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Abstract Two classes of thermodynamically consistent hydrodynamic phase field models have been devel-
oped for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities.
One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two
incompressible viscous fluid components, which one is more appropriate? To answer this question, we con-
duct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation
properties and show that the quasi-incompressible model conserves both mass and linear momentum, while
the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density
deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second,
we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two
models. We find that they can predict quite different transient dynamics depending on the initial conditions and
the density difference although they predict essentially the same quasi-steady results in some cases. This study

Communicated by S. Balachandar.

X. Yang
School of Science, Wuhan Institute of Technology, Wuhan 430205, Hubei Province, People’s Republic of China
E-mail: xgyang@wit.edu.cn

Y. Gong
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
E-mail: gongyuezheng@nuaa.edu.cn

J. Li
School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
E-mail: nkjunli@foxmail.com

J. Zhao
Department of Mathematics & Statistics, Utah State University, Logan, UT 84322, USA
E-mail: jia.zhao@usu.edu

Q. Wang (B)
Beijing Computational Science Research Center, Beijing 100093, People’s Republic of China
E-mail: qwang@csrc.ac.cn

Q. Wang
Department of Mathematics, University of South Carolina, Columbia, SC 29028, USA

Q. Wang
School of Materials Science and Engineering, Nankai University, Tiajin 300350, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00162-018-0463-3&domain=pdf


538 X. Yang et al.

thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of
two incompressible viscous fluids especially when the two fluid components have a large density deviation.

Keywords Hydrodynamic phase field models · Quasi-incompressible models · Incompressible models ·
Viscous fluid mixtures · Density differences

1 Introduction

Phase field models have been successfully used to describe dynamics of flows of fluid mixtures of two or more
fluid components, composite solid materials of different solid components, multiphase materials and complex
biological systems for theoretical studies and numerical simulations [6,8–11,13,14,20–23,26,30,31,33–37].
When applied to flowing material systems, phase field models belong to a class of multiphase fluid models
known as the one fluid multi-component model [7]. In this class of fluid models, an average velocity field
is commonly used. However, in most phase field models for mixtures of incompressible fluids, a divergence
free velocity field is used to describe the average flow field [29,32], whose physical identity is often vaguely
delineated [3]. In some models, for instance, the mass-average velocity is employed [24,27,29], while in
the others the volume-average velocity is used [3]. In fact, no matter if the velocity is a mass-average or a
volume-average velocity [3], so long as a divergence free condition on the velocity is imposed in the model
for fluid mixtures of different densities in their components, the governing system of equations can hardly be
thermodynamically consistent while in themeantime themass andmomentum conservation laws are respected.
This fact will become apparent when we go through the derivation of the binary hydrodynamic phase field
theories in Sect. 2 in this paper.

One scientific question is what is the appropriate or ”correct” hydrodynamic model for flows of fluid
mixtures of incompressible fluid components that is not only thermodynamically but also hydrodynamically
consistent, namely it respects the conservation laws in mass, linear and angular momentum and possesses
energy dissipation properties. This motivates us to conduct the current comparative study between two classes
of thermodynamically consistent hydrodynamic theories developed recently, using the binary fluid mixture
system as an example. To study a binary fluid mixture with a small density difference, an early practice
was to use a Boussinesq approximation, where the small density difference is neglected except for its effect
in the gravitational force [25]. This approach, however, is not valid for large density deviations. For large
density deviations, several quasi-incompressible phase field models have been developed [3,4,9,11,24,27–
29], in which the models in [3,28] considered phenomenological modifications of the momentum equation.
The thermodynamically consistent versions were investigated analytically in [1,2], where existence of strong
local-in-time solutions and weak solutions was shown. Benchmark computations for the models in [3,9,11]
were carried out by Aland and Voigt [5]. In [19], a numerical method that preserves a discrete energy law is
developed for the quasi-incompressible model of [27], in which the mass fraction is used as the phase variable.
Recently, the quasi-incompressible model for binary fluid flows with different densities using volume fractions
as phase variables is developed by Shen et al. [29] and Aki et al. [4], and for multiphase fluid flows by Li and
Wang [24]. An efficient, linear, second-order fully discrete scheme is also developed for the model to compare
with incompressible models [16]. An alternative approach was taken to modify the compressible model into
an incompressible version [3], where the momentum equation is approximated using the volume-average
velocity instead of the mass-averaged velocity. The model has been studied numerically in [15,17,18], where
the numerical methods developed are shown to be energy stable.

In summary, for large density deviations in the fluid mixture, there exist two classes of hydrodynamic
phase field models: the quasi-incompressible one and the incompressible one, both of which satisfy their
respective energy dissipation laws, i.e., they are thermodynamically consistent. More importantly, both are
designed to describe hydrodynamics of the same physical fluid mixture. But, apparently, they are different
in their mathematical structures. So, which one is more appropriate or correct? Can both be correct but with
differentmathematical structures?An affirmative answer is highly unlikely. Hence, a comprehensive evaluation
of the two classes of hydrodynamic models becomes necessary and important. In this study, we will go over
the derivation, analyze and numerically investigate the two models to evaluate them quantitatively and try to
provide an answer to the question of which one is more appropriate. We focus on the incompressible model
given in [15,17,18] and the quasi-incompressible model derived in [24,29].

Looking forward, we note that both models satisfy energy dissipation laws, but with different energy
dissipation rates. This has already hinted that transient dynamics of the two models are going to be different.
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Tracing back to the definition of the kinetic energy in the two models, we notice that the kinetic energy in the
incompressible model is not the “real” kinetic energy since it is defined using the volume-average velocity. In
addition, we point it out that the incompressiblemodel does not satisfy the linearmomentumbalance law. These
discrepancies between the models perhaps contribute to the difference in model predictions in the numerical
experiments that we show in the paper as well as the linear analysis. In particular, the linear stability analysis of
the two models reveals that the unstable growth rate in the quasi-incompressible model depends on the density
ratio (or density difference) of the two constituent components while it is completely independent of it in the
incompressible model. Analogously, the transient dynamics of the quasi-incompressible model varies with
respect to the density difference while the incompressible model is insensitive to the difference. Based on the
conservation laws that the models satisfy and the ad hoc definition of the kinetic energy in the incompressible
model, the outcome of this study clearly favors the quasi-incompressible model especially when the density
difference is large. When the density difference is small, dynamics predicted by both models are not too far
apart though, hinting the incompressible model perhaps can be used as an approximation just like one can
use the Boussinesq approximation in this regime. Although both models are thermodynamically consistent in
the sense that they possess their respective energy dissipation laws, given their differences in mathematical
structures and the conservation laws that they satisfy, this study clearly selects the one that is more appropriate
for the fluid mixture of viscous fluid components. Hopefully, this study will serve as a guide for people to
choose the right model to use in the future. One lesson we learned from this study is that thermodynamically
consistency is a nice mathematical pretext; it should never be used as a criterion to justify applicability of
physical model; physical models must be derived the following pertinent physical laws.

The rest of the paper is organized as follows. In Sect. 2, we derive the two models using a generalized
Onsager principle [24]. In Sect. 3, we compare the two models theoretically. In Sect. 4, we discuss linear
stability of the models with respect to a constant steady state which is a solution of both models. In Sect. 5, we
discuss transient dynamical predictions of the models in nonlinear regimes in one space dimension and time.
Finally, we give the concluding remark.

2 Model derivation

We consider a binary fluid mixture consisting of two incompressible viscous fluid components with molecular
number densities n j , j = 1, 2, respectively. We assume that the molecule of the j th component has mass m j

and volume v j , j = 1, 2. Then, the specific mass density of the j th component is ρ̂ j = m j
v j
. The mass density

of the j th component in the mixture is ρ j = n jm j . Then, the total mass density of the mixture is given by

ρ = n1m1 + n2m2 = ρ1 + ρ2. (2.1)

The mass fraction s j of the j th component in the binary mixture is defined by s j = ρ j
ρ

, j = 1, 2, so that

s1 + s2 = 1. (2.2)

The volume fraction c j of the j th component in the mixture is defined by

c j = n jv j = n jm j

m j/v j
= ρ j

ρ̂ j
, j = 1, 2. (2.3)

Because n j is the number density, the total number of the molecules of the j th component in the unit volume,
we have

c1 + c2 = 1. (2.4)

Both (2.2) and (2.4) are valid in the mixture provided the excluded volumes of the molecules are unchanged
after mixing, which is assumed in this paper.

The mass density of the binary fluid can be represented by the combination of the specific densities and
the volume fractions:

ρ = c1ρ̂1 + c2ρ̂2. (2.5)

The mass fraction and the volume fraction are related by the following relation

ci = siρ

ρ̂i
, i = 1, 2. (2.6)
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2.1 Linear momentum versus the pseudo linear momentum

The linear momentum of fluid i is given by ρivi , i = 1, 2. The total linear momentum density of the binary
mixture is defined as the sum of that from each component:

p = ρ1v1 + ρ2v2, (2.7)

where v j is the velocity of the j th component. From the definition of the linear momentum, the mass-averaged
velocity v of the binary mixture is defined as

v = p
ρ

= 1
ρ
(ρ1v1 + ρ2v2) = s1v1 + s2v2. (2.8)

Using the volume fractions, we define the volume-averaged velocity u of the binary mixture as follows

u = c1v1 + c2v2. (2.9)

When the density of the two fluid components is distinct, the two average velocities are different! We next
show how different it can be between the two linear momentum vectors defined by the two different velocity
vectors.

For the volume-average velocity, we define the pseudo linear momentum vector as follows

p̂ = ρu = ρ(c1v1 + c2v2). (2.10)

The difference between the “real” linear momentum and the pseudo linear momentum is

δp = p − p̂ = ρ(s1v1 + s2v2) − ρ(c1v1 + c2v2). (2.11)

The mass fractions s j can be expressed by the volume fractions and the specific mass densities as follows

s j = ρ j
ρ

= n jm j
n1m1+n2m2

= c jm j /v j
c1m1/v1+c2m2/v2

= c j ρ̂ j

c1ρ̂1+c2ρ̂2
. (2.12)

Because c2 = 1 − c1 , the momentum difference δp can be simplified into

δp = ρ̂1(v1 − v2)c1(1 − c1)
(
1 − 1

r

)
, (2.13)

where r = ρ̂1
ρ̂2

is the ratio of the specificmass densities. For c1 ∈ (0, 1), when either v1 = v2 or r = 1(ρ̂1 = ρ̂2),
δp = 0. Otherwise, δp �= 0. When δp �= 0, the difference may be far from zero. For instance, we assume the
second fluid moves at a special velocity v2 = sv1, where s is a scalar. Then, the momentum difference is

δp = ρ̂1v1(1 − s)c1(1 − c1)
(
1 − 1

r

)
. (2.14)

In order to show the difference clearly, we fix r and draw the graph of the coefficient function d(c1, r) defined
by

d(c1, r) = c1(1 − c1)
(
1 − 1

r

)
, c1 ∈ [0, 1], r > 0. (2.15)

Notice that 1 − 1
r = (ρ̂1−ρ̂2)

ρ̂1
. So, d(c1, r) ∼ (ρ̂1 − ρ̂2) at fixed c1. It is easy to see that when the density

ratio r is far from 1, the absolute value of the coefficient function d(c1, r) is large at some value of c1, as shown
in Fig. 1. If we write the real linear momentum as

p = ρ̂1v1
(
c1 + s(1 − c1)

1
r

)
, (2.16)

the relative error: ratio of the linear momentum difference to the real linear momentum, is given by

re(s, c1, r) = ‖δp‖
‖p‖ =

∣∣∣
∣∣
(1−s)c1(1−c1)

(
1− 1

r

)

c1+s(1−c1)
1
r

∣∣∣
∣∣
. (2.17)

In Fig. 2, it is easy to find that the relative error of the momentum is large (up to about 9%) when the
density ratio r is far from 1. Figures 1 and 2 show the coefficient function and the relative error function at a
few selected density ratios and s values for this special binary fluid mixture flow where v2 = sv1 is assumed.
This indicates that the difference of the two linear momenta can indeed be quite significant for any given set
of the composition and velocity field in each individual component in the mixture. This fact should not be
easily ignored when one develops new theories for the binary mixture fluid flows since it can induce significant
errors! We next recall the derivation of the two hydrodynamic phase field models, dissect what approximations
are made during the derivation and examine their respective energy dissipation laws.
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Fig. 1 Difference coefficient function d(c1, r) in the linear momentum. a d(c1, r), r < 1. b d(c1, r), r > 1
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Fig. 2 Relative error re(s, c1, r) with fixed s = 0.9. a re(s, c1, r), r = 0.01, 0.05, 0.1 < 1, s = 0.9. b re(s, c1, r), r =
2, 10, 50 > 1, s = 0.9

2.2 Quasi-incompressible model (PFM)

We consider two incompressible viscous fluid components and recall that the mass conservation laws for the
two incompressible fluid components are given, respectively, by

∂tρ1 + ∇ · (ρ1v1) = 0, ∂tρ2 + ∇ · (ρ2v2) = 0.

The total mass is thus conserved

∂tρ + ∇ · (ρv) = 0. (2.18)

The conservation law of the linear momentum is given by

∂t (ρv) + ∇ · (ρvv) = ∇ · σ + Fe, (2.19)

where σ is the stress tensor and Fe is the elastic force, both of which will be determined by constitutive
relations. We can add the external force (like gravity) if necessary. For fluid component 1, we rewrite the flux
(ρv1) into a convective part moving with the mass-average velocity v and a diffusive part associated to the
relative flux between the two components:

∂tρ1 + ∇ · (ρ1v + ĵ) = 0, (2.20)

where ĵ = ρ1ρ2(v1−v2)
ρ

is the diffusive flux.
In the following, we denote the volume fraction of component 1 as c = c1 = ρ1

ρ̂1
and its excessive diffusive

flux as j = ĵ
ρ̂1
. The transport equation for c is obtained rom (2.20) and given by

∂t c + ∇ · (cv + j) = 0. (2.21)
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The total mass conservation can be written as follows by using the transport equation of c together with the
mass conservation equation,

∇ · v = −
(
1 − ρ̂1

ρ̂2

)
∇ · j. (2.22)

This shows that as long as the density ratio between the two fluid component is not 1 or there exists the diffusive
flux j, the mass-average velocity field is not going to be divergence free.

We next assume the free energy of the binary fluid system in a fixed volume element V is prescribed as

F = F(c,∇c) =
∫

V
f (c, ∇c)dx,

where f is the free energy density. At the boundary of the fixed material domain ∂V , we assume there exists
an interfacial free energy with density g(c)

G = G(c) =
∫

∂V
g(c)dS.

The total free energy of the system is given by

E total =
∫

V

(ρ

2
‖v‖2

)
dx + F + G. (2.23)

The energy dissipation rate at a constant absolute temperature T is given by

dE total

dt
=
∫

V
dx
{
1

2

∂(ρv2)
∂t

+ ∂ f

∂t

}
+
∫

∂V

∂g

∂t
dS. (2.24)

There are three parts in the integration: the first and second parts are the rates of change in the kinetic energy
and the system free energy, respectively. The third one is the rate of change in the surface free energy. The
time rate of change in the free energy density is given by

∂ f

∂t
= ∂ f

∂c

∂c

∂t
+ ∂ f

∂(∇c)
· ∂(∇c)

∂t
= μ

∂c

∂t
+ ∇ ·

(
∂ f

∂(∇c)

∂c

∂t

)
. (2.25)

The field conjugate to c is the chemical potential μ = δF
δc = ∂ f

∂c − ∇ · ∂ f
∂(∇c) . So the energy dissipation rate can

be written as

dE total

dt
=
∫

V
dx
{
1

2

∂(ρv2)
∂t

+ μ
∂c

∂t

}
+
∫

∂V
dS

{(
∂ f

∂(∇c)

∂c

∂t

)
· n + ∂g

∂c

∂c

∂t

}
, (2.26)

where ∂V is the surface of volume V and n is the external unit normal of ∂V . By using the transport equation
of c, and the conservation of the total system mass and linear momentum, we have

dE total

dt
=
∫

V
dx {−∇v : σ + v · (Fe + c∇μ) + j · ∇μ} +

∫

∂V
dS

{
v ·
(

−1

2
ρv2I − cμI + σ

)
· n

−μj · n +
(
n · ∂ f

∂∇c
+ ∂g

∂c

)
∂c

∂t

}
. (2.27)

If we assume

v|∂V = 0, j · n
∣∣
∣∣
∂V

= 0,

[
n · ∂ f

∂∇c
+ ∂g

∂c

] ∣∣
∣∣
∂V

= 0 (2.28)

at the boundary, the last surface integral is zero. This is equivalent to say that dynamics at the surface does not
contribute to energy dissipation of the binary fluid system. These define additional boundary conditions for the
velocity and the internal variable c via the excessive flux. If the surface term is not assigned into zero, it may
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contribute to the energy dissipation. The latter case includes moving boundaries, which we will not pursue in
this study. We define the elastic force and the strain rate tensor as

Fe = −c∇μ,

D = 1

2
(∇v + ∇vT ). (2.29)

The total stress tensor σ is in fact symmetric that can be proved by the angular momentum conservation of the
system. The energy dissipation is simplified into

dE total

dt
=
∫

V
dx{−D : σ + j · ∇μ}. (2.30)

In addition, the total stress can be written as σ = σ s − �I, where � is the hydrostatic pressure. Then, the
energy dissipation rate is

dE total

dt
=
∫

V
dx
{−D : σ s + �∇ · v + j · ∇μ

}

= −
∫

V
dx
{
D : σ s + j ·

(
−∇

(
μ + (1 − ρ̂1

ρ̂2
)�

))}
. (2.31)

Then, we propose the following constitutive relations:

σ s = 2ηD + νtr(D)I,

j = −λ∇
(

μ +
(
1 − ρ̂1

ρ̂2

)
�

)
,

(2.32)

where η is the shear viscosity coefficient, ν is the volumetric viscosity, and λ is the mobility coefficient. Finally,
the energy dissipation rate is shown as non-positive,

dE total

dt
= −

∫

V
dx

{

2ηD : D + ν(tr(D))2 + λ

∥
∥∥
∥∇
(

μ +
(
1 − ρ̂1

ρ̂2

)
�

)∥∥∥
∥

2
}

≤ 0. (2.33)

Clearly, the density ratio ρ̂1
ρ̂2

has an impact on the energy dissipation rate in this model.
We summarize the equations in the hydrodynamic phase field model with mass-average velocity (named

PFM model) in the following,

∂t c + ∇ · (cv) = ∇ ·
(
λ∇
(
μ +

(
1 − ρ̂1

ρ̂2

)
�
))

,

∇ · v =
(
1 − ρ̂1

ρ̂2

)
∇ ·
(
λ∇
(
μ +

(
1 − ρ̂1

ρ̂2

)
�
))

=
(
1 − ρ̂1

ρ̂2

)
(∂t c + ∇ · (cv)) ,

ρ = (ρ̂1 − ρ̂2
)
c + ρ̂2,

ρ
(

∂v
∂t + v · ∇v

) = −∇� + 2∇ · (ηD) + ∇(νtrD) − c∇μ.

(2.34)

The viscosity coefficients for the fluid mixture are interpolated through the volume fractions and given by

η = cη1 + (1 − c)η2, ν = cν1 + (1 − c)ν2, (2.35)

where η1,2, ν1,2 are constant shear and volumetric viscosities for fluid component 1 and component 2, respec-
tively. The mobility coefficient λ is often taken as a constant λ0 in the past, but is preferably a function of c in
the following form:

λ = λ0c(1 − c). (2.36)

The Cahn–Hilliard equation with the volume fraction-dependent mobility is called singular or modified Cahn–
Hilliard equation. If it is approximated simply by a constant valueλ0 in studying phase separated and immiscible
fluids, the equation is the well-known Cahn–Hilliard equation. This hydrodynamic phase field is known as the
quasi-incompressible model which was derived by two of the authors in [24]. It has also been derived by Shen
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et al. [29] and Aki [4], respectively. The version in the mass fraction was given in [27]. This theory upholds
the mass and momentum conservation laws while yielding a non-positive energy dissipation rate!

In the phase field model, the free energy density f can take on different forms depending on applications
intended. In this paper, we consider the free energy density of the following form:

f (c, ∇c) = kBT γ

(
1

2
‖∇c‖2 + h(c)

)
, (2.37)

where T is the absolute temperature, kB is the Boltzmann constant, γ is a parameter with the unit of a number
density per unit length, which is in fact proportional to the product of the number density per unit volume and
the square of the persistent length. The chemical potential is given by

μ = kBT γ

(
−∇2c + dh

dc
(c)

)
. (2.38)

For the bulk potential h(c), we consider the following two cases in this study.

Case 1: double-well free energy:

h(c) = 1

2ε2
c2(1 − c)2. (2.39)

It is suitable for two immiscible fluids, where ε > 0 is a small parameter characterizing the hydrophobic
property between the two components.

Case 2: Flory–Huggins mixing free energy [12]:

h(c) = 1

ε2

(
c

N1
ln(c) + 1 − c

N2
ln(1 − c) + χc(1 − c)

)
, (2.40)

where N1 and N2 are the polymerization index for component 1 and component 2, respectively, ε is a dimen-
sionless parameter, and χ > 0 is the mixing parameter.

2.3 Incompressible model (PFV)

If we use the volume-average velocity of the mixture u = c1v1+c2v2, the divergence free condition is satisfied
automatically:

∇ · u = ∇ · (c1v1 + c2v2) = ∇ ·
(

ρ1
ρ̂1
v1 + ρ2

ρ̂2
v2
)

= − ∂
∂t

(
ρ1
ρ̂1

+ ρ2
ρ̂2

)
= − ∂

∂t (c1 + c2) = 0. (2.41)

We rewrite the mass conservation law for each component using the volume-average velocity as

∂tρ1 + ∇ · (ρ1u + J1) = 0,
∂tρ2 + ∇ · (ρ2u + J2) = 0, (2.42)

where J1 = ρ1(v1 − u), J2 = ρ2(v2 − u) are the fluxes related to u. The total mass conservation is

∂tρ + ∇ · (ρu + J1 + J2) = 0. (2.43)

Because ci = ρi
ρ̂i
, we have

∂t ci + ∇ ·
(
ciu + Ji

ρ̂i

)
= 0, i = 1, 2. (2.44)

It is easy to find that J1
ρ̂1

+ J2
ρ̂2

= ρ1(v1−u)

ρ̂1
+ ρ2(v2−u)

ρ̂2
= 0. Then J2 = − ρ̂2

ρ̂1
J1. As alluded earlier, we use c = c1

and J = J1, the equations for c, ρ are given, respectively, by

∂t c + ∇ ·
(
cu + J

ρ̂1

)
= 0,

∂tρ + ∇ ·
(
ρu +

(
1 − ρ̂2

ρ̂1

)
J
)

= 0.
(2.45)
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We remark that due to mass conservation, ρv = ρu+ (1− ρ̂2
ρ̂1

)J. The two momenta can be very different when
the density ratio is far from 1.

The balance of linear momentum states that

∂t (ρv) + ∇ · (ρvv) = ∇ · σ + Fe. (2.46)

We substitute

ρv = ρu +
(
1 − ρ̂2

ρ̂1

)
J (2.47)

into the balance of linear momentum equation to obtain

ρ
[
∂t

(
u + 1

ρ

(
1 − ρ̂2

ρ̂1

)
J
)

+
(
u + 1

ρ

(
1 − ρ̂2

ρ̂1

)
J
)

· ∇
(
u + 1

ρ

(
1 − ρ̂2

ρ̂1

)
J
)]

= ∇ · σ + Fe. (2.48)

We drop ∂t (
1
ρ
(1− ρ̂2

ρ̂1
)J), ( 1

ρ
(1− ρ̂2

ρ̂1
)J) ·∇[ 1

ρ
(1− ρ̂2

ρ̂1
)J] and u ·∇[ 1

ρ
(1− ρ̂2

ρ̂1
)J] from the above linear momentum

balance equation, to have the following transport equation of the volume-average velocity

ρ(∂tu + u · ∇u) = ∇ · S − ∇� −
(
1 − ρ̂2

ρ̂1

)
J · ∇u + Fe, (2.49)

where σ = S − �I, � is the hydrostatic pressure, and I is the identity matrix. We introduce T as T =
S − �I − (1 − ρ̂2

ρ̂1
)uJ, the truncated pseudo linear momentum equation is written as

∂t (ρu) + ∇ · (ρuu) = ∇ · T + Fe, (2.50)

here mass conservation (2.43) is used. This equation is the original key assumption of the pseudo linear
momentum equation in Abels et al.’s paper [3]. Here we have shown clearly the difference between the pseudo
and real linear momentum equations. The pseudo linear momentum equation is an approximation to the real
one by dropping three terms, which are related to the mass flux and proportional to the density difference. This
balance equation is identical to the linear momentum balance equation only when the densities are equal. This
deviation from the linear momentum balance portends the potential difference in dynamical predictions from
the two models.

Following the previous practice formally, we define the free energy of the system as follows

E total =
∫

V

(ρ

2
‖u‖2

)
dx + F + G. (2.51)

The kinetic energy density is represented by ρ
2 ‖u‖2, F is the bulk free energy, and G is the boundary free

energy, as described in the previous subsection. Once again, we remark that ρ
2 ‖u‖2 is not the true kinetic energy

and it’s merely an approximation to the kinetic energy. So, the free energy of the system is an approximation
to the true free energy of the system. This discrepancy is another source of difference in dynamical predictions
from the two models. The energy dissipation rate at a constant absolute temperature T is given by

dE total

dt
=
∫

V
dx

{
1

2

∂
(
ρ‖u‖2)
∂t

+ μ
∂c

∂t

}

+
∫

∂V
dS

{
n · ∂ f

∂(∇c)

∂c

∂t
+ ∂g

∂c

∂c

∂t

}
. (2.52)

We assume the following so that the surface integral is zero:
[
n · ∂ f

∂∇c
+ ∂g

∂c

]
|∂V = 0. (2.53)

By using the transport equation of c, the conservations of the total mass, the pseudo linear momentum and
∇ · u = 0, we have

dE total

dt
=
∫

V
dx
{
1

2
‖u‖2∂tρ + ρu · ∂tu + μ

∂c

∂t

}

=
∫

V
dx
{
−1

2
‖u‖2

(
∇ ·
(

ρu +
(
1 − ρ̂2

ρ̂1

)
J
))



546 X. Yang et al.

+u ·
(

−ρu · ∇u + ∇ · S − ∇� −
(
1 − ρ̂2

ρ̂1

)
J · ∇u + Fe

)
− μ∇ ·

(
cu + J

ρ̂1

)}

=
∫

V
dx
{
−∇u : S + u · (c∇μ + Fe) + J ·

(∇μ

ρ̂1

)}

+
∫

∂V
dS

{
u ·
(

−1

2
ρ‖u‖2I − cμI + S

)
· n −

(
μ

ρ̂1
+ 1

2

(
1 − ρ̂2

ρ̂1

)
‖u‖2

)
J · n

}
. (2.54)

If we assume u = 0 and J · n = 0 at the boundary, the last surface integration is zero. These define additional
boundary conditions for the velocity and the internal variable c via the excessive flux. We denote the strain
rate tensor as

D = 1

2

(
∇u + ∇uT

)
. (2.55)

Then, we define

S = 2ηD, Fe = −c∇μ, J = −λρ̂1∇μ, (2.56)

where η is the shear viscosity coefficient and λ is the mobility coefficient. Finally, the energy dissipation rate
is shown as non-positive,

dE total

dt = −
∫

V
dx
{
2ηD : D + λ‖∇μ‖2} ≤ 0. (2.57)

It is different from (2.33) in that the energy dissipation rate is independent of the density ratio ρ̂1
ρ̂2

explicitly in
this model.

We summarize the equations in the hydrodynamic phase field model with volume-average velocity, named
PFV, in the following,

∂t c + u · ∇c = ∇ · (λ∇μ),
∇ · u = 0,
ρ = (ρ̂1 − ρ̂2)c + ρ̂2,

ρ
(

∂u
∂t + u · ∇u

) = −∇� + 2∇ · (ηD) + λ(ρ̂1 − ρ̂2)(∇μ · ∇)u − c∇μ.

(2.58)

The viscosity coefficients for the fluid mixture are interpolated through the volume fraction and given by

η = cη1 + (1 − c)η2, (2.59)

where η1,2 are constant shear viscosities for fluid component 1 and component 2, respectively. The mobility
coefficient λ is preferably a function of c in the form λ = λ0c(1 − c), but often taken as a constant λ0 for
convenience in the past.

2.4 Non-dimensionalization

We use a characteristic timescale t0 and length scale l0 to non-dimensionalize the physical variables as follows:

t̃ = t
t0

, x̃ = x
l0

, ṽ = vt0
l0

, ũ = ut0
l0

, �̃ = �t20
ρ̂2l20

.

Then, the non-dimensionalized parameters are

Resi = ρ̂2l0
ηi t0

, Rev
i = ρ̂2l0

νi t0
, 
 = λ0γ kBT t0

l40
, ε̃ = ε

l0
, ρ̃ = 1 −

(
1 − ρ̂1

ρ̂2

)
c, (2.60)

where Resi and Rev
i , i = 1, 2 denote the Reynolds numbers corresponding to the shear and volumetric stresses

and 
 is the dimensionless mobility parameter. We also denote

1
Res = c

Res1
+ 1−c

Res2
, 1

Rev = c
Rev

1
+ 1−c

Rev
2
, (2.61)
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where Res and Rev are the effective Reynolds numbers of the mixture. First, we choose l0 so that the dimen-
sionless length in the x-direction of the fluid domain is Lx = 1. Then, we set the parameter group of the

pressure � in the dimensionless c-equation to be
ρ̂2l40

γ kBT t20
= 1 to select the timescale t0 =

√
ρ̂2l40

γ kBT
. For sim-

plicity, we drop the ˜ on the dimensionless variables and the parameters. The total free energy is scaled by the
characteristic energy ρ̂2(

l0
t0

)2, and the dimensionless total free energy is

E total =
∫

V

(
ρ

2
‖v‖2 + 1

2
‖∇c‖2 + h(c)

)
dx, (2.62)

where h(c) = 1
2ε2

c2(1 − c)2 for double-well energy or 1
ε2

( c
N1
ln(c) + 1−c

N2
ln(1 − c) + χc(1 − c)) for Flory–

Huggins energy, in PFM model. In PFV model, we replace v by u in (2.62). Here we set g = 0 to ignore
the interfacial free energy. The corresponding boundary condition becomes n · ∂ f

∂∇c = n · ∇c = 0, which is
homogenous Neumann boundary condition for c.

The governing equations for the two phase field models in these dimensionless variables are then given by:

PFM model:

∂t c + ∇ · (cv) = ∇ ·
(

∇

(
μ +

(
1 − ρ̂1

ρ̂2

)
�
))

,

∇ · v =
(
1 − ρ̂1

ρ̂2

)
∇ ·
(

∇

(
μ +

(
1 − ρ̂1

ρ̂2

)
�
))

,

ρ
(

∂v
∂t + v · ∇v

) = −∇� + ∇ · ( 1
Res ∇v

)+ ∇ (( 1
Res + 1

Rev

)∇ · v)− c∇μ.

(2.63)

PFV model:

∂t c + u · ∇c = ∇ · (
∇μ), ∇ · u = 0,

ρ
(

∂u
∂t + u · ∇u

) = −∇� + ∇ · ( 1
Res ∇u

)− 

(
1 − ρ̂1

ρ̂2

)
(∇μ · ∇)u − c∇μ.

(2.64)

Here ρ = 1 − (1 − ρ̂1
ρ̂2

)c. And the chemical potential of the free energy is

μ = −∇2c + h(1)(c). (2.65)

For the double-well free energy,

h(1)(c) = 1
ε2
c(1 − c)(1 − 2c). (2.66)

For the Flory–Huggins mixing energy, with N1 = 1, N2 = 2, χ = 2 (the numerical values that we fix in this
study),

h(1)(c) = 1
ε2

(
ln c − 1

2 ln(1 − c) − 4c
)+ constant. (2.67)

3 Theoretical comparison

In the derivation of the PFM model, we enforce the mass and momentum conservation although the transport
equation of the volume fraction of one component uses a constitutive relation. In contrast, only the mass
conservation is enforced in the derivation of the PFV model, where the transport equation for one component
is obtained via a constitutive equation and the linear momentum equation is approximated. So strictly speaking,
the momentum is not conserved in the PFV model. Moreover, the kinetic energy used in the PFV model is
not exactly the true kinetic energy when the volume-average velocity is used. If we hypothetically assume
the constitutive relation is exact, the PFV model only respects the mass conservation while the PFM model
respects both the mass and the linear momentum conservation. In this regard, we tend to believe the PFM
model is closer to the physical reality.

In addition to the above qualitative differences, the other obvious differences between the two models
include that, in the PFMmodel, the velocity field is not divergence free and the hydrostatic pressure is coupled
to the transport equation of the phase variable. Here, we want to expose another hidden difference in the
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mobility coefficient between the two models, by explicitly expressing the transport equation of c2, the volume
fraction of fluid component 2 with c2 = 1 − c.

The free energy density f = f (c, ∇c) = f (1 − c2, −∇c2). The chemical potential of c2 is

μ2 = ∂ f
∂c2

− ∇ · ∂ f
∂(∇c2)

= − ∂ f
∂c + ∇ · ∂ f

∂(∇c) = −μ. (3.1)

Substituting the relations c = 1 − c2 and μ = −μ2 into the governing equations of the PFM model, and
redefining the pressure as �2 = � − μ2, then the momentum equation exhibits the same form as before

ρ
(

∂v
∂t + v · ∇v

) = −∇�2 + ∇ · ( 1
Res ∇v

)+ ∇ (( 1
Res + 1

Rev

)∇ · v)− c2∇μ2.

The equations of c and continuity equation ∇ · v can be rewritten using c2, μ2, �2 as follows

∂t c2 + ∇ · (c2v) = ∇ ·
(

2∇

(
μ2 +

(
1 − ρ̂2

ρ̂1

)
�2

))
,

∇ · v =
(
1 − ρ̂2

ρ̂1

)
∇ ·
(

2∇

(
μ2 +

(
1 − ρ̂2

ρ̂1

)
�2

))
,

(3.2)

where the density ratio is ρ̂2
ρ̂1
, the inverse of ρ̂1

ρ̂2
, and the mobility 
2 of c2 is


2 = 

(

ρ̂1
ρ̂2

)2
. (3.3)

This shows that the “formal” mobility coefficients of the volume fractions of the fluid components differ in the
PFM model. In the transport equation for the volume fraction of the second fluid component, the dependence
of mobility on the density ratio is explicit if the mobility coefficient for the first fluid component is given,
exposing the role of density differentiation in the transport process and a hidden asymmetry in the form of the
transport equation for the volume fractions in the PFM model. Since c + c2 = 1, dynamics of both volume
fractions is supposed to be the same. But their transport equations look different. It indicates that the pressure
in the quasi-incompressible model must play an important role in the transport of the phase variables than a
normal hydrostatic pressure does in an incompressible model.

In contrast, we rewrite the governing system of equations using the volume fraction of the other component
in the PFV model, the governing equations are given by

∂t c2 + u · ∇c2 = ∇ · (
∇μ2), ∇ · u = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇�̂ + ∇ ·
(

1

Res
∇u
)

− 


(
ρ̂1

ρ̂2
− 1

)
(∇μ2 · ∇)u − c2∇μ2,

(3.4)

where the new pressure is �̂ = �−μ2. In the newmomentum equation, the forcing term−
(1− ρ̂1
ρ̂2

)(∇μ·∇)u

changes to −
(
ρ̂1
ρ̂2

− 1)(∇μ2 · ∇)u. The mobility for transporting c2 is also 
, independent of the density

ratio ρ̂1
ρ̂2
. So, the transport equations of both volume fractions are identical in form. This is the most important

departure from the PFM model.
The second major difference lies in the energy dissipation rates of the two models. The energy dissipation

rate in the PFMmodel depends on the density ratio explicitly, while that in the PFVmodel does implicitly only
through the volume-average velocity. Further discrepancies between the two models and detailed comparisons
will be discussed in the next two sections via a linear stability analysis and numerical simulations on nonlinear
dynamics.

4 Linear stability analysis

In this section, we examine linear stability prediction from the two models to further expose their differences.
We consider the solution of the governing equations which are only varying in the x direction and homogenous
in the other two directions. That means the unknown variables are functions of time t and one spatial variable
x ∈ R1, where the characteristic length scale l0 is chosen as a typical length in which the fluid phenomenon
is observed. The equations of the two models in 1D space are listed below:
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PFM model:

∂t c + (cv1)′ =
(



(
μ +

(
1 − ρ̂1

ρ̂2

)
�
)′)′

,

v′
1 =

(
1 − ρ̂1

ρ̂2

)(


(
μ +

(
1 − ρ̂1

ρ̂2

)
�
)′)′

,

ρ ∂v1
∂t = −ρv1v′

1 − �′ + ( 1
Res v

′
1

)′ + (( 1
Res + 1

Rev

)
v′
1

)′ − cμ ′,
ρ ∂v2

∂t = −ρv1v′
2 + ( 1

Res v
′
2

)′
, ρ ∂v3

∂t = −ρv1v′
3 + ( 1

Res v
′
3

)′
.

(4.1)

Here (·)′ = ∂(·)
∂x and v = (v1, v2, v3). The pressure � can be solved from the second equation:

�′ = v1
β2


− μ ′
β

, (4.2)

where β = 1 − ρ̂1
ρ̂2
, v2 and v3 decouple from the rest of the equations. Then, the equations reduce to a system

of coupled equations for (c, v1),

∂t c + (cv1)′ = v′
1

β
,

ρ ∂v1
∂t = −ρv1v′

1 + ( 1
Res v

′
1

)′ + (( 1
Res + 1

Rev

)
v′
1

)′ − v1
β2


+
(
1
β

− c
)

μ ′.
(4.3)

PFV model:

∂t c + u1c′ = (
μ ′)′, u′
1 = 0,

ρ ∂u1
∂t = −�′ + ( 1

Res u
′
1

)′ − 

(
1 − ρ̂1

ρ̂2

)
μ ′u′

1 − cμ ′,

ρ ∂u2
∂t = ( 1

Res u
′
2

)′ − 

(
1 − ρ̂1

ρ̂2

)
μ ′u′

2,

ρ ∂u3
∂t = ( 1

Res u
′
3

)′ − 

(
1 − ρ̂1

ρ̂2

)
μ ′u′

3.

(4.4)

Here u = (u1,u2,u3). Firstly, we observe that u1 = const = 0 due to the diverge free and boundary conditions
at infinity. Then, all equations decouple so that the equation of c can be solved independently

∂t c = (
μ ′)′. (4.5)

The pressure is given by the solution of the equation �′ = −cμ ′, and u2,u3 can be solved from their own
equations. For the two models, the chemical potential is μ = h(1)(c) − (c′)′.

We notice that both models admit a constant solution:

c = c0, v1 = 0(u1 = 0), � = 0, (4.6)

where c0 is constant and c0 ∈ [0, 1]. We next study linear stability of the constant steady state subject to
periodic boundary conditions with respect to the two models.

We perturb constant solution (4.6) as follows:

c = c0 + δeαt+ik·x c11, v1 = δeαt+ik·xv11
(
u1 = δeαt+ik·xu11

)
, � = δeαt+ik·x�1, (4.7)

where δ 	 1 is a small perturbation, c11, v
1
1(u

1
1), �1 are constants. For the PFM model, by truncating at the

linear order of δ, we write the governing system of equations for the perturbations into a matrix form,
⎛

⎝
α

(
c0 − 1

β

)
ik

−ik
(
c0 − 1

β

) (
k2 + h(2)(c0)

)
(1 − βc0)α +

(
2
Res0

+ 1
Rev

0

)
k2 + 1


β2

⎞

⎠
(
c11

v11

)

= 0, (4.8)

whereh(2)(c0) = 1
ε2

(1−6c0+6c20) for the double-well potential orh
(2)(c0) = 1

ε2
( 1
c0

+ 1
2(1−c0)

−4) for theFlory–

Huggins potential, and the Reynolds numbers Res0, Re
v
0 are given by

1
Res0

= c0
Res1

+ 1−c0
Res2

, 1
Rev

0
= c0

Rev
1

+ 1−c0
Rev

2
.

The characteristic equation of the coefficient matrix is

(1 − βc0)α2 +
[(

2
Res0

+ 1
Rev

0

)
k2 + 1


β2

]
α +

(
c0 − 1

β

)2
k2
[
k2 + h(2)(c0)

] = 0. (4.9)
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Because β = 1 − ρ̂1
ρ̂2

< 1 and c0 ∈ [0, 1], then 1 − βc0 > 0. The unstable condition is

h(2)(c0) < 0. (4.10)

The unstable wave number region is 0 < |k| <
√−h(2)(c0), in which the positive growth rate is given by

α1 = −2(1−βc0)2
k2
[
k2+h(2)(c0)

]

[
1+
β2

(
2

Res0
+ 1

Rev0

)
k2
]
+
√[

1+
β2

(
2

Res0
+ 1

Rev0

)
k2
]2

−4
2β2(1−βc0)3k2[k2+h(2)(c0)]
.

(4.11)

For the PFV model, the unstable condition is also (4.10) and in the unstable wave number region the positive
growth rate is

α2 = −
k2
[
k2 + h(2)(c0)

]
. (4.12)

We remark that this unstable growth rate of the PFV model is independent of the density ratio!
When β = 0, i.e., ρ̂1 = ρ̂2, we have α1 = α2. In this case the two models are identical. When 0 < β < 1,

that is ρ̂1 < ρ̂2, it is easy to find that

α1 < −(1 − βc0)2
k2
[
k2 + h(2)(c0)

]
< α2. (4.13)

It is consistent to the numerical result that when ρ̂1 < ρ̂2, the dynamic process of the PFM model is slower
than that of the PFV model.

In the region β < 0, an analytic comparison of α1,2 is not feasible. We plot the growth rate as a function
of (β, k) numerically. The parameter values used are listed in Table 1. We choose c0 = 0.4, then the unstable
wave number region is |k| <

√
1100 ≈ 33.17. In Fig. 3, the (β, k) space plotted is [−10, 1] × [0, 33]. In this

region, α1 and α2 are all positive. When β is not far from zero, α1 > α2 in the whole unstable wave number
region; but when |β| is large, α1 > α2 in small wave number region and α1 < α2 in the large wave number

Table 1 List of parameter values

Parameter Res1 Res2 Rev
1 Rev

2
ρ̂1
ρ̂2

β ε 


Value 1 10 × Res1
1
4.3 10 × Rev

1 0.99 ∼ 10 1 − ρ̂1
ρ̂2

0.02 5 × 10−6
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(a) Growth rates (b) Contour map of growth rate difference α1−α2

Fig. 3 a Positive growth rates α1, α2 with three different values of β as functions of the wave number k. α1 is the growth rate of
the PFM model while α2 is the growth rate of the PFV model. b The growth rate difference α1 − α2 in the (β, k) space. In the
contour map (b), the black dashed curve is the zero level contour (α1 − α2 = 0). When 0 < β < 1, α1 < α2. When β < 0, there
are two cases: β not far from zero, α1 > α2; |β| is large, α1 > α2 in small wave number region and α1 < α2 in the large wave
number region. Heuristically, a larger growth rate indicates faster dynamics in the system
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region. An asymptotic analysis can be used here when the mobility 
 	 1. If 
 is very small, and |βk| is not
large, we have

α1 ≈ −(1 − βc0)2
k2
[
k2 + h(2)(c0)

]
> α2. (4.14)

It is consistent with the numerical studies in the next section. The dynamic process of the PFMmodel is faster
than that of the PFV model when α1 > α2 and slower otherwise. The linear stability analysis indicates that
growth dynamics in the PFM model depends on the density ratio while it does not in the PFV model.

5 Nonlinear dynamic simulations

One of the applications of phase field models is the study of coarsening dynamics or coalescent dynamics of
single phase regions, represented by protuberances in the volume fraction function in a biphasic setting. We
investigate coalescent dynamics of protuberances in biphasic systems using the two distinct models, focusing
on comparing model predictions dynamically. The numerical scheme we use to solve the equations in the two
models is the modified pressure-corrected projection scheme presented in paper [29], which is implemented
in 1D space and time. The spatial 1D domain is I = [0, 1]. The boundary conditions are given as follows

c′|x=0,1 = 0, μ′|x=0,1 = 0, v1|x=0,1 = 0. (5.1)

The parameter values used in the study are listed in Table 1.
In the following numerical examples, the ratio of the two fluid densities ρ̂1

ρ̂2
is varied from 10 to 0.99 so

that β varies from -9 to 0.01. We conduct the dynamical study using the double-well and the Flory–Huggins
free energy with respect to a given initial condition of c as well as a random initial profile of c, respectively.

Before we present the numerical solutions, we first examine the long time behavior of the 1D systems.
With this set of boundary conditions, we first solve for the steady states of the two models. For the PFVmodel,
the steady states are governed by

u1 = 0, μ′ = 0. (5.2)

We then solve the transport equation of c in steady state in the PFM model and find v1 = 0, and the steady
state of the volume fraction is governed by

μ′ = 0. (5.3)

This indicates that the two models share the same 1-D steady states, governed by the critical points of the
chemical potential. Thus, if there are any differences in these two models in their 1D prediction subject to the
given boundary conditions, they show up in their respective transient dynamics.

5.1 Protuberance coalescence subject to a double-well potential

We first look at the protuberance coalescence subject to a double-well potential using the two hydrodynamic
models. The initial conditions are given as follows

v1(x, 0) = 0, �(x, 0) = 0,

c(x, 0) =

⎧
⎪⎨

⎪⎩

tanh(2), r1 ≤ 0.1 − a or r2 ≤ 0.1 − a
tanh((0.1 + a − r1)/a), 0.1 − a < r1 < 0.1 + a
tanh((0.1 + a − r2)/a), 0.1 − a < r2 < 0.1 + a
0, else,

(5.4)

where r1 = |x − 0.35|, r2 = |x − 0.65| and a = 0.05. In the initial state of c, there are two protuberances next
to each other in the middle of the domain, which finally coalesce into a large one at the end of our numerical
simulations. First, we set the density ratio ρ̂1

ρ̂2
= 0.9, i.e., β = 0.1. As shown in Fig. 4, the coalescent processes

predicted using the two models are slightly different, the coalescent process in the PFM model is slower than
that in the PFV model. In the second and third subfigure in Fig. 4, at time t = 2, 4, the volume fraction c near
the middle point x = 0.5 in the PFM model is obviously smaller than that in the PFV model. In Fig. 4g, the
curves of velocity v1 in PFMmodel are plotted, v1 is nonzero in the coalescent process, which is very different
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Fig. 4 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. The first subfigure
shows the initial state of c, where two protuberances are next to each other in the middle of the domain. The parameter value
β = 0.1. When the difference of the two specific densities is large, the coalescent dynamic processes of the two models show
some differences in time, the coalescent process of the PFMmodel is slower than that of the PFVmodel. But the final quasi-steady
states are the same since the velocity and the gradients of pressure are all damped to zero at the end of the simulation, as shown
in g and h

from zero velocity u1 = 0 in the PFM model. In Fig. 4h, however, the gradients of pressure of the two models
are almost zero at time t = 20 and the final quasi-steady states are the same.

To study the role of the density ratio in coalescent dynamics, we further increase the density ratio to
ρ̂1
ρ̂2

= 0.5, i.e., β = 0.5. The difference of the two simulated dynamic processes becomes more prominent,
shown in Fig. 5. For the PFVmodel, c reaches the quasi-steady state at about t = 10; but for the PFMmodel, c
reaches the quasi-steady state at about t = 40. Velocity v1 in PFMmodel is also nonzero during the coalescent
process. A more extreme example is given in Fig. 6, where the density ratio is ρ̂1

ρ̂2
= 0.1 and β = 0.9. The

coalescent dynamic process of the PFM model slows down significantly, where c reaches the quasi-steady
state beyond t = 350. As we have shown in the above section, for the PFM model, the mobility of c2 is

2 = 
(

ρ̂1
ρ̂2

)2. When ρ̂1
ρ̂2

is small, the mobility 
2 is small, so the dynamic process in the PFM model slows
down. Physically, when the surrounding fluidmatrix is heavier than the one in the protuberances, the coalescent
dynamics tends to slow down as predicted by the PFM model.
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Fig. 5 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. ρ̂1
ρ̂2

= 0.5, β = 0.5.
In comparison, when the difference of the two specific densities is larger, the coalescent dynamics of the PFM model is slower
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Fig. 6 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. ρ̂1
ρ̂2

= 0.1, β = 0.9.
In the PFV model, c reaches the quasi-steady state at t = 10; but in the PFM model, it reaches it after t = 350. The dynamics
predicted by the PFM model is much slower than that by the PFV model when the density ratio is small or β is close to 1. The
pressure field predicted by the PFM model at t = 350 is still not uniform although the phases predicted by the two models match
very well already
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Fig. 7 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. β = −0.5 and
ρ̂1
ρ̂2

= 1.5. In the PFV model, c reaches the quasi-steady state after time t = 10; but in the PFM model, it does it at time t = 5.
The coalescent process of the PFM model is faster in this case

We next study the case where ρ̂1 > ρ̂2, i.e., β is negative. In Fig. 7, β = −0.5. The coalescent process of
the PFM model is faster than that of the PFV model. This is because 
2 = 
(

ρ̂1
ρ̂2

)2 is larger than 
. In Fig. 8,
the solutions of PFMmodel with different negative β values are shown at different time. The dynamic process
becomes faster as β decreases (|β| increases). This finding is consistent with the linear stability analysis in the
long wave region, where the growth rate of the unstable mode in the PFM model α1 increases with respect to
−β. In this case, the heavier protuberances tend to merge faster when the ambient fluid matrix is lighter as
predicted by the PFM model. In contrast, the PFV model does not discern the difference at all.

We plot the total energy with respect to a few selected values of β in Fig. 9. As we point out in the second
section, the energy dissipation rate of PFM model (2.33) depends on the density ratio ρ̂1

ρ̂2
explicitly, but the

energy dissipation rate of PFV model (2.57) does not explicitly. The energy plots in the numerical examples
resonate with the observation. The total energy plots of all the cases converge to 33.3 eventually in the quasi-
steady state. It is easy to understand this, because the final quasi-steady states of the two cases are the same.
The transient states during the coalescent dynamic processes are quite different though. This figure shows
that the energy decay process becomes faster as β decreases. It is consistent with the protuberance coalescent
dynamic process of the fluid mixture alluded to earlier.

So far, the numerical examples have demonstrated the difference in transient dynamics between the pre-
dictions made by the two phase field models. We would like to see whether the difference only lies in the rate
of coarsening (coalescent) dynamics, parametrized by the mobility coefficient. In another word, can we adjust
the mobility parameter in one model to match the dynamics in the other? For this purpose, we fix β = 0.5 in
the PFM model and 
 = 5× 10−6 in the PFV model, then modify the mobility coefficient in the PFM model
to be 3.1
, then, the energy curves of the two models match very well as shown in Fig. 10. The transient states
of volume fraction c match well at different times as well. However, the gradients of pressure do not match so
well at different times, but the relative difference is not huge either. This shows that by adjusting the rate of
dynamics in one model, we may be able to match the transient dynamics to the other model to some extent.
This matching game is attainable for the double-well potential at least for the examples we examined, but it is
hardly feasible for the Flory–Huggins potential as we will show below, where the transient dynamics is more
complex.
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Fig. 8 Solutions of the PFM model with negative β = −0.5, −1, −9 at different times. a When β = −9, the solution is
near quasi-steady at t = 1; b and c when β = −1, −9, the solutions are near quasi-steady at t = 2, 3, respectively; d when
β = −0.5, −1, −9, the solutions are near quasi-steady at t = 4. This simulation shows that coarsening dynamics becomes faster
as β decreases
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Fig. 9 Comparison of total energy curves. A: PFV model; B: PFM model. The rate of the energy decay decreases with respect
to β. This behavior is consistent with growth dynamics of the PFM model in the long wave region in the linear stability analysis

5.2 Coalescent dynamics with the Flory–Huggins free energy

In this numerical example, we consider the Flory–Huggins free energy. The initial conditions are given by

v1(x, 0) = 0, �(x, 0) = 0, c(x, 0) = 0.5 + 0.2 Rand(0, 1), (5.5)

where Rand(0, 1) is the random number generator subject to the standard uniform distribution in the open
interval (0, 1); then, c(x, 0) ∈ (0.3, 0.7). We first generate the random numbers and save them; then, the other
numerical simulations are all based on the same initial state except that the parameter β is allowed to vary.
In Fig. 11, we use β = 0.1 and in Fig. 12, β = 0.5. In each example, we find that the coalescent process of
the PFM model is slower than that of the PFV model as expected. The final quasi-steady states are the same
between the two models even with different values of parameter β when using the same initial state.
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Fig. 10 Comparison of coalescent dynamics with a matched mobility. A: PFV model; B: PFM model. In the PFM model, the
mobility is 3.1
 and β = 0.5. The energy curves and the phase variables match pretty well, but not the pressure

The total energy plots with different values of parameter β are shown in Fig. 13. The energy decay process
becomes slower as β increases, analogous to the scenario with the double-well potential. The total energy goes
through several steps of fast decay in time; however, each of which corresponds to one coarsening process in
the protuberance coalescence. There are two short plateaus and two long plateaus in the energy landscape in
this case, at energy level E total = −163.07 and E total = −197.48, respectively. When the energy values are
at the same level on the long plateaus, the states of the volume fraction are almost the same predicted by both
models, as shown in Figs. 11 and 12, at time t = 10 and t = 50, respectively. But the dynamic processes in the
two models are totally different in time, the knees (or steps) leading to the plateaus appear at different times
in different models (see Fig. 13).

Next, we would like to match the energy curves by modifying the mobility of the PFM model as we did
in the previous example. We fix β = 0.5 in the two models, 
 = 5 × 10−6 in the PFV model, and increase
the mobility coefficient in the PFM model to 1.8
, the energy curves of the two models match well at the first
knee near time t = 3, but not at the second knee near time t = 18; but if the mobility in the PFM is changed to
2.6
, the curves match well at the second knee near time t = 18, but not at the first knee near time t = 2.5, as
shown in Fig. 14. This indicates that the simple mobility matching game that we played with the double-well
potential no longer works for the more sophisticated coarsening dynamics when the Flory–Huggins potential
is employed. There does not exist a suitable mobility of the PFMmodel such that the energy curves can match
well with that of the PFV model. This indicates that hydrodynamics of the two models are fundamentally
different!

6 Conclusions

We have dissected the quasi-incompressible (PFM) and the incompressible (PFV) hydrodynamic phase field
model in their derivation, conservative properties, mathematical structures, linear stability and nonlinear
dynamics. First, in the PFM model, the mass and momentum conservations are all enforced before the con-
stitutive relation is determined, whereas in the PFV model, the mass conservation is enforced while the linear
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Fig. 11 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. β = 0.1. Time
evolution of the profiles of volume fraction c. The solutions are plotted at different times. Comparing the solutions at time t = 18
and 18.5, the coalescent process of the PFM model is slower than that of the PFV model. The final quasi-steady states of the two
models are the same
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Fig. 12 Comparison of time-dependent protuberance coalescence dynamics. A: PFV model; B: PFM model. β = 0.5. Time
evolution of the profiles of volume fraction c. The solutions are plotted at different times. Comparing the solutions at time
t = 18, 20, 23 and 35, the coalescent process of the PFM model is slower than that of the PFV model. The final quasi-steady
states of the two models are the same
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Fig. 14 Comparison of time-dependent protuberance coalescence dynamics with matched mobility coefficients. A: PFV model;
B: PFM model. In the PFM model, β = 0.5 and the mobility is 1.8
 or 2.6


momentum conservation is not. Second, the total energy used in the two models is distinct: the kinetic energy
used in the PFV model is not the real kinetic energy, because the velocity adopted is the volume-average
velocity. Third, in the PFV model, the mobility coefficients for volume fractions c2 and c satisfy 
2 = 
; but
in the PFM model, 
2 = 
(

ρ̂1
ρ̂2

)2. Since c + c2 = 1, dynamics of c and c2 should be the same in the PFM
model. The presence of the pressure in the transport equation of the phase variables in the PFM model thus
must compensate for the apparent difference in the mobility inherently. Fourth, when ρ̂1

ρ̂2
< 1, i.e., 0 < β < 1,


2 < 
, the dynamic process in the PFMmodel is slow comparing with that in the PFVmodel; when ρ̂1
ρ̂2

> 1,
i.e., β < 0, 
2 > 
, the dynamic process in the PFM model is fast. This is verified by our numerical simula-
tions. In coarsening dynamics, when the energy decay only exhibits one rapid decay in time before reaching
a steady state, one perhaps can adjust the mobility of one model to match the dynamics of the other; when
coarsening dynamics undergoes several rapid transitions in time, as we showed with the Flory–Huggins free
energy, the simple mobility matching fails to match dynamics predicted by the two models. This is a clear
indication that dynamics of the two models are fundamentally different. Both models have their respective
energy dissipation laws and are thereby thermodynamically consistent; PFV model does not respect the linear
momentum balance while PFM does. This serves as a foundation for us to believe that the PFM model is
more appropriate to use in describing dynamics of the binary fluid. A 2D numerical comparison has also been
carried out by our group supporting the same conclusion [16].
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