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Abstract This paper considers membranes of globular structure in the framework of the cell model technique.
Theflowof amicropolar fluid through a spherical cell consisting of a solid core, porous layer and liquid envelope
is modeled using coupled micropolar and Brinkman-type equations. The solution is obtained in analytical
form. Boundary value problems with different conditions on the hypothetical cell surface are considered and
compared. The hydrodynamic permeability of the membrane is investigated as a function of micropolar and
porous media characteristics.
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1 Introduction

The majority of porous media, especially some types of membranes, can be represented as a chaotic assem-
blage of particles of various shapes and sizes [1,2]. Fibrous membranes are usually modeled as a package of
cylindrical fibers or cylindrical cells. Globular structures can be described by a swarm of spherical or spheroidal
particles of some average size, defined by the pore size distribution.

The Happel–Brenner cell model [3] is widely used for the modeling of filtration flows in porous structures.
This method is well developed for all types of geometrically symmetric cells in the case of Newtonian liquid
flows [4–14]. The idea is to consider a single particle encapsulated in a hypothetical cell; the effect of neigh-
boring particles is taken into account via boundary conditions on the cell surface. The particle can be solid,
porous, or have a solid core covered by a porous layer. Alternatively, two immiscible liquids can be taken
to be the core and the envelope, respectively. A cell consisting of a solid core and a porous non-deformable
hydrodynamically uniform layer that simulates a partially degradedmembrane was originally developed in [5].
The Stokes–Brinkman system of governing equations was solved with various types of boundary conditions on
solid surfaces and the outer hypothetical cell surface, namely Happel [15,16], Kuwabara [17], Mehta–Morse
[18] or Cunningham [19], Kvashnin [20] conditions.

All the papers mentioned above have only considered Newtonian fluids, while a great number of liquids
exhibit rheology and properties (especially on a microscale and in the vicinity of boundaries), which cannot be
adequately described by classical models. The existence of a wide variety of non-Newtonian models confirms
the fact that all of them are far from being universal, although in certain cases very good agreement with
observations has been achieved. The situation is even worse with flows in porous media, as mentioned in
review [21].
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Filtration of liquids with microstructure has remained almost unstudied, while the theory and applications
of free micropolar flows have been well developed. Media with microstructure introduced by the Cosserat
brothers [22] consist of elements which can rotate independently of their translational motion. They experience
stresses and couple stresses described by the nonsymmetric tensors. Therefore, such liquids are called polar
or micropolar to distinguish them from Newtonian liquids, which are nonpolar media. For simple microfluids,
the dependency between the deformation rate tensor and the stress tensor remains linear, in contrast to non-
Newtonian models. Also, the curvature-twist rate tensor is linearly related to the couple stress tensor for simple
microfluids. Themathematical theory ofmicropolar flowswas offered by Eringen [23,24] and has been actively
developed in the last decades. The application of the micropolar fluid theory includes, but is not restricted to
the flows of suspensions, lubricants, and physiological liquids such as blood and synovial liquid. Besides,
many problem statements in the framework of simple microfluids allow analytical solutions both for free and
for filtration flows. A review of the existing analytical solutions and basic applications of simple microfluids
was made by Khanukaeva and Filippov [25]. The formulation of boundary value problems for composite cells
with a solid core, porous layer and micropolar liquid layer was presented in the aforementioned review as well.
The micropolar model thus seems to be very efficient for simulating dispersed media flows in porous regions.

Only few works have dealt with micropolar flows in cell models [26–29]. The problem of a flow along the
axis of a composite solid–porous cylindrical cell was solved and analyzed in [30]. The perpendicular flow in a
cylindrical cell of the same structure was considered by the same authors in [31]. To the best of our knowledge,
a combined, solid–porous particle in a spherical cell has not been studied before. The present paper is devoted
to the modeling of a micropolar liquid flow through a membrane, which is represented by a set of spherical
cells. All known types of boundary conditions at the outer surface of the cell are considered and compared,
as thus far none of them have turned out to be preferable over the others. An appropriate generalization of the
boundary value problem for micropolar liquids is also made and discussed.

The obtained analytical solution of the problem is used for the calculation of the hydrodynamic permeability
of the membrane as a whole. Owing to the explicit form of the obtained expression for the hydrodynamic
permeability, its dependencies on the boundary conditions, and liquid and porous layer characteristics can
be investigated in their whole ranges. However, the cumbersome representation of the expression does not
allow its analytical study. Therefore, the numeric parametric investigation of the hydrodynamic permeability
is performed. The results are then compared with experimental observations.

2 Problem statement

The cell consists of three concentric layers, as shown in Fig. 1. The solid core has radius a; it is covered with
a uniform porous layer a < r < b (Region 1), which in turn is surrounded by a free micropolar liquid layer
b < r < c (Region 2). The spherical coordinate system (r, θ, ϕ) is introduced so that the direction of uniform
flow velocity vector U corresponds to θ = 0, (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π). The velocity magnitude is small
enough for the Stokes approach to be applicable.

Fig. 1 Scheme of the flow
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According to the theory of micropolar fluids, developed by Eringen [24,32], the steady creeping flow in
Region 2 is governed by the following equations: the continuity equation, the momentum equation, and the
moment of momentum equation

∇ · v = 0,

0 = ρF − ∇P + (μ + κ)�v + 2κ∇ × ω,

0 = ρL + (α + δ − ς)∇∇ · ω + (δ + ς)�ω + 2κ∇ × v − 4κω,

where v andω are the linear velocity and the angular velocity (or spin) vectors, P is the pressure, ρ is the liquid
density, F andL are the body force and body moment per unit mass, respectively, μ, κ, α, δ, ς are viscosity
coefficients of the micropolar medium.

Coefficient μ is an ordinary coefficient of dynamic viscosity for the Newtonian liquid, obtained from
the considered micropolar liquid in the limiting case of zero rotational viscosity κ . In the theory of simple
microfluids, these coefficients linearly relate the stress tensor t̂ to the symmetric, γ̂ (S) and skew symmetric,
γ̂ (A) parts of the deformation rate tensor γ̂ , defined as γ̂ = (∇v)T − ε̂ · ω, where ε̂ is the Levi–Civita tensor.
The stress tensor is presented as a sum of the symmetric and skew symmetric parts, the spherical part being
written separately, as is usually done in classical hydrodynamics:

t̂ = (−P + λtrγ̂ )Ĝ + 2μγ̂ (S) + 2κγ̂ (A),

where Ĝ is the metric tensor. One can note that tr γ̂ = 0 for incompressible fluids, so consideration of the
coefficient λ may be omitted.

Angular viscosities α, δ, ς are coefficients in the constitutive equation, respectively, relating the spherical,
symmetric, and skew symmetric parts of the curvature-twist rate tensor χ̂ = (∇ω)T with the couple stress
tensor m̂:

m̂ = α(tr χ̂ )Ĝ + 2δχ̂ (S) + 2ςχ̂(A).

The chosen notation of the viscosity coefficients follows the form accepted in themicropolar theory of elasticity
[33] and slightly differs from the original notation of Eringen. The only reason for this choice is the convenience
in comparison with the nonpolar limiting case. The correspondence with the original notation of [24,32] can
be achieved by formal re-notation.

Using the equality ∇ × ∇ × a = ∇∇ · a − �a, the continuity equation, and ∇ · ω = 0, arising from the
symmetry of the cell, the governing equations for the free micropolar fluid (domain b < r < c) in the absence
of external forces and couples can be written as

∇ · v2 = 0,

−(μ + κ)∇ × ∇ × v2 + 2κ∇ × ω2 = ∇P2,

−(δ + ς)∇ × ∇ × ω2 + 2κ∇ × v2 − 4κω2 = 0, (1)

where subscript 2 corresponds to layer 2 in Fig. 1. Subscript 1 will be used for the porous Region 1, where the
filtration flow occurs.

The filtration flow of micropolar liquid is governed by the Brinkman-type equations, derived by Kamel et
al. [34], using the intrinsic volume averaging technique:

∇ · v = 0,

∇P =
(μ

ε
+ κ

ε

)
�v + 2κ

ε
∇ × ω − μ + κ

k
v,

0 = (α + δ − ς)∇ < ∇ · ω > +(δ + ς)�ω + 2κ∇ × v − 4κω,

where k is the permeability and ε is the porosity of the porous medium. < ∇ · ω > is the volume-averaged
divergence, which can be ignored, since the spin field is divergence-free for the considered cell geometry. A
detailed discussion of the filtration equations for the more general case of media with variable porosity can be
found in [35].

Using the aforementioned vector equality, the governing equations for the porous region (a < r < b) can
be presented as

∇ · v1 = 0,
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−
(μ

ε
+ κ

ε

)
∇ × ∇ × v1 + 2κ

ε
∇ × ω1 − μ + κ

k
v1 = ∇P1,

−(δ + ς)∇ × ∇ × ω1 + 2κ∇ × v1 − 4κω1 = 0. (2)

If the following non-dimensional variables and values are used

r̃ = r

b
, � = a

b
, m = c

b
, ṽ = v

U
, ω̃ = ωb

U
, P̃ = Pb

μU
, (3)

the non-dimensional forms of systems (1) and (2) will correspondingly be

∇̃ · ṽ2 = 0,

−(μ + κ)∇̃ × ∇̃ × ṽ2 + 2κ∇̃ × ω̃2 = μ∇̃ P̃2,

−δ + ς

b2
∇̃ × ∇̃ × ω̃2 + 2κ∇̃ × ṽ2 − 4κω̃2 = 0, (4)

and

∇̃ · ṽ1 = 0,

−μ + κ

ε
∇̃ × ∇̃ × ṽ1 + 2κ

ε
∇̃ × ω̃1 − μ + κ

k
b2ṽ1 = μ∇̃ P̃1,

−δ + ς

b2
∇̃ × ∇̃ × ω̃1 + 2κ∇̃ × ṽ1 − 4κω̃1 = 0. (5)

Systems (4) and (5) contain several dimensional constants, which can be combined in three non-dimensional
parameters. The dimensions of the viscosities μ and κ are the same, so the parameter N 2 = κ/(μ + κ)
introduced in [36] is non-dimensional and is called the micropolarity number or the coupling number. Another
non-dimensional parameter of the micropolar liquid is the scale factor L2 = δ+ς

4μb2
[36], which represents

the relation between the microscale of the problem, (δ + ς)/μ, and the macroscale, b. The third parameter,
σ = b/

√
k, characterizes the specifics of the filtration part of the flow. It represents the ratio of themacroscale of

the cell, b, to the microscale of the porous layer,
√
k. With these three non-dimensional parameters introduced,

systems (4) and (5) take the following form (tildes are omitted here and hereafter):

∇ · v2 = 0,

− 1

N 2∇ × ∇ × v2 + 2∇ × ω2 =
(

1

N 2 − 1

)
∇P2,

−L2∇ × ∇ × ω2 + 1

2

N 2

1 − N 2∇ × v2 − N 2

1 − N 2ω2 = 0, (6)

and

∇ · v1 = 0,

− 1

N 2∇ × ∇ × v1 + 2∇ × ω1 − ε σ 2

N 2 v1 = ε

(
1

N 2 − 1

)
∇P1,

−L2∇ × ∇ × ω1 + 1

2

N 2

1 − N 2∇ × v1 − N 2

1 − N 2ω1 = 0. (7)

The symmetry of the flow allows us to obtain general solutions of systems (6) and (7) in the form vi (r, θ) =
{ui (r) cos θ; vi (r) sin θ; 0}, ωi (r, θ) = {0; 0; ωi (r) sin θ}, Pi (r, θ) = pi (r) cos θ , i = 1, 2. Both system (6)
and system (7) reduce to scalar differential equations, requiring twelve conditions for the correct statement of
the boundary value problem (BVP).

The no-slip and no-spin conditions on all solid surfaces were essential in the derivation of filtration Eq. (2)
in [34]. So, it is necessary to set these conditions on the boundary r = �:

u1(�) = 0, v1(�) = 0, ω1(�) = 0. (8)
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Among a variety of conditions at the liquid–porous interface, the most natural (from the mechanical point of
view) is the continuity of all linear and angular velocity components, i.e.,

u1(1 − 0) = u2(1 + 0), v1(1 − 0) = v2(1 + 0), ω1(1 − 0) = ω2(1 + 0). (9)

Besides, the continuity of the stress and couple stress tensor components, normal and tangential to the surface
r = 1, is adopted in this study. The corresponding components of the stress and couple stress tensors in the
micropolar liquid for the chosen coordinate system are

trr = (−p(r) + 2μu′(r)) cos θ,

trθ =
(

(μ + κ)v′(r) − (μ − κ)
u(r) + v(r)

r
− 2κω(r)

)
sin θ,

mrϕ =
(

(δ + ς)ω′(r) − (δ − ς)
ω(r)

r

)
sin θ.

The derivation of the filtration equations for micropolar liquids [34] demonstrated that all viscous terms have
coefficients equal to the viscosities of a pure liquid divided by the porosity. So, alongwith the effective viscosity,
μ/ε, used in the filtration models of Newtonian liquids, κ/ε, δ/ε, and ς/ε are to be used instead ofμ, κ, δ, ς
in the expressions for the stress and couple stress tensor components in the porous region. If relations (3)
are applied, the boundary conditions for stresses and couple stresses will take the following non-dimensional
form:

−p1(1 − 0) + 2

ε
u′
1(1 − 0) = − p2(1 + 0) + 2u′

2(1 + 0), (10)

1

ε
v′
1(1 − 0) − 1 − 2N 2

ε

u1(1 − 0) + v1(1 − 0)

1 − 0
− 2

N 2

ε
ω1(1 − 0)

= v′
2(1 + 0) − (1 − 2N 2)

u2(1 + 0) + v2(1 + 0)

1 + 0
− 2N 2ω2(1 + 0), (11)

1

ε
ω′
1(1 − 0) − φ

ε

ω1(1 − 0)

1 − 0
= ω′

2(1 + 0) − φ
ω2(1 + 0)

1 + 0
, (12)

with an additional non-dimensional parameter, φ = (δ − ς)/(δ + ς), introduced in Eq. (12). Due to the
non-symmetry of the couple stress tensor, viscosities δ and ς entered this condition independently and cannot
be reduced to the parameters N and L . It is worth noting that the parameter φ arises in the problem for a flow
along the axis of a cylindrical cell [30] and does not appear in the case of a flow directed perpendicular to
the cell axis [31]. So, the non-symmetric properties that the micropolar liquid exhibits at the boundary are
substantially predefined by the geometry of the flow. The variation interval of φ is [− 1; 1], the case of φ = 0
(δ = ς) being important, as it implies the absence of an explicit dependence of the solution on δ and ς .

Three more boundary conditions should be set at the surface r = m. The first of them is the standard
continuity condition for the normal component of the linear velocity:

u2(m) = 1. (13)

As the second condition at the outer boundary of the cell, four types of conditions known in classical cell
models for Newtonian liquids will be used. They are:

Happel’s no-stress condition [15], trθ |r=m = 0:

v′
2(m − 0) − (1 − 2N 2)

u2(m − 0) + v2(m − 0)

m − 0
− 2N 2ω2(m − 0) = 0, (14a)

Kuwabara’s vorticity-free condition [17], curl v2(r, θ)|r=m = 0:

v′
2(m − 0) + u2(m − 0) + v2(m − 0)

m − 0
= 0, (14b)

the symmetry of the velocity profile by Kvashnin [20]

v′
2(m − 0) = 0, (14c)
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and the condition of the flow uniformity by Cunningham [19]

v2(m − 0) = − 1. (14d)

The third condition at r = m should deal with microrotation or couple stresses. This could be a Happel-type
no-couple stress condition mrϕ

∣∣
r=m = 0:

ω′
2(m − 0) − φ

ω2(m − 0)

m − 0
= 0, (15a)

the no-spin condition, which can be regarded as a Kuwabara-type or a Cunningham-type condition:

ω2(m − 0) = 0, (15b)

or a Kvashnin-type symmetry of the spin profile:

ω′
2(m − 0) = 0. (15c)

Various types of slips, say, ω2(m) − βω′
2(m) = 0 or ω2(r)|r=m = n curl v2(r)|r=m with parameters β and n,

can also be taken as the boundary conditions. Some of them are discussed in [25] and references therein. One
of the recent works, dealing with slip conditions both for linear velocity and for microrotation, is [37].

Two BVPs for a flow along and across the axis of the cylindrical cell with Happel’s no-stress condition
and conditions (15a) or (15b) were considered and compared in [30,31]. Conditions (15a) and (15c) coincide
for the flow perpendicular to the axis of the cylindrical cell. Both investigations showed that the influence
of different boundary conditions (15a–15c) on the solution was rather small. The difference of a few percent
was obtained for the hydrodynamic permeability of the membrane, calculated using the two aforementioned
BVP solutions. Therefore, the present work is focused on the comparison of the BVP solutions with boundary
conditions (14a–14d), and condition (15a) is taken as the closing one.

3 General solution of the problem

The solution of systems (6) and (7) was obtained purely analytically using the following procedure. The curl
operator applied to the momentum equation in system (6) gives

∇ × ∇ × ω2 = 1

2N 2∇ × ∇ × ∇ × v2. (16)

Substituting this relation in themoment ofmomentum equation of system (6) results in the following expression
for ω2

ω2 = 1

2
∇ × v2 − L2

2N 2

(
1

N 2 − 1

)
∇ × ∇ × ∇ × v2. (17)

Expression (17), substituted into Eq. (16), reduces it to

∇ × ∇ × z2 + N 2

L2 z2 = 0, (18)

where z2 = ∇ × ∇ × ∇ × v2. Due to the symmetry of the flow, which allowed separation of variables for
all the unknown functions, such separation can also be done for ∇ × v2 and z2. For ∇ × v2, it looks like
∇ × v2 = {0; 0; y2(r) sin θ}, where

y2(r) = v′
2(r) + u2(r) + v2(r)

r
; (19)

for z2 it reads z2 = {0; 0; z2(r) sin θ}, where

z2(r) = − y′′
2 (r) − 2y′

2(r)

r
+ 2y2(r)

r2
. (20)
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Separation of variables in Eq. (18) gives the modified Bessel equation z′′2 + 2
z′2
r − z2

(
2
r2

+ N2

L2

)
= 0. Its

solution is z2(r) = (C̃1 I3/2(Nr/L) + C̃2K3/2(Nr/L))/
√
r , where I3/2(ξ), K3/2(ξ) are, respectively, the

modified Bessel and Macdonald functions of the order 3/2, and C̃1, C̃2 are arbitrary constants. Solving Eq.
(20) with the given function z2(r) yields y2(r). The continuity equation combined with Eq. (19) with the
substituted y2(r) allows us to find both linear velocity components:

u2(r) = C1

r3
+ C2

r
+ C3 + C4r

2 + C5

r3/2
I3/2

(
N

L
r

)
+ C6

r3/2
K3/2

(
N

L
r

)
,

v2(r) = −ru′
2(r)/2 − u2(r).

The angular velocity component is obtained from relation (17) as follows:

ω2(r) = C2

2r2
− 5

2
C4r − C5

4L2
√
r
I3/2

(
N

L
r

)
− C6

4L2
√
r
K3/2

(
N

L
r

)
.

The presence of an additional member in the momentum equation of system (7) induces modifications in the
method of its solution. Applying the same procedure, we arrive at the equation for ∇ × v1, which cannot be
reduced to the equation for ∇ × ∇ × ∇ × v1 and looks like

∇ × ∇ × ∇ × ∇ × ∇ × v1 +
(
N 2

L2 + εσ 2
)

∇ × ∇ × ∇ × v1 + εσ 2N 2

(1 − N 2)L2∇ × v1 = 0.

Nevertheless, it allows for separation of variables, which leads to

y(I V )
1 + 4y′′′

1

r
− 4y′′

1

r2
−

(
N 2

L2 + εσ 2
)(

y′′
1 + 2y′

1

r
− 2y1

r2

)
+ εσ 2N 2

(1 − N 2)L2 y1 = 0, (21)

where y1(r) is defined analogously to y2(r).

Equation (21) presented as y(I V )
1 + 4y′′′

1
r − 4y′′

1
r2

− (
α2
1 + α2

1

) (
y′′
1 + 2y′

1
r − 2y1

r2

)
+ α2

1α
2
1 y1 = 0, where

constants α1, α2 that satisfy the system

{
α2
1 + α2

2 = N2

L2 + εσ 2,

α2
1α

2
2 = εσ 2N2

(1−N2)L2

can be replaced by the Bessel equation

z′′1 + 2
z′1
r − z1

(
2
r2

+ α2
2

)
= 0, where z1 = y′′

1 + 2
y′
1
r − y1

(
2
r2

+ α2
1

)
. Solving these two equations one

after another, we get y1(r) = (C̃7 I3/2(α1r) + C̃8K3/2(α1r) + C̃9 I3/2(α2r) + C̃10K3/2(α2r))/
√
r , where

C̃7, C̃8, C̃9, C̃10 are arbitrary constants.
The linear and angular velocity components for Region 1 are then found analogously to the corresponding

functions in Region 2, namely

u1(r) = C7

r3
+ C8 + C9

I3/2(α1r)

r3/2
+ C10

K3/2(α1r)

r3/2
+ C11

I3/2(α2r)

r3/2
+ C12

K3/2(α2r)

r3/2
,

v1(r) = −ru′
1(r)/2 − u1(r),

ω1(r) = − α2
1

4N 2

(
1 + α2

2L
2
(
1 − 1

N 2

)) (
C9

I3/2(α1r)√
r

+ C10
K3/2(α1r)√

r

)

− α2
2

4N 2

(
1 + α2

1L
2
(
1 − 1

N 2

)) (
C11

I3/2(α2r)√
r

+ C12
K3/2(α2r)√

r

)
,

θ -projections of the equations of motion in systems (6) and (7) give the expressions for p2(r) and p1(r)
correspondingly.
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Fig. 2 aRadial velocity component, ui (r);b tangential velocity component, vi (r); cmicrorotation,ωi (r) forBVPswith conditions
(14a–14d)

4 Solution of the boundary value problems

The profiles of all linear and angular velocity components as functions of r for θ = 0 are shown in Fig. 2 for
the obtained solutions with conditions (8–14) and (15a) imposed. All of the curves in Fig. 2 are plotted in non-
dimensional units (3) for the following values of parameters: � = 0.5, m = 1.5, N = 0.5, L = 0.2, φ = 0.5,
ε = 0.75, and σ = 3. These values will also be used in the investigation of hydrodynamic permeability.

� = 0.5,m = 1.5 correspond to the equal thicknesses of the porous and liquid layers, since the porous-
liquid interface is located at r = 1. The thickness of the porous layer, 1−�, and the thickness of the solid layer,
�, are taken to be equal to each other in order to capture the influence of both. The position of the outer cell
surface corresponds to a liquid layer of the same thickness. It allows us to obtain a more or less pronounced
dependence of the solution on the conditions at the outer cell surface. The higher the values of m, the further
the problem is shifted to the limiting case of a singular sphere in a uniform flow.

The chosen parameters of the micropolar liquid N = 0.5, L = 0.2, φ = 0.5 correspond to well-developed
micropolarity properties. As the coupling number N represents a fraction of the rotational viscosity in the sum
of the dynamic and rotational viscosity, the range of its possible values is [0; 1). So, the chosen value of 0.5
corresponds to one and the same order of magnitude for these coefficients, i.e., to a noticeable influence of the
microrotational properties of the medium and the skew symmetric part of the stress tensor. The scale factor L
contains the characteristic scale of the problem, b, along with the viscosity coefficients. The presence of the
macroscopic scale in the solution deprives it of the similarity property, and this fact makes micropolar fluids
principally different from the Newtonian ones. Even though the range of possible values for L is [0; +∞),
very high values of this parameter may have no physical sense. For example, L > 1 may be treated as a
liquid with structural elements of the order of the whole flow region. On the other hand, one cannot interpret
parameter L literally as the ratio of the micro- andmacroscales of the problem, since no particles are physically
present in the micropolar liquid. Figure 2 is plotted with L = 0.2, which is one of the most reasonable average
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values for this parameter. The chosen value of φ = 0.5 is far from its possible limiting values, so it allows
taking into account the non-symmetry of the couple stress tensor and clarifying its influence on the solution.

Medium values of ε = 0.75 and σ = 3 are characteristic of a porous medium with neutral properties. It is
worth mentioning that the Brinkman equation has been derived for the case of highly porous media (ε > 0.6),
so low porosity values are not allowed for its application. Parameter σ relates the size of the cell core, b, and
the so-called Brinkman radius,

√
k. The latter may be interpreted as the characteristic scale of the filtration

flow. Thus, low values of σ correspond to a porous layer almost transparent for the flow. High values of σ are
attributed to an impermeable porous layer. The chosen value of this parameter is far from both these limiting
cases and is associated with a well-developed filtration flow in the porous layer of the cell.

As one can see, the differences in the boundary conditions (14a–14d) relatively weakly affect the radial
velocity component and substantially influence the variation in the microrotation velocity (Fig. 2c); for the
Cunningham condition, even the direction of microrotation changes. Anyway, this effect will not arise for
sufficiently high values of m, i.e., for thick liquid layers.

The most interesting feature of the velocity profiles concerns the behavior of the tangential component
(Fig. 2b): all the curves have one mutual intersection point. This fact implies the existence of some spherical
surface approximately in the middle of the cell liquid layer, where the tangential velocity component of the
flow has one and the same value for all conditions at the outer boundary. Moreover, this property holds for
any values of all the parameters, both geometrical and mechanical. It is also true for Newtonian liquids and
simple solid–liquid cells without a porous layer. The position of the intersection point only depends on the
geometrical characteristics of the cell.

Another peculiarity of the presented velocity profiles is the corner points in Fig. 2c. These jumps of the
microrotation velocity derivatives follow from the difference between the viscosity coefficients for the free
micropolar liquid and the corresponding effective viscosities in the porous region. They differ by a factor of
ε. Another parameter responsible for this effect is the non-symmetry of the couple stress tensor, expressed by
the coefficient φ. In the particular case of ε = 1, φ = 0, all microrotation velocity curves will be smooth; for
the micropolar liquid with arbitrary properties this will not be the case.

5 Results and discussion

The proposed model and the obtained solution allow for an investigation of the membrane hydrodynamic
permeability L11, which is important for applications. This coefficient is defined as L11 = U

F/V , where the

denominator represents the cell pressure gradient, F is the force that the flow exerts on the particle, V = 4
3πc

3

is the volume of the cell. The integration of the stresses over the outer surface of the porous layer yields the
force F

F =
‹

S

(trr cos θ − trθ sin θ)ds.

The hydrodynamic permeability takes the following non-dimensional form:

L11 = 4πm3/3

2π
´ π

0

([−p2 + 2u′
2

]
cos2 θ − 1

1−N2

[
v′
2 − (1 − 2N 2) u2+v2

r − 2N 2ω2
]
sin2 θ

)
sin θdθ

= − m3

3C2
.

The results of the parametric study for L11 are presented below in a graphical form. The hydrodynamic
permeability depends on six parameters: three characteristics of the micropolar liquid, two characteristics of
the porous layer, and one characteristic of the cell geometry, called active porosity, i.e., the porosity of the
membrane as a whole. Each plot shows the dependence of L11 on one of the listed parameters for all the four
considered BVPs.

Figure 3 demonstrates the dependence of L11 on the micropolarity number N . One can see a substantial
difference between the curves, corresponding to the BVPs with Happel’s, Kuwabara’s, Kvashnin’s, and Cun-
ningham’s conditions. This result is non-trivial, as the differences between the velocity components shown in
Fig. 2 are rather small, so one would expect an additional smoothing effect of the boundary conditions on such
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Fig. 3 Variation in hydrodynamic permeability with coupling parameter N for different BVPs
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Fig. 4 Variation in hydrodynamic permeability with scale parameter L for different BVPs
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Fig. 5 Variation in hydrodynamic permeability with parameter φ for different BVPs

integral characteristics of the flow as L11. Besides, it follows from Fig. 3 that the hydrodynamic permeability
is rather sensitive to the variation in N . Maximal values of L11 are reached at N → 0 and correspond to
the nonpolar limit, investigated in [11]. The increase in N implies the intensification of the microrotational
effects and the growth of the microrotational viscosity. It leads, in turn, to higher values of the drag force
and, consequently, to the diminishing of L11. Nevertheless, the limiting case of N = 1 cannot be reached
physically.

Figure 4 depicts hydrodynamic permeability versus the scale parameter L . A clear difference in the values
of L11(L) is again observed for the considered BVPs. Meanwhile, the relative variation of the hydrodynamic
permeability for each BVP does not exceed 25%. L11 reaches its maximum value at L = 0, where the effect of
the angular viscosities of the liquid vanishes. With the growth of L , the influence of the liquid microstructure
increases and the value of L11 diminishes, the character of this behavior being independent of the considered
types of BVPs. The peculiarity of all the plots for L11(L) is the existence of the asymptotes at L → ∞. As seen
in Fig. 4, the curves reach their asymptotic values so quickly that the magnitudes of the scale factor L ∼ 1÷ 3
can be treated as infinite. The asymptotical values of L11 are defined by the magnitude of parameter N .
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Fig. 6 Variation in hydrodynamic permeability with parameter σ for different BVPs in micropolar liquid (solid lines) and in
Newtonian liquid (dot–dashed lines)

The influence of the third parameter of the micropolar liquid, φ, on the hydrodynamic permeability is
shown in Fig. 5. This parameter appears in two boundary conditions for Happel’s BVP and in one boundary
condition in each of the remaining BVPs. As a result, it most noticeably disturbs the behavior of L11 for
Happel’s statement of the problem. For three other BVPs, L11(φ) hardly deviates from a constant value, as
seen in Fig. 5. For Happel’s BVP, the total variation in L11(φ) values is about 10% of its average value. Thus,
in comparison with the influence of parameters N and L on the hydrodynamic permeability, the effect of φ
is almost negligible. It means that the asymmetric properties of the micropolar liquid are not crucial for the
evaluation of such integral characteristics of the flow through the membrane, as L11.

By definition, the permeability parameter σ is inversely proportional to the permeability coefficient of the
porous medium of the cell. So, the higher the value of σ , the lower the hydrodynamic permeability of the
membrane, as confirmed in Fig. 6. The values of σ less than unity correspond to such a highly permeable
porous layer that its presence can be neglected and the flow can be considered as totally liquid in the domain
of � < r < m. Consequently, the highest values of L11 are observed for all the considered BVP statements
in this case. For higher values of parameter σ , its inverse magnitude can be treated as a fraction of the porous
layer, where the major part of the filtration flow takes place. The thinner this layer, the lower the hydrodynamic
permeability; in the limiting case, the flow region will be reduced to the liquid layer 1 < r < m. Thus, the
most complicated case of fully developed filtration in the porous layer corresponds to the values of σ ∼ 1÷10.
The difference in the hydrodynamic permeability corresponding to the micropolar and classical liquid models
is seen in this interval. The curves plotted for the same four types of BVP in the framework of the Newtonian
liquid model are shown in Fig. 6 with the dot–dashed lines. They demonstrate the dependence of L11(σ ),
analogous to that of the micropolar model, and confirm the results obtained in [11]. For each of the considered
BVPs, the curve for the Newtonian liquid is located higher than the corresponding curve for the micropolar
liquid. This is a natural consequence of the presence of additional degrees of freedom and viscosities in the
micropolar liquid, which leads to lower values of flow velocity and hydrodynamic permeability. Nevertheless,
it is worth paying attention to the position of the plot for Cunningham’s model for the Newtonian liquid.
Naturally, it is located lower than the curves for the other BVPs. Besides, it lies lower than the curves for the
other BVPs for the micropolar liquid. This circumstance somewhat separates Cunningham’s condition from
the rest.

The porosity ε of the layer � < r < 1 is an intrinsic property of the cell, which is weakly related
to the apparent porosity of the membrane as a whole and can hardly be measured in an experiment. The
model of a complex porous membrane, developed in the present study, is aimed at the simulation of a partially
degradedmembrane. The solidmatrix of suchmembranes is coveredwith a partially permeable gel layer which
can be considered to be a porous Brinkman-type medium [38] with the porosity ε. Anyway, this parameter
significantly influences the hydrodynamic permeability of a membrane, as shown in Fig. 7. The whole range
of the parameter ε variation corresponds to an approximately threefold growth of L11, for both liquid models
and for all types of BVPs. Nevertheless, this conclusion should be treated with caution, as the Brinkman-type
model was originally designed only for the highly porous media. Similar to the dependence of L11(σ ), the
curve L11(ε) for Cunningham’s model in Newtonian liquid demonstrates values lower than for some BVPs
for the micropolar liquid.

The active porosity of the membrane as a whole, γ , is usually measured in experiments. It is defined as
the fraction of voids filled with liquid. In the original Happel and Brenner cell models which only included
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Fig. 7 Variation in hydrodynamic permeability with porosity ε for different BVPs in micropolar liquid (solid lines) and in
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Fig. 8 Variation in hydrodynamic permeability with porosity γ for different BVPs in micropolar liquid (solid lines) and in
Newtonian liquid (dot–dashed lines)

the solid core of radius b and the liquid shell of radius c, the porosity γ was calculated as the relative liquid
volume of the cell 1− b3

c3
and the volume of the inter-cell space was neglected. For the cell structure considered

in the present paper, the pore volume in the layer � < r < 1 should be added to this magnitude, so it takes

the form γ = c3−b3+ε(b3−a3)
c3

= 1 − 1
m3 + ε 1−�3

m3 . For large values of � (thin porous layer), the last term can

be neglected and the membrane porosity can be calculated simply as γ ≈ 1 − 1/m3. The dependence of the
hydrodynamic permeability on γ defined in this manner is shown in Fig. 8 for � = 0.9. The plot demonstrates
the dominating role of the porosity γ in determining hydrodynamic permeability. The curves being close to
each other and the sharp increase in L11 observed for all BVP statements and liquid types imply a secondary
role of all these conditions when the dependence of L11 on the membrane porosity is studied.

Theobtained theoretical dependence of themembrane hydrodynamic permeability on its active porositywas
compared with the experimental data of [39]. The experiment considered the flow of a water–ethanol mixture
through a nanoporous membrane based on poly(1-trimethylsilyl-1-propyne) for various pressure gradients and
mass fractions of the ethanol in the mixture. The membranes were developed using the tape-cast method. In
the flow experiments, the mass flow rate was measured for each pressure gradient applied to the system. Then,
the permeability of the membrane was calculated based on the Darcy law. The dependence of permeability on
active porosity was obtained for three sets of conditions for the pressure gradient and ethanol concentration.
Both these characteristics influence the ability of the membrane to conduct liquid. It is known that this type of
membranes is almost impermeable for purewater and its permeability increaseswhen the ethanol concentration
in the mixture rises. The reason for this effect lies in the hydrophilization of the membrane material by the
adsorbed ethanol molecules. This effect was modeled in [39] as the pore opening process and was formalized
by introducing the concept of effective porosity. The latter was defined as the fraction of pores opened for the
flow. The mass flow rate was evaluated on the basis of a hydrodynamic model that interpreted filtration as a
flow through a set of cylindrical pipes of radii subjected to the given distribution law. Finally, the measured
and the theoretical flow rates were equated and the fraction of pores filled with the liquid was calculated.



Filtration of micropolar liquid through a membrane 227

0.05 0.10 0.15 0.20 0.25

0.001

0.002

0.003

0.004

L11

Fig. 9 Calculated hydrodynamic permeability versus porosity γ (curve) and experimental data of [39] (points)

In the present study, the hydrodynamic permeability L11 is non-dimensional, so the experimental data
should be transformed into the same non-dimensional units. Based on the definition of hydrodynamic perme-
ability, its dimension can be represented as a squared length divided by viscosity. The characteristic length b
used in relations (3) represents the order of the cell size; it was estimated using the simplest orthogonal package
of the spherical solid parts of the cells, the voids between them approximated by spheres. This estimate relates
the characteristic scale b to the porosity of the sample and its average pore size, which were taken from [39].
In addition, the membrane swelling and its dependence on the mixture composition were taken into account in
the calculation of the average pore size, as offered in [39]. As a result, the value of b turned out to be dependent
on the ethanol concentration in the mixture, apart from the sample porosity. Each experimental value was
divided by the corresponding value of b2 and multiplied by the mixture viscosity. The variation in the latter
with ethanol concentration was also taken into account. The obtained points and the corresponding theoretical
curve are shown in Fig. 9. The plotting was done for Happel’s BVP, although any other curve shown in Fig. 8 is
applicable as well. The curve in Fig. 9 is plotted for the same parameters as shown in Fig. 8 except for ε, which
was taken to be equal to 0.6 in order to diminish the value of hydrodynamic permeability at zero porosity.
The model includes the flow through the porous core of the cell, so the calculated velocity and, consequently,
the hydrodynamic permeability are nonzero even if the fraction of voids in the membrane is negligibly small
(γ → 0).

As seen from Fig. 9, the presented theoretical model reasonably agrees with the experimental data. The
curve represents the nature of the dependence, the main trend, the order of magnitude, and the convex direc-
tion. It overestimates hydrodynamic permeability for low porosity values for the reason specified above and
underestimates its value when porosity increases. This discrepancy may be due to the fact that the method of
the effective porosity evaluation in [39] used the Newtonian liquid model: it is known that the classical model
usually gives higher permeability values than the micropolar model.

Two other experimental datasets were used in [31] for the verification of the cylindrical cell model. They
also demonstrated good agreement with the theory developed there.

6 Conclusion

The study presented in this paper concludes a series of investigations devoted to the development of the
cell model technique for filtration flows of micropolar fluids. It includes the most general configuration of a
spherical cell which consists of a solid core, a porous shell, and a liquid envelope. Varying the thickness of
these layers allows us to consider various limiting cases, namely a fully solid core (� → 1), an entirely porous
core (� → 0), and a solid–porous cell (m → 1). Varying the porous layer parameters enables modeling of the
membrane permeability within a wide range of values (from negligible to maximal, corresponding to a pure
matrix without a porous coating). The introduced parameters of the permeating liquid represent a wide variety



228 D. Khanukaeva

of its properties, from classical to strongly polar. The statements of several types of BVPs were given, and
their analytical solutions were obtained. The expressions for the flow velocity components were presented in
a finite form, suitable for practical applications.

The hydrodynamic permeability, taken as an integral characteristic of the membrane, has a rather cumber-
some analytical representation, so it was investigated in computational parametric experiments. They demon-
strated a noticeable effect of the considered boundary conditions at the outer surface of the cell on the hydro-
dynamic permeability. A moderate variation in the hydrodynamic permeability was observed for the whole
range of the micropolar parameters of the liquid, N , L , φ, and the characteristics of the porous layer of the cell,
ε and σ . The active porosity of the membrane, γ , had the strongest effect on its hydrodynamic permeability.
The obtained dependence was compared to the experimental data, and a reasonable agreement was observed.

The interpretation of experiments remains one of the biggest challenges in membrane science. The studies
of fine membrane properties continue even for commercially available membranes [40]. The presented model
is aimed at the improvement in our understanding of the membrane processes. The flexibility of the model
allows for its application to a wide variety of materials and liquids. The obtained analytical results are suitable
for engineering research. Despite promising advantages, the theory of micropolar liquids is extremely rarely
used in experiment interpretation today. This paper may serve as a step toward promoting its wider practical
application.
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