number shown above each
shape represents the shape number

The LSTM is trained by using the time step of Δt = 0.25 to learn the temporal evolution of the low-
dimensionalized fields for the 80 different bluff bodies obtained by the MS-CNN-AE to construct the ML-
ROM, as illustrated in Fig. 10. The amount of the training and validation data is 40000, which consist of 500
time-series data for each bluff body. Five instantaneous flows are prepared for each shape as the initial fields of
the predictions, as mentioned above. Some instantaneous fields predicted by the ML-ROM after 100 recursive
iterations corresponding to t = 25 are compared to the DNS data in Fig. 15. Both flows are observed to be
similar for all attributes.

The statistical assessments of the prediction by the ML-ROM are summarized in Fig. 16. The predicted
results are again in good agreement with the reference DNS data in terms of the mean centerline velocity and
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Fig. 12 Instantaneous flow fields for various bluff bodies. Flow fields computed by the DNS and those reconstructed by the
MS-CNN-AE model are compared

Fig. 13 Time-averaged local squared error fields of MS-CNN-AE for shape number 1

the force coefficients, which suggests that the present ML-ROM can successfully capture the feature of the
unsteady wake. As shown in Fig. 16d, the Strouhal number St is also well predicted, which confirms that the
temporal structure is also well reproduced by the LSTM part even for the flows not used for the training (note
again that shapes 1–20 are not used in the training process).

We also present in Fig. 17 the time-averaged local squared error computed using 1000 recursive inputs.
Because of the recursive input, the time-averaged error is concentrated in the wake region, especially where
the fluctuations are large. The time trace of the mean squared error is also shown in Fig. 18. The error varies
periodically in time due to the small difference in the Strouhal number (Fig. 16d), but it does not grow.
Summarizing above, the present ML-ROM is confirmed to have the ability to predict the flows around various
bluff bodies.
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Fig. 14 Assessments of the MS-CNN-AE model for flows around various bluff bodies at ReD = 100: a mean streamwise
velocities on the centerline for shape numbers 1, 3, 5, 7, 9, 11, 13 and 15; bmean squared errors against the reference DNS data;
c time-averaged drag coefficient; d time-averaged lift coefficient

Fig. 15 Instantaneous flow fields with various bluff bodies at t = 25. The DNS and reconstructed flow fields by the ML-ROM
are summarized
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Fig. 16 Assessments of ML-ROM with various shapes wake at ReD = 100: a mean streamwise velocity on the centerline for
shape numbers 1, 3, 5, 7, 9, 11, 13 and 15; b drag coefficient; c lift coefficient; d Strouhal number

Fig. 17 Time-averaged local squared error fields of ML-ROM for shape number 1

Fig. 18 Time trace of mean squared error of ML-ROM for shape number 1

3.2 Influence of the parameters

In the aforementioned discussion, we have set the size of the latent vector in the MS-CNN-AE to be nz =
72 (= 6 × 3 × 4) and the time steps in between the mapped vectors for the LSTM to be Δt = 0.25. In this
subsection, we discuss the influence of these parameters.
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Fig. 19 Dependence on the latent vector size in the MS-CNN-AE: amean streamwise velocity on the centerline; bmean squared
error; c time-averaged drag coefficient; d time-averaged lift coefficient. Here, fourfold cross-validation is arranged

3.2.1 Dependence on the latent vector size in the MS-CNN-AE

The dependence on the latent vector size nz in the MS-CNN-AE is investigated and summarized in Fig. 19.
Here, we examine nz = 2, 36, 72 (baseline), and 4608. Since the temporal evolution of the mapped vector is
obtained by the LSTM, which has a fully connected structure between layers, a smaller latent vector allows
us to establish an ML-ROM at a lower computational cost.

As shown in Fig. 19a, the mean centerline velocity looks reasonably well reproduced in all cases. However,
the mean velocities for some shapes, i.e., shapes 1, 5, and 7, are underestimated with nz = 2 and 36. Similar
trends can also be seen in the assessment of the force coefficients as summarized in Fig. 19c and d. It suggests
that nz = 72 is the minimum size required to reconstruct the present flow fields with an appropriate fidelity. It
is also surprising that the error ε with nz = 72 is smaller than that with nz = 4608, as shown in Fig. 19b. This
is likely due to the structure of the CNN-AE, which has more pooling operations for nz = 72 case. It is widely
known that incorporating the pooling operation in CNN structures enables the models to retain the robustness
against the rotation or translation of the images because the sensitivity is decreased [16]. It indicates that the
model with nz = 72 is better than that with nz = 4608 in terms of generality for unknown wakes thanks
to the aforementioned robustness, especially in the present case where the wakes behind random shapes are
considered.

Summarizing above, over-compression of the input and output flow data has a risk to lack the spatially
coherent information of the flow field because of the pooling operation; however, the appropriate number of
the pooling operation allows us to keep the robustness for unseen data.

3.2.2 Dependence on the time step size in the LSTM

For high-fidelity simulations such as DNS and large eddy simulation, the time step size is always limited by
numerical constraints. Thus, it would be attractive if the presentML-ROM can be used with substantially wider
time step sizes.
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Fig. 20 Dependence on the time step size in the LSTM: a mean streamwise velocity on the centerline; b relationship between
time step and the L2 error; c time-averaged drag coefficient; d time-averaged lift coefficient; e Strouhal number. Here, fourfold
cross-validation is arranged

Let us examine the dependence on the time step size in the LSTM, as summarized in Fig. 20. Here, we
consider 11 cases: Δt = 0.25 (baseline)–5.25 with an increment of 0.50 in dimensionless time, although only
the cases with Δt = 0.25, 1.25, 2.75, 3.75, and 5.25 are shown in Fig. 20a, c, d, and e. Recall that the time
step used in the DNS was Δt = 2.5 × 10−3; namely the baseline time step of Δt = 0.25 used for the LSTM
is already 100 times wider than that. As shown here, the basic trend observed for the all assessments is that
the error increases with the time step size, especially for Δt = 2.75 and 3.75.

It is worth noting that the mean centerline velocity profile and the force coefficients are in reasonable
agreement even with Δt = 5.25. However, in this case, the ML-ROM is considered to learn a typical aliasing
signal because the sampling interval Δt = 5.25 is close to one period of the actual flow T � 6. The Strouhal
number predicted with Δt = 5.25 are around St � 0.02 for all Reynolds numbers as shown in Fig. 20e, which
is also consistent with the value for the−1 aliasing at this sampling rate (i.e., |1/T −1/Δt | � 0.02). A similar
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argument holds for the cases of Δt = 3.75 or 2.75 where the sampling interval is longer than or just around
the interval corresponding to the Nyquist frequency of the present periodic signal.

We note in passing that the results of the present ML-ROM also depends on the number of time steps
used for the input of LSTM to predict the field of the next time step. We used 20 time steps for the training
process of LSTM, but significant dependence was not observed in our preliminary test as far as more than 5
time steps were used. This is likely due to the periodic nature of this specific flow. Otherwise, the number of
input time steps used for the training process is also a crucial factor, and it should be chosen depending on
user’s requirements.

4 Conclusions

We presented machine-learning-based reduced-order modeling for unsteady flows. A convolutional neural
network-based autoencoder (CNN-AE) was employed to map a high-dimensional flow field into a low-
dimensional latent space, and a long short-term memory (LSTM) was utilized to deal with the temporal
evolution of the low-dimensionalized vectors obtained by the CNN-AE. As a test case, flows around bluff
bodies with various shapes were considered. The flows predicted by the machine-learned reduced order model
(ML-ROM) showed statistically good agreement with the reference DNS data also for unseen bluff body
shapes not used in the training process, which suggests that the present ML-ROM learns not just the flow
fields used for training but the physics governed by the Navier–Stokes equation under different geometrical
configurations.

Moreover, some case studies were conducted to investigate the dependence on the parameters used for
the ML-ROM. The size of the latent vector of the CNN-AE model has relatively small influence on the
reconstruction ability, but this might be specific to the present problem with temporal periodicity. We also
found that the structure of the CNN-AE allows us to keep the robustness for unseen flow data. Concerning the
dependence on the time step size used in the LSTM, the error increased with the time step size between the
mapped vectors. The value of Δt = 0.25, which corresponds to about 20 subdivisions of one period of vortex
shedding, can be recommended from the present study to reproduce the Strouhal number accurately.

The present study was a proof of concept to establish an ML-ROM for more general fluid dynamics. It
should be stressed again, however, that the present proof of concept was performed with a limited range of
shapes, and that more variability will be required in practice. Although laminar periodic flows are considered
as the problem setting in the present study, the proposed idea can be further extended to more complex
phenomena, e.g., three dimensional flows at high Reynolds numbers. Concerning the possibility of applying
LSTM to turbulent flows, Srinivasan et al. [20] have recently demonstrated that the chaotic temporal evolution
of the nine-equation turbulent shear flow model can be well captured by utilizing the LSTM, as mentioned
in the introduction. Therefore, the key issue for the present type of ML-ROM to be applied to more complex
flows should be the development of a more efficient—and preferably interpretable—low-dimensionalization
method, as is tackled by different research groups [21,41].
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