
Theor. Comput. Fluid Dyn. (2019) 33:577–602
https://doi.org/10.1007/s00162-019-00507-w

ORIGINAL ARTICLE

Dongru Li · Jonathan Komperda · Zia Ghiasi ·
Ahmad Peyvan · Farzad Mashayek

Compressibility effects on the transition to turbulence in a
spatially developing plane free shear layer

Received: 23 April 2019 / Accepted: 3 October 2019 / Published online: 16 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract The compressibility effects on the transition to turbulence in a spatially developing, compress-
ible plane free shear layer are investigated via direct numerical simulation using a high-order discontinuous
spectral element method for three different convective Mach numbers of 0.3, 0.5, and 0.7. The location of the
laminar–turbulent transition zone is predicted by the analyses of vorticities, Reynolds stresses, and the turbulent
dissipation rate. In the turbulence transition and self-similar turbulence regions, the effects of compressibility
on the flow properties, such as the velocity autocorrelation function, integral time scale, momentum thickness,
Reynolds stress, and turbulent kinetic energy budget, are investigated. The compressibility effects on the onset
and length of the turbulence transition zone are studied based on the analyses of such flow properties. The
mean velocity, momentum thickness, and Reynolds stress profiles compare well with published experimental
data. Vorticity contours and iso-surface of the second invariant of velocity gradient tensor identify the char-
acteristic of flow structures. The two-point correlation functions of velocity components, the one-dimensional
(1D) spanwise energy spectrum, and the balance of the turbulent kinetic energy transport equation validate
the domain size and resolution of the adopted grid for turbulence simulation. An increase in the convective
Mach number leads to a reduction in the sizes of the largest-scale structures, resulting in a significant decrease
in Reynolds stresses and turbulence production. The onset of turbulence transition and the location where
the transition completes shift downstream, while the length of the transition zone increases with increasing
convective Mach number.

Keywords Direct numerical simulation · Transition · Compressible flow · Plane free shear layer ·
Compressibility effect · Spatially developing flow

1 Introduction

The plane free shear layer (FSL) is composed of two parallel streams of fluid with different velocities or
different densities. The comprehensive understanding of the physics of turbulence in FSL is essential for
designing engineering systems, such as gas turbines, scramjet engines, and rocket exhausts. To predict the
viability and efficiency of such systems, one must be able to estimate the turbulence in FSL accurately. In
addition to traditional experimental approaches, numerical simulation is increasingly employed to study this
flow. Below, we provide a review of previous studies on FSL.
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1.1 Experimental studies

The experimental research on turbulent FSL dates back to the study by Liepmann and Laufer [49]. They
measured the location of the transition from laminar to turbulent flow and observed the fully developed
turbulent FSL in self-similar regions with a constant growth rate. Birch and Eggers [4] conducted an early
study on the effect of compressibility. They first showed that an increase in Mach number could reduce the
growth rate of the FSL. Later, Brown and Roshko [7] studied the turbulent FSLwith different ratios of densities
and velocities across the shear layer. The results showed that large coherent structures dominate the FSL and
convect at almost constant speed downstream while growing. They also observed three-dimensional (3D)
structures in the braid region between the large coherent structures. They suggested that the growth rate of a
turbulent FSL is significantly affected by compressibility rather than density ratio.

Bernal [3] examined the successive frames in movies of planes normal to the streamwise and spanwise
directions to study the structure of the secondary streamwise vortex and clarify the relation and interaction
between the primary spanwise vortices and the secondary streamwise vortices. It was found that much of
the growth of the primary vortices was due to the motions induced by the secondary vortices. Later studies
[36,50,56] proposed that the FSLgrowth rate is proportional to the ratio of velocity in the high-speed side to that
in the low-speed side. Papamoschou andRoshko [61] investigated the growth rate of the compressible, turbulent
FSL experimentally with various free-stream Mach numbers. They found that the effect of compressibility on
the turbulent FSL growth rate is much more complex than the effects of velocity and density ratios. They also
observed that the reduction in the growth rate occurs in a range from subsonic to supersonic. They suggested
that the compressibility effect only emerges before the appearance of any shock or expansion waves in the
flow.

The role of compressibility in FSL is often studied in terms of the convective Mach number [5],

Mc = U1 −U2

c1 + c2
, (1)

where U1 and U2 are the velocities of the high- and low-speed streams, respectively, and c1 and c2 are the
speeds of sound on the high- and low-speed sides of the FSL, respectively. Elliott and Samimy [10] and Hall
et al. [22] proposed that the FSL growth rate decreases as the convective Mach number increases. Hall et al.
[22] observed that the effects of incident shock and expansion waves on the growth rate of a turbulent FSL
are negligible. Recently, laser Doppler velocimetry measurement was used by Barre and Bonnet [2] to extract
velocity fluctuations in a compressible supersonic FSL. The authors proposed that the structure of the Reynolds
stress tensor is nearly unaffected by increasing the convective Mach number; however, the values of all the
components of the Reynolds stress tensor decrease.

1.2 Computational studies

In the early numerical studies, researchers mostly solved the full time-dependent Navier–Stokes equations
numerically for a temporally developing FSL, due to the lower requirement of computational resources. Such
studies [11,57,60,71,72,76,84] simulated the temporal development of the turbulent FSL in a computational
domain with a fixed reference frame moving with the large structures while applying periodic boundary
conditions in streamwise and spanwise directions. Moser and Rogers [57] were able to resolve the primary
spanwise and secondary streamwise vortices. Sandham and Reynolds [72], Vreman et al. [84], and Pantano and
Sarkar [60] studied the compressibility effects in great detail on the turbulent FSL. They observed a reduction
in the growth rate with an increase in the convective Mach number. This finding is consistent with the results
obtained by the use of linear stability analysis of compressible FSL [20,28,29,55,67,71]. Karimi and Girimaji
[37] investigated the compressibility effect on Kelvin–Helmholtz instability with a linear initial value problem.
The authors found that the acoustic dynamics can lead to Kelvin–Helmholtz instability suppression.

Due to the drawbacks of the temporal simulation (for example, lack of ability to capture the effects of the
velocity ratio across theFSLand the asymmetry of entrainment [70]) and the advances in computers, researchers
turned their attention to spatially developing FSL. In a spatially developing FSL, the computational domain
is in the same reference frame as that of the observer, with an inflow boundary at one end and an outflow
boundary at the other. The outflow boundary often can allow all the structures to leave the computational
domain with negligible effects on downstream. Rogers and Moser [58,68,69] carried out several 3D turbulent
FSL simulations with different initial conditions. They found that the roll-up pairing restrains the growth of
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infinitesimal 3D disturbances and causes the transition to turbulence in highly 3D flows. They also showed
that there are two kinds of coherent structures: one is spanwise structures, referred to as rollers; another is
streamwise vortices, called rib vortices. These structures are present before the onset of the self-similar growth.

Lele [43,47] simulated the two-dimensional (2D) spatial evolution of vortices and showed that the shear
layer growth rate decreases as the convective Mach number increases. The study also demonstrated that an
increase in the convective Mach number leads to a vorticity compression effect comparable with the advection
effect. Sandham [70], and Sandham and Reynolds [71,72] investigated the effect of Mach number on 2D and
3D FSL using direct numerical simulation (DNS). The authors found that the FSL growth rate decreases as the
convective Mach number increases. Sandham and Reynolds [72] observed λ shape vortices at high convective
Mach number cases. The study by Sarkar [74] proposed that dilatational dissipation and pressure-dilatation are
responsible for the reduction in FSL growth. However, Sarkar [75] and Vreman et al. [84] later suggested that
an increase in compressibility can lead to a decrease in turbulent production rather than dilatation terms. Also,
Vreman et al. [84] presented a direct relationship between momentum thickness growth rate and turbulent
production and showed that a decrease in pressure fluctuations through the pressure-strain term may lead to
a reduction in turbulent production. Many review papers [15,44,79,80] presented elaborated analyses for the
FSL growth rate reduction in turbulent mixing layer.

The inflow condition plays a critical role in the spatial development of turbulent FSL. McMullan et al.
[53] simulated the turbulent FSL with uniform density at a high Reynolds number to compare the effect of
the hyperbolic tangent profile inflow and the boundary layer inflow conditions on turbulence transition. They
observed that, with a boundary layer inflow condition, the turbulence transition occurs at a region further
upstream than that with the hyperbolic tangent profile inflow condition. Their results also suggested that
applying the hyperbolic tangent profile inflow condition to study the transition of turbulence in a FSL may
produce unphysical DNS results. Many studies simulated the spatial mixing layer using a laminar mixing layer
profile at the inlet with superposed small perturbations and the most unstable modes forcing [13,48,78,86,88,
89]. Studies by Fu and Li [13] and Li and Jaberi [48] investigated the compressible mixing layer with different
convective Mach numbers. The authors were able to discover shocklets in the mixing layer at a convective
Mach number of 1.2. Wang et al. [86] demonstrated that the interactions between large-scale rollers and rib
vortices trigger the turbulence transition. Zhou et al. [89] and Zhang et al. [88] showed the complete instability
evolution process in the mixing layer. However, a significant drawback of the forcing inflow conditions is that
it yields an unrealistic initial shear layer development.

In order to obtain a high fidelity initial flow development, researchers turned to use an inflow condition
consisting of a splitter plate and boundary layers [42,64,73,77]. Sandham and Sandberg [73] investigated the
early development of a turbulent mixing layer downstream of a splitter plate with zero thickness between a
laminar and a turbulent boundary layer. The work of Laizet et al. [42] focused on the effect of the trailing edge
shape on the flow field near the trailing edge in a spatially developing incompressible mixing layer. Pirozzoli et
al. [64] studied the early evolution of the mixing layer spatially developing from two turbulent boundary layers
at mild convective Mach number. A common research interest among the above-mentioned work is the flow
field near the trailing edge of the splitter plate. They showed that the geometry of the splitter plate significantly
influences the flow structures near the trailing edge and may affect the streamwise evolution of the flow as
well. Sharma et al. [77] investigated three different inflow conditions in a spatially developing mixing layer
by LES. They suggested that merging the laminar and turbulent boundary layers leads to the shorter distance
to accomplish the self-similar average velocity profiles compared to merging two laminar boundary layers.
The recent study by Wang et al. [85] investigated the passive scalar mixing in a supersonic mixing layer with
different convective Mach numbers, density ratios, and velocity ratios. In addition to a reduction in the mixing
layer growth rate with increasing convective Mach number, which is consistent with the previous studies, they
found that the mixing efficiency increases as convective Mach number decreases, or density ratio decreases,
or velocity ratio increases.

Based on this literature survey, experimental and numerical studies have been conducted on turbulent
FSL. Experimental approaches have encountered difficulties in obtaining detailed information about the tran-
sition process and turbulent quantities, such as spanwise Reynolds stress and higher-order correlations in the
Reynolds stress transport equations. DNS can generate all information in turbulent flows, which is impossible
to accomplish in experiments. However, most of the early DNS studies were performed on temporally develop-
ing FSL. Such temporally evolving FSL cannot: (1) accurately account for the effects of divergent streamlines,
(2) perceive the large-scale upstream influence, (3) produce the asymmetric entrainment, (4) generate the shift
of the shear layer center to the low-speed side, (5) reproduce the interaction between FSL and shock waves at
high convective Mach number [13,25,27,51,62]. The spatially developing approach is the closest realization
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of a transition experiment but is significantly more expensive than the temporally evolving method. Therefore,
very few DNS studies on spatially developing, 3D FSL exist. In spatially developing turbulent FSL with natu-
rally developing inflow condition, none of the previous studies examined the effects of compressibility on the
location and length of the laminar–turbulence transition zone, the start of the self-similar region, single-point
correlations, and budget of turbulence energy. In this context, a DNS study is presented here to investigate such
effects. A high-order discontinuous spectral element method (DSEM) [33,39,40] is used to simulate such a
flow. This method has previously been employed for DNS and large-eddy simulation (LES) of compressible
flow in complex geometries [16,17,46]. The primary objectives of this work are: (1) to demonstrate an accu-
rate and robust approach to perform DNS for a spatially developing turbulent FSL at high convective Mach
number; (2) to provide useful DNS data for the design and calibration of the Reynolds-averaged Navier–Stokes
(RANS) and large-eddy simulations (LES) models; (3) to identify the location of the turbulence transition zone
by analyzing vorticities, Reynolds stresses, and the evolution of turbulent dissipation rate; (4) to investigate the
effects of compressibility on the location and length of a laminar–turbulent transition and on the flow properties
in the transition and self-similar regions. To the authors’ knowledge, this work presents the first DNS results for
spatially developing, 3D compressible turbulent FSL with naturally developing inflow condition for different
convective Mach numbers under identical simulation conditions. The remainder of this paper is organized as
follows: First, we briefly describe the governing equations and the numerical methodology. Then, the problem
setup and results of the simulations of the 3D turbulent FSL are presented and discussed. Finally, a summary
of significant findings is presented.

2 Methodology

2.1 Governing equations

The governing equations for the compressible and viscous fluid flow are the full Navier–Stokes equations,
which are solved in a conservative form. They are expressed in non-dimensional form with Cartesian vector
notation as
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temperature, respectively, and γ is the specific heat ratio. The superscript ∗ indicates dimensional quantities.
The equation of state closes the above equation system and is given by

p = ρT

γ M2
f

. (7)

2.2 Numerical method

In this work, the DSEM code is used as the compressible flow solver [30,32,33]. The computational domain
is partitioned into non-overlapping hexahedral elements. Each element is then mapped onto a unit hexahedron
over the interval [0, 1] in each direction using isoparametric mapping. After the mapping, Eq. (2) reads

∂ Q̃

∂t
+ ∂ F̃a

i

∂Xi
− ∂ F̃v

i

∂Xi
= 0, (8)

where

Q̃ = JQ, F̃a
i = ∂Xi

∂x j
Fa
j , F̃v

i = ∂Xi

∂x j
Fv
j . (9)

In the above equations, the solution vector Q and flux vectors F are on the physical grid, while Q̃ and F̃ are
on the mapped grid. J denotes the determinant of the Jacobian matrix, which transforms the elements from
the physical space to the mapped space [30]. The term ∂Xi

∂x j
is the transformation matrix, where x j and Xi are

the coordinates of the physical and the mapped spaces, respectively.
In each element, the solution values, Q̃, and the fluxes, F̃i , in Eq. (8) are approximated by a high-order

Lagrange basis function on the Gauss quadrature points and Lobatto quadrature points, defined by
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respectively, within the interval [0, 1]. Here, N−1 is the polynomial order of the spectral element. The solution
is approximated as

Q̃ (X, Y, Z) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

Q̃i+1/2, j+1/2,k+1/2hi+1/2 (X) h j+1/2 (Y ) hk+1/2 (Z) , (12)

where X , Y , and Z are coordinates of the mapped space, while h j+1/2 is the Lagrange interpolating polynomial
on the Gauss grid. After the viscous and inviscid fluxes are computed, a fourth-order low-storage Runge–Kutta
scheme is employed for time integration.

3 Problem setup

The inflow conditions shown in Fig. 1a, which are composed of two laminar boundary layers upstream evolving
along the two sides of a zero thickness splitter plate, are used in this work for the spatially developing, 3D com-
pressible turbulent FSL simulation. The extents in cross-stream and spanwise directions of the computational
domain follow the DNS of Zhou et al. [89], while the streamwise length follows the study by Wang et al. [86].
Such computational domain size is carefully determined with the consideration that it allows the FSL to reach
the self-similar turbulent state in the streamwise direction, to grow freely in the cross-stream direction, and to
achieve a sufficient decorrelation in two-point correlations in the spanwise direction. The grid resolution of
the computational domain follows the DNS study by Zhou et al. [89].
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Fig. 1 Schematics of a the computational domain, b the real-scale buffer zone

3.1 Simulation parameters

Necessary parameters are selected and used to analyze the compressibility effects on the turbulent FSL. It is
widely accepted that the role of compressibility in the flow can be expressed in terms of the convective Mach
number [5], Mc, which is defined in Eq. (1) for the flow of two streams with the same specific heat ratio. Three
simulations are conducted with different convective Mach numbers and inflow Mach numbers. The inflow
Mach numbers at the high- and low-speed sides are defined as M1 = U1/c1 and M2 = U2/c2, respectively.
For the case with Mc = 0.3, the M1 and M2 are 0.8556 and 0.2556; with Mc = 0.5, the M1 and M2 are 1.4259
and 0.4259; finally, with Mc = 0.7, the M1 and M2 are 1.9963 and 0.5963 (see Table 1). The Reynolds number,
Reθ , based on the difference between the high- and low-speed streams, 
U = U1 − U2, and the momentum
thickness of the upper boundary layer (high-speed side) δθ1 evaluated just upstream of the trailing edge, is
selected as 140, with the consideration that it is sufficiently large for a transition to turbulence and sufficiently
small for resolving the flow. Here, the momentum thickness in a spatial compressible FSL is defined [35] as

δθ = 1

ρo

∫ +∞

−∞
〈ρ〉 {u} −U2


U

(
1 − {u} −U2


U

)
dy, (13)
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where ρo is the initial inflow density, while 〈ρ〉 and {u} are Reynolds-averaged density and Favre-averaged
velocity, respectively. Hereafter, a pair of angled brackets, 〈〉, indicates a Reynolds average, while a pair of
curly brackets, {}, denotes a density-weighted (Favre) average. Other parameters are the reference Prandtl
number Pr f = 0.7 and the specific heat ratio γ = 1.4. All dimensions are normalized by δθ1. The size
of the computational domain for each case is set as Lx × Ly × Lz = 1982 × 1600 × 140. Here, Lx , Ly ,
and Lz denote the computational domain dimensions. The subscripts x , y, and z are the streamwise, cross-
stream, and spanwise directions, respectively. The length of the splitter plate is set as Ls = 182 such that the
developed Blasius profiles at the end of the splitter plate are similar to the boundary layer inlet conditions used
by Monkewitz and Heurre [54] and McMullan et al. [53]. The region of interest for all cases is bounded as
− 182 ≤ x ≤ 1300 and − 100 ≤ y ≤ 100, which is devoted to studying the flow properties and the laminar–
turbulent transition of the compressible FSL. The remainder of the domain is used as a buffer zone to prevent
solution contamination from the boundaries, which is shown in Fig. 1. Figure 1b presents the real-scale buffer
zone, where Lx-str = 500, Ly-str = 700, and Ly-ins = 200 are the lengths of grid stretching in the streamwise
and cross-stream directions, and the length of the interest area in the cross-stream direction, respectively.

The computational domain is discretized according to the flow configuration. A non-uniform grid distribu-
tion is employed to achieve a finer grid in the FSL. For x ≤ 1300, the grid in the x-direction achieves an average
spacing
xave = 0.580 with a minimum spacing
xmin = 0.057, due to the nature of the Chebyshev grid used
in this work. In the FSL region, the average vertical grid size is 
yave = 0.668, while the minimum vertical
grid size is 
ymin = 0.069. The 2D baseline grid on the x–y plane is extruded uniformly in the spanwise,
z, direction to construct a 3D mesh. The average spanwise grid size is 
zave = 0.544 and the minimum is

zmin = 0.055 for a uniform grid in the z-direction. The grid consists of 1,368,260 elements. A polynomial
order of p = 5 is used in this study resulting in a total of 295,544,160 solution points.

3.2 Boundary and initial conditions

The computational domain is composed of inflow and outflow boundaries in the streamwise direction [31],
non-reflecting boundaries in the cross-stream direction [31,65,81,82], and periodic boundaries in the spanwise
direction. A schematic of such a domain is shown in Fig. 1. In order to minimize the effect from the boundary
conditions in the cross-stream direction, we have conducted extensive tests (not shown here) for a proper length
in the cross-stream direction and an optimal grid stretching as a strong buffer zone. Therefore, combining the
large cross-stream length (Ly = 1600) and the strong grid stretching (Ly-str = 700) along the boundaries, the
computational domain can be assumed as an open domain in the cross-stream direction [73]. Thus, flow can
be freely entrained into the shear layer and the pressure gradient buildup along the streamwise direction can be
minimized. Furthermore, the broad buffer zone along the boundaries functions as a damping-sponge, which
is achieved by grid stretching, to damp any high wavenumber oscillations generated at the outlet boundary.

The inlet boundary layers thicknesses studied by Monkewitz and Heurre [54] are used in this work. Even
if the convective Mach number is not identical for all cases, the inflow conditions are managed to be the
same for all three cases. In this study, two laminar boundary layers, having a specified 99% thickness ratio
λ = δ2/δ1 = 1.6 [53,54] at the inflow section of the computational domain, evolve along both sides of the
splitter plate. The subscripts 1 and 2 are used to denote the high- and low-speed sides, respectively. The two
developed Blasius boundary layers pass the trailing edge of the splitter plate and merge into FSL downstream.
The configuration of the splitter plate is shown in Fig. 1. The free-stream velocities at the high- and low-speed
sides are specified to satisfy the velocity ratio R = (U1 −U2)/(U1 +U2) = 0.54 for all simulations.

It is important to note that in the study by Laizet et al. [41], the authors employed two laminar streams to
issue a mixing layer without any inflow perturbations. Consequently, they observed unrealistic flow dynamics
which are similar to the results obtained from 2D simulations. The authors later concluded that the unrealistic
results are due to the lack of perturbation to excite the 3D instabilities downstream of the trailing edge [42]. In
light of these previous studies [41,42] and our extensive tests for optimal level of instabilities, we superimpose
a small perturbation on the upper boundary layer to allow a realistic initial development of disturbances,
ensuring a naturally evolving destabilization in the boundary layer at the trailing edge [42]. The perturbation is
generated by a stochastic model originally proposed by Gao and Mashayek [14]. The lower stream is laminar
without perturbation [73]. Note especially that no forcing mechanism is used in both the inflow boundary
layers [42,64,73,77]. The Reynolds numbers on the two inlet boundary layers are Reθ1 = 200 and Reθ2 = 60
based on the corresponding free-stream velocities (U1 and U2) and the momentum thicknesses (δθ1 and δθ2)
evaluated just upstream of the trailing edge. It is important to note that both Reynolds numbers are too small
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Fig. 2 Comparisons of the mean streamwise velocity profiles (a, b) and the fluctuating kinetic energy profiles (c, d) for the
boundary layers on both sides of the splitter plate at − 11.0δθ1 (a, c) and − 1.0δθ1 (b, d), upstream of the trailing edge for
Mc = 0.3, 0.5, and 0.7

for a laminar boundary layer to develop any turbulence with this artificial generation of perturbation [42]. The
developments of the boundary layers for each case are shown in Fig. 2 through the comparisons of the mean
streamwise velocity profiles and the fluctuating kinetic energy profiles at x = − 11.0δθ1 and x = − 1.0δθ1,
respectively. Note that the cross-stream extent presented in this figure is only 1.9% of the total length in the
cross-stream direction. As we expect, the normalized streamwise velocity profiles are near identical for all
three cases at the trailing edge. This is due to the fact that all cases use the same velocity ratio R = 0.54. It can
be seen that the normalized fluctuating kinetic energy imposed at the upper boundary layer has a maximum
value of ≈ 0.0017, which is relatively small compared to that in the turbulent boundary layer. This confirms
that the upper boundary layer at the trailing edge of the splitter plate is laminar. Temperature and density are
uniformly initialized to (
U/2Mc)

2 and 1.0, respectively. Note that when the self-similarity is achieved, the
flow has forgotten the initial conditions [6].

4 Validation and verification study

This section is devoted to validating the numerical methodology by comparing our results to published theo-
retical, experimental and DNS data. To obtain the necessary statistics, the simulation is initially run for five
flow-through times to reach a quasi-stationary state. One flow-through time is defined as the time for the flow
moving from the inlet to the outlet with the convective velocity, which is defined as

Uc = c2U1 + c1U2

c1 + c2
. (14)
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Fig. 3 Spanwise vorticity contours with Mc = 0.3, 0.5, and 0.7

The first-order statistics are computed for another five flow-through times. Next, ten flow-through times are
required to obtain sufficient information for the second-order statistics. Finally, post-processing for ensemble
averages in the spanwise direction is implemented to enhance the accuracy of the statistics. Two types of
averages are used in this study, Reynolds average and Favre average. Fluctuations from the Reynolds averages
are denoted by superscript ′. Fluctuations from Favre averages are indicated by superscript ′′.

To ensure that the validation data are extracted from the self-similar turbulent region, the location of
the laminar–turbulent transition region needs to be approximately outlined. Contours of the instantaneous
spanwise vorticity after five flow-through times for Mc = 0.3, 0.5, and 0.7 are shown in Fig. 3. It can be
seen that the large coherent vortices initiated from roll-up interact mutually and break down to small-scale
structures within the computational domain. Thus, we approximate the area between the vortex roll-up and the
emergence of the small-scale structures as the laminar–turbulent transition region, and the area downstream
as the turbulence region [13,86,89]. This observation also preliminarily indicates that the longitudinal length
of the computational domain is sufficiently large to develop self-similar turbulence.

The adequacy of the domainwidth in the spanwise direction is examined via spanwise two-point correlation
functions of all velocity components, which are shown in Fig. 4. The data used for computing the two-point
correlation functions are extracted from a line along the spanwise direction (z-line) at x = 1297.1 and
y = − 14.6, located in the self-similar turbulent region. Although the two-point correlations do not show an
absolute zero decorrelation at the end of the half domain, the absolute values of two-point correlations are
smaller than 0.2 roughly behind one-quarter of the domain width (Lz = 140) for each case, ensuring that the
spanwise length is sufficiently large for turbulence simulation [60,89]. Figure 5 shows the one-dimensional
spanwise energy spectra of the streamwise velocity in the self-similar turbulent region of the FSL for various
convective Mach numbers. It can be observed that all three cases display the power-law behavior with the
exponent of − 5/3 in the inertial subrange, while the roll-off in the dissipation range compares well with the
published studies [60,66,89], demonstrating that the grid resolution in the spanwise direction is adequate to
resolve the finest scales in the turbulence.

The advantage of the spectralmultidomainmethod is that it allows the spatial resolution to be adjusted at two
levels. One level is to change the number of elements (h-refinement) to obtain a satisfying resolution. Another
level is to modify the polynomial order within an element (p-refinement). It is well known that p-refinement
gives an exponential convergence rate, whereas an algebraic convergence rate is provided by h-refinement
[38]. Thus, p-convergence studies are conducted for the spatially developing FSL cases with Mc = 0.3, 0.5,
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Fig. 4 Two-point correlation functions of velocity components at self-similar region with different convective Mach numbers

Fig. 5 One-dimensional spanwise energy spectra of the streamwise velocities for different convective Mach numbers

and 0.7 for different polynomial orders. After a careful investigation on different grids, polynomial order
p = 5 is selected for the further simulations. The present DNS results are compared with theoretical, DNS,
and experimental results.

To perform the comparison for the level of self-similarity, four profiles of the Favre-averaged streamwise
velocity, {u}, are extracted from four cross-stream lines (y-line). The lines are located in the self-similar
turbulent region at x = 765, 850, 950, and 1050 for the case with Mc = 0.3, at x = 900, 1000, 1100, and 1200
for the case with Mc = 0.5, and at x = 1000, 1100, 1200, and 1300 for the case with Mc = 0.7. Figure 6 shows
the comparison with the classical erf function profile derived by Gortler [19]. Assuming constant viscosity
and density across the shear layer, the Gortler erf profile can be defined as

{u} −U2


U
= 1

2
[1 + erf(η)]. (15)
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Fig. 6 Comparison of the streamwise mean velocity profiles for different locations and convective Mach numbers with classical
erf function profile

Fig. 7 Normalized FSL growth rates with different convective Mach numbers

Here, η is the similarity variable, expressed as

η = σ
(y − y0.5)

(x − x0)
, (16)

where σ = σ0/R and σ0 = 11 is usually used [87], while x0 and y0.5 are the origin of the FSL and the lateral
position at which the streamwise velocity reaches the value of Uc in the cross-stream direction, respectively.
Figure 6 reveals the following: an excellent self-similar behavior is achieved; a good agreement between
the present results and the classical erf function profile can be clearly observed; the difference between the
normalized mean streamwise velocity profiles for different convectiveMach numbers is small. The normalized
momentum thickness growth rates for convective Mach numbers of 0.3, 0.5, and 0.7 in the self-similar region
are compared with the published theoretical, experimental, and numerical results in Fig. 7. The normalized
growth rate is (dδθ/dx)/(dδθ0/dx) and its values for Mc = 0.3, 0.5, and 0.7 are given in Table 1. Here,
dδθ/dx and dδθ0/dx are the momentum thickness growth rates of the present study and the corresponding
incompressible FSL [4], respectively. Figure 7 shows the theoretical and numerical results from a linear stability
analysis [9], temporal direct numerical simulation [60], and spatially developing direct numerical simulation
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Table 1 The approximated values of some variables for the cases with Mc = 0.3, 0.5, and 0.7

Mc M1 M2 dδθ /dx
dδθ /dx
dδθ0/dx

τu τv τw xR xE

0.3 0.8556 0.2556 0.0137 0.793 14.32 6.81 5.19 30 340
0.5 1.4259 0.4259 0.0121 0.700 8.44 4.03 3.27 170 550
0.7 1.9963 0.5963 0.0106 0.613 5.17 2.03 1.89 230 670

M1 and M2 denote the inflowMach numbers at the high- and low-speed sides of the FSL. dδθ /dx and dδθ /dx
dδθ0/dx

are the momentum
thickness growth rate and its normalized one. τu , τv and τw are the integral time scales of u, v and w velocity fluctuations,
respectively. xR indicates the location where the roll-up of vortex sheet originates, while xE is the location where the transition
completes

[89]. For the experimental results in Fig. 7, three methods of shear layer thickness measurements are used,
such as visual thickness [22], 1%
U and 10%
U thickness [4,18], and shear layer pitot thickness [8,61].
The present results fit well with the trend of the scattered experimental results. The scatter in the data is due to
the following factors. First, experimental facilities, measurement techniques, and thickness definitions are not
identical. Second, the shear layers do not achieve self-similarity fully. Finally, significant uncertainty exists in
the estimation of the incompressible shear layer thickness [87]. The result obtained by Zhou et al. [89] may
be one of the good examples of data scatter in this figure, which exhibits a much lower value than most of the
results. This may be attributed to the extremely small Reynolds number that the authors used, requiring much
longer streamwise domain length to achieve a fully self-similar turbulent flow. If not satisfying this condition,
the shear growth rate is obtained in the transition region or even laminar region.

Comparisons of the Reynolds stress profiles in the self-similar region between the present results and
experimental results are shown in Fig. 8. We can see that {u′′u′′}/(
U )2 and {u′′v′′}/(
U )2 of the present
simulations agree very well with the experimental results from Goebel and Dutton [18] for Mc = 0.46 and
0.69, while {w′′w′′}/(
U )2 shows good agreement with the experimental result by Gruber et al. [21], which
is the only available source that we can obtain. {v′′v′′}/(
U )2 falls between the results for Mc = 0.2 and
0.46 from Goebel and Dutton [18], and is higher than that by Gruber et al. [21] at Mc = 0.8. However,
the {v′′v′′}/(
U )2 at Mc = 0.7 of the present study agrees well with that by Goebel and Dutton [18] at
Mc = 0.46. There are still some debates about the altering trends of the Reynolds stresses with changing
Mc. Elliott and Samimy [10] found that all Reynolds stresses decrease considerably with increasing Mc, while
Goebel and Dutton [18] and Gruber et al. [21] reported that the streamwise Reynolds stress remained relatively
unaffected; additionally, Gruber et al. [21] observed a slight change in the spanwise Reynolds stress in their
experimental study. These debates also exist in computational studies. Studies by Vreman et al. [84], Pantano
and Sarkar [60], Fu and Li [13], and Foysi and Sarkar [11] showed that all Reynolds stresses decreased with
increasing Mc, while the study by Freund et al. [12] found a relatively unaffected streamwise Reynolds stress.
We speculate that these disagreements can be influenced easily by using different free-stream velocity ratios,
density ratios, experimental facilities, and measurement techniques. This speculation may account for the
controversies about Reynolds stresses obtained from both experimental and numerical studies. In the present
study, the {u′′u′′}/(
U )2 profiles for different convectiveMach numbers are almost identical, meaning that the
{u′′u′′}/(
U )2 is not sensitive to the change of the convectiveMach number [12]. However, the {v′′v′′}/(
U )2

and {w′′w′′}/(
U )2, as well as the {u′′v′′}/(
U )2 show significant reductions as the convectiveMach number
increases [10,13,18,21,60,83,84].

Following the work of Huang et al. [26], the turbulent kinetic energy (TKE) equation for a stationary flow
is expressed as

− 〈ρ〉{u′′
i u

′′
k }

∂{ui }
∂xk

= ∂〈ρ〉{uk}{k}
∂xk

+ ∂〈ρ〉{u′′
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〉
. (17)

The term on the left-hand side (LHS) of Eq. (17) represents the turbulent production; the first term on the right-
hand side (RHS) is turbulent convection; the second term is turbulent diffusion; the third term is diffusion due
to velocity–pressure interaction; the fourth term is viscous diffusion; the fifth term is energy dissipation rate;
and the last three terms are compressibility related terms with the pressure-dilatation correlation as the very
last one. A large discrepancy between the term on the LHS and the sum of all the terms on the RHS would
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Fig. 8 Comparisons of the Reynolds stress profiles in self-similar turbulent region between the present results and experimental
results, a streamwise, b cross-stream, c spanwise, d shear. Goebel1, Goebel2, and Goebel3 represent the results by Goebel and
Dutton [18] for Mc = 0.2, 0.46, and 0.69, respectively. Gruber represents the results by Gruber et al. [21] for Mc = 0.8. Present1,
Present2, and Present3 stand for the present results for Mc = 0.3, 0.5, and 0.7, respectively

be the result of an unresolved turbulent flow due to a low grid resolution. In particular, an insufficient number
of solution points results in inaccurate second-order statistics. Figure 9 compares profiles of the value of LHS
and the sum of all terms on the RHS of the TKE equation for the cases with Mc = 0.3, 0.5, and 0.7, in the
self-similar turbulent region. It can be seen from Fig. 9a–c that good agreements are achieved for all cases,
meaning that the grid has sufficient solution points for resolving the turbulent FSL [52,60,89].

5 Laminar–turbulent transition zone

The purpose of this section is to define the laminar–turbulent transition zone for turbulent FSL. The region of
the laminar–turbulent transition is estimated by analyzing the vortex structures of the instantaneous flow and
the normalized dissipation rate along the flow direction.

5.1 Instantaneous flow behavior

In Sect. 4, we briefly discussed a method to determine the approximate turbulence transition region by exam-
ining the contours of the spanwise vorticity shown in Fig. 3, based on the presence of small-scale structures
[3,43,57–59,66,69,86]. Since the spanwise vorticity contours are visualized in a 2D manner, the spanwise
movements are not considered. However, the vortex stretching mechanism in the spanwise direction, such as
the formation of secondary streamwise vortices and the breakdown of primary spanwise vortices, is respon-
sible for the onset of turbulence transition [24,43,70]. In this context, we present a 3D representation of the
turbulent structures via iso-surface of the second invariant of velocity gradient tensor in Fig. 10 for all the
cases. In the cases with Mc = 0.3 and 0.5, the 2D primary spanwise coherent structures can be seen in the
FSL [51,86]. In the braid region, along with the 2D primary spanwise coherent structures, the 3D secondary
streamwise vortex structures emerge and stretch the 2D primary spanwise coherent structures to break down to
small-scale structures downstream. The interaction between the 2D and 3D instabilities facilitates the transition
from laminar to turbulence in FSL and hence leading to a self-similar state [27,51,63,72,86]. This process is
the main mechanism accounting for the formation of the fine vortex structures [70]. Therefore, the turbulence
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Fig. 9 Comparisons of the TKE budgets on the LHS and the sum of the RHS of the TKE equation in the self-similar turbulence
region for cases with a Mc = 0.3, b Mc = 0.5, c Mc = 0.7. All terms are normalized by (
U )3

transition region can be approximated by measuring the emergence of the 2D primary spanwise coherent
structures and the 3D secondary streamwise vortex structures. Based on the location of the first-formed 3D
secondary streamwise vortex, the turbulence transition zone can be separated into two parts. The first part,
mainly features the 2D primary spanwise vortices, while the second part shows the 3D secondary streamwise
vortices interacting mutually with the 2D primary spanwise vortices. However, in the case with Mc = 0.7,
only the elongated streamwise streaky structures can be observed in the transition region of the FSL [51],
suggesting that the 3D secondary streamwise vortex structures become dominant in the transition region of
the FSL. This is due to the fact that the elongated vortex structures in the FSL have less tendency to form
spanwise vortices [45,51,71,72]. Therefore, the approach of separating the transition region into two parts is
not applicable for the FSL with Mc = 0.7. It should be noticed that as the convective Mach number increases
from 0.3 to 0.7, the location where the FSL rolls into the transition zone significantly shifts downstream.

5.2 Turbulent dissipation rate

The turbulence transition region is approximated by the analysis of the evolution of the normalized cross-

stream integrated turbulent dissipation rate. The turbulent dissipation rate, ε ≡ ∂〈τ ′
iku

′
i 〉

∂xk
, is the fifth term in the

RHS of Eq. (17). The cross-stream integrated turbulent dissipation rate is defined as

ε I =
∫ +∞

−∞
εdy, (18)

where the superscript I represents the cross-stream (y-line) integration. This definition is also used to define
the cross-stream integrated Reynolds stresses, TKE, turbulent production, and pressure-dilatation correlation.
Figure 11a shows the evolution of the normalized cross-stream integrated turbulent dissipation rate along the
flow direction for the case with Mc = 0.7. Initially, the dissipation rate is near-zero, until perturbations grow
and increase the dissipation rate, reaching a peak during the turbulence transition, and eventually decaying
smoothly. Self-similar behavior is evident due to the small variation in the profile. In boundary shear layer,
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Fig. 10 Iso-surface of the second invariant of velocity gradient tensor colored by streamwise velocity with convective Mach
numbers of 0.3, 0.5, and 0.7

Fig. 11 a Cross-stream integrated dissipation rate, ε I , normalized by (
U )3 b its first derivative with respect to x for Mc = 0.7

researchers study the evolution of the wall shear stress along a surface to determine the laminar–turbulent
transition region. Hirschel et al. [23] proposed that the profile of the evolution of the wall shear stress can be
split into three branches based on its qualitative behavior: the laminar branch, the transition branch, and the
turbulent branch. The authors also demonstrated a possible way to approximate the length of the transition
region. The transition branch is defined as the area where the wall shear stress rises rapidly and reaches a
maximum, while the turbulent branch is defined as the area where the wall shear stress decreases from a
maximum and becomes approximately constant. This behavior, observed in boundary layer, is analogous to
that observed in the FSL. Inspired by this, the qualitative behavior of the cross-stream integrated turbulent
dissipation rate of a FSL can be analyzed in a manner consistent with the wall shear stress in a boundary layer.
As such, for a FSL, we define the region upstream where the dissipation rate is relatively small as the laminar
region. The region where the dissipation rate grows rapidly and reaches a peak is defined as the transition
region. As the dissipation rate decays linearly downstream, the FSL becomes fully turbulent. This area is
defined as the self-similar turbulent region.

To clearly identify the rate of change of ε I /(
U )3 with respect to x , we compute the derivative,
d(ε I /(
U )3)/dx , which is shown in Fig. 11b for Mc = 0.7. It can be seen that the value rapidly increases
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to a peak due to the fact that the growth of disturbances triggers the Kelvin–Helmholtz instability, and that
the unstable vortex sheets emerge, roll up, pair, and finally convert into 3D secondary streamwise vortex
structures, leading to an increase in the breakdown of the large-scale structures [45,58,68,69]. Subsequently,
the magnitude decays and maintains a roughly constant negative value, meaning that the flow evolves past
the transition zone and turns into the self-similar turbulence region. By inspecting Fig. 11, we can estimate
that the transition region starts at x ≈ 230 and completes at x ≈ 670. The analysis of the evolution of the
cross-stream integrated turbulent dissipation rate may be a good alternative in the prediction of the turbulent
transition region. Similar analyses for the cases with Mc = 0.3 and 0.5 are presented in Sect. 7.3, in which the
compressibility effect on the dissipation rate is also discussed.

6 Compressibility effect on turbulent FSL

6.1 Autocorrelation and integral time scale

The effect of the convectiveMach number is studied via the analyses of autocorrelation and integral time scale.
The auto-covariance of the streamwise velocity, considered as the simplest multi-time statistics, is defined as
[66]

Ru(s) = 〈u′(t)u′(t + s)〉, (19)

while its normalized form, the autocorrelation function of the streamwise velocity is

ρu(s) = 〈u′(t)u′(t + s)〉
〈u′2(t)〉 , (20)

where u′ and s are the streamwise velocity fluctuation and the time lag, respectively. Similarly, we can cal-
culate ρv and ρw, which are the autocorrelation functions of cross-stream and spanwise velocity components.
Figure 12 presents the normalized autocorrelation functions of the streamwise, cross-stream, and spanwise
velocities on the centerline of the FSL, where the momentum thicknesses are identical (x = 765.5, 953.1, and
1299.5 for Mc = 0.3, 0.5, and 0.7, respectively), for different convective Mach numbers in the self-similar
turbulent region. The correlations of all three velocity components exhibit a similar trend for the same con-
vective Mach number. It is clear that the case with high convective Mach number, such as Mc = 0.7, has a
steeper roll-off in the autocorrelation curve (faster drop to zero) than does the case with the low convective
Mach number, such as Mc = 0.3 [11,12,60]. It has been known that a steep roll-off of the normalized autocor-
relation curve represents high-frequency fluctuations, which are directly related to smallest-scale structures,
and vice versa [66].

To measure the longest connection in the turbulent behavior over time, the integral time scale,

τu =
∫ ∞

0
ρ (s) ds, (21)

is used, and similarly for τv and τw. Here, τu , τv and τw are the integral time scales of u, v and w velocity
fluctuations, respectively. The integral time scales for different convective Mach numbers are presented in
Fig. 13 and Table 1. The results reveal that the integral time scale decreases as the convective Mach number
increases [12,60]. From this fact, it can be inferred that at any stationary turbulent FSL, an increase in the
convective Mach number may cause a decrease in the size of largest-scale structure. This is also evident from
the comparison of turbulence structures in Fig. 3.

6.2 Growth of the momentum thickness

The variation of themomentum thickness δθ (x) along the flow direction for different convectiveMach numbers
is shown in Fig. 14a. For better comparison, a linear trend-line is also included for the self-similar turbulent
region for each case. The momentum thickness growth rates in the self-similar region are calculated as 0.0137,
0.0121, and 0.0106 for the corresponding convective Mach numbers of 0.3, 0.5, and 0.7 (see Table 1), meaning
that the growth rate of the momentum thickness decreases as the convective Mach number increases [4,8,9,
11,12,18,22,34,60,61,84,85]. The momentum thickness growth primarily consists of three stages: the initial
stage, the rapid evolving stage, and the self-similar stage, which are characterized by different growth rates. In
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Fig. 12 Autocorrelation functions of a streamwise velocity, b cross-stream velocity, c spanwise velocity, in the self-similar
turbulent region

Fig. 13 Integral times-scales for convective Mach numbers of 0.3, 0.5, and 0.7

the first stage, the fundamental mode of instability begins to develop, and the vortex starts to roll up at the end
of this stage [70]. The growth of the FSL is slow but even slower with higher convective Mach number, which
is shown in Fig. 14a in x < 400 for Mc = 0.7. In the second stage, the adjacent vortices start to pair, and
the growth rate reaches its peak. In high Mach number flow, the strong compressibility in the FSL stretches
the roller from a nearly circular shape to a narrow ellipse shape [70]. This mechanism slows down the paring
process. In the third stage, the self-similarity is achieved, and the flow has forgotten the initial conditions [6].
Figure 14b shows the position of the center of the FSL along the x-axis. As the shear flow evolves downstream,
the center of the FSL shifts to the low-speed side due to the asymmetric entrainment to the high- and low-speed
sides of the flow. This feature can be observed in experiments but not in the temporally developing numerical
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Fig. 14 a Evolution of the momentum thickness for convective Mach numbers of 0.3, 0.5, and 0.7, b center of the FSL along the
x-axis

simulations of FSL [10,13,18,21,89]. This center shift is slightly affected by the change of convective Mach
number.

7 Compressibility effect on turbulence transition

The results in the preceding section demonstrate that the numerical methodology used in this study can
accurately capture the compressibility effect on the self-similar turbulent region. In this section, we investigate
the effect of compressibility on the turbulence transition zone in terms of its location and length by analyzing
the flow properties in the transition region, such as normal stress, TKE, and budgets of TKE.

7.1 Evolution of the normal stress and TKE

Evolutions of the normalized cross-stream integrated streamwise, cross-stream, and spanwise normal stresses,
computed with different convective Mach numbers, are shown in Fig. 15. Comparison of Fig. 15a–c indicates
that the streamwise normal stress, RI

11, is the largest component for all three cases. The evolution of the
streamwise normal stress, in general, is similar to that of the other two components. All three stress components
increase sharply from small values, followed by a reduction in the growth rate of stress for each case. This
means that the FSL starts to reach a self-similar turbulent state. Eventually, the normal stresses show a small
linear growth, especially for the cross-stream and spanwise normal stresses, RI

22 and RI
33, in the self-similar

turbulent region. In addition, Fig. 15 reveals that there is a significant decrease in the magnitude of the stress
with the increase in the convective Mach number for each stress component [1].

The TKE is composed of three normal stresses, i.e., streamwise normal stress, cross-stream normal stress,
and spanwise normal stress. Figure 16 shows the evolution of the normalized TKE, k

(
U )2
, at the centerline of

the FSL along streamwise direction for convective Mach numbers of 0.3, 0.5, and 0.7. The value of k
(
U )2

of
each case sharply increases and reaches a peak along streamwise direction. Both the growth rate and the peak are
significantly lower as the convective Mach number increases [12,76,84]. Similar to the evolution of the cross-
stream integrated dissipation rate in Fig. 11, the location of the peak of k

(
U )2
shifts downstreamwith increasing

Mc, implying that the position, where the FSL turns into self-similar turbulence, shifts downstream as well. As
a complement to Fig. 16, Fig. 17a–c shows the cross-stream profiles of k

(
U )2
at five carefully selected locations

along the flow direction for all cases. The locations cover different areas including laminar, laminar–turbulent
transition, and self-similar turbulent regions. Following the profiles of these five locations, i.e., x = 101, 245,
430, 550, and 700, it can be seen that the location of the maximum k

(
U )2
shifts toward downstream (from

x = 245–430–550) as the convective Mach number increases. Another interesting observation is that the
profiles at location x = 101 for Mc = 0.3, at locations x = 101 and 245 for Mc = 0.5, and at locations
x = 101, 245, and 430 for Mc = 0.7, shift toward the high-speed side of the FSL.We can refer to the evolution
of the vortex structures to explain this phenomenon. At the positions not far from the trailing edge of the splitter
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Fig. 15 Cross-stream integrated, a streamwise normal stress, RI
11, b cross-stream normal stress, RI

22, c spanwise normal stress,
RI
33, normalized by (
U )2 for different convective Mach numbers

Fig. 16 Evolution of the normalized TKE at the centerline of the FSL along streamwise direction for convective Mach numbers
of 0.3, 0.5, and 0.7

plate, the roll-ups of lambda vortices and the formations of the hairpin vortices (see Fig. 10) originate on the
high-speed side of the FSL. Thus, the velocity fluctuations become relatively stronger at the high-speed side
than those at the low-speed side of the FSL before reaching the peak of k

(
U )2
. As the values of k

(
U )2
reach its

peaks, the locations of the peaks of the profiles are slightly tilted toward the low-speed side; the corresponding
profile and the profiles downstream show similar shapes. This suggests that the location where the FSL turns
into self-similar turbulent region is related to the peak of k

(
U )2
.

The normalized cross-stream integrated TKE along the flow direction is plotted in Fig. 18a. The figure again
underscores that the integrated TKE decreases with increasing convective Mach number. This is consistent
with the previous discussion on normal stress and the TKE at the centerline of the FSL. Figure 18b shows
the growth rate of the cross-stream integrated TKE, d(k I /(
U )2)/dx , along the flow direction for different
convective Mach numbers. d(k I /(
U )2)/dx starts with a low value and reaches its peak due to the Kelvin–
Helmholtz instability. It is important to note that the locations of both the onset of instability and the peak of
d(k I /(
U )2)/dx move downstream for larger convective Mach numbers, implying that the transition starts
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Fig. 17 Cross-stream profiles of normalized TKE at five streamwise locations for a Mc = 0.3, b Mc = 0.5, c Mc = 0.7

Fig. 18 Cross-stream integrated TKE normalized by (
U )2. a Evolution in flow direction, b its growth rate along the x-axis

with a delay at higher convective Mach numbers. Finally, d(k I /(
U )2)/dx decays to an asymptotic value for
each case. Note that the distance between the onset of d(k I /(
U )2)/dx and the point where d(k I /(
U )2)/dx
reaches the asymptotic value is longer with increasing the convectiveMach number. This implies that the length
of the transition region increases as the convective Mach number increases.

7.2 Evolution of the production of the TKE

We have shown that the growth rates of the momentum thickness and the TKE decrease with increas-
ing the convective Mach number. These may be explained by analyzing the TKE budget. The production,
− 〈ρ〉{u′′

i u
′′
k } ∂{ui }

∂xk
, is the term on the LHS of Eq. (17). The cross-stream profiles of the normalized turbulent

production at six streamwise locations are presented in Fig. 19. It can be seen in Fig. 19a that the production
with the convective Mach number of 0.3 reaches its peak at x = 115. The values in the other two cases remain
very small compared to that of Mc = 0.3 at this location. In Fig. 19b, c, at x = 270 and x = 380, the produc-
tions of Mc = 0.5 rapidly increase and are greater than that of Mc = 0.3 and 0.7. The production of Mc = 0.7
is still relatively small compared to Mc = 0.5, while it is greater than that of Mc = 0.3. A monotonic increase
in the production with the increase in Mach number is observed at x = 471, and the production of Mc = 0.7
reaches its peak, shown in Fig. 19d. As the flow evolves downstream at x = 721 and 996, in Fig. 19e, f, the
differences, in terms of value and shape, between the three cases become smaller and smaller. In summary,
Fig. 19 reveals that the location of the maximum production shifts downstream with increasing the convective
Mach number.

More information pertaining to the production term can be obtained from its normalized cross-stream
integrated profile along the flow direction. As approaching the end of the transition zone, the large-scale
structures break down into smaller-scale structures, leading to a decrease in turbulence production. This is
evident in Fig. 20a, which shows the streamwise evolution of the normalized cross-stream integrated turbulence
production for different convective Mach numbers. It is clear that the cases with Mc = 0.3 and 0.5 have two
peaks. This phenomenon can be explained by the following mechanisms. First, the FSL roll-up leads to the
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Fig. 19 Production of TKE at: a x = 115, b x = 270, c x = 380, d x = 471, e x = 721, f x = 996. The production is normalized
by (
U )3 for each location

initial increase in turbulent production. Second, the vortex mutually interacts with the adjacent vortex, and the
first pairing occurs, leading to a rapid increase in the turbulent production (first peak). After a short period of
newly formed vortex rotation (the valley portion), the second pairing occurs and leads to the second peak of the
production, where the self-similar FSL initiates. Note particularly that there is only one peak for the case with
Mc = 0.7. This may be due to the fact that the 3D secondary streamwise vortex structures become dominant
in the roll-up region of the FSL, which is demonstrated in Fig. 10 as well. Those elongated vortex structures
have less tendency to roll and pair in the streamwise direction [45,51,72]. In addition, as the convective Mach
number increases, the peak location shifts downstream. This trend is also evidenced by the production profiles
in Fig. 19a–c. Therefore, it can be inferred that increasing the convective Mach number may lead to a delay in
the onset of transition. This observation is consistent with that found from the analysis of the TKE in Sect. 7.1.
Figure 20b shows the turbulent production at the centerline (x-line) of the FSL along the streamwise direction,
normalized by (
U )3. In general, the shapes of the profiles in this figure for all three cases are somewhat
similar to the corresponding ones in Fig. 18b. Also, the location of the peak of the production is similar to
that of the growth rate of the integrated TKE for each case. A shoulder is observed in the profile right after
the peak for cases with Mc = 0.3 and 0.5, which is similar to the second peak in the normalized cross-stream
integrated profiles in Fig. 20a. In the self-similar region, the production (production at the centerline of the
FSL) decays gradually to a small value and becomes relatively constant for each case.
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Fig. 20 a Cross-stream integrated turbulent production, P I , b the centerline values of the turbulent production along streamwise
direction. All terms are normalized by (
U )3

7.3 Evolution of the dissipation rate of the TKE

The turbulent dissipation rate,
〈
τ ′
ik

∂u′
i

∂xk

〉
, is the fifth term on the RHS of Eq. (17). Recall that the increase in

the convective Mach number leads to a reduction in the turbulent production, resulting in a decrease in the
TKE and a lower growth rate of the momentum thickness. This could be in part related to the sink terms in
the TKE budget. In this section, we investigate the possible compressibility effect on the laminar–turbulent
transition via one of the sink terms in the TKE budget—viscous dissipation rate (the conversion of mechanical
energy into internal energy). Figure 21a shows the normalized cross-stream integrated dissipation rate along the
streamwise direction for different convective Mach numbers. The level of the dissipation rate increases along
the streamwise direction before reaching a peak. This is due to the increase in the breakdown of the large-scale
structures. However, the cases with lower convective Mach numbers show faster increases to their peaks than
that with higher convective Mach numbers. A higher peak is also observed for the lower convective Mach
number case [12,76,84]. Subsequently, the dissipation rate smoothly decays with a nearly constant rate for
each case. Furthermore, both the onset and the peak of the dissipation rate shift downstream as the convective
Mach number increases. This is also evident in Fig. 21b, which shows the first derivative of the normalized
cross-stream integrated dissipation rate with respect to x . For convenience and clarity, xR is used to indicate
the location where the roll-up of vortex sheet originates, while xE is the location where the transition ends. By
inspecting Fig. 21b, xR and xE can be approximated for each case, and the results are tabulated in Table 1. For
a better comparison, we label the horizontal axis as x − xR for each case, as shown in Fig. 21c. It is clear that
the length of the transition zone increases as the convective Mach number increases.

8 Summary and conclusions

The 3D spatially developing turbulent FSL has been studied using direct numerical simulations by employing
a high-order discontinuous spectral element method. Two parallel streams, under naturally developing inflow
condition, perturbed by relatively weak disturbances from a stochastic model, are separated by a splitter plate.
The FSL originates at the trailing edge of the splitter plate and develops downstream. The Reynolds number,
based on the initial momentum thickness and the difference between the two free-stream velocities across the
FSL, is 140, for all three cases with convectiveMach numbers of 0.3, 0.5, and 0.7. The numerical methodology
is validated by comparing our results to the published numerical and experimental data. Good agreements are
observed in the comparisons of the mean velocity, momentum thickness, normal stress, and the balance of the
TKE equation, ensuring that the numerical methodology and the grid resolution adopted in our simulations
are accurate and adequate.

Turbulence in the 3D compressible FSL is visualized via the iso-surface of the second invariant of the
velocity gradient tensor. The location of the transition zone is identified and estimated by the following two
approaches: analyzing the instantaneous flow structures and the evolution of the dissipation rate. For the first
method, the transition zone is determined based on the emergence of small-scale structures. For the second
method, the evolution of the normalized, cross-stream integrated dissipation rate along the flow direction,
shows both the start and the completion of the turbulence transition. Hence, the lengths of the transition zones
are approximated as 310, 380, and 440 for Mc = 0.3, 0.5, and 0.7, respectively.
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Fig. 21 Cross-stream integrated dissipation rate, ε I , normalized by (
U )3. a Evolution in flow direction; b growth rate over
x-axis; c same as b, but the x-axis is normalized by xR, such as x − xR

The compressibility effects on the turbulent FSL are examined via the study of autocorrelation, integral
time scale, momentum thickness growth rate, and Reynolds stresses for different convective Mach numbers.
An increase in the convectiveMach number causes a reduction in the sizes of largest-scale structures, leading to
a decrease in turbulence production and the growth rate of the momentum thickness. The streamwise normal
stress is the dominant stress among the three normal stresses and is almost unaffected by compressibility.
However, the cross-stream and spanwise normal stresses, as well as the shear stress, show significant reductions
with increasing compressibility.

To further determine the compressibility effect on the transition zone, all the terms in the TKE transport
equation are computed and analyzed. The dominant term in the TKE budget is the production term, which
decreases with increasing convective Mach number, resulting in a slower growth of the FSL. The evolution
of the dissipation rate reveals that the transition starts with a delay and the length of the transition region is
longer as the convective Mach number increases.

In the future, we plan to further investigate the compressibility effect on the energy budget of the turbulent
FSL. Both the mean kinetic energy and mean internal energy (budget terms) will be examined in great detail.
We will analyze the exchange between kinetic energy and internal energy. The compressibility effects on the
mean kinetic energy, the mean internal energy, and the energy exchange between them will be studied.
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