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Abstract Reference solutions are important in several applications. They are used as base states in linear
stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations,
just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses
and efficient simulations, respectively. Hence, steady-states usuallymake the best reference solutions. Unfortu-
nately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states
of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods
often coupled with continuation techniques. However, such iterative approaches do require large computa-
tional resources and very good initial guesses to converge. These difficulties motivated the development of a
technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006).
It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing
a steady-state to be reached. This approach does not require a good initial condition and works well for self-
excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability
mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a
broad unstable frequency spectrum might require the use of multiple filters, which delays convergence signif-
icantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach
is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes
the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing
the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit
multi-step schemes. A few chosen test cases shows that they enable convergence toward solutions that are
unstable to stationary and oscillatory disturbances, with either a single or multiple frequency content. Finally,
comparisons with SFD are also performed, showing significant reduction in computer cost for complex flows
by using the implicit multi-step MGM schemes.
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1 Introduction

Reference solutions are necessary in several fluid dynamic research areas. One such area is linear stability
analysis, where they represent the base state whose linear stability is being investigated. Earlier investigations
of planar mixing-layers and free jets used analytical functions, that fit well enough experimental data, as
reference solutions [30]. In complex flows however, these approximations may lead to incorrect predictions.
The transverse jet linear stability analysis of a base state generated by a similarity solution of the boundary-
layer equations shows a decrease in the range of unstable frequencies as the cross flow velocity increases
[23]. However, a similar analysis using an analytical fit of available data as its base state shows the opposite
trend [4]. The former base state is closer to a solution of the Navier-Stokes equations than the latter one,
which is the most likely reason why the former trend is the one that agrees with experimental data [29]. Since
they are not solutions of the steady-state governing equations, approximate base states introduce a forcing
term in the disturbance governing equations that affects their dynamics. Such a forcing can be subtracted
from the original governing equations, making the approximate base state a solution of the resulting modified
equations. This procedure is akin to the method of manufactured solutions for code verification [36]. It was
used to evaluate the behavior of small disturbances superposed to an approximate base state in the study of
laminar separation bubbles [20]. On the other hand, this particular base state was a time-averagedmean solution
of the original unsteady governing equations. It is well known that mean solutions can lead to qualitatively
incorrect predictions when compared to steady-states [5]. Given the latest advances in linear stability analysis
[12,34,38], a procedure that generates steady-states of unstable flows would be very useful.

Another area where reference solutions are necessary is computational fluid dynamics. Initial conditions
represent one example. For instance, approximate analytical fits of experimental data as well as similar solu-
tions of the boundary-layer equations introduce unwanted oscillations when used as initial conditions in the
unsteady numerical simulation of absolutely unstable mixing-layers [25]. Their amplitude is smaller in the
latter case, but their frequency content is richer as well. This problem also manifests itself in the calculation
of temporal growth rates, which can have relative errors as high as 18% [19]. Inaccurate initial conditions in
simulations of flows around two-dimensional bodies create large numerical disturbances at early times [8,39].
Hence, large simulation times are required for these numerical waves to leave the simulated domain before
accurate flow statistics can be extracted. Boundary conditions represent another example within this area [14].
Reference solutions are useful for absorbing layers [9] or sponge zones [10], but their effectiveness depends
on their accuracy. This is specially relevant in aeroacoustics [15] and receptivity [33] studies, where physical
disturbances of interest are much smaller in magnitude than vorticity waves. In the simulation of acoustic
fields over airfoils [13], these problems were minimized with the use of steady-states as reference solutions
for both initial conditions and sponge zones. A similar procedure was adopted to minimize numerical errors in
receptivity studies of compressible mixing-layers [7]. Hence, a procedure capable of generating steady-states
for unstable flows would be quite useful in computational fluid dynamics.

Today, there are only two major ways of satisfying this demand for unstable steady-states. The traditional
approach uses Newton-type methods to solve the steady governing equations. A vast literature exists on this
subject, but its review is beyond the scope of this paper. Nevertheless, modern variations seem to rely on
Jacobian free Newton–Krylov methods [24]. Their quadratic or at least super-linear convergence makes them
interesting choices, but a few disadvantages exist. For instance, convergence is only guaranteed when a good
enough initial guess is provided. Continuation techniques are often employed to overcome this difficulty,
but they can only find steady-states connected by continuity [11]. This can be problematic when multiple
and disconnected steady-states exit for the same parametric conditions due to complex bifurcation patterns.
Finally, initial value problems are much easier to solve than their boundary value counterparts, which means
most existing codes solve unsteady governing equations. Hence, the use ofNewton-typemethods often requires
the construction of a new code to solve the steady governing equations. These difficulties led to the development
of an alternative method known as selective frequency damping or SFD [1]. It introduces a source term in the
unsteady governing equations that forces the time marching scheme to converge toward a reference solution,
which is a filtered version of the unsteady solution being marched in time. Since this source term disappears
at steady-state, the reference solution becomes the steady-state in this limit. SFD is simple to implement in an
existing unsteady code and requires the adjustment of only two additional parameters. These advantages led
to its use in several problems, such as cavity flows [2], wakes around spheres [31], jets in cross flows [5] and
boundary-layers over roughnesses [27]. Nevertheless, efficiency is highly dependent on these two additional
parameters, which is the reason why recent studies have focussed on their optimization [16,22]. Despite its
advantages, SFD does have significant drawbacks [21]. For example, it seems unable to converge toward a
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steady-state when the governing equations are unstable to stationary disturbances. Furthermore, SFD was
originally designed to filter flows that are self-excited by a single frequency [2]. Its application to any flow
subject to oscillatory instabilities by multiple dominant frequencies then likely requires the use of multiple
filters. This will increase the number of parameters requiring optimization as well as the overall computer cost,
making the use of SFD impractical when the flow is unstable to a broad frequency spectrum. Hence, one must
continue the search for an alternative to Newton-type methods, since it should be easily applicable to unsteady
codes and have little sensitivity to initial conditions, and to SFD as well, since this alternative should also be
capable of generating steady-states for any flow independent of its underlaying instability mechanism.

The present paper proposes a new methodology that satisfies these criteria. It is based on classical linear
numerical stability concepts in computational fluid dynamics [28]. On a linear basis, a marching scheme is
assumed numerically stable if its gain is smaller than one, for a given time step, when the governing equation is
physically stable. On the other hand, some special schemes are still numerically stable evenwhen the governing
equation they are integrating is physically unstable. The implicit Euler scheme is one such method. For this
reason, it has been used in the past to march unstable flows toward steady-states [13,32]. This motivated the
recent use of dual-time-stepping as a simple way to switch the marching scheme of arbitrary codes to an
implicit Euler scheme [37]. However, there are many instances in which this scheme cannot reach a steady-
state. In the next section, the reasons for this behavior are investigated. They motivated the proposal of this new
methodology, which is used for the construction of an implicit multi-step scheme with an enhanced ability to
generate steady-states. Its performance is then evaluated in Sec. 3 for several test cases representing different
instability mechanisms. Finally, main conclusions and next steps forward are presented in Sec. 4.

2 Numerical methodologies

2.1 Modal linear numerical stability

Consider a dynamical system in the form of the homogeneous initial value problem du/dt = f (u). The Taylor
series expansion of f (u) around its steady-state us yields f (u) � λ ud + O(u2d), where λ = (∂ f/∂u)u=us is
an eigenvalue, ud(t) = u(t) − us is a deviation from steady-state and f (us) = 0. Hence, the linear stability
of this system is governed by dud/dt = λ ud(t). Since its solution is ud(t) � ud(0) exp[ λ t ], the dynamical
system is linearly stable when λ < 0. Otherwise, the dynamical system is linearly unstable when λ > 0. This
is relevant whenever ud(0) is a small deviation from us . Physical stability is the term used here when referring
to the stability of the dynamical system.

Applying an arbitrary multi-step scheme to march this dynamical system in time leads to un+1 = un +
�t �(u), where n + 1 and n are the unknown and known time step indexes, respectively, �t is the time step
and�(u) represents the temporal discretization employed. According to Lax’s equivalence theorem, a discrete
scheme, applied to a linear and well-posed initial value problem, converges as long as it is consistent and
stable [26]. Convergence in this context means that the discrete solution approaches the continuous one when
�t → 0 for a fixed time t . However, the word convergence has a different meaning in the present paper. It
implies that a steady-state is achievedwhen t → ∞ for a fixed�t . Nonetheless, equivalence considerations are
similar and still require consistency as well as stability. A scheme is consistent when the continuous governing
equation can be recovered from its discrete counterpart in the limit �t → 0. On the other hand, a scheme is
linearly stable when the absolute value of the gain G = un+1

d /und = exp[λ�t] is |G| < 1 within a certain
finite or infinite λ�t range, where und = ud(tn) and tn+1 = tn + �t . Otherwise, the numerical scheme is
linearly unstable when |G| > 1. Numerical stability is the term used here when referring to the stability of the
marching scheme.

Figure 1 shows |G|, on the left plot, and the total number of iterations N required for convergence to
ud(t) = 10−16 starting from ud(0) = 1, on the right plot, both as functions of λ�t for the explicit Euler (EE),
implicit Euler (IE) and second-order Adams-Bashforth (AB2) schemes. All three schemes are consistent.
Numerical stability is traditionally evaluated under physically stable conditions, i.e. for λ < 0. Within this
spectral region, EE and AB2 are conditionally stable, since |G| < 1 for −2 < λ�t < 0 and −1 < λ�t < 0,
respectively. In other words, the stability of these schemes is conditioned to the use of finite time steps. On the
other hand, IE is A-stable, since |G| < 1 for λ�t < 0. Its stability is actually stronger, since this scheme is
L-stable. This means |G| → 0 as λ�t → −∞, whereas A-stability only requires |G| < 1 in the same limit.
All three schemes converge with a finite N within their respective stability bounds. The dashed line in the
right plot of this figure is drawn at N = 5000. This number was imposed as an upper bound for N since all
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Fig. 1 Absolute value of the gain (left) and total number of iterations for convergence (right) as functions of the dimensionless
time step for EE, IE and AB2 schemes. Dashed lines indicate an approximate threshold for instability

simulations diverged if they passed this threshold. Nevertheless, convergence is achieved when �t is chosen
small enough so λ�t falls within the stability bounds. Furthermore, N is proportional to |G|, where N → 1
when |G| → 0. This leads to an often misunderstood concept. Even though physical intuition might indicate
that optimal convergence toward steady-state is achieved by imposing the largest possible time step, a linear
numerical stability analysis reveals that optimal convergence is in fact achieved at the time step that yields the
smallest absolute value of the gain. Physical intuition is only correct for L-stable schemes, where |G| → 0 as
�t → ∞. These well known results, based on a linear stability analysis, show that numerically stable schemes
can be used to march physically stable problems to steady-state. Furthermore, the efficiency of this process
depends on how small is the gain.

However, as pointed out in the introduction, steady-states of physically unstable problems are even more
valuable. In this context, it is paramount to understand numerical stability when λ > 0 as well. Both explicit
schemes in Fig. 1 are numerically unstable within this spectral region. On the other hand, the IE scheme is
numerically stable for λ�t > 2, even though the problem is physically unstable when λ > 0. It is in this sense
doubly L-stable, since |G| → 0 as λ�t → ±∞. This is the reason why IE is a marching scheme of choice in
the literature for the generation of steady-states [13,32,37]. Nonetheless, this scheme achieves convergence for
physically unstable problems when �t is chosen large enough (�t > 2/λ) so λ�t falls within its numerical
stability bounds. On the other hand, nonlinearity reduces the maximum allowed time step in most problems.
In these cases, one might not be able to make �t large enough to remove the physically unstable eigenvalue
λ from the (linearly) numerically unstable region 0 < λ�t < 2.

2.2 Minimal gain marching (MGM) schemes

Since in most cases the eigenvalue λ is fixed by the physical problem and the time step �t maximum value is
limited by nonlinearities, the only alternative left from a linear stability perspective is to modify the scheme
itself in order to reduce its unstable region. Doing so, however, is not straightforward, since a few constraints
still must be satisfied. A nonlinear counterpart to Lax’s equivalence theorem does not exist, so it is important to
guarantee consistency and stability on a linear basis. In order to impose consistency, a truncation error analysis
is necessary. Considering the same homogeneous initial value problem from the previous subsection

du

dt
= f (u), (1)

one can march it in time with the general implicit multi-step scheme

a+1 un+1 + a0 un + a−1 un−1

�t
= b+1 f n+1 + b0 f n + b−1 f n−1, (2)

where the notation f n = f (un) was employed. Using Taylor series expansions, this discrete equation can be
re-written as

(a+1 − a−1)
du

dt
= (b+1 + b0 + b−1) f (u) + T.E., (3)
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Fig. 2 Same as Fig. 1 but for Eq. (8) with θ1 = 1 and θ2 = 1/2, 1, 3/2 and 3

with its truncation error defined as

− T.E. = �t−1 (a+1 + a0 + a−1) u
n

+�t

{
1

2
(a+1 + a−1)

d2u

dt2

∣∣∣∣
n

− (b+1 − b−1)
d f

dt

∣∣∣∣
n
}

+ O
(
�t2

)
, (4)

which means consistency can be guaranteed by imposing

a+1 + a0 + a−1 = 0, (5)

otherwise f (us) = 0 is only possible for trivial steady-states us = 0, and

a+1 − a−1 = b+1 + b0 + b−1, (6)

otherwise Eq. (3) would result in a time rescaled version of Eq. (1) in the limit �t → 0. Since temporal
accuracy is not necessary to reach steady-state, there is no need for modified schemes with accuracy-orders
greater than one. This means no additional constraints are required from a T.E. standpoint.

The final step to satisfy Lax’s equivalence theorem is to demonstrate that regions of linear numerical
stability exist for Eq. (2). Using the same classical analysis discussed in the previous subsection leads to

(a+1 − λ�t b+1)G
2 + (a0 − λ�t b0)G + (a−1 − λ�t b−1) = 0, (7)

where the EE scheme has b+1 = 0, b0 = 1 and b−1 = 0, the AB2 scheme has b+1 = 0, b0 = 3/2 and
b−1 = −1/2, and the IE scheme has b+1 = 1, b0 = 0 and b−1 = 0, in addition to a+1 = 1, a0 = −1
and a−1 = 0 for all three schemes. Their respective gains from Eq. (7) were used to generate the left plot
in Fig. 1. If additional steps were added to Eq. (2), say at n − 2, n − 3 and so on, Eq. (7) would become
an ever higher-order polynomial equation for G. As this polynomial order increases, so does the number of
solutions of the resulting equation, all of which must satisfy |G| < 1 at some λ�t region for stability. Hence,
it becomes increasingly harder to find multi-step schemes with large stability regions as their number of
coefficients increases. Indirect confirmation comes from the fact that there are no A-stable multi-step schemes
with accuracy-order higher than two [17]. Since implicit backwards difference formulas (BDFs) with first (IE)
and second (BDF2) accuracy-orders are the best known L-stable multi-step schemes, b−1 = 0 is imposed here
as well. The resulting two parameter family of multi-step schemes is re-written as

θ1
un+1 − un

�t
+ (1 − θ1)

un+1 − un−1

2�t
= θ2 f n+1 + (1 − θ2) f n, (8)

in order to highlight the discrete temporal derivative as a weighted average between dissipative and non-
dissipative approximations. Setting a0 = −θ1, a±1 = (θ1 ± 1)/2, b0 = 1 − θ2 and b+1 = θ2 in Eq. (7) leads
to its gain. Their linear stability properties are illustrated here for the particular case where θ1 = 1, since this
leads the well-known generalized Crank–Nicolson scheme.

It is used in the literature with either θ2 = 1 or 1/2, which are the IE and second-order Crank–Nicolson
(CN2) schemes, respectively. Figure 2 shows the same results presented in Fig. 1, but for θ2 = 1/2, 1, 3/2 and
3. As is already known, the CN2 scheme is A-stable for λ�t < 0 but unstable otherwise, with |G| → 1 as
�t → ∞. When θ2 is increased to 1, Eq. (8) reverts back to IE, which was discussed and shown Fig. 1. The
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important behavior for the purpose of steady-state generation with marching schemes appears when setting
θ2 > 1, a range never reported before as far as the authors are aware.Within this range, Eq. (8) remains A-stable
for λ < 0. Furthermore, its numerically unstable region is 0 < λ�t < 2/(2 θ2 − 1) for λ > 0, which means
this region decreases in size as θ2 increases beyond 1/2. As Fig. 2 shows, the original IE scheme unstable
region decreases in half when θ2 = 3/2 and by four times when θ2 = 3. Although it continues to decrease in
size as θ2 increases, |G| → (θ2 − 1)/θ2 as �t → ∞. In other words, this asymptotic gain goes to |G| → 1
from below as θ2 → ∞. Hence, one can expect stabilization for small but positive λ�t but worse convergence
for high �t , which is observed on the right plot of Fig. 2 for positive and negative values of λ. Nevertheless,
numerical stabilization of a physically unstable problem can be achieved by increasing θ2 beyond 1.

In summary, MGM schemes can be derived by following a straightforward methodology. Its goal is to
construct marching schemes that are numerically stable on a linear basis when integrating physically unstable
flows toward steady-state. The convergence of such schemes is optimal, also on a linear basis, when the chosen
�t yields the smallest possible |G|. Since nonlinearities restrict the maximum allowed �t of any scheme, this
derivation should pursue schemes with the smallest possible |G| at the smallest possible �t . In order to do
so, a modal and linear numerical stability analysis should guide the selection of the free coefficients. In the
present case, Eq. (7) guides the selection of θ1, θ2 and �t in Eq. (8). For this particular MGM scheme, the
guidelines are:
1. Always start the search for steady-states with the implicit Euler (θ1 = θ2 = 1) scheme using the largest

possible �t due to its L-stability.
2. If convergence is not achieved, increase θ2 and/or decrease θ1. This process should be gradual, since it

removes L-stability, increasing the asymptotic values of |G| away from 0, likely deteriorating convergence
rates. It should, however, eventually allow convergence as �t is decreased.

2.3 Over/under relaxed newton method

An analysis of the asymptotic behavior provides an interesting view about the nature of the control parameter θ2
in Eq. (8). It is well known that the IE scheme reverts back to a Newton method as�t → ∞ [28]. This method
has quadratic convergence and can be used to search for the roots of f (u) = 0, which are the steady-states
u = us of Eq. (1). Evaluating Eq. (8) at the same asymptotic limit and Taylor series expanding f (un+1) up to
O(�u) yields

�u = un+1 − un = − 1

θ2

f (un)

(∂ f/∂u)n
, (9)

which is analogous to applying relaxation un+1 = ω un+1 + (1 − ω) un to the Newton method, but with a
relaxation parameter ω = 1/θ2. Hence, imposing θ2 > 1 is equivalent to under-relaxing (ω < 1) whereas
imposing θ2 < 1 is equivalent to over-relaxing (ω > 1) the marching scheme (Newton method). Within
the context of iterative root finding methods, the former often enables convergence of an otherwise diverging
Newtonmethod, whereas the latter is used to accelerate convergence of an already converging Newtonmethod.
In the context ofMGM schemes, under-relaxation stabilizes an otherwise numerically unstable scheme applied
to an unstable physical problem. In other words, it makes a diverging scheme convergent. Although this is the
main goal of the present paper, the relaxation analogy points to another use forMGM schemes. Over-relaxation
should further stabilize an already numerically stable scheme applied to a stable physical problem. In other
words, it accelerates convergence of an already converging scheme. This is certainly true for linear problems.
As shown in Fig. 2, the gain is reduced when θ2 decreases from 1 to 1/2 for small negative λ �t values, which
reduces the number of time steps required for convergence. Although this is likely true as well for weakly
nonlinear problems, strongly nonlinear problems require further studies. They are, however, beyond the scope
of this paper, which focuses on the generation of unstable instead of stable steady-states. The former receives
a higher priority because the latter can already be obtained with standard schemes.

2.4 Selective frequency damping

In order to make the paper more self contained, a brief description of SFD is provided [1]. It introduces a
source term in Eq. (1), namely

du

dt
= f (u) − χ (u − ū), (10)
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where χ is the stabilization amplitude required to damp the most unstable eigenvalue and ū is a low-pass
temporally filtered variable. When this filter is an exponential kernel, ū can be obtained in an efficient manner
from

dū

dt
= u − ū

�
, (11)

where� is inversely proportional to the cut-off frequency. Although SFD alters the original transient evolution
of Eq. (1), ū = us at steady-state and the forcing term in Eq. (10) disappears in this limit. This means Eqs. (1)
and (10) yield the same otherwise unstable steady-state. Coupling between Eqs. (1) and (10) was implemented
in an explicit manner for all test cases, since the more cumbersome implicit implementation showed negligible
improvements.

3 Results and discussion

A few test cases are simulated to evaluate the ability ofminimal gainmarching (MGM) schemes developed here
to reach a steady-state. Several types of flow instability are considered. Whenever possible, the performances
of MGM and selective frequency damping (SFD) are compared. The only exceptions are the particular cases
where SFD was not able to damp a certain flow instability. It should be noted that comparisons with the
over/under relaxed Newton method were not possible when using as initial guesses the same initial conditions
employed for MGM and SFD. When doing so, convergence was not achieved. The only exception was the
Lorenz equation test case discussed next. Hence, this method is no longer mentioned from this point on.

3.1 Lorenz equations

The first test case used here solves the Lorenz equations [35]

dx

dt
= σ (y − x) ,

dy

dt
= x (ρ − z) − y and

dz

dt
= x y − β z, (12)

with σ = 10, r = 40 and b = 8/3. Figure 3, left plot, shows x(t) obtained using CN2 with a �t small enough
to render x(t) grid independent within 0 < t < 25 starting from the initial conditions x(0) = y(0) = z(0) =
1/10. Thick lines show what happens to this temporal evolution when MGM is turned on at different times.
MGM is run at locally optimal conditions θ1 = 1, θ2 = 2 and �t = 0.06 from Fig. 3, right plot. This figure
presents the asymptotic disturbance growth rate λ for different θ1, θ2 and�t . Solid points indicate the smallest
�t capable of reaching |(xn+1 − xn)/(x2 − x1)| = 10−8. Steady-states are still reached for smaller �t , but
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they have lower accuracy. Nevertheless, imposing θ2 > 1 and/or θ1 < 1 enables the use of a lower �t , as
predicted by the guidelines based on linear stability at the end of Sect. 2.2.

Figure 4 shows the number of iterations required for convergence toward the same tolerance for MGM (left
plot) and SFD (right plot) under different parametric conditions near their respective optimum. All optimum
pointswere estimated by a brute force variation of all respective control parameters. SinceSFD is simulatedwith
CN2, cpu time per iteration is very similar between it and MGM simulated with Eq. (8), allowing comparisons
between iteration counts instead. These same procedures were employed in all test cases. This figure shows
that IE (θ1 = θ2 = 1) is still the best choice when�t can be made large enough to place all physically unstable
eigenvalues outside of its numerically unstable region, since allowing θ1 �= 1 and/or θ2 �= 1 increases the linear
asymptotic gain. Vertical lines on both plots indicate an inability to converge toward the required tolerance
when further increasing �t , analogous to the solid points on the right plot of Fig. 3. MGM optimal points are
different between Figs. 3 (right) and 4 (left), but this is due to strong variations in λ during initial transients.
Nevertheless, Fig. 4 shows that an optimal IE requires 50% more iterations than optimal SFD to reach the
same tolerance. This particular test case, however, is an ideal one for SFD because all steady-states, such
as the ones shown in Fig. 3 (left), are unstable to the same frequency. Furthermore, the MGM stabilization
was not necessary, since nonlinearities were not strong enough to significantly reduce the maximum time
step of the IE scheme. For these reasons, more complex test cases are studied and discussed in the next
subsections.

3.2 Modified Burger’s equation

A 1D transient and viscous Burger’s type equation is considered next [6],

∂u

∂t
+ u

∂u

∂x
= 1

Re

∂2u

∂x2
+ R (u − us), (13)

where R is the source term control parameter, Re the Reynolds number and us represents the steady-state. It
becomes convectively unstable at R = 0 and transitions to absolutely unstable at R = Re/4, where Re = 32
is used here. Both onsets of instability are due to stationary and spatially uniform disturbances. Figure 5 shows
velocity disturbances at R = 5 (left) and R = 87 (right), where typical convective and absolute unstable
behavior is observed. Simulations employed periodic boundary conditions with a buffer zone near the outflow
boundary to enforce the inflow boundary condition u = us = 1. The flow was disturbed by a Gaussian source
term, marked by thin dashed lines in this figure. Discrete approximations used were CN2 in time, fifth-order
biased upwind scheme for the advective term and fourth-order central scheme for the diffusive term. Temporal
and spatial numerical orders were verified, and results are grid independent and agree well with linear stability
data.
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Fig. 6 Iterations required for convergence with MGM at R = 5 (left) and R = 87 (right)

Once the disturbance maximum amplitude became equal to 10% of the steady-state one, both SFD and
MGMwere turned on. However, it was not possible to recover u(t → ∞) � us using SFD, which was actually
not able to provide any dampingwhatsoever. This result is yet another evidence that SFDcannot damp stationary
modes. The number of iterations N required by MGM to reach |(un+1 − un)/(u2 − u1)| = 10−8 is shown in
Fig. 6 for both convectively (left) and absolutely (right) unstable conditions R = 5 and R = 87, respectively.
As happened in the previous test case, there is a maximum �t beyond which it is no longer possible to reach
the required tolerance, which is imposed by nonlinear effects. On the other hand, this figure also shows a
minimum �t below which the same problem happens, but now it is caused by the linear numerical instability
shown in Fig. 2 for positive but small λ. In this test case, however, the optimal scheme has θ1 = 1 and θ2
between 1.5 and 2. Although IE reaches steady-state, it is not optimal since the maximum �t imposed by
nonlinear effects does not allow it to reach smaller gains.

3.3 Advection of entropy disturbances

The advection of marginally stable 1D entropy disturbances at a Mach number of M = 10−3 is considered as
the next test case. A low Mach preconditioned density-based method is applied to the compressible governing
equations,



616 R. de S. Teixeira, L. S. de B. Alves

x

xxx
x
x

x

xxxx
x

x
x
xxx

x

xx
xx
x

x
x
xxx

x

x
x
xxx

x

x
x
xxx

x

xx
xxx

x

x

xxxx
x

x

xxx
x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

n

|ρ
d
(x

0,
t)
|

0 50 100 150 200 250 300 350 400
10-12

10-10

10-8

10-6

10-4

10-2

100

SFD (χ = 1.0 Δ = 1.0)
MGM (θ1 = 1.0 θ2 = 2.0)

x
x
xxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x

x
x
xx
xx
xx
xx
xx
xx
xxx

xxx
xxx

xxx
xxxx

xxxx
xxxxx

xxxxx
xxxxxx

xxxxxxx
xxxxxxx

n

N
n

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

SFD (χ = 1.0 Δ = 1.0)
MGM (θ1 = 1.0 θ2 = 2.0)

x

Fig. 7 Dimensionless disturbance measured at x0 = l0/2 (left) and pseudo-time iterations (right) per physical-time step for a
single frequency perturbation

�
∂q̂
∂τ

= f(q) − ∂q
∂t

, (14)

in order to solve this problem, where � is the low Mach preconditioning matrix, q̂ = {Ph, u, T } is the
primitive variable vector, q = {ρ, ρu, ρE} is the conservative variable vector, τ is the pseudo-time, t is
the physical-time and f(q) = 0 represents the steady 1D Navier-Stokes equations. Specific details about any
additional variables and simulation parameters not described here as well as code verification are discussed
elsewhere [18]. In this study, the same tolerance prescribed as stopping criterium for the physical-time con-
vergence toward steady-state, |(ρn+1 − ρn)/(ρ2 − ρ1)| = 10−6, was also used for the pseudo-time iterations
during each physical-time step. Only optimal results from both MGM and SFD are shown from this point
on.

First, a single disturbance with a domain size l0 wavelength is introduced, leading to an unsteady flow
characterized by a single frequency [18]. Figure 7 shows density disturbances (left) and number of pseudo-
time iterations (right) per physical-time step that optimal MGM and SFD schemes take to reach steady-state.
Although both reach steady-state at approximately the same physical-time t (not shown here), the number
of physical-time steps n they require to do so is n = 50 and 213, respectively. This difference is shown
on the left plot of this figure and occurs because both schemes use different �t , 0.096 and 0.288 for SFD
and MGM, respectively. SFD solves an additional differential equation that represents a filtering procedure
originally defined as an integration. Since this integration must be accurately performed for the filter to work,
its differential form must be accurately marched in time even though only the steady-state matters. This means
SFD requires a relatively small �t to work well. On the other hand, MGM can use as large a �t as allowed by
nonlinear effects and linear stability requirements. There is also a difference between the number of pseudo-
time iterations Nn per n of MGM and SFD, as shown on the right plot of the same figure. Nn decreases to 1
at steady-state for MGM. This is due to the fact that Nn is controlled by the gain of the marching schemes
employed in physical and pseudo-time, which never changes for a fixed time step. Hence, a solution obtained
at n becomes an increasingly better initial guess for the pseudo-time iteration procedure that yields a solution
at n+1 as steady-state is approached. The same is not true for SFD, since its Nn actually increases with n after
an initial decrease. Although SFD uses the same marching scheme in pseudo-time as MGM, it uses CN2 in
physical-time instead. It can afford to do so because its physical-time convergence is controlled by the source
term added to the governing equations. However, this source term is zero at steady-state, whichmeans its ability
to maintain the unsteady solver at steady-state disappears. As the solver moves away from this limit though,
the source term become nonzero again, driving the solver back to steady-state. These unsteady oscillations
explain why the solution at n never becomes an ideal initial guess for the pseudo-time iteration that yields the
solution at n + 1 with SFD. As a consequence, Nn never reaches 1 and the total iteration count N = ∑

Nn is
also smaller in MGM than SFD when using these marching schemes with sub-iterations, approximately 5.2
times so in this test case.
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Fig. 8 Same as Fig. 7 but for multiple frequency perturbation

An additional simulation was considered for this particular test case, where the density initial condition
takes the form of ρ/ρ0 = 1 + 2 δ0 IF[ x/ l0 < 1/2 , x/ l0 , x/ l0 − 1 ], where δ0 is the initial disturbance
amplitude. This leads to a marginally stable unsteady flow characterized by several frequencies. MGM and
SFD are run in a similar way as done in the single frequency case and results are shown in Fig. 8. Despite
qualitative similarities, a few important quantitative differences exist. An MGM scheme with θ1 = 1 and
θ2 = 2 is still the optimal choice, but it requires approximately 24.5% more iterations to reach the same
steady-state accuracy. This occurs at n = 51. SFD, on the other hand, appears not capable of generating a
steady-state with the same tolerance. It takes SFD approximately 6.3 times more total iterations than MGM
to reach n = 273, where the resulting disturbance amplitude is still 4 orders of magnitude higher than the
imposed tolerance. Although one would have to employ multiple filters to improve the performance of SFD in
this case (Schlatter, P. (2015), Personal communication), it is important to emphasize that MGM can be used
when multiple frequencies are present without any modifications.

3.4 Planar mixing-layer

Absolutely unstable planar mixing-layers are simulated next as a final test. Simulations capture the linear and
nonlinear growth of incompressible and inviscid disturbances with the 2D version of Eq. (14) solved with
M = 10−3, which were verified and validated elsewhere [3]. Once the most unstable linear mode introduced
in the initial condition reached a 10% amplitude, i.e. before nonlinear effects can become significant, both
steady-state generation methods were turned on. A relative physical-time tolerance was imposed on the stream
wise velocity component using |(un+1 − un)/(u2 − u1)| = 10−6, where the same tolerance was employed in
pseudo-time for each physical-time step. Only optimal results from MGM and SFD are shown.

Figure 9 shows stream wise velocity disturbances (left) and number of pseudo-time iterations (right) per
physical-time step that optimal MGM and SFD schemes take to reach steady-state in a mixing layer with a
velocity ratio of V R = 1/2. In this case, a relatively large time step �t can be employed so the IE scheme is
the optimal choice to reach steady-state among MGM schemes, which happens at n = 34. A slight oscillation
exists around the steady-state after convergence, which is due to the linearly unstable nature of this flow.
On the other hand, SFD fails to reach a steady-state with the same prescribed tolerance achieved by MGM.
Furthermore, Nn once again does not reach 1 near steady-state, as observed in the previous subsection. It
takes SFD approximately 27.6 times more iterations than MGM to reach n = 557, where a steady-state
approximately 2 orders of magnitude less accurate than originally prescribed is achieved. Nn is also highly
oscillatory for SFD, specially after n > 50. This is likely due to the linearly unstable nature of this flow. All
remaining trends are qualitatively similar to what was observed in the previous test case, and no additional
discussion is necessary here.

When the velocity ratio V R is decreased by 4 times, the most unstable linear mode growth rate doubles.
Figure 10 shows the effects of this parametric change on the variables presented in Fig. 9.Once again, qualitative
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Fig. 9 Dimensionless disturbance measured at x0 = l0/2 and y0 = 0 (left) and pseudo-time iterations (right) per physical-time
step for velocity ratio V R = 1/2
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Fig. 10 Same as Fig. 9 but for velocity ratio V R = 1/8

trends are similar, but a few differences should be highlighted. IE is no longer numerically stable and a MGM
scheme must be employed in its place to reach the required steady-state tolerances. This happens at n = 309
using θ1 = 0.5 and θ2 = 1.5, which represents the optimal choice. Its higher asymptotic gain combined with
the stronger disturbance linear growth rates leads to slightly more than a 17 times increase in the total number
of iterations N . Oscillations after convergence also increase in magnitude for the same reasons, getting strong
enough to actually make 1 < Nn < 50 for n > 700. SFD cannot convergence to a steady-state with the
originally prescribed tolerance, but it does converge to one with approximately the same tolerance achieved
with V R = 1/2. However, it does so using slightly different parameters and slightly more than 1.4 times
its previous total number of iterations. Nevertheless, MGM still requires approximately 2.3 times less total
iterations than SFD to reach a steady-state 2 orders of magnitude less accurate than the original tolerance.

In both temporally unstable and spatially periodic planar mixing-layer test cases, only a single disturbance
was directly excited by the initial conditions. For this reason, onemight be inclined to assume that the vanishing
force term was responsible for the less accurate steady-states reached by SFD. However, the true cause of these
inaccuracies is the presence of a broad range of unstable wave numbers, each one with its respective unstable
frequency. Although they are not directly excited, round-off errors guarantee they are always indirectly excited
in a simulation. The only difference between both cases is the excitation amplitude. Hence, the presence of
multiple unstable frequencies is the real reason behind the SFD steady-state accuracy loss in these cases.
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This issue is not uncommon in complex flows. In fact, similar steady-state errors have been observed in
other studies (Schlatter, P. (2015), Personal communication). Nevertheless, it is important to note that the
presence of multiple unstable frequencies in difference cases can be induced by different mechanisms, such
as nonlinearities, transient growth, absolute instability with multiple pinching points, global instability with
multiple self-selected frequencies, etc.

4 Conclusions

Steady-states have been traditionally obtained with Newton-type methods, but these methods are strongly
dependent on accurate initial conditions for convergence and use steady codes that often require large computer
resources. Selective frequency damping (SFD) has been proposed as an alternative 10 years ago. It has become
popular because it can be easily implemented in an existing unsteady code and is rather insensitive to initial
conditions.

However, the present paper has confirmed some limitations of SFD and found additional ones. They are
itemized below:

– It generates schemes that are linearly stable but not consistent, since it alters the original unsteady problem
by introducing a source term. This term is the driving force behind the ability of SFD to generate steady-
states. On the other hand, it decreases in magnitude as the target steady-state is approached, actually
disappearing at this limit. However, it cannot disappear entirely otherwise the steady-state cannot be
maintained. The resulting weak unsteadiness leads to a couple of important issues. The first one is related
to the higher computer cost of SFD. When used with marching schemes that require sub-iterations, the
number of sub-iterations never decreases to one even after steady-state is supposedly reached. The second
issue is related to the lower accuracy of SFD. It tends to leave a small error residue on the steady-state
it finds. Furthermore, this error seems to increase in magnitude as the flow becomes more temporally
unstable.

– It requires an accurate unsteady simulation even though only steady-states are pursued. This is due to the
additional differential equation included by this method to replace a numerical integration, which must
be accurately performed for the filtering procedure to work. Hence, it appears that SFD is more suitable
to marching schemes with high accuracy-order and/or strong linear stability. The former leads to smaller
errors at smaller time steps, whereas the latter leads to a decrease in error propagation. One more remark
must be made here, which is also related to the previous limitation. Theoretically, one should be able
to increase the time step as steady-state is approached in order to reduce computer cost. However, this
seems to enhance the weak unsteadiness that remains near steady-state, making both issues related to it
and discussed above quite worse. For this reason, such a procedure was not used in the present paper.

– It seems unable to generate a steady-state when the flow is unstable to stationary disturbances, whether
this is instability is convective or absolute. Although it might be possible to use a zero frequency filter, no
such filter has been developed yet as far as the authors are aware.

– It has difficulties generating accurate steady-states if multiple frequencies are present in a flow. This issue
could probably be resolved by including additional filters, but no such attempt was made here.

Some researchers have also used an implicit Euler scheme to drive unsteady equations to steady-state,
although to a much lesser extent. This scheme is usually chosen for this task since it is numerically L-stable for
both physically stable and unstable linear systems. However, it does have a region of linear numerical instability
associated with a weak physical instability. Hence, this scheme diverges when nonlinearities do not allow the
use of large enough time steps to place all physically unstable eigenvalues outside of this numerically unstable
region. In the present paper, a modification based on numerical consistency and linear stability reduces the
size of this numerically unstable region, greatly extending the applicability of such schemes. This approach
to deriving marching schemes for the generation of steady-states is called a minimal gain marching (MGM)
methodology. The new set of implicit multi-step schemes obtained from this methodology is called MGM
schemes. Their advantages over SFD are:

– They are linearly stable and consistent, which means the driving force behind the ability of MGM schemes
to march toward steady-state comes from the built-in asymptotic properties of these marching schemes.
One such property is the gain, since all available coefficients of the marching scheme were chosen to
numerically stabilize as much as possible of the physically stable and unstable regions. The other property
is the time step, which is then chosen in such a way as to place all stable and unstable spectra within this
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numerically stabilized regions. Since the gain remains unaltered once the time step is fixed, the driving
force is always the same. Hence, two important advantages appear. The first one is related to the lower
cost of MGM. When used with marching schemes that require sub-iterations, the number of sub-iterations
decreases to one once steady-state is reached. The second advantage is related to the higher accuracy of
MGM. Steady-states are as accurate as allowed by the error tolerances imposed.

– Consistency requires first-order accuracy in time, although higher orders can be achieved. Furthermore,
consistency guarantees that the temporal accuracy of the MGM scheme does not affect the spatial accuracy
of the steady-state it generates. This means accurate unsteady simulations are not required and, hence, the
time step can be chosen to yield the smallest gain, contributing to the lower cost of MGM.

– They are able to generate steady-states when the flow field is unstable to stationary as well as oscillatory
disturbances, whether this instability is convective or absolute.

– The presence of multiple and distinct unstable frequencies does not affect in any significant way the ability
of MGM schemes to generate steady-states.

Despite these advantages of MGM over SFD, one important disadvantage remains. SFD can be easily
applied to explicit and implicit schemes as well as multi-step and multi-stage schemes. On the other hand,
MGM has only been shown here to work with implicit multi-step schemes. It should be possible to adapt
implicit multi-stage schemes to satisfy a MGM methodology, since one can already find in the literature
versions of implicit Runge-Kutta schemes that are numerically stable when applied to physically stable and
unstable linear problems. However, the same is not true for explicit schemes as far as the authors are aware.
All numerical experiments attempted by the authors with the free coefficients in Eq. (7) for explicit multi-step
schemes (b+1 = 0) were not able to numerically stabilize (|G| < 1) the physically unstable region (λ > 0) for
any time step �t . Similar experiments for explicit multi-stage schemes have not yet been performed, but are
likely to yield similar results. Hence, short of directly coding an implicit marching scheme, the only consistent
approach to enable the implementation of implicit MGM schemes on originally explicit marching schemes
appears to be dual-time stepping (DTS). In this case, the original explicit scheme is moved to pseudo-time
and the implicit MGM scheme is applied to physical-time. During each physical-time step, one must perform
sub-iterations in order to reach pseudo-time steady-state. As a consequence, simulations with this MGM-
DTS scheme should require more computer time than the ones with the implicit MGM scheme discussed
in the present paper. Nevertheless, the former is much simpler to code than the latter and would not affect
the parallelization efficiency of the original explicit scheme. However, it is difficult to know at this point if
MGM-DTS would outperform SFD or not. There are clearly a lot of questions that still need to be answered
with the MGM methodology. For these reasons, at the present time, the authors do recommend using SFD,
when the following conditions are met:

– Only explicit marching schemes are available;
– Flow is unstable to a single nonzero frequency disturbance;

noting that both convergence and accuracy of SFD deteriorate when more than one unstable frequency exists.
SFD performed best for the Lorenz problem, where only a single nonzero unstable frequency exists. In all
other test cases, convergence and/or accuracy issues were observed.
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