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Abstract This paper presents a linear global stability analysis of the incompressible axisymmetric boundary
layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure
gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar
in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier–Stokes (LNS)
equations are derived for the disturbance flowquantities in the cylindrical polar coordinates. TheLNS equations
along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is
axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocationmethod and
Arnoldi’s iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal
modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest
imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial
structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are
moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of
2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach
2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds
number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least
stable eigenmodes.

Keywords Axisymmetric boundary layer · Global stability · Transverse curvature

1 Introduction

The linear stability analysis with the parallel base flow assumption is termed as local stability analysis where
the base flow is varying only in wall normal direction. The linear stability of shear flows is governed by
classical Orr–Sommerfeld equation. The numerical solution to such problems deals with solutions of Orr–
Sommerfeld equation obtained for disturbance amplitude functionswhich are ofwave-like nature. It is assumed
that streamwise wave number is constant at each streamwise location and disturbance amplitude functions are
a function of wall normal coordinate only. The numerical solution of Orr–Sommerfeld equation for parallel
base flow assumption can be achieved with very limited computational efforts [7]. The numerical solutions of
Orr–Sommerfeld equation obtained for disturbance amplitude functions are of wave-like nature. It is assumed
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that streamwise wave number is constant at each streamwise location and disturbance amplitude functions are a
function of wall normal coordinate only. In spatially growing boundary layers, the base flow velocity is varying
in streamwise direction which results in a considerable wall normal velocity. In these cases, non-parallel effects
are very strong and cannot be neglected. This is true at low and moderate Reynolds numbers. The parallel flow
assumption is not a good approximation for real flows where the flow is varying in streamwise direction. Under
such conditions, the flow becomes two-dimensional and only wave-like nature of the solution is not expected.
However, it may be one of the solutions. Therefore, stability analysis with the parallel flow assumption may
not represent the complete flow physics, and hence, it is having very limited scope for parallel and weakly
non-parallel (WNP) flows only.

In the last decade, the stability analysis of non-parallel flow has received much attention through global
stability analysis. Here, the base flow is varying in both radial and axial directions. The term global instability
is used to represent instability analysis of the such flows [34]. The base flow considered here is non-parallel due
to continuous growth of boundary layer in spatial directions and not self-similar due to transverse curvature
effect [14,41].

Global temporal modes are time harmonic solutions of the homogeneous linearized disturbance equations
with homogeneous boundary conditions in space. Such solutions have been obtained for a base flow with
strong non-parallel effects. If the base flow is varying slowly on the scale of a typical instability wavelength,
global modes can be recovered by WKBJ type analysis [6]. A boundary layer at high Reynolds numbers and
flow through diverging channels at small angles of divergence are common examples of weakly non-parallel
flows. The boundary layer at low and moderate Reynolds numbers has strong non-parallel effects, and hence,
WKBJ approach may not be the right choice. The prediction by non-parallel theory also agrees better with the
experiments at moderate Reynolds numbers.

Joseph [17] is the first among all to introduce the termglobal stability analysis,where he studied perturbation
energy and established lower bounds for flow stability. Bert [3] reported the discovery of short-wavelength
elliptic instability in inviscid vortex flows, a problem related to both transition and turbulence research. Bert
discovered short-wavelength instability for inviscid vortex flow related to transition and turbulence research [3].
Jackson [16] reports first computations on viscous flowwhere he studied flowpast various shaped bodies. Onset
of periodic behaviour in two-dimensional laminar flow past bodies of various shapes is examined by means
of finite-element simulations. Zebib [43] studied growth of symmetric and asymmetric perturbations for flow
past a circular cylinder. They found that the symmetric disturbances are stable; the asymmetric perturbations
become unstable at a Reynolds number about 40with a Strouhal number about 0.12. Christodoulou [4] used the
global approach for free surface flow, Tatsumi [32] for rectangular duct flow and Lin [19] for boundary layer
flows. The matrices generated by the discretization of global stability equations are very large, non-symmetric
and sparse, which requires significant computational resources. All above-said works have implemented QR
algorithm for computations of eigenvalues and eigenvectors of resulting matrices. This algorithm computes
all the eigenvalues. However, flow becomes unstable in case of a shear flow due to very few dangerous modes
only; it is more economical to calculate that modes only. Iterative techniques like Arnoldi’s algorithm with
shift-invert strategy compute few selected eigenvalues near the shift value. Theofilis [39] studied 2D steady
laminar separation bubble usingWNP and DNS and got an excellent agreement of the stability results for both
2D and 3D. By performing a global stability analysis, they proved the existence of new instability modes that
are not explored by either of the approaches, i.e. WNP & DNS. Theofilis [34] studied the global stability of
separated profiles in three different flow configurations, and they show that the amplitude of the global mode
is less in the separated region than in the wake region or shear layer region. Ehrenstein [12] studied the global
instability of a flat-plate boundary layer. By an optimal superposition of the global temporal modes, they were
able to simulate the convective nature of instability of the boundary layer. Alizard [2] performed a global
stability analysis on a flat-plate boundary layer and obtained an excellent agreement with the local stability
results and the WNP results. Monokrousos [25] performed a global stability analysis of the flat plate boundary
layer and calculated the maximum energy growth with a reduced order model and found that optimal energy
growth cannot be obtained with least stable global modes only, but it is necessary to consider few globally
stable modes also. This is essential for flow control. Tezuka [33] has first time solved initial value problem
based on the same approach for three-dimensional disturbances.

It is interesting to review the literature on the instabilities of axisymmetric boundary layer on a circular
cone. Most of the research work done so far is in compressible regime. The stability of supersonic flow past
a sharp cone was studied by Mack [21] using linear stability theory. The effect of curvature was neglected
in their study. Later Malik and Spall [24] presented the viscous compressible boundary layer equations for
an axisymmetric basic flow. The stability analysis was performed for axisymmetric and non-axisymmetric
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disturbances [24]. In the experimental work on blunt bodies and walls with concave curvature, they considered
two-dimensional and three-dimensional disturbances for studying TS and Gortler instabilities. They found
that transverse curvature has a stabilizing effect on axisymmetric disturbances and destabilizing effect on
non-axisymmetric disturbances. Duck [8] showed that the effect of transverse curvature becomes very small
when the radius of the body is much larger than the boundary layer thickness. Duck and Hall [10] later
studied the instability of supersonic flow over an axisymmetric boundary layer for two-dimensional and three-
dimensional disturbances. They concluded that the neutral stability boundaries show no similarity when the
effect of transverse curvature is significant [10]. Duck [9] studied supersonic flow past a straight circular
cylinder for axisymmetric mode. He found that as curvature increases, first unstable inviscid mode disappears
rapidly and amplification rate of second mode reduces [9]. Duck and Shaw [11] continued this study with
non-axisymmetric disturbances for a laminar boundary layer on a sharp cone in supersonic flow and obtained
inviscid growth rates. They identified the most unstable disturbances as a new mode of instability waves [11].

The study of stability analysis of incompressible axisymmetric boundary layer is found very sparse in the
literature. The available literature on axisymmetric boundary layers is limited to local stability analysis. Rao
[28] first studied the stability of axisymmetric boundary layer. He found that non-axisymmetric disturbances
are less stable than that of two-dimensional disturbances. The estimated critical Reynolds number based on
free-stream velocity and body radius of the cylinder was 11,000. Later work of Tutty [40] investigated that
for non-axisymmetric mode critical Reynolds number increases with azimuthal wave number N. The critical
Reynolds number found to be 1060 for N = 1 mode and 12,439 for N = 0 mode. The axisymmetric mode is
found least stable fourth mode. Recently, Vinod [41] investigated that higher non-axisymmetric mode N = 2 is
linearly stable for a small range of curvature only. The helical mode N = 1 is unstable over a significant length
of the cylinder, but never unstable for curvature above 1. Thus, transverse curvature has overall stabilizing
effect over base flow and perturbations. Malik [23] studied the effect of transverse curvature on the stability of
incompressible boundary layer. They investigated that the body curvature and streamline curvature are having
significant damping effects on disturbances. They also found that travelling waves are the most amplified
waves in three-dimensional boundary layers. Vinod and Govindarajan [42] studied secondary instability of an
incompressible axisymmetric boundary layer. They found that laminar flow is always stable at high transverse
curvature to secondary disturbances.

Petrov [27] is the first to study stability of boundary layer formed on a rotating cylinder. Streamwise velocity
profile were obtained for small axial length and show the existence of wall jet effect at large rotation rate.
However, this interesting fact was not explained in the paper [27]. Kao and Chao [18] also studied stability
analysis for rotating cylinder. However, the centrifugal force term is missing in boundary layer equation and
they could not find any wall jet effect even at high rate of rotation. Herrada [15] have obtained stability analysis
results for a axisymmetric boundary layer with the rotating cylinder with certain range of rotation rates. They
were unable to get any wall jet effect in their study. Muralidhar et al. [26] have obtained stability results for the
rotating cylinder with high Reynolds number. They considered Reynolds number and rotational rate as control
parameters, and the boundary layer equations used are not limited to the case where boundary layer thickness
is thin compared to cylinder radius. At large downstream distance, the flow differs from the Blasius profile
due to the effect of curvature and rotation. As rotation rate increases, the centrifugal force increases the radial
pressure gradient and wall jet exists. The wall jet effect becomes stronger with the increase in rotation rate.
Parallel base flow assumption is considered in all above investigations.

The two-dimensional global modes are computed for the flat-plate boundary layer by some investigators
[1,2,12]. However, this is the first attempt to compute global temporal modes for the axisymmetric boundary
layer. The main aim of this paper is to study the global stability characteristics of the axisymmetric boundary
layer and the effect of transverse curvature on it. The base flow on a circular cylinder is computed with
the two different base flow configurations; real boundary layer with spherical cap as shown in Fig. 1 and
model boundary layer with assumption that boundary layer directly develops on the cylindrical surface. The
instability analysis for real and model axisymmetric boundary layers is studied. The characteristics of the
global eigenmodes of axisymmetric boundary layer are compared with the flat-plate boundary layer (with zero
transverse curvature) at different Reynolds numbers. The comparison shows that the transverse curvature has
overall stabilizing effect on the disturbances.

2 Problem formulation

We follow the standard procedure to derive linearized Navier–Stokes equations for disturbance flow quantities.
The Navier–Stokes equations for base flow and instantaneous flow are written in polar cylindrical coordinates
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Fig. 1 Schematic diagram of axisymmetric boundary layer on a circular cylinder

(r, θ, x). The equations are non-dimensionalized using free-stream velocity (U∞) and displacement thickness
(δ∗) at the inlet of the domain. Following the standard procedure of stability analysis, we get the set of equations
for disturbanceflowquantities. Thebaseflow is axisymmetric, anddisturbances are three-dimensional in nature.
The Reynolds number is defined as,

Re = U∞δ∗

ν
(1)

The flow quantities are split into base flow and perturbations,

U = U + u, V = V + v,W = 0 + w, P = P + p, (2)

We assume normal mode form for disturbances with amplitude varying in radial (r ) and streamwise (x)
directions. It is correct to assume periodicity in the azimuthal (θ ) direction as the flow is axisymmetric.

q(x, r, t) = q̂(x, r)e[i(Nθ−ωt)] (3)

where q = [u, v, w, p], Q = [U, V,W, P], Q = [U , V ,W , P], ω is the frequency of the waves, N is the
azimuthal wave number,U∞ is the free-stream velocity, δ∗ is the displacement thickness, a is the body radius
of the cylinder, where q, Q and Q are the perturbation, base and instantaneous flow quantities, respectively.
u, v and w are the disturbance velocity components in the axial (x), radial (r ) and azimuthal (θ ) directions,
respectively. The linearized Navier–Stokes equations for instability analysis are as follows:
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2.1 Boundary conditions

At wall, on the solid surface of cylinder, no-slip and no-penetration boundary conditions are applied. All
disturbance velocity components have zero magnitude at the solid surface of the cylinder.

u(x, a) = 0, v(x, a) = 0, w(x, a) = 0 (9)

At free stream far away from the surface of cylinder, exponential decay of disturbances is expected. Homoge-
neous Dirichlet boundary conditions are applied for velocity and pressure disturbances at free stream.

u(x,∞) = 0, v(x,∞) = 0, w(x,∞) = 0, p(x, ∞) = 0 (10)
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The boundary conditions in streamwise direction are not straight forward. Homogeneous Dirichlet boundary
conditions are applied on disturbance velocity components at the inlet. This boundary condition is appropriate
as suggested by Theofilis [34] because we are interested in the disturbances evolved within the basic flow
field only. At outlet, one may apply boundary conditions based on the incoming/outgoing wave information
[13]. Such conditions impose wave-like nature of the disturbances, and it is more restrictive in nature. This is
not appropriate from the physical point of view in instability analysis. Even the wave number α is not known
initially in case of a global stability analysis. An alternative way is to impose numerical boundary condition
which extrapolates information from the interior of the computational domain. Linear extrapolated conditions
are applied by several investigators. Review of the literature on global stability analysis suggests linearly
extrapolated boundary conditions are the good approximations [31,34]. We also tried second-order extrapo-
lated boundary conditions; however, the difference is only marginal. Thus, we considered linear extrapolated
conditions at outflow boundary.

u(xin, r) = 0, v(xin, r) = 0, w(xin, r) = 0, (11)

un−2[xn − xn−1] − un−1[xn − xn−2] + un[xn−1 − xn−2] = 0 (12)

Similarly, one can write extrapolated boundary conditions for wall normal and azimuthal disturbance compo-
nents v and w, respectively. The boundary conditions for pressure do not exist physically at the wall. However,
compatibility conditions derived from the linearized Navier–Stokes equations are collocated at the wall of
cylinder [34].
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The linearized Navier–Stokes equations are discretized using Chebyshev spectral collocation method. The
Chebyshev polynomial generates non-uniform grids and generates more collocation points towards the ends.
It is a favourable arrangement for the boundary value problems.

xcheb = cos

(
π i

n

)
where i = 0, 1, 2, 3 . . . n (14)

ycheb = cos

(
π j

m

)
where j = 0, 1, 2, 3 . . .m (15)

where n and m are number of collocation points in streamwise and wall normal direction. The gradient of
disturbance amplitude functions is very large near the wall region within the thin boundary layer, which
requires a large number of grid points to increase the spatial resolution. Grid stretching is applied via the
following algebraic equation [22].

yreal = yi L y(1 − ycheb)

Ly + ycheb(Ly − 2yi )
+ a (16)

In the above grid stretching method, a half number of the collocation points are concentrated within the yi
distance from the lower boundary only. The non-uniform nature of distribution for collocation points in the
streamwise direction is undesirable. The maximum and minimum distances between the grid points are at
centre and end, respectively. Thus, it makes a poor resolution at the centre of the domain and a very small
distance between the grids at the end gives rise to Gibbs phenomenon. To improve the resolution and to
minimize the Gibbs oscillation in the solution, grid mapping is implemented in streamwise direction using
following algebraic equation [5].

xmap = sin−1(αmxcheb)

sin−1(αm)
(17)

The value of αm is selected carefully to improve spatial resolution in the streamwise direction. A very small
value of αm keeps the grid distribution like Chebyshev and near to unity almost uniform grid. For the detail
description of the grid mapping, readers are suggested to refer [5]. To incorporate the effect of physical
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dimensions of the domain [Lx , Ly] along with grid stretching and mapping, it is required to multiply the
Chebyshev differentiation matrices by proper Jacobean matrix. Once all the partial derivatives of the LNS
are discretized by spectral collocation method using Chebyshev polynomials, the operator of the differential
equations formulates the matrices A and B. These matrices are square, real and sparse in nature, and formulate
general eigenvalues problem.

⎡
⎢⎣
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎤
⎥⎦

⎡
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u
v
w
p

⎤
⎥⎦ = iω

⎡
⎢⎣
B11 B12 B13 B14
B21 B22 B23 B24
B31 B32 B33 B34
B41 B42 B43 B44

⎤
⎥⎦

⎡
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u
v
w
p

⎤
⎥⎦ (18)

[A][φ] = iω[B][φ]
where A and B are square matrix of size 4 × n × m, iω is an eigenvalues, and φ is a vector of unknown
amplitude of disturbance flow quantities u, v, w and p. The above-mentioned all the boundary conditions are
properly incorporated in the matrix A and B.

2.2 Solution of general eigenvalues problem

The matrices A and B are sparse in nature and of very large size. For n = 121 and m = 121, the number
of eigenvalues is 58,564., i.e. in the order of (104 to 105). The eigenvalues problems are very large to solve
for all the eigenvalues. However, for instability analysis, the few eigenvalues with its largest imaginary parts,
which makes the flow temporally unstable, are important. Hence, we are interested in the few eigenvalues
and corresponding eigenvectors only. The QZ algorithm computes the full spectrum of eigenvalues and hence
obviously it is not economical. The iterativemethod based onArnoldi’s algorithm is a proper choice. TheKrylov
subspace provides the possibility of extracting major part of the spectrum using shift and invert strategy. The
computations of Krylov subspace along with Arnoldi’s algorithm applied to eigenvalues problem become easy.

(A − λB)−1Bφ = μφ where μ = 1

iω − λ
(19)

where λ is the shift parameter and μ is the eigenvalues of the converted problem. Sometimes, it is also called
spectral transformation, which converts generalized eigenvalues problem to standard eigenvalues problem.
The Krylov subspace may be computed by successive resolution of the linear system with matrix (A − λB),
using LU decomposition. Full spectrummethod is employed for this small subspace to get a good approximate
solution to the original general eigenvalues problem [35]. The large size of the Krylov subspace extracts
major part of the spectrum. Generally, the computed spectrum is always nearby the shift parameter. The good
approximation of shift parameter reduces the number of iterations to converge the solution to required accuracy
level. However, larger size of subspace makes the solution almost independent from the shift parameter λ. We
tested the code for several values of shift parameter λ. The convergence of the solution depends on the value
of shift parameter. The good approximation of the shift value needs less number of iterations. However, we
have taken the maximum number of iterations equal to 300; hence, convergence of the solution may not
be affected by shift parameter. Given the large subspace size of k = 250, the part of the spectrum for our
instability analysis could be recovered in the one computation that took about 2.36h on Intel Xenon(R) CPU
E5 26500@2.00GHz × 18.

3 Base flow solution

The base flow velocity profile is obtained by solving the steady Navier–Stokes equations (20)–(22) with the
finite-volume code Ansys Fluent. The axisymmetric domain is considered with 20 and 200 radius in radial and
axial directions as shown in Fig. 1.
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Table 1 The grid convergence study for the base flow is obtained, using U (x = 75, r = 1.2) and V (x = 75, r = 1.2) for
Re = 1000

Mesh Grid size U ε (%) GCI (%) V ε (%) GCI (%)

#1 1001× 251 0.0325125 0.0114 0.0253 1.43466× 10−5 0.026 0.0773
#2 708 × 177 0.0325088 0.0268 0.1085 1.43503× 10−5 0.055 0.1415
#3 501 × 125 0.0325001 – – 1.43582× 10−5 – –

The grid refinement ratio (α) in each direction is 1.4142. The relative error (ε) and Grid Convergence Index (GCI) are calculated

using two consecutive grid size. The j and j + 1 represent coarse and fine grids, respectively. ε = f j− f j+1
f j

× 100. GC I (%) =
3[ f j− f j+1

f j+1(α
n−1) ] × 100, where n = log[

f j− f J+1
f j+1− f j+2

]/log(α)
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= 0 (22)

Appropriate boundary conditions are applied to close the formulation of the above problem. Uniform stream-
wise velocity U∞ was imposed at the inlet and no-slip and no-penetration boundary conditions at the surface
of the cylinder. Slip boundary condition (n.U = 0) was imposed at free stream far away from the solid surface
(bc), and outflow boundary conditions at outlet (cd), that consists ∂U

∂x = 0, ∂V
∂x = 0 and P = 0. Line afg

is the axis of the cylinder. The steady Navier–Stokes equations were solved using SIMPLE algorithm with
under-relaxation, to get a stable solution. Quick, a weighted average of second-order upwind and second-order
central scheme was used for spatial discretization of momentum equations. Thus, obtained base flow velocity
profile is interpolated to spectral grids using cubic spline interpolation to perform global stability analysis.
The solution for the base flow has converged with the total 251,251 number of grid points with 1001 and
251 grids in streamwise and radial directions, respectively. The distribution of the grids is geometric in both
the directions. We started simulation initially with coarse grid size of 501 and 125 grids in axial and radial
directions and refined it with a factor of 1.4142 in each directions. The discretization error was computed
through Grid Convergence Index (GCI) study on three consecutive refined grids [30]. The monotonic conver-
gence is found for all these refined grids. In our problem, we computed error and GCI for two field values
U (x = 75, r = 1.2) and V (x = 75, r = 1.2) near the surface of the cylinder, where the gradient of the
velocity field is maximum. The GCI and error were computed for three different grids as shown in Table 1. The
error between Mesh 1 and Mesh 2 is too small. The GCI has also reduced with the increased spatial resolution.
It shows that solution is converging monotonically towards the grid-independent one. Further refinement in
the grid will hardly improve the accuracy of the solution while increases the time for the computations. The
grid is thoroughly refined near the wall where velocity gradient is very high. The convergence order n for U
and V is 2.00, which is in agreement with the second-order discretization scheme used in the finite-volume
code Ansys Fluent. A Mesh 1 was checked with domain height of 25 times cylinder radius to study the effect
of far-field condition. The percentage error between these two domains heights are within 0.1%. Thus, Mesh
1 was used in all the results presented here in to compute velocity field for the base flow.

The base flow velocity profile is computed for the axisymmetric boundary layer with two different config-
uration. In the first case, it is assumed that the boundary layer develops directly on the cylindrical surface and
domain afeb is excluded in the base flow computations. In the second case, the hemispherical cap is considered
at the leading edge of the circular cylinder and the domain afeb is included in the base flow computations. The
second configurations are physically more relevant. The boundary layer starts to develop from the tip of the
spherical cap itself. Figure 2a, b shows the contour plot for the base velocityU and V. The transverse curvature
δ/a increases, while shape factor (H) reduces in the streamwise direction for a given Reynolds number as
shown in Fig. 3a, b, respectively. However, at any given streamwise location, the δ/a reduces and H increases
with the increased Reynolds number. Shape factorH is smaller for axisymmetric velocity profile in comparison
with the Blasius profile. The comparison of the real and model boundary layers in Fig. 4a, b shows that δ/a
is higher and H is lower at any streamwise location for Re = 2000. Figures 5 and 6 show the comparison
of the radial derivatives ( ∂U

∂r ) and streamwise derivatives ( ∂U
∂x ) of the U velocity at three different streamwise

locations x = 13.5, x = 50 and x = 100. It is observed that the difference in the derivatives magnitudes
reduces as x increases. Thus, the effect of spherical cap in base flow profile is higher towards upstream side.
The real boundary layer profile is used in all global stability results reported here.
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Fig. 2 Base flow velocity profile for a Streamwise (U) and bWall normal (V ) velocity components for Re = 2000. The Reynolds
number is calculated based on body radius of the cylinder. The velocity profile is interpolated to collocation points for instability
analysis. The actual domain height in wall normal direction is 20a
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Fig. 5 Comparison of ∂U
∂r at three different streamwise location a x = 13.5, b x = 50 and c x = 100 for real and model

axisymmetric boundary layers for Re = 2000
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Fig. 6 Comparison of ∂U
∂x at three different streamwise locations a x = 13.5, b x = 50 and c x = 100 for real and model

axisymmetric boundary layers for Re = 2000

4 Code validation

4.1 Axisymmetric mode (N = 0)

For the purpose of preliminary comparisons of global stability results with local stability results, we reduced
the global nature of the problem to an equivalent local stability problem. The domain length equal to one
wavelength (Lx = 2π/α) is taken in the streamwise direction for the least stable axisymmetric mode (N = 0)
and helical mode N = 1. Non-parallel effects from the base flow velocity profile are removed to apply parallel
flow assumption i. e. V = 0 & ∂U

∂x = 0. In the wall normal direction, the boundary conditions are same as that
of local stability analysis [34]. To impose wave-like behaviour of disturbances, Robin and periodic boundary
conditions are applied in the streamwise direction at inlet and outlet [31]. The Robin boundary conditions
with constant streamwise wave number α are prescribed at inlet and outlet. The Robin boundary conditions
are derived from the φ(r, t) = φ̂(r)e[(i(Nθ−ωt)]. We applied Robin boundary conditions along with periodic
boundary conditions at inlet and outlet with constant streamwise wave number α.

∂2u

∂x2
= −α2u,

∂2v

∂x2
= −α2v (23)
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Fig. 8 Comparisons of the real parts of a streamwise u and b wall normal v eigenfunctions for local and global stability analyses
for axisymmetric mode (N = 0) for Reynolds number Re = 12,439 based on body radius of the cylinder. The Reynolds number
based on the displacement thickness (δ∗) is 1264

u(x, r) = u(x + Lx , r), v(x, r) = v(x + Lx , r) (24)

The above boundary conditions are applied to disturbance velocity components in a streamwise direction at
inlet and outlet. The second derivatives are considered to avoid complex quantities in the boundary conditions,
andhence, fast computations can take place.Here,we considered axisymmetricmode (N = 0) for the validation
of global stability results. The critical Reynolds number, streamwise wave number and streamwise location
are 12,439, 2.73 and 47, respectively, [40]. The Reynolds number is based on the body radius of the cylinder.
Streamwise domain length is taken equal to one wavelength (Lx = 2.3015). The domain in streamwise
direction is very limited, and hence, the solution is converged with the number of collocation points n = 41 in
streamwise direction and m = 101 in the radial direction. The eigenspectrum and eigenfunctions are in good
agreement with the results of local stability analysis of Tutty [40] as shown in Figs. 7 and 8. The streamwise
wave number α is computed from the eigenfunctions obtained through global stability analysis, and it is equal
to 2.73. Hence, the applied value of α is recovered in the global stability analysis. The perturbation for the
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disturbances u and v can be written as u(x, r, t) = û(x, r)e[iθu(x,r)] and, v(x, r, t) = v̂(x, r)e[iθv(x,r)], where
θu and θv are phase angles of wave with respect to x and r . The phase angles of waves can be defined by the
following relationship [2].

θu = tan−1
(
ui
ur

)
, θv = tan−1

(
vi

vr

)
(25)

where r and i denotes real and imaginary parts of the eigenfunctions u and v. The phase is dependent on the
normal coordinate only. Thus, the position ofmaximum absolutemagnitude of each disturbances remains same
at all the streamwise locations. The streamwise wave number (αr ) and spatial growth rate (αi ) are calculated
by the following formulas [2].

αru = ∂θu(x, yumax)

∂x
, αrv = ∂θv(x, yvmax)

∂x
(26)

The amplification rate (A) in the streamwise direction is defined as

A(x) = |u(x, yumax)|, A(x) = |v(x, yumax)| (27)

The spatial growth rate −αi is determined from the following formula

αi = − 1

A

dA

dx
(28)

4.2 Helical mode (N = 1)

The same method is adopted to validate the results of global stability analysis for helical mode N = 1. The
critical Reynolds number, streamwise wave number and streamwise location for helical mode N = 1 are
1060, 0.125 and 543, respectively, [40]. Here, the disturbance velocity components are three-dimensional. The
following boundary conditions are considered at inlet and outlet for disturbance velocity components.

∂2u

∂x2
= −α2u,

∂2v

∂x2
= −α2v,

∂2w

∂x2
= −α2w (29)

u(x, r) = u(x + Lx , r), v(x, r) = v(x + Lx , r), w(x, r) = w(x + Lx , r) (30)

Figures 9 and 10 show the comparison of the eigenspectrum and eigenfunctions for the helical mode N = 1
for local and global stability analyses. The results of global stability analysis are in good agreement with the
local stability analysis.
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Fig. 10 Comparisons of the real parts of a streamwise u and b wall normal v and c azimuthal w eigenfunctions for local and
global stability analyses for axisymmetric mode (N = 1) for Reynolds number Re = 1060 based on body radius of the cylinder.
The Reynolds number based on the displacement thickness (δ∗) is 1020
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Fig. 11 Comparison of the a streamwise wave number αr and b spatial growth rate αi computed from the eigenfunctions for
global and local stability analyses. The associated real frequency ωr = 0.075

5 Comparison with the local stability analysis

To validate the global stability analysis code, the wave-like nature of the disturbances is imposed at inlet and
outlet by Robin boundary conditions. As discussed earlier, it is very restrictive in nature which is not physically
more relevant. The streamwise wave number (αr ) and spatial growth rate (−αi ) are computed for x/a = 31 to
x/a = 54 using local spatial stability and global stability analyses for the pulsation ωr = 0.075. The Reynolds
number based on the radius of the cylinder is Rea = 15,000 (Reδ∗ = 1141). Dirichlet and extrapolated
boundary conditions are considered at inlet and outlet for global stability analysis as suggested by Theofilis
[34]. As shown in Figs. 11 and 12, the computed αr , αi and eigenfunctions are in good agreement.

6 Results and discussion

In the present analysis, Reynolds number is varying from 261 to 693 with azimuthal wave numbers 0, 1, 2, 3,
4 and 5. Reynolds number based on the displacement thickness (δ∗) at the inlet of domain is considered. The
streamwise and wall normal lengths are normalized with the displacement thickness at the inflow boundary
of the domain. The streamwise domain length Lx = 345 and wall normal height Lr = 20 are selected for
the instability analysis. The number of collocation points considered is n = 121 in streamwise direction
and m = 121 in wall normal direction. The general eigenvalues problem is solved using ARPACK, which
uses Arnoldi’s algorithm. The computed eigenvalues are found to be accurate up to three decimal points.
The additional lower resolution cases were also run to confirm the proper convergence of the eigenspectrum.
Heavy sponging is applied to avoid the spurious reflections at the outflow boundary. The complex eigenvalue
with the largest imaginary part that is least stable one is selected. The two-dimensional mode structure of the
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Fig. 12 Comparison of the modulus of eigenfunctions a u and b v at same streamwise location x = 262 for axisymmetric (N = 0)
computed from global and local approaches at same streamwise location. The associated real frequency is ωr = 0.075

Table 2 The grid convergence study for two leading eigenvalues ω1 and ω2 for Re = 383 and N = 1 for different grid size

Mesh Lx Lr n × m n m ω1 ω2 Error (%)

#1 345 20 14,641 121 121 0.03314 − 0.01639i 0.02692 − 0.01645i 3.73
#2 345 20 11,449 107 107 0.03300 − 0.01580i 0.02676 − 0.01587i 3.99
#3 345 20 8649 93 93 0.03288 − 0.01520i 0.02662 − 0.01526i –

The grid refinement ratio in each direction is 1.14. The maximum relative error is shown here

selected modes is also checked for the spurious mode. The real boundary layer profile is used for the stability
computations reported here.

6.1 Grid convergence study

A grid convergence study was performed to check the accuracy of the solution and appropriate grid size.
Table 2 shows the values of two leading eigenvalues computed for Re = 383 for helical mode N = 1 mode
using three different grid size. The grid resolution was successively improved by a factor of 1.14 in axial and
radial directions, respectively. The real and imaginary parts of the eigenvalues show monotonic convergence
of the solution with the increased spatial resolution. In this table, n and m indicate the number of grids in axial
and radial directions, respectively. The relative errors are calculated between consecutive grids for real and
imaginary parts of the eigenvalues. The largest associated error among both the eigenmodes is considered. The
relative error for mesh 1 is well within the limit, and it is used for all the results reported here. The domain
height Lr = 20 is sufficient in wall normal direction to impose free-stream boundary condition [2].

6.2 Pressure boundary condition

Two-dimensional instability analysis in primitive variable approach needs boundary conditions for the unknown
pressure disturbances to close the formulation. The pressure compatibility (PC) conditions, derived from the
linearized Navier–Stokes equations (Eq. 13) and collocated at the wall, have been used successfully in the
instability analysis of incompressible flows [19,20,22,37,38]. However, pressure Poisson equations have been
used for pressure boundary conditions for open and closed flows consistent with mass conservation which
could be considered to provide addition information than linearized Navier–Stokes equations [29]. We have
derived linearized pressure Poisson equation (LPPE) for the pressure perturbations in a similar fashion as [36].
The LPPE is given by,
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compatibility conditions (PC) and linearized Poisson pressure equations (LPPE)
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where N is the azimuthal wave number.
Figure 13a shows the comparison of the spectra for PC and LPPE boundary conditions. The spectra of

both the boundary conditions are in good agreement. Figure 13b, c shows that the eigenfunctions u and v are
also in good agreement for Re = 383. PC boundary condition is used in all global instability results reported
here.

6.3 Effect of domain length

Global stability computations of a finite size of the domain need boundary conditions in the streamwise
direction. The literature on the global stability of truncated domain shows that the spectra obtained strongly
depend on the type and position of boundary conditions applied [1,12]. The temporal growth rate increaseswith
the increased streamwise domain length for same inlet Reynolds number. Figure 14 shows the comparison
of the spectrum for three domain length Lx = 1171, 1757 and 2343. It shows that the space between the
frequencies depends on the domain length truncation. The frequencies are more closer for the larger domain,
and ideally it becomes continuous for the infinite domain length. The two-dimensional spatial structure in
Fig. 15 shows that the eigenvalues and eigenfunctions are the function of domain length Lx .
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Fig. 15 Contour plot of streamwise disturbance amplitudes u for axisymmetric mode (N = 0) and Re = 383 for different
streamwise domain length and frequency ωr = 0.038 a Lx = 1172, b Lx = 1757 and, c Lx = 2343

6.4 Axisymmetric mode

Figure 16 shows the eigenspectrum for the axisymmetric mode (N = 0) with Reynolds number, Re = 383.
The global modes of the real boundary layer have larger temporal growth rate compared to the model boundary
layer. Thus, the real base flow is globally less stable than that of model boundary layer.

In the above figure, the eigenmodes marked by circle and square are stationary (ωr = 0) and oscillatory
(ωr > 0) modes, respectively. The stationary mode has a complex frequency ω = 0− 0.009943i . This global
mode is temporally stable because ωi < 0, and hence, disturbances decay in time. Figure 17 shows the two-
dimensional spatial structure of the streamwise (u) and wall normal (v) disturbance amplitudes for stationary
mode ω = 0 − 0.009943i . The magnitudes of the velocity disturbances are zero at the inflow boundary, as it
is the inlet boundary condition. As the fluid particles move towards the downstream, the disturbances evolve
monotonically in time within the domain and progresses towards the downstream. The magnitude of the u
disturbance amplitudes is one order higher than that of v disturbance amplitudes. The amplitude structure
has opposite sign for u and v. The spatial structure of the amplitudes grows in size and magnitude towards
the downstream. Figure 18 shows the variation of u and v disturbance amplitudes in streamwise direction at
different radial locations. The magnitude of the disturbance amplitudes is very small near the cylinder surface
due to viscous effect, increases in the radial direction and vanishes at far field.

The most unstable oscillatory mode has an eigenvalue ω = 0.004363 − 0.01475i . The flow is stable for
this global mode because ωi < 0. The spatial structure of the above global eigenmode for u and v disturbance
amplitudes is not monotonic in nature. The distribution in spatial directions is shown in Fig. 19. The amplitudes
of the velocity disturbances are zero at the inlet as it is the imposed boundary condition at the inlet. However,
in the streamwise direction the disturbances grow in magnitudes and it contaminates the flow field towards the
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Fig. 17 Contour plot of stationary mode a streamwise velocity and b normal velocity for the eigenvalue ω = 0.0 − 0.009943i ,
as marked by circle in Fig. 16
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Fig. 18 Variation of disturbance amplitudes in streamwise direction for stationary mode a streamwise velocity (u) and b normal
velocity (v) for the eigenvalue ω = 0.0 − 0.009943i , as marked by circle in Fig. 16
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Fig. 19 Contour plot of oscillatorymode a streamwise velocity andb normal velocity for the eigenvalueω = 0.004363−0.01475i ,
as marked by square in Fig. 16
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Fig. 20 Variation of disturbance amplitudes in the streamwise direction for oscillatory mode a streamwise velocity (u) and b
normal velocity (v) for the eigenvalue ω = 0.004363 − 0.01475i , as marked by square in Fig. 16

downstream. The magnitudes of the disturbance amplitudes grow exponentially as they move further towards
the downstream.

However, its variation in the normal direction is different from that of a stationary mode, as seen in the
respective figures. The magnitude of the normal disturbance amplitudes is one order less than that of the
streamwise component.

Figure 20 presents variation of disturbance amplitudes in streamwise direction at various radial locations. It
shows that the most of the disturbances grow in magnitude as they move towards downstream. The magnitude
of the disturbance amplitudes is very small near the wall due to viscous effect, gradually increases in radial
direction and finally vanishes at the far field. It shows that disturbances evolve within the flow field in time
and grow in magnitude and size while moving towards the downstream.

Figure 21 shows contour plot of the real part of the streamwise disturbance velocity of two different
eigenmodes with frequency ωr = 0.021 & ωr = 0.1125 for N = 0 and Re = 383. The streamwise domain
length is 345. The disturbances is seen to evolve in the vicinity of the wall and increasing the amplitudes when
moving towards downstream. The typical length scale of the wavelet structure decreases with the increases in
frequency (ωr ).

6.5 Effect of transverse curvature

The body radius of the cylinder is another important length scale in case of the axisymmetric boundary layer
in addition to the boundary layer thickness (δ). The inverse of the body radius is called the transverse surface
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Fig. 21 Contour plot of the real part of u for the two different eigenmodes associated with the frequencies a ωr = 0.021 b ωr =
0.1125. The corresponding Reynolds number and azimuthal wave number are Re = 383 and N = 0, respectively

curvature (S). The flat-plate boundary layer is a special case of a zero transverse curvature. It is normalized
with the displacement thickness (δ∗) at the inflow boundary of domain. It has significant effect on the base flow
as well as stability characteristics of the axisymmetric boundary layer. In order to understand the transverse
curvature effect on the stability characteristic of the axisymmetric boundary layer, the stability characteristics
are compared with the flat-plate boundary layer (zero transverse curvature) at the same Reynolds number
and domain size. The Reynolds number is computed based on the displacement thickness and free-stream
velocity at the inflow boundary. The comparison of spectra, spatial growth rate and spatial eigenfunction for
real axisymmetric, model axisymmetric and flat-plate boundary layer is done at the same Reynolds number.
Figure 22 shows the comparison of eigenspectrum for three different Reynolds numbers 383, 557 and 909
(based on the body radius of the cylinder, these are 2000, 4000 and 10,000) with Lx = 345 for axisymmetric
and flat-plate boundary layer. The comparison is limited for the discrete part of the spectrum only. It has
been observed that at small Reynolds number the temporal growth rate ωi is higher for flat-plate boundary
than that of axisymmetric boundary layer. The temporal growth rate of real axisymmetric boundary layer is
found higher than that of model axisymmetric boundary layer. The difference in the temporal growth rate of
the eigenmodes for axisymmetric and flat-plate boundary layer reduces with the increased Reynolds number.
The eigenmodes of axisymmetric boundary layer approach eigenmodes of flat-plate boundary layer at higher
Reynolds number. This is primarily due to the effect of transverse curvature only. Thus, the transverse curvature
has significant damping effect on the disturbances at low Reynolds number. At higher Reynolds number, i.e.
Re = 909 the spectra are nearly similar for all the three boundary layers. Figure 23 shows the comparison of
the spatial amplification rates (Ax ) for three different Reynolds numbers for flat-plate and real axisymmetric
boundary layer. The least stable eigenmodes have been selected to compute the spatial amplification rate. The
comparison shows that at low Reynolds number, Ax is higher for flat-plate boundary layer. It is also observed
that the difference in the magnitude of the Ax reduces with the increase in the Reynolds number for both the
boundary layers. This damping effect is due to the reduced effect of the transverse curvature at higher Reynolds
number.

Three different families of the eigenspectrum are shown for Re = 383 in Fig. 24 for real axisymmetric,
model axis symmetric and flat-plate boundary layer. The discrete part of the spectrum is only shown in the
above figures for the comparison purpose. The difference between the spectrum depends on the domain length.
The distance between two consecutive frequencies reduces with the increased domain length. To quantify this
discretization of the eigenmodes for Re = 383, different domain lengths were considered with Lx1 = 345,
Lx2 = 475 and Lx3 = 605. The temporal growth rate increases for a givenReynolds numberwith larger domain
length. Figure 25 shows the comparison of the streamwise (u) and wall normal (v) disturbance amplitudes for
Re = 383 at streamwise location x = 300. The magnitudes of disturbance amplitudes are higher for flat-plate
boundary layer.
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Fig. 22 Comparison of the eigenspectrumof real axisymmetric, model axisymmetric (N = 0), and 2Dflat-plate (β = 0) boundary
layer for Lx = 345 for three different Reynolds numbers a Re = 383, b Re = 557 and c Re = 909

6.6 Helical modes (N = 1, 2, 3)

The spectra for helical modes N = 1, 2 and 3 are shown in Fig. 26 for Re = 383. The helical mode N = 1
is found least stable, and N = 3 is found most stable mode. The contour plot of the real part of u disturbance
velocity is shown for N = 1, 2, and 3 for same frequency ωr = 0.03. The contour plots shows that the
disturbance amplitudes are growing at the outflow boundary for N = 1. For N = 2 and 3 the disturbance
amplitudes starts to amplify at early stage and decaying while leaving the domain at outlet. As the helical mode
number increases, the magnitude of amplitudes also increases. Qualitatively the spatial structure are similar
for all the three helical modes.

6.7 Temporal growth rate

Figure 28 shows the temporal growth rate of the eigenmodes for different Reynolds numbers. The growth rate
increases with the increase in Reynolds number for all the azimuthal wave numbers. As the largest imaginary
part is negative for different Reynolds numbers, the flow is temporally stable. The transverse curvature varies
inversely with the Reynolds number. At low Reynolds number, growth rate is small and with the increase in
Reynolds number growth rate increases. This proves that transverse curvature has significant damping effect
on the global temporal mode also. Global modes with higher wave numbers, N = 3, 4 and 5 are more stable
than axisymmetric and helical modes N = 1 and 2. At low Reynolds number, axisymmetric mode is having
higher growth rate than that of N = 1 and 2. As Reynolds number increases, the growth rate of helical mode
N = 1 and 2 increases than that of axisymmetric mode.
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Fig. 23 Comparison of spatial amplification rate of axisymmetric (N = 0) and 2D flat-plate (β = 0) boundary layer for three
different Reynolds numbers a Re = 383, b Re = 557 and c Re = 909

6.8 Spatial amplification rate

The global temporal modes exhibit spatial growth or decay in streamwise direction when moving towards
the downstream. The disturbances in the streamwise direction at a particular radial location may decay or
amplify. However, the overall effect of all disturbances together at each streamwise location can be quantified
by computing the spatial amplitude growth, A(x) [12].

A(x) =
√∫ rmax

1
(u∗(x, r)u(x, r) + v∗(x, r)v(x, r) + w∗(x, r)w(x, r))dr (32)

where ∗ denotes the complex conjugate. Figure 29 shows the spatial amplitude growth of the disturbance
waves for different azimuthal wave numbers at various Reynolds number. Most unstable oscillatory (ωr �= 0)
temporal modes are considered to compute the spatial growth of the amplitudes. The growth of the disturbance
amplitudes increases in the streamwise direction which makes the flow unstable.

7 Summary

Global stability analysis of axisymmetric boundary layer forms over a circular cylinder is performed by
computing global temporal modes using linear stability theory. The numerical eigenvalue problem is solved
using ARPACK, which employs Arnoldi’s iterative algorithm. The stability analysis is conducted for various
Reynolds number and azimuthalwave numbers. The obtained solution of two-dimensional eigenvalues problem
and presented results strongly depend on the streamwise extent of the computational domain. The largest
imaginary part of the computed eigenvalues is negative for the range of Reynolds number and azimuthal wave
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Fig. 24 Comparison of the eigenspectrum for different streamwise domain lengths a Lx = 345, b Lx = 475 and c Lx = 605 for
Re = 383 for real axisymmetric, model axisymmetric (N = 0) and 2D flat-plate boundary layer (β = 0)
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Fig. 25 Comparison of the modulus of eigenfunction a u and b v at streamwise location x = 300 and Re = 383 for axisymmetric
(N = 0) and 2D flat-plate boundary layer (β = 0). The eigenmode selected for flat-plate and axisymmetric boundary layer is
least stable temporal mode. The associated eigenvalues are ω = 0.08121 − 0.01959i (flat plate) and ω = 0.005742 − 0.02436
(axisymmetric) boundary layer
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Fig. 27 Contour plot of real parts of disturbance amplitudes u for Re = 383 and ωr = 0.03 a N = 1, b N = 2, c N = 3

numbers considered here for real andmodel axisymmetric boundary layers. Thus, the flow is temporally stable.
The global modes in axisymmetric boundary layer showed wave-like behaviour for the range of Reynolds
numbers considered. The spatial properties of the global modes show that the disturbances grow in size and
magnitude within the flow domain in the streamwise direction when moving towards the downstream. The
global modes of the real axisymmetric boundary layer are found less stable than those of model boundary layer.
The axisymmetric mode (N = 0) is found the least stable one for the range of Reynolds number considered
here. The helical mode N = 1 is less stable than N = 2 at lower Reynolds number, while N = 2 is less
stable than N = 1 at higher Reynolds number. The global modes of higher azimuthal wave numbers, N = 3,
4 and 5, are found more stable. The temporal global modes of axisymmetric boundary layer are found more
stable than that of flat-plate boundary layer at the same Reynolds number. Thus, the temporal growth rate
ωi is smaller for axisymmetric boundary layer. However, this effect is found significant at smaller Reynolds
number. As the Reynolds number increased, the temporal growth rate of axisymmetric modes also increased
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Fig. 28 Variation of the temporal growth rate (ωi ) with the Reynolds number for different azimuthal wave numbers (N)
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Fig. 29 Spatial amplification rate Ax in streamwise direction x for a Re = 383, b Re = 557 and c Re = 685 for different
azimuthal wave numbers. The most unstable temporal mode is considered to compute the spatial amplitude growth Ax

and approached 2D modes of flat-plate boundary layer. Thus, at low Reynolds number the effect of transverse
curvature is significant. The transverse curvature reduces with the increased Reynolds number, and global
modes become less stable. Thus, the transverse curvature shows overall damping effect on the global modes.
The amplitude functions corresponding to the stationary mode are found to be monotonically growing in the
streamwise direction.
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