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Abstract The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to
reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection
downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective
heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an
incompressible fluid through analytical and simulation techniques. At low Reynolds (Re � 1) and high Péclet
(Pe � 1) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for
an explicit determination of the dependence of the thermal transport on the non-dimensional slip length ls .
In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of
Nu ∼ Pe1/3 and Nu ∼ Pe1/2 for no-slip (ls → 0) and shear-free (ls → ∞) boundaries, respectively. Boundary
layer analysis also shows that the scaling Nu ∼ Pe1/2 holds for a shear-free cylinder surface in the asymptotic
limit ofRe � 1 so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite
Re, results from our two-dimensional simulations confirm the scaling Nu ∼ Pe1/2 for a shear-free boundary
over the range 0.1 ≤ Re ≤ 103 and 0.1 ≤ Pr ≤ 10. A gradual transition from the lower asymptotic limit
corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with ls , is observed in both
the maximum slip velocity and the Nu. The local time-averaged Nusselt number Nuθ for a shear-free surface
exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where
unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at
high Re and Pr . At a Reynolds number of 103, the formation of secondary recirculating eddy pairs results in
appearance of additional local maxima in Nuθ at locations that are in close proximity to the mean secondary
stagnation points. As a consequence, Nu exhibits a non-monotonic variationwith ls increasing initially from its
lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic
limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on ls is observed
in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low ls ,
strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and
single-component mass transfer implies that our results can directly be applied to determine the dependency
of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through
straightforward replacement of Nu and Pr with Sherwood and Schmidt numbers, respectively.
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1 Introduction

Introduction of a finite slip at the fluid-solid boundary, in typical bluff body flows, is known to reduce vorticity
production while at the same time enhancing its convection downstream [1]. The reduction in vorticity pro-
duction is most pronounced in the case of a shear-free (perfect slip) boundary for which the surface vorticity
depends only weakly on Reynolds number and in the asymptotic limit of infinite Reynolds number, becomes
directly and inversely proportional to the local tangential surface velocity and the radius of curvature, respec-
tively. The suppression of vorticity, combined with its increasingly efficient convection, owing to a pronounced
increase in the tangential surface velocity with rising slip length, results in a substantial reduction in the flow
separation and unsteadiness and also the hydrodynamic loads [2–5]. The possibility of achieving relatively
large reductions in the drag force through sustained hydrodynamic slip has been the principal motivation
behind the recent interest in the development of engineered superhydrophobic surfaces [6,7]. In the past, slip
lengths ranging from 20 to nearly 200 µm have been realized through textured superhydrophobic surfaces [6].

In general, the finite tangential surface velocity that reduces thewall-normal velocity gradients and therefore
the vorticity generation at a hydrodynamically slipping boundary is expected to enable efficient convection
of heat or mass from it. Indeed increasing slip augments transport coefficients substantially even in the low
Reynolds number regime in which the hydrodynamic slip-induced enhancement in the convective flow velocity
is expected to remain minimal. Thus, for Re → 0 and Pe � 1, the transport coefficients for uniform flow
past a shear-free boundary are known to exhibit a power law scaling of Pe1/2 that differs remarkably from the
scaling law of Pe1/3 for uniform flow past a no-slip surface [8]. Similar scaling exponents of 1/3 and 1/2 for
the local Nusselt number corresponding to no-slip and shear-free boundaries, respectively, were obtained for
the Graetz-Nusselt thermal entry length problem concerning growth of thermal boundary layer in a laminar
fully developed slip-dependent velocity profile, in the recent work of Hasse et al. [9]. Furthermore, with rising
slip the local and developed Nusselt numbers were found to gradually transition between the two distinct limits
for no-slip and shear-free boundaries [9].

In both the creeping and the hydrodynamically full-developed laminar flow conditions considered in the
previous works cited above, flow separation or reversal is not encountered and the flow field remains free of
recirculating regions. In both these scenarios, an increase in the convective flow speed enabled by the rising
slip length is expected to lead to a monotonic increase in the convective transport coefficients. In finite Re bluff
body flows, however, the situation becomes complicated due to the emergence of recirculating wakes. At finite-
Re, separation and unsteady vortex shedding over non-planar no-slip boundaries lead to formation of vortical
velocity fields which promote transverse fluid mixing and augment convective transport through a reduction
in thermal boundary layer thickness. Introduction of slip over such surfaces results in a reduction, and, for
sufficiently large slip lengths, complete elimination of flow separation and vortex shedding. The reduction in
the intensity or complete absence of recirculating regions allows the thermal boundary layer to grow over the
downstream portion of the boundary and therefore limits the local convective transport from it. Thus, to a large
extent, the potential gain in the convective transport over the upstream portion of a hydrodynamically slipping
bluff body is offset by the loss over the downstreamportion owing to the suppression of recirculatingwakes. The
relative dominance of these two competing effects should determine whether or not an overall increase in the
convective transport is achieved in bluff body flows with finite slip. Thus, unlike the case of planar surfaces,
it is not immediately clear whether or not application of hydrodynamic slip in bluff body flows results in
increased global convective heat or mass transfer at some pre-specified Reynolds and Prandtl numbers. Given
the existence of hydrodynamic slip over a wide range of continuum flows involving singular corners [10–12],
moving contact lines [13,14] and hydrophobic surfaces [15,16] (also see [6,17]), an investigation into the
anticipated non-trivial dependence of the convective transport coefficients on hydrodynamic slip is of prime
importance. An understanding of this dependence at low and moderate Reynolds numbers can aid in the
design of configurations that overcome the challenge of achieving large convective transport in miniaturized
flow systems. Additionally, given the direct analogy between heat transfer and single-component mass transfer,
hydrodynamic slip-induced enhancement in the local convective transport rates could be usefully employed in
relevant technological and biological systems to maximize chemical adsorption or nutrient uptake.

In this work, we investigate the competing roles of the hydrodynamic slip in increasing and decreasing con-
vective heat transport from the upstream and downstream portions of a hydrodynamically slipping cylindrical
surface. As in the case of creeping or fully developed pipe flow configurations, with increasing slip length or
equivalently the tangential surface velocity we find a monotonic increase in the surface-averaged convective
transport coefficients for Re � 1 and Pe � 1. Moreover, in the absence of recirculating wakes in the low
Re regime, we observe a monotonic increase in the thermal boundary layer thickness and a corresponding
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monotonic decline in the local convective transport from the forward to the rear stagnation point along the
hydrodynamically slipping cylinder boundary. Both local and average (time- and surface-averaged) convective
transport coefficients are strongly influenced by the appearance of primary and secondary vortical structures
and unsteady vortex shedding at finite Re. In particular, with the introduction of a relatively small slip, we
observe a remarkably sharp rise in the time-averaged local Nusselt number close to the rear stagnation point.
Upon further increase in slip length, this sharp rise in Nu disappears gradually as the primary recirculation
region in the wake of the circular cylinder is largely suppressed. The sharp initial rise of the local Nu with slip
length is especially pronounced at higher Re. At a Reynolds number of 103, this local rise is large enough to
effect a change in the otherwise monotonic variation of the average Nusselt number with slip length.

Apart fromcontinuumflowsof densefluids, hydrodynamic slip is routinely encountered in rarefiedgasflows
over solid surfaces [6,18]. In rarefied flows, the hydrodynamic slip that results in a jump in tangential velocity at
the solid-fluid interface is accompanied by a jump in the surface temperature aswell.Maxwell’s velocity slip and
Smoluchowski’s temperature jump conditions enable the thermal and tangential velocity discontinuities to be
incorporated as first- or higher-order (inKnudsen number) temperature and velocity boundary conditionswithin
the continuum framework for rarefied flows [18–21]. Utilizing such an approach, the effect of hydrodynamic
and thermal slips on the flow characteristics and the temperature field has been investigated for flow past both
planar and cylindrical geometries theoretically [22–24] and through computations [25–27]. In [26], steady
calculations based on stream-function vorticity formulation showed that an increase in the Knudsen number
Kn from 0 to 0.05 at a fixed Re = 40 led to a rise in the tangential surface velocity and a decline in the drag
coefficient, in accordancewith the work of Legendre et al. [2]. Furthermore, the loss in the convective transport,
owing to the existence of a finite temperature jump at the surface, was found to overwhelm the gain enabled
by the rising tangential surface velocity. Therefore, a net reduction in the Nusselt number was observed with
Kn at Re = 10, 20 and 40, over the range Kn ≤ 0.05.

A key distinction between these previous works and the present investigation lies in our focus on continuum
flows of dense fluids with hydrodynamic slip as opposed to rarefied slip flows. As in the case of rarified flows,
the presence of a finite tangential surface velocity must be accounted for in the physical model employed for
describing dense fluid continuum flows with finite hydrodynamic slip. However, in stark contrast to rarefied
slip flows for which the effective slip length and therefore the maximum tangential surface velocity are both
limited by the Knudsen number range 0.01 ≤ Kn ≤ 0.1 [18], no restrictions on the slip length can generally
be placed in dense fluid continuum flows (slip length becomes unbounded for a shear-free boundary). Thus,
significantly larger slip velocities and convective transport rates can in principle be achieved. Moreover, unlike
the case of rarefied flows, the jump in the surface temperature is negligible so that it suffices to directly impose
the requisite isothermal or flux condition at the solid boundary [18,19]. Therefore, following previous works
on dense fluid continuum flows with finite slip [2–5,9,11,14] we rely on the Navier slip condition to account
for the hydrodynamic slip on the cylinder surface. To fully characterize the effect of hydrodynamic slip on
convective transport, we span a relatively wide range of Reynolds and Prandtl numbers for slip lengths ranging
from zero for a no-slip boundary, to infinity for a shear-free surface. To the best of our knowledge, an exhaustive
investigation aimed at establishing the dependence of Nu on Re,Pr and non-dimensional slip length, through
an analysis of the competing roles of hydrodynamic slip in increasing and decreasing the convective transport
from the upstream and downstream portions of the cylinder boundary, respectively, has not appeared in the
literature till now.

This paper is organized as follows: the setup of the flow configuration including governing equations and
hydrodynamic slip boundary condition is described in Sect. 2. Results from a boundary layer analysis at large
Péclet numbers establishing the completely analogous relationships between the non-dimensional slip length
and theNusselt number, and themaximum slip velocity, under creeping-flow condition, are presented in Sect. 3.
The details of numerical discretization methodology employed for simulation-based investigations at finite Re
are presented in Sect. 4. Results from the simulations characterizing the influence of hydrodynamic slip on
both local and average Nusselt numbers over the range 0.1 ≤ Re ≤ 103 and 0.1 ≤ Pr ≤ 10 are presented
and analyzed in Sect. 5. Section 6 summarizes the principal conclusions and outlines directions for future
investigations.

2 Problem formulation

We consider a two-dimensional configuration consisting of uniform flow of a viscous incompressible fluid past
a heated circular cylinder of diameter D. The temperature Ts at the surface of the isothermal circular cylinder
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exceeds the far-field temperature T∞ in the surrounding fluid. The governing incompressible Navier–Stokes
equations for this setup are given by

∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + ν∇2u, ∇ · u = 0, (1)

where t denotes the time, u = (ur , uθ ) is the velocity field in cylindrical polar coordinates with p as the
pressure and ρ and ν as the density and the kinematic viscosity of the incompressible fluid, respectively. The
Reynolds number based on the diameter of the cylinder is Re = U∞D/ν with U∞i as the far-field uniform
velocity along the positive x− direction i. The no-through-flow and the Navier slip boundary conditions [28]
on the surface of the cylinder are given by

ur (a, θ) = 0, and
∂uθ

∂r

∣
∣
∣
∣
r=a

= uθ (a, θ)

a

(

1 + 1

ls

)

, (2)

respectively, where ls denotes the non-dimensional slip length and a = D/2 is the radius of the circular
cylinder.

The normalized temperature Θ = (T − T∞) / (Ts − T∞) is given by the unsteady convection–diffusion
equation

∂Θ

∂t
+ u · ∇Θ = α∇2Θ, (3)

where α denotes the thermal diffusivity. In writing Eqs. (1), (2) and (3), we have assumed that within the
range of temperature variations, fluid and surface properties ρ, ν, ls and α undergo minimal changes and can
therefore be treated as constants. Furthermore, the heat generation term arising out of frictional heating from
viscous dissipation has been ignored (Eckert number Ec � 1). The Péclet number Pe = RePr with Pr = ν/α
as the Prandtl number. The normalized temperature Θ satisfies the isothermal boundary condition Θ = 1
imposed at the cylinder surface r = a and the far-field condition Θ → 0 as r → ∞. The rate of heat transfer
from the surface of the circular cylinder is quantified through the local Nusselt number

Nuθ = −D
̂

(
∂Θ

∂r

)∣
∣
∣
∣
r=a

, (4)

where a hat has been used to denote time-averaged normalized temperature gradient. The average Nusselt
number is related to the local Nusselt number through

Nu = 1

2π

∫ 2π

0
Nuθ (θ) dθ. (5)

In the following sections, we aim to establish the dependence of both Nu and Nuθ on the non-dimensional
parameters ls,Pr and Re first through a boundary layer analysis for large Péclet numbers and subsequently
through simulations.

3 Boundary layer analysis

In the asymptotic limit ofRe � 1, the general solution ofOseen’s equations in polar cylindrical coordinates [29,
30] can be used to determine the velocity and pressure fields for a prescribed tangential surface velocity
profile [31]. Furthermore, in the limiting case of Re � 1 and ls → ∞, the boundary layer over a shear-free
cylinder does not separate and perturbations to the inviscid potential flow field remain O(Re−1/2) [31] (also
see [32,33]). Therefore, to a leading order in Re, the velocity and pressure fields for flow past a shear-free
circular cylinder are given by the inviscid potential flow.

In both the limiting cases described above, the availability of explicit expressions for the velocity field allows
us to quantify the effect of slip on convective thermal transport for Pe � 1. In the following subsections, we
establish the dependence of Nu on Pe through an analysis of thermal boundary layer equations for Pe � 1,
given the velocity fields for creeping flow and high Reynolds number flow past a shear-free cylinder surface.
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3.1 Re � 1 and Pe � 1

General relationships that express the dependence of the velocity field on prescribed non-dimensional slip
length ls in the asymptotic limit of Re � 1 can be deduced from the solution of Oseen’s equations (see
“Appendix 1”). Substitution of the radial and circumferential velocity components into Eq. (3) yields an equa-
tion for the normalized temperature distribution. In the asymptotic limit of Pe � 1, the thermal gradients in the
boundary layer along the wall-normal direction exceed those along the streamwise direction significantly [34].
In the region within the boundary layer, the radial and tangential components of the velocity vector can be
expressed as

ur (r, θ) = U∞ cos θ
{

αy + βy2 + O(y3)
}

,

uθ (r, θ) = U∞ sin θ

{

−α + 2β

(
ls + 1

ls − 1

)

y + O(y2)

}

, (6)

where the rescaled coordinate is r = a(1 + y) and

α = 4ls
1 − 2γ − 2 ln (Re/8) + 4ls

[

1 − γ − ln (Re/8)
] and β = α

(
1 − ls
2ls

)

. (7)

In the rescaled coordinate system, the thermal boundary layer equation then assumes the following form

cos θ
{

αy + βy2
} ∂Θ

∂y
+
(

−α + 2β
1

ls − 1
y

)

sin θ
∂Θ

∂θ
= 2

Pe

∂2Θ

∂y2
. (8)

Note that over the entire range of non-dimensional slip length 0 ≤ ls ≤ ∞, coefficients α and β do not vanish
simultaneously so that it suffices to retain just the first two terms in the expansion of radial and tangential
velocity components given by Eq. (8).

In case of a hydrodynamically slipping cylinder surface with non-vanishing α ∼ O(1), the first term in
Eq. (6) for the expansion of the radial and tangential velocity components dominates the others. Retaining
only this dominant term in the thermal boundary layer Eq. (8), it can be shown that the transformation

Y = √

αPe/2 y sin θ, X = 1 + cos θ, (9)

reduces Eq. (8) to ΘX = ΘYY , for which the similarity solution that satisfies the boundary conditions
Θ (Y = 0, X) = 1 and Θ (Y → ∞, X) = 0 is given by Θ(η) = erfc(η), where η = Y/(2

√
X). The

similarity solution can be used to derive the following expressions for the local and average Nusselt numbers:

NuPS
θ =

√

4αPe

π
sin

(
θ

2

)


⇒ NuPS = 0.718 (αPe)1/2 , (10)

where the superscript PS denotes partial slip.
Thus, for a partially slipping cylindrical surface with α ∼ O(1) we obtain the scaling law Nu ∼ Pe1/2

that is expected to hold for convective transport from a shear-free boundary [8]. It is worth noting that the
thermal boundary layer analysis wrongly predicts that the local Nusselt number vanishes, while the thermal
boundary layer thickness δΘ

BL ∼ cosec (θ/2) diverges at the rear stagnation point (θ = 0). This unphysical
behavior is indicative of a breakdown of the assumption of radial thermal gradient being significantly larger
than the circumferential temperature gradient in the boundary layer region. Close to the rear stagnation region,
the convective terms are balanced by both the radial and circumferential diffusive terms, each of which are of
the same order and therefore cannot be neglected in comparison with the other.

Equation (10) holds only for a cylindrical surface with relatively large hydrodynamic slip (α ∼ O(1)). In
the limiting case of α → 0, the first term in the asymptotic expansions of the velocity field given by Eq. (6) is
vanishingly small. Thus, to a leading order, the radial and tangential velocity components exhibit a quadratic
and linear dependence on the rescaled wall-normal coordinate y, respectively. It can be shown that application
of the following transformation

Y = (λPe/2)1/3 y
√
sin θ, X =

∫ π

θ

√
sin t dt, where λ = 4

1 − 2γ − 2 ln (Re/8)
, (11)
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converts the thermal boundary layer Eq. (8) for a no-slip cylindrical surface with α = 0 (or equivalently,
ls = 0) to

Y
∂Θ

∂X
= ∂2Θ

∂Y 2 . (12)

Equation (12) admits the following similarity solution

Θ =
[(∫ ∞

0
exp

(−t3

9

)

dt

)]−1 (∫ ∞

η

exp

(−t3

9

)

dt

)

, with η = Y

X1/3 , (13)

which also satisfies the boundary conditions Θ (Y = 0, X) = 1 and Θ (Y → ∞, X) → 0. Corresponding
local and average Nusselt numbers are given by

NuNS
θ = 2 (3λPe/2)1/3

Γ (1/3)

⎛

⎜
⎝

√
sin θ

[∫ π

θ

√
sin t dt

]1/3

⎞

⎟
⎠ and NuNS = 0.73 (λPe)1/3 , (14)

where the superscript NS denotes no-slip. Above expressions are consistent with the scaling law Nu ∼ Pe1/3

that holds for convective transport froma two-dimensional bodywith no-slip boundary under uniform creeping-
flow conditions.

For intermediate slip lengths corresponding to a cylindrical surface with partial slip, the Nusselt number is
expected to lie in between the two asymptotic limits given byEqs. (14) and (10).As ls increases from0 to∞, the
Nusselt number is expected to transition gradually from its lower asymptotic limit for a no-slip boundary to the
upper asymptotic limit for a shear-free surface. The nature of this transition and the dependence of the Nusselt
number on ls can be established through a general solution of Eq. (8) that takes into account both the first-
and second-order terms in the asymptotic expansion given by Eq. (6). Unfortunately, determination of such a
general explicit analytical solution to this seemingly difficult problem has not been possible. Nevertheless, the
expression Eq. (10) for the Nusselt number corresponding to flow past a circular cylinder with partial slip can
be used to deduce useful information regarding this transition. For α ∼ Pe−1/3 or equivalently ls ∼ Pe−1/3,
we find NuNS ∼ Pe1/3 ∼ NuPS . The Nusselt number Nu can therefore be expected to reach a value close to
the lower asymptotic limit given by Eq. (14) for a no-slip cylinder surface. This hypothesis can be rigorously
established by deriving an explicit expression for the Nusselt number with full consideration of both the linear
and quadratic terms in the expansion of ur and uθ . As shown in “Appendix 2,” the final outcome of such
an analysis that relies on series expansion in increasing powers of Pe1/3, is the following expression for the
Nusselt number:

Nu = (λPe)1/3
(

0.73 + C1
αPe1/3

λ2/3
+ C2

{
αPe1/3

λ2/3

}2

+ · · ·
)

, for αPe1/3 < O
(

λ2/3
)

, (15)

where C1 and C2 are constants. For relatively small slip lengths ls ∼ Pe−n with 0 < n < 1/6, α ∼ ls , so that
the Nusselt number Nu ∼ Pe(1−n)/2. For ls ∼ O(1) and ls � 1, α ∼ O(1), so that Nu ∼ Pe1/2. Thus, beyond
ls � 1 the Nusselt number asymptotes toward the upper limit for a shear-free cylinder surface.

Given the striking difference in theNusselt number scaling exponents for the shear-free and no-slip surfaces,
one would expect the local Nusselt number for a shear-free boundary to significantly exceed the one for a
no-slip surface. A careful examination of Eqs. (10) and (14) reveals that NuPS

θ (ls → ∞) > NuNS
θ over

majority of the cylinder surface except in the vicinity of the rear stagnation region. Thus, we find that for
θ � 1.28λ2/3Pe−1/3/α(ls → ∞), the local Nusselt number for a no-slip cylinder surface exceeds the one for
a shear-free cylinder. Clearly, the region over which NuNS

θ > NuPS
θ (ls → ∞) shrinks with increasing Péclet

number.
It may seem that in the absence of flow separation and recirculating wakes at vanishing Reynolds numbers,

the decrease in localNusselt numberwith increasing slip, as predicted from the thermal boundary layer analysis,
is a spurious artifact that is a direct consequence of an inappropriate neglect of the circumferential temperature
gradient in the vicinity of the rear stagnation point. To conclusively establish whether or not NuPS

θ (ls →
∞) > NuNS

θ close to the rear stagnation point or elsewhere on the cylinder surface, we consider solving
Eq. (3) without invoking boundary layer assumptions. Using high-order discretization methods described later
in Sect. 4, we compute approximate solution of Eq. (3) with the flow velocities prescribed through Eq. (29).
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Figure 1 depicts the local Nusselt number Nuθ for Reynolds numbers 10−3 and 10−2 over a range of slip
lengths and Péclet numbers. In accordance with the theoretical prediction from the thermal boundary layer
analysis, we find that the local Nusselt number rises with increasing slip length at the forward stagnation
point (θ = π) and over a major portion of the cylinder surface. More importantly, a reversal of this trend is
observed in the vicinity of the rear stagnation point so that the local Nusselt number is the least for a shear-free
boundary and the highest for a no-slip surface in this region. Note that this observation too is consistent with
the theoretical prediction from the boundary layer analysis even though the theoretical estimate of the local
Nusselt number in the rear stagnation region is certainly erroneous [for instance Nuθ (θ = 0) = 0 from the
boundary layer solutions given by Eqs. (10) and (14)].

With rising slip length, the surface-averagedNusselt number undergoes a gradual transition from its asymp-
totic lower limit for a no-slip surface to the upper limit for a shear-free cylindrical surface. This transition is
clearly evidenced from the top frames of Fig. 2 that depict Nu as a function of Pe for Re = 10−3 and 10−2

over a range of slip lengths. The exponent in the power law scaling of Nu with Pe also transitions from 1/3 to
1/2 as ls varies from 0 to ∞.

To illustrate the transition in Nusselt number more effectively, we present the dependence of normalized
Nusselt number, defined as

NuNorm (ls) = Nu (ls) − Nu (0)

Nu (∞) − Nu (0)
, (16)

on the slip length ls in the bottom frames of Fig. 2. For both Re = 10−3 and 10−2, we find a remarkable
collapse of NuNorm for various Pe. Thus, the dependence of Nu on Pe is effectively captured through the
normalization given by Eq. (16). Figure 2 also depicts a comparison of the discrete data points obtained from
the simulations with an expression obtained by replacing the normalized maximum slip velocity in Eq. (30)
with the normalized Nusselt number. The excellent agreement between the continuous curve and the discrete
points from the simulations implies that in the low-Re regime the normalized Nusselt number is given by the
following expression analogous to Eq. (30):

NuNorm (ls) = ls
ls + C(Re)

, (17)

where C(Re) is given by Eq. (31). Thus, in the asymptotic limit of Re → 0, an increase in the maximum
normalized slip velocity translates to a proportionate increase in the correspondingNusselt number forPe � 1.

3.2 Re � 1, ls → ∞ and Pe � 1

In the asymptotic limit of Re → ∞ and Pe → ∞, an analysis of the thermal boundary layer equation can be
used to determine the Nusselt number for convective thermal transport from a shear-free cylinder. For Re � 1
and ls → ∞, corresponding to a shear-free cylinder surface, to a leading order in Re, the velocity field is given
by the potential flow solution. An asymptotic expansion of the velocity field then shows that the radial and
tangential velocity components are given by Eq. (6) with α = 2. Then, proceeding with the analysis outlined
in the previous section we obtain NuSF = 1.016Pe1/2, where the superscript SF denotes shear-free cylinder
surface.

3.3 Pe � 1

The expansion techniques employed above can also be used to determine the local and average Nusselt
numbers in the asymptotic limit Pe � 1. In this case, the thermal boundary layer is significantly larger than
the hydrodynamic boundary layer so that the velocity components in Eq. (6) can be taken from the potential
flow solution (α = 2), as in the previous subsection. Furthermore, using matched asymptotic expansions the
following expression for the temperature field can be obtained

Θ(r, θ) = 1 − ln (r/a)

ln (8/Pe) − γ
+ O (Pe) , (18)
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Fig. 1 Nusselt number Nuθ along the cylinder surface for (left) Re = 10−3 and (right) Re = 10−2
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Fig. 2 (Top) Surface-averaged Nusselt number (Nu) as a function of Pe for (left) Re = 10−3 and (right) Re = 10−2. (Bottom)
Normalized Nusselt number NuNorm as a function of ls for (left) Re = 10−3 and (right) Re = 10−2

from which we deduce

Nu = 2

ln (8/Pe) − γ
+ O

(

Pe2
)

, (19)

in agreement with [22,23]. The dominance of conduction over convection at Pe � 1 implies that to a leading
order, the temperature distribution is radially symmetric, with the asymmetric θ -dependent terms featuring
only in the next higher-order expressions (w.r.t. Pe) in the matched asymptotic expansion.

4 Simulation details

Next, we consider establishing the dependence of Nu on ls and Pr at moderate and high Reynolds numbers.
In the absence of analytical solutions for flow past a circular cylinder with partial slippage, we solve Eqs. (1)
and (3) numerically. We consider high-order spatial discretization of the primitive variable formulation of the
incompressible Navier–Stokes equations in polar cylindrical coordinates using 10th-order non-uniform mesh
compact schemes [35,36] along the radial direction and a Fourier spectral method along the periodic circum-
ferential direction. For time advancement, we utilize the second-order accurate projection method of Hugues
and Randriamampianina [37] that relies on a semi-implicit Adams Bashforth and Backward Differentiation
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Fig. 3 Normalized drag coefficientCNorm
D as a function of ls at Re = 50, 100, 200 and 500 compared with the results of Legendre

et al. [2]

formula (AB/BDI2) for temporal discretization of the nonlinear convective and linear viscous terms, respec-
tively. Additional details of the discretization methodology including validation tests for flow past circular
and elliptic cylinders with prescribed no-slip and shear-free boundary conditions can be found in previous
works [31,38]. For spatiotemporal discretization of the advection–diffusion equation (3) for non-dimensional
temperature Θ , we perform a straightforward extension of the discretization technique adopted for approxi-
mating the momentum equation. To further verify our simulation methodology for flow past a circular cylinder
with partial slip, we compare the normalized drag coefficients computed from our simulations with the results
reported in [2]. This comparison depicted in Fig. 3 shows our results to be in reasonably good agreement
with the ones presented in [2]. This attests the accuracy of our discretization methodology for intermediate
slip lengths that lie in between the two asymptotic limits of zero and infinite ls corresponding to no-slip and
shear-free cylinder boundaries, respectively.

5 Simulation results

To investigate the effect of slip on temperature distribution and the local and average Nusselt numbers, we
perform simulations for varying slip lengths over a range of Reynolds (Re = 0.1, 1, 5, 10, 20, 50, 100, 200,
300, 500 and 1000) and Prandtl numbers (Pr = 0.1, 0.25, 0.5, 1, 2, 5 and 10). In all our simulations, we ensured
convergence with respect to the discretization parameters through successive refinements in both mesh spacing
and time step size.

To begin with, we illustrate the effect of hydrodynamic slip on flow field and temperature distribution
at various Reynolds numbers for a fixed Prandtl number of 1. Left frames of Fig. 4 depict the vorticity and
streamlines for varying ls at Re = 1. The corresponding temperature field is depicted in the right frames of
Fig. 4. With increasing slip length, a slight decrease in the vorticity levels is clearly evidenced from the left
frames of Fig. 4. The corresponding temperature field seems relatively unaffected by an increase in the slip
length and thus no noticeable change in the temperature distribution is observed with varying ls (right frames of
Fig. 4). At a Péclet number of 1, the contribution from diffusive thermal transport is expected to be as important
as the contribution from convective transport. Hence, the temperature field remains almost insensitive to an
increase in the convective speed enabled by rising ls .

At a higher Reynolds number of 10, an increase in the hydrodynamic slip at the cylinder surface results
in a more prominent reduction in the vorticity, as evidenced from the left frames of Fig. 5. Compared to the
previous Re = 1 case, the thermal boundary layers are thinner (see right frames of Fig. 5) as the corresponding
Péclet number is an order of magnitude higher (Pe = 10). Furthermore, with increasing slip, in the upstream
region of the flow domain, the transition in the non-dimensional temperature, from amaximum ofΘ = 1 at the
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Fig. 4 (Left) Flow field (streamlines on top of colored vorticity contours) and (right) temperature distribution for Re = 1 and
Pr = 1

surface toΘ = 0 in the far-field, takes place over increasingly shorter distance. This contraction in the width of
the transition region is indicative of a reduction in the thermal boundary layer thickness owing to the increased
convective heat transfer enabled by the rising hydrodynamic slip. In the downstream region however, a reversal
of this trend is observed. In this region, the area over which equispaced temperature contours are spread rises
consistently with increasing hydrodynamic slip. This implies that the thermal boundary layer thickness rises
with increasing slip over the downstream portion of the cylinder boundary, the rise being most prominent at
the rear stagnation point. In essence, the extent of spread in isothermal contour lines clearly indicates that an
increase in the hydrodynamic slip results in a decrease in the convective thermal transport in the vicinity of
the rear stagnation point.

Beyond a Reynolds number of 47, the cylinder wake becomes unsteady and is characterized by the presence
of von Kármán vortex street [39]. Thus, at a Reynolds number of 100, the unsteady flow separation and vortex
shedding in thewake of a circular cylinderwith no-slip boundary can be clearly evidenced in the top left frameof
Fig. 6.An increase in ls suppresses vorticity at the cylinder surface and reduces the unsteadiness in thewake. For
ls � 0.34, vortex shedding is eliminated completely so that steady flow fields and temperature distributions are
obtained for ls = 0.5, 2.0 and perfect slip cases depicted in Fig. 6. In the present case, Pr = 1 and Re = 100
so that the Pe = 100 is substantially higher than the two cases considered previously. The dominance of
convective thermal transport is reflected in the temperature distribution depicted in the right frames of Fig. 6.
Thus, variations in the temperature field remain confined to the relatively thin thermal boundary layer and the
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Fig. 5 (Left) Flow field (streamlines on top of colored vorticity contours) and (right) temperature distribution at Re = 10 and
Pr = 1

wake regions; the extent of both of these regions reduces with an increase in hydrodynamic slip. As in the
previous cases, an increase in slip leads to a discernible decrease in the thermal boundary layer thickness over
the upstream portion of the cylinder. In the downstream region, especially near the wake, however, introduction
of hydrodynamic slip seems to have an adverse effect on convective thermal transport. Thus, the size of the
region in the wake over which temperature variations are significant increases with hydrodynamic slip and
reaches a maximum for perfect slip cylinder boundary (bottom right frame of Fig. 6).

At the highest Reynolds number of 1000 investigated in this work, the observations made above are
reinforced further. With an order of magnitude increase in Reynolds number, the unsteady vortex shedding
from a cylinder with no-slip surface is intensified (see top left frame of Fig. 7). As in the case of Re = 100,
hydrodynamic slip reduces vorticity at the cylinder surface and leads to eventual suppression of vortex shedding.
Furthermore, when compared with the previous case of Re = 100 discussed above, the region over which
temperature variations are discernible, diminishesmuch further owing to a tenfold increase in thePéclet number.
As evident from Fig. 7, the regions of high thermal gradients coincide with the regions of high vorticity, namely
the boundary layers on the cylinder surface, the separated shear layers, and the wake.

Even though the flow features are independent of Pr, the temperature distributions described above are
strongly influenced by an increase or decrease in Prandtl number. Figure 8 depicts the temperature fields
obtained from simulations for flow past a hydrodynamically slipping isothermal cylinder at a fixed Reynolds
number of 100 and Prandtl numbers of 0.1 (left frames) and 10 (right frames). Among the three cases depicted
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Fig. 6 (Left) Flow field (streamlines on top of colored vorticity contours) and (right) temperature distribution at Re = 100 and
Pr = 1

in Fig. 8 and right frames of Fig. 6, the contribution from the diffusive thermal transport is the highest for
Pr = 0.1 and the lowest for Pr = 10. Hence, at a given location in the flow field, the temperature gradients
are the highest for Pr = 10 and the least for Pr = 0.1. Similar conclusions are drawn from the temperature
distributions depicted in Fig. 9 at a fixed Reynolds number of 1000 and Prandtl numbers of 0.1 (left frames)
and 10 (right frames). The dominance of convective thermal transport at a relatively high Péclet number of 104

(right frames of Fig. 9) results in a temperature distribution that resembles the dispersion of a passive tracer
which simply follows the fluid particles without diffusing significantly.

The aforementioned variations in the temperature field that result from the introduction of a hydrodynamic
slip influence the local Nusselt number distribution along the cylinder surface significantly. To quantify the
effect of hydrodynamic slip on thermal transport from the cylinder surface, we now focus on the circumferential
dependence of the local Nusselt number Nuθ for the specific cases discussed in this section. This dependence
is depicted in Figs. 10 and 11 for Re = 1 and 10, and, 100 and 1000, respectively, for three choices of Prandtl
numbers, 0.1, 1, and 10.

At Re = 1 and Pr = 0.1, the dominance of the contribution from conduction to the net thermal transport
results in a distribution of Nuθ that is relatively insensitive to an increase in ls . Thus, Nuθ ∼ O(1) all along
the cylinder surface for all slip lengths and only a slight increase (less than 2%) in the maximum local Nusselt
number is observed as ls transitions from 0 to ∞ (see top left frame of Fig. 10). An increase in Pr from 0.1
to 1 and to 10 results in an increase in both the maximum and the minimum Nuθ at the forward and rear



264 Nidhil M. A. Rehman et al.

Fig. 7 (Left) Flow field (streamlines on top of colored vorticity contours) and (right) temperature distribution at Re = 1000 and
Pr = 1

stagnation points, respectively (left frames of Fig. 10). The increase in the maximum Nuθ at the forward
stagnation point is most pronounced for the highest Pr = 10. The trends are very similar at a higher Reynolds
number of 10, except that the difference between the maximum Nuθ for the no-slip and shear-free boundaries
is more pronounced (right frames of Fig. 10). At both Re = 1 and 10, the local Nusselt number Nuθ decreases
monotonically from a maximum at the forward stagnation point (θ = π) to a minimum at the rear stagnation
point (θ = 0 or 2π) for all Pr and ls .

With the onset of unsteady vortex shedding beyond a critical Re of 47, significant changes in the overall
trends described above are observed for relatively small slip lengths (ls ∼ O(1)), especially in the vicinity
of the rear stagnation point. As shown in the top left frame of Fig. 11, at Re = 100 and Pr = 0.1, the time-
averaged local Nusselt number for a no-slip cylinder surface first decreases from a maximum at the forward
stagnation before increasing after reaching a minimum at the locations θ ≈ 0.12π and 1.88π , as one traverses
from upstream to downstream portion of the boundary. This non-monotonic variation in the time-averaged
local Nusselt number is observed not just in the case of a no-slip but also partially slipping cylinder surface
with finite ls .

The increase in Nuθ over the downstream portion of the cylinder surface, in the vicinity of the rear
stagnation region, is appreciably higher at Re = 100 for Pr = 1 and 10 (left center and left bottom frames of
Fig. 11). For Re = 100 and Pr = 1, the local maxima in Nuθ , that is achieved at the rear stagnation point,
is the highest for the no-slip surface. For a higher Pr of 10, however, the local rate of increase in Nuθ in the
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Fig. 8 Temperature distribution at Re = 100 for (left) Pr = 0.1 and (right) Pr = 10

vicinity of the rear stagnation region for a partially slipping surface with relatively small slip exceeds the one
for a no-slip surface. Thus, at the rear stagnation point the highest Nuθ is achieved for a partially slipping
surface with ls ≈ 0.1. It is worth noting that for all Pr = 0.1, 1 and 10, for sufficiently large slip lengths
(ls � 10), the local Nuθ exhibits a monotonic behavior in that a decrease in local Nusselt number is observed
as one traverses from the forward to the rear stagnation point.

At the highest Reynolds number of 103, a monotonic decrease in Nuθ from the forward to the rear
stagnation point is still observed for ls � 10 (right frames of Fig. 11). However, compared to the previous
case of Re = 100, a stark difference in the distribution of local time-averaged Nusselt number is observed
for no-slip and partially slipping surfaces with relatively small slip length. In particular, we observe strongly
non-monotonic variations in the local time-averaged Nusselt number close to the rear stagnation point. For
Pr = 0.1 and ls = 0, Nuθ rises after attaining a minima for θ � 0.32π and θ � 1.68π . The rate of increase
declines before rising again as one approaches the rear stagnation point for a no-slip cylinder surface. For this
configuration, the highest Nuθ at the rear stagnation point is achieved for a finite slip that falls in between 0
and 0.1.

For Re = 103,Pr = 1 and ls = 0, corresponding to a no-slip surface, an initial decrease in the Nuθ

from its global maximum at the forward stagnation point is followed by intermediate rise and decline, and an
eventual increase. Thus, a total of four local maxima and minima (two each on the upper and lower halves) in
Nuθ are observed for a no-slip cylinder surface in contrast with just two in the case of Re = 100 and Pr = 1
(one each on upper and lower halves). Furthermore, at the rear stagnation point, the maximum (with respect
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Fig. 9 Temperature distribution at Re = 1000 for (left) Pr = 0.1 and (right) Pr = 10

to the slip length ls) Nusselt number of 29.5 is only slightly less than the global maximum Nuθ of 35 for a
no-slip cylinder surface. For Pr = 10, the non-monotonic variations in Nuθ are significantly more prominent
and as clearly evident from the bottom right frame of Fig. 11, the time-averaged local Nusselt number at the
rear stagnation point for a partially slipping surface with ls = 0.1 clearly exceeds the global maximum in Nuθ

(attained at the forward stagnation point) for a no-slip surface with ls = 0.

The variations in the local Nusselt number distribution illustrated above clearly indicate a stark contrast in
the way the hydrodynamic slip affects the convective transport from the upstream and downstream portions of
the circular cylinder. Over the upstream portion, starting from the forward stagnation point to a point beyond
the location at which the boundary layer separates on either side of the circular cylinder, the local Nusselt
number is found to consistently increase with the hydrodynamic slip at all Re and Pr. On the contrary, in
the downstream region the dependence of local Nusselt number on hydrodynamic slip is complicated by
unsteady flow separation and is a strong function of both Re and Pr. In the vicinity of the rear stagnation point,
hydrodynamic slip has an adverse effect on the convective transport so that the local Nusselt number in this
region is the least for a shear-free boundary at all Reynolds and Prandtl numbers.

Since the non-dimensional temperature Θ is essentially a passive scalar, its distribution at high Pe, for
prescribed Re,Pr and ls , is determined principally by the convective transport. Therefore, one would expect
that the apparent non-monotonic variation in the local Nusselt number along the downstream portion of a
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Fig. 10 Local Nusselt number Nuθ along the cylinder surface at (left) Re = 1 and (right) Re = 10 for (top) Pr = 0.1, (center)
Pr = 1 and (bottom) Pr = 10
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Fig. 11 Time-averaged local Nusselt number Nuθ along the cylinder surface at (left) Re = 100 and (right) Re = 1000 for (top)
Pr = 0.1, (center) Pr = 1 and (bottom) Pr = 10
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hydrodynamically slipping cylinder bears a relationship with the general flow features that are observed in the
vicinity of the rear stagnation point, especially at high Re and Pr.

To explore the connection between the flowfield and temperature distribution, we inspect the time-averaged
streamlines and radial non-dimensional temperature gradient (a∂Θ̂/∂r ) contours at Re = 103 and Pr = 1 for
varying ls as depicted in Fig. 12. In the case of a no-slip boundary, the time-averaged streamlines as shown
in Fig. 12 indicate the existence of prominent secondary recirculating regions in addition to the primary one
that is formed on the either side of the symmetry axis. The formation of such secondary pairs (referred to as
the α phenomenon) is also observed during the initial stages of development in impulsively started flow past a
circular cylinder at sufficiently high Reynolds number [40]. The fluid flow along the streamline joining each
of the primary and secondary eddy pairs is directed toward the cylinder surface and in a small neighborhood
of the cylinder boundary, closely resembles the stagnation point flow. For convenience, henceforth, we refer
to this point as the secondary stagnation point, thus making it distinct from the primary forward and rear
stagnation points. A strong rise in the local transport rate can therefore be expected close to each of these
secondary and rear stagnation points at which the streamline joining the eddy pairs meets the cylinder surface.
The time-averaged streamlines indicate a total of three such points (two secondary and one rear stagnation
point) along the cylinder surface in agreement with the number of local maxima (a total of three besides the
global maxima at θ = π) that are observed in the local Nusselt number distribution at Re = 103 and Pr = 1
and 10 (right center and right bottom frames of Fig. 11). By symmetry the forward and rear stagnation points
are both locations of maxima (global and a local maximum) in Nuθ . The location of the second local maximum
in Nuθ (θ ≈ 0.23π) too very nearly coincides with the mean secondary stagnation point at θ ≈ 0.25π . This
suggests that the local maxima in Nuθ are indeed caused by the secondary and primary eddy pairs, with the
slight difference in the mean locations most likely a result of the flow unsteadiness. The characteristic flow
velocities associated with the primary and secondary eddy pairs are considerably lower thanU∞. Moreover, for
the no-slip circular cylinder, the primary recirculation eddy pair is slightly displaced from the cylinder surface.
These combined with the fact that the bulk temperature seen by the thermal boundary layer corresponding to
the secondary eddy pair is higher than the far-field Θ = 0 (see the top right frame of Fig. 7 and top frames of
Fig. 9) explain why a global maximum in Nuθ is achieved at the forward stagnation point and not at the rear
or secondary stagnation points.

With rising ls , both the strength and the size of the secondary eddy pair are diminished while those of the
primary eddy enhanced progressively in the range ls � 0.125. The reduction in the strength and the size of the
secondary eddy pair is accompanied by a gradual decrease in the local maximum Nuθ at a location close to
the secondary stagnation point. On the contrary, owing to a continuous increase in the size and the strength of
the primary eddy pair, an enhancement in the local Nusselt number (or equivalently the time-averaged radial
temperature gradient) is observed at the rear stagnation point for ls � 0.125. In effect, a substantial increase in
the local Nusselt number is evidenced over both upstream and downstream portions of the circular cylinder. As
a consequence, the average Nusselt number [and equivalently the normalized Nusselt number NuNorm defined
by Eq. (16)] too exhibits a gradual increase for ls ≤ 0.125 (see Fig. 13).

For ls � 0.125, the continued reduction in vorticity on the cylinder surface leads to a complete elimination
of the secondary eddy pair and a reduction in the strength and size of the primary eddy pair. For slip lengths
beyond ls ≈ 0.125, the radial temperature gradient at the rear stagnation point diminishes significantly as do
the size and strength of the recirculating wake. The loss in overall convective transport, owing to a reduction
in the radial temperature gradient in the vicinity of the rear stagnation region, overwhelms the gain from the
boundary layer region so that an overall decrease in Nu is observed for 0.125 ≤ ls ≤ 0.3 for Re = 103 and
Pr > 1 (see Fig. 13). As ls is increased beyond 0.3, the continued gain in the local convective transport from
the boundary region leads to an overall increase in the normalized Nusselt number.

At Re = 103, as evidenced from Fig. 13 and the pertinent explanation above, NuNorm exhibits a discernible
non-monotonic variation with ls . At a lower Re = 102, for intermediate slip lengths ls � 0.5, the formation
of a prominent recirculating eddy pair in the wake leads to a rise in the local Nusselt number in the vicinity
of the rear stagnation region (left frames of Fig. 11). However, compared to the Re = 103 case, the rise is
less pronounced and the complete absence of a secondary eddy pair implies that only two local maxima, one
each at the forward and rear stagnation points, are observed. More importantly, the rise in Nuθ at the rear
stagnation point is not strong enough to induce a non-monotonicity in the variation of Nu with ls (see left
frames of Fig. 14). At even lower Re = 1 and 10, the trends are similar in that a gradual increase in NuNorm
with ls is observed. The right frames of Fig. 14 depict the normalized maximum slip velocity as a function
of ls for Re = 1, 10, 102 and 103. A monotonic increase in the normalized maximum slip velocity, that is
remarkably well represented by the expression Eq. (30) with appropriately chosen Re-dependent constant C ,
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Fig. 12 Time-averaged radial temperature gradient and streamlines as a function of ls at Re = 103 and Pr = 1
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Fig. 13 Normalized Nusselt number NuNorm as a function of ls at Re = 1000. Right frame depicts a close-up view of the
non-monotonic transition in NuNorm with ls

is evidenced for all Re. Moreover, as in the case of Re � 1 and Pe � 1 considered previously in Sect. 3, for
Re = 1 and 10, the discrete data for NuNorm, as depicted in the left frames of Fig. 14, are found to be consistent
with the analogous expression Eq. (17) with the Re-dependent constant C taken directly from the best fit of
normalized maximum slip velocity (as shown in the right frames of Fig. 14). At higher Re = 100, however,
the aforementioned fit exhibits considerable deviation. In this case, the distribution of the discrete data points
reveals a strong dependence of NuNorm on Pr. Obviously, the expression Eq. (17) with the constant C that
depends only on Re cannot account for the variations with Pr (blue colored symbols and solid line in the left
frames of Fig. 14). At even higher Re = 103, the dependence of the discrete NuNorm data set on Pr is stronger.
Furthermore, as discussed previously, NuNorm exhibits a non-monotonic dependence on ls , increasing first and
then decreasing before eventually rising toward the asymptotic value of 1 for all Pr. The simple expression
Eq. (17) can most certainly not account for such complex variations, and therefore its comparison with the
discrete data set from the simulations deteriorates considerably (brown colored symbols and solid line in the
left frames of Fig. 14).

Figure 15 depicts the average Nusselt number Nu as a function of Re (left frame) and Pr (right frame)
for various ls . Nu rises with both Re and Pr with the rate of increase being higher for the shear-free surface
than for a no-slip surface. For a shear-free cylinder surface, the rate of increase with respect to both Re and
Pr, at sufficiently high Pe, is consistent with the scaling exponent of 1/2 derived from the solution of thermal
boundary layer equation in Sect. 3. Interestingly, the rate of increase in Nu with Re, for a partially slipping
surface with ls = 0.1, is discernibly higher than the rate of increase for both the shear-free and the no-slip
cylinder surfaces. With increasing Reynolds number, for ls = 0.1, the rise in the local Nusselt number in
the vicinity of the rear stagnation far exceeds the rise over the upstream portion of the cylinder boundary. For
instance, with a tenfold rise in Re from 100 to 1000, nearly six to eightfold increase in the local Nusselt number
at the rear stagnation point is evidenced from Fig. 11. The corresponding three- to fourfold increase over the
upstream portion is appreciably lower and consistent with the rise expected from the thermal boundary layer
thinning with increasing Pe. Thus, a substantial rise in the local Nusselt number in the vicinity of the rear
stagnation region, owing to an increase in the strength of the primary recirculating eddy pair, is very likely
responsible for the observed steep rise in Nu with Re for ls = 0.1.

5.1 Three-dimensional flow at Re = 300 and 1000

All our key findings in the previous sections, including the ones for Re ≥ 200, were deduced from two-
dimensional simulations. The wake of a no-slip circular cylinder is known to exhibit prominent three-
dimensional features beyond Re ≈ 190 [39,41]. For sufficiently low ls , we can therefore expect appearance
of three-dimensional instabilities in the wake corresponding to Re ≥ 200. Moreover, it is also not immedi-
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Fig. 14 Normalized (left) Nusselt number NuNorm and (right) maximum slip velocity umax
s (ls)/umax

s (ls → ∞) as a function of
ls for various Re and Pr. Solid lines in the left and right frames depict the one-dimensional curves NuNorm = ls/(ls + C(Re))
and umax

s (ls)/umax
s (ls → ∞) = ls/(ls + C(Re)), where for each Re, the constant C is determined so as to obtain the best fit to

the discrete data points representing the normalized maximum slip velocity (umax
s (ls)/umax

s (ls → ∞)) at various ls , as computed
from our simulations

Fig. 15 Average Nusselt number Nu as a function of (left) Re and (right) Pr for various ls
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Fig. 16 Vortical structures in the wake of the cylinder at Re = 300 identified by λ2 = −0.1. a ls = 0, b ls = 0.02, c ls = 0.04,
d ls = 0.06, e ls = 0.08, f ls = 0.10, g ls = 0.12, h ls = 0.15, i ls = 0.5

ately clear whether or not the three-dimensionality induced by Mode B instability beyond Re ≈ 260 will be
eliminated through introduction of a finite hydrodynamic slip on the cylinder boundary.

To establish whether or not three-dimensional wake instabilities are suppressed beyond a critical non-
dimensional slip length, we perform three-dimensional simulations atRe = 300 and 1000 for fixedPr = 1 over
a range of non-dimensional slip lengths. In order to simulate flow past an infinitely long circular cylinder, we
assume the spanwise direction z to be periodic with a period of 5D. We employ a Fourier spectral discretization
along the spanwise direction keeping the discretization along the radial and circumferential directions exactly
the same as in two-dimensional runs of the previous section. For additional details of the generalization of our
discretization methodology to three dimensions, see [31].

Figures 16 and 17 depict the instantaneous flowfields as a function of ls forRe = 300 and 1000, respectively,
in terms of the λ2 isosurfaces [42] colored with the square of the magnitude of the local velocity vector (|u|2).
For Re = 300, we find that the three-dimensional wake instabilities are progressively diminished with an
increase in ls . For ls = 0.15, the three-dimensional instabilities are completely suppressed and the flow field
attains a two-dimensional state that is characterized by the formation of classical von Kármán vortex street.
For ls = 0.5, the flow field is steady and free of unsteady wake vortices in agreement with the work of
Legendre et al. [2]. Thus, at Re = 300, the critical slip length for transition from unsteady to steady wake
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Fig. 17 Vortical structures in the wake of the cylinder at Re = 1000 identified by λ2 = −0.1. a ls = 0, b ls = 0.05, c ls = 0.1,
d ls = 0.15, e ls = 0.2, f ls = 0.25, g ls = 0.3, h ls = 0.36, i ls = 0.55

exceeds the critical slip length for transition from three-dimensional to two-dimensional wake. In contrast, at
a Reynolds number of 1000, we do not observe a transition from unsteady three-dimensional to an unsteady
two-dimensional classical von Kármán wake and the three-dimensional features persist for relatively large
non-dimensional slip lengths. Nevertheless, for sufficiently large slip lengths (ls = 0.55 in Fig. 17), the
three-dimensional features are completely suppressed and the flow field becomes steady and two-dimensional.

The emergence of three-dimensional wake instabilities has a significant impact on the overall convective
heat transfer from the circular cylinder. Figure 18 depicts the dependence of the surface and time-averaged
Nusselt number Nu on ls for Re = 300 and 1000 at a fixed Pr = 1. The Nu computed from the three-
dimensional simulation for a no-slip boundary (ls = 0) is noticeably lower than the corresponding value for
two-dimensional run. A reduction of the local Nusselt number in the vicinity of the rear stagnation region,
owing to a lengthening of the wake vortex formation region in three dimensions, is the principal reason behind
the reduced thermal transport from a cylinder with no-slip boundary. More importantly, for Re = 1000, a
non-monotonic variation in Nu over the range 0.16 ≤ ls ≤ 0.2 is clearly evidenced from Fig. 18. Thus, as in
the case of two-dimensional runs, at intermediate slip lengths, we observe a decrease in Nu with increasing ls .
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Fig. 18 Surface and time-averaged Nusselt number as a function of ls for three-dimensional flow at (left) Re = 300 and (right)
1000 for Pr = 1

6 Conclusions

In conclusion, the effect of a prescribed hydrodynamic slip on the convective thermal transport from a heated
isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid was investigated through
analytical and computational techniques. For vanishingly small Re and large Pe, an explicit analytical solution
of the Oseen and thermal boundary layer equations for the flow and temperature fields, respectively, led to
the scaling laws Nu ∼ Pe1/2 and Nu ∼ Pe1/3 for shear-free (ls → ∞) and no-slip (ls = 0) boundaries,
respectively. Furthermore, for intermediate slip lengths, Nu was found to undergo a gradual transition from
the lower limit for a no-slip surface to an upper limit for the shear-free boundary. The equivalence between the
normalized Nusselt number NuNorm [defined in Eq. (16)] and the corresponding normalized maximum slip
velocity [defined inEq. (30)] allowed thedependenceof Nu on ls to be expressed through the simple relationship
Eq. (17). For all ls , the local Nuθ decreased monotonically from its maximum value at the forward stagnation
point to a minimum at the rear stagnation point. Moreover, the maximum Nuθ at the forward stagnation point
was found to rise monotonically from a minimum for a no-slip boundary to an asymptotic maximum for a
shear-free boundary. In contrast, a complete reversal of this trend was observed at the rear stagnation point
and a minimum in Nuθ at θ = 0 (the rear stagnation point) was achieved for ls → ∞.

At finite Re, results from two-dimensional simulations indicated that the overall trends described above
were preserved at relatively low Re (Re � 25). At higher Re, however, the formation of recirculating wake
and onset of unsteady vortex shedding were found to augment local convective transport considerably. Thus, a
local maximum in Nuθ emerged at the rear stagnation point for no-slip and partially slipping boundaries with
intermediate slip lengths ls � O(1). Both the wake structure, and the strength of the local maximum in Nuθ at
the rear stagnation point, were strongly influenced by Re and ls . In particular, the formation of mean secondary
eddy pairs at Re = 103 resulted in emergence of additional local maxima in the immediate neighborhood of
the mean secondary stagnation points. At Re = 103, the slip length-induced variations in the size and strength
of the primary recirculating eddies resulted in a pronounced rise and an eventual decline in the local Nuθ .
These variations in the local Nuθ at Re = 103 were sufficiently strong to induce significant non-monotonicity
in the otherwise monotonic dependence of the normalized Nusselt number on ls . For sufficiently small slip
lengths, the appearance of three-dimensional instabilities was found to induce significant changes in the wake
structure and the surface and time-averaged Nusselt number. At a Reynolds number of 103, a non-monotonic
dependence of Nu on ls was evidenced over the range 0.16 ≤ ls ≤ 0.2, in three dimensions.

Our principal results, as summarized above, highlight the conflicting role of the hydrodynamic slip in
increasing and decreasing convective transport from upstream and downstream portions of a circular cylinder.
On the one hand, an increase in the flow velocity over the upstream portion of a hydrodynamically slip-
ping cylinder aids convective transport from it, while on the other, the hydrodynamic slip adversely impacts
convective transport by suppressing primary vortical features in the wake and is therefore a liability over the
downstream portion of the cylinder. Our key observation that a strong primary recirculating region significantly
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augments the local convective thermal transport is in good qualitative agreement with several prior works (see
for example [43–46]) in that a marked increase in Nuθ , owing to the presence of recirculating eddies, has
indeed been observed over the downstream portion of the circular cylinder at high Re. Our results suggest that
at high Re, the maximum convective transport rates will most likely be achieved for a partially slipping surface
with an inhomogeneous distribution of slip length ls(θ) that exploits the superiority of shear-free and partial
slip boundary conditions over the upstream and downstream portions, respectively.
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Appendix 1: Solution of Oseen equations for flow past a cylinder with prescribed slip

In the asymptotic limit of Re � 1, the dominance of the linear viscous terms over the inertial terms can be
exploited to deduce the velocity and pressure fields for the flow past a circular cylinder with the boundary
conditions (2). Note that Stokes paradox precludes the possibility of obtaining physicallymeaningful solutions,
that satisfy the far-field and no-slip boundary conditions, using Stokes equations with complete disregard of
the inertial terms. This paradox extends to the present setup for a cylinder with slip boundary condition (not
shown here), and hence we consider the solution of the Oseen equations expressed in terms of the stream
function ψ that satisfies the no-through-flow condition at the cylinder surface [29–31]

ψ = U∞
(

r − a2

r

)

sin θ + U∞
4

∞
∑

n=1

∞
∑

m=0

Bm

{(a

r

)n+1
Φm,n(ka) − Φm,n(kr)

}
r sin nθ

n
, (20)

where

Φm,n(kr) = {Km+1(kr) + Km−1(kr)} {Im−n(kr) + Im+n(kr)} + Km(kr) ×
×{Im−n−1(kr) + Im−n+1(kr) + Im+n−1(kr) + Im+n+1(kr)} , (21)

with Ip and Kq as the modified Bessel functions of pth and qth order, respectively, and ka = Re/4. The
unknown coefficients (Bm) are determined from the slip boundary condition given on the right side of Eq. (2),
and, through a standard truncation of the infinite summation in m to the leading n − 1 terms as follows

B0 = 8(1 + 2ls)

Ψ0,1(ka, ls)
, Bn−1 = −

n−2
∑

m=0

Bm
Ψm,n(ka, ls)

Ψn−1,n(ka, ls)
for n > 1, (22)

where

Ψm,n(ka, ls) = (n + 1)Φm,n(ka) + kaΦ ′
m,n(ka) + ls

[

(n + 1)2Φm,n(ka)−kaΦ ′
m,n(ka) − k2a2Φ ′′

m,n(ka)
]

.
(23)

In the limiting case of Re � 1 (or equivalently ka � 1), the following asymptotic expressions for the modified
Bessel’s functions [47]

K0(ka) ∼ −
{

γ + ln

(
ka

2

)}

, I0(ka) ∼ 1 (24a)

Kn(ka) ∼ Γ (n)

2

(
ka

2

)−n

, In(ka) ∼ 1

Γ (n + 1)

(
ka

2

)n

, n > 0, (24b)

can be used to obtain

Φ0,n(ka) ∼ 2

Γ (n + 1)

(
ka

2

)n−1 [

1 − n

{

γ + ln

(
ka

2

)}]

(25a)

Φm,n(ka) ∼ n

2

Γ (m)

Γ (n − m + 1)

(
ka

2

)n−2m−1

, 1 ≤ m ≤ n − 1, (25b)
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and

Ψ0,n(ka, ls) ∼ 2

Γ (n + 1)

(
ka

2

)n−1 [

n + 2nls(n + 1) − 2n2 (1 + 2ls)

{

γ + ln

(
ka

2

)}]

(26a)

Ψm,n(ka, ls) ∼ n {1 + 2(m + 1)ls} Γ (m)

Γ (n − m)

(
ka

2

)n−2m−1

, 1 ≤ m ≤ n − 1, (26b)

where γ ≈ 0.577 denotes Euler’s constant. Substitution of Eq. (26) in Eq. (22) yields

B0 ∼ 4 + 8ls
1 − 2γ − 2 ln

( ka
2

) + 4ls
{

1 − γ − ln
( ka
2

)} , (27)

and

Bn−1 ∼ −
n−2
∑

m=1

1 + 2(m + 1)ls
1 + 2nls

Γ (m)

Γ (n − m)Γ (n − 1)

(
ka

2

)2(n−1−m)

Bm

−2
[

n + 2nls(n + 1) − 2n2 (1 + 2ls)
{

γ + ln
( ka
2

)}]

n (1 + 2nls) Γ (n + 1)Γ (n − 1)

(
ka

2

)2(n−1)

B0

for n ≥ 2. (28)

In the asymptotic limit of ka → 0, only the lowest powers of ka in the above expression are of significance.
Retaining only the most significant terms, it is clearly seen that for increasing index n, the coefficients Bn
themselves involve increasing powers of ka so that for ka � 1 we finally deduce the following expressions
for the radial and tangential components of the velocity field:

ur (r, θ) = U∞ cos θ

{

1 − a2

r2
+ 2(1 + 2ls)

Ψ0,1(ka, ls)

(
a2

r2
Φ0,1(ka) − Φ0,1(kr)

)}

, (29a)

uθ (r, θ) = U∞ sin θ

{

−
(

1 + a2

r2

)

+ 2(1 + 2ls)

Ψ0,1(ka, ls)

(
a2

r2
Φ0,1(ka) + Φ0,1(kr) + krΦ ′

0,1(kr)

)}

. (29b)

For ls → ∞, above expressions reduce to the ones reported in [31] for a shear-free cylinder, while in the
limit ls → 0 we recover the results of Tomotika and Aoi [29] for a cylinder with no-slip boundary condition.
The following expression for the tangential surface velocity at the cylinder surface

us = uθ (a, θ) = 2U∞ sin θ

⎧

⎨

⎩

ls
{

3kaΦ ′
0,1(ka) + k2a2Φ ′′

0,1(ka)
}

2Φ0,1(ka) + kaΦ ′
0,1(ka) + ls

[

4Φ0,1(ka) − kaΦ ′
0,1(ka) − k2a2Φ ′′

0,1(ka)
]

⎫

⎬

⎭
,

can be used to define the normalized maximum slip velocity

umax
s

umax
s (ls → ∞)

= ls
ls + C (Re)

, (30)

where umax
s = us(θ = π/2) and

C(Re) = 8Φ0,1(Re/4) + ReΦ ′
0,1(Re/4)

16Φ0,1(Re/4) − ReΦ ′
0,1(Re/4) − Re2/4Φ ′′

0,1(Re/4)
∼ 1

2
− 1

4 {1 − γ − ln (Re/8)} . (31)
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Appendix 2

Here, we derive a series solution to Eq. (8) and the corresponding Nusselt number with full consideration of
both the linear and quadratic terms in the expansion of ur and uθ in Eq. (6). To begin with, we consider an
expansion of the final solution for sufficiently small ls (or equivalently α) in terms of α

Θ(y, θ, α, β, χ) = Θ0(y, θ, β, χ) + α Θ1(y, θ, β, χ) + α2 Θ2(y, θ, β, χ) + · · · (32)

where χ = (1 − ls)/2. Substituting the above expansion into Eq. (8) and then grouping terms in ascending
powers of α, we obtain the following governing equations for Θn

βy2 cos θ
∂Θ0

∂y
− βy sin θ

χ

∂Θ0

∂θ
= 2

Pe

∂2Θ0

∂y2
(33)

and
(

− sin θ
∂Θn−1

∂θ
+ y cos θ

∂Θn−1

∂y

)

− βy sin θ

χ

∂Θn

∂θ
+ βy2 cos θ

∂Θn

∂y
= 2

Pe

∂2Θn

∂y2
(34)

for n > 0. The first term in the brackets on the left-hand side of the above equation is essentially like a source
term in the above governing equation for Θn . Moreover, the boundary conditions for each Θn are given by

Θ0(y = 0, θ) = 1 Θ0(y → ∞, θ) = 0 (35a)

Θn(y = 0, θ) = 0 Θn(y → ∞, θ) = 0 for n > 0. (35b)

Next, we employ the following transformation

Y =
[(

Peβ

2χ

) 1
3

y(sin θ)χ

]3/2

, X = 9

4

∫ π

θ

(sin θ ′)3χ−1 dθ ′ (36)

to simplify the governing equation for Θn as follows

∂Θ0

∂X
= ∂2Θ0

∂Y 2 + 1

3Y

∂Θ0

∂Y
(37)

and

∂Θn

∂X
= ∂2Θn

∂Y 2 + 1

3Y

∂Θn

∂Y
+ Φn(Y, X) (38)

for n > 0 where

Φn(Y, X) = − χ

βy(Y, X)

[

∂Θn−1

∂X
+ 2Y (1 − χ) cos θ(X) (sin θ(X))−3χ

3

∂Θn−1

∂Y

]

(39)

In the transformed coordinates, the boundary conditions assume the following form

Θ0(Y = 0, X) = 1 Θ0(Y → ∞, X) = 0 (40a)

Θn(Y = 0, X) = 0 Θn(Y → ∞, X) = 0 for n > 0. (40b)

Θ0 is given by the following similarity solution (see Sect. 3.1)

Θ0 =
∫ ∞

η

exp

(

− t3

9

)

dt

/∫ ∞

0
exp

(

− t3

9

)

dt

)

where η =
(

3Y

2
√
X

)2/3

(41)

Furthermore, Θn is formally given by [48]

Θn(Y, X) =
∫ X

0

∫ ∞

0
Φn(Υ, Ξ)G(Y, Υ, X − Ξ) dΥ dΞ (42)
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where

G(Y, Υ, X) = Y 1/3Υ 2/3

2X
exp

(

−Y 2 + Υ 2

4X

)

I1/3

(
YΥ

2X

)

(43)

In above expression, I1/3 is the modified Bessel function of the first kind [47] and Θn(Y, X) turns out to be
nonzero only because of the finite source term in the governing equation Eq. (38). We can also represent
Θn(Y, X) in terms of the known Θ0 only as

Θn(Y, X) =
(∫ X

0

∫ ∞

0
DΥ,Ξ [ ] G(Y, Υ, X − Ξ) dΥ dΞ

)n

Θ0(Υ, Ξ) (44)

where

DY,X [ ] = − χ

βy(Y, X)

(
∂[ ]
∂X

+ 2Y (−χ + 1) cos θ(X)(sin θ(X))−3χ

3

∂[ ]
∂Y

)

= −
(
Peχ2

2β2

)1/3
(sin θ(X))χ

Y 2/3

(
∂[ ]
∂X

+ 2Y (−χ + 1) cos θ(X)(sin θ(X))−3χ

3

∂[ ]
∂Y

)

=
(
Peχ2

2β2

)1/3 (
A(X)

Y 2/3

∂[ ]
∂X

+ Y 1/3B(X)
∂[ ]
∂Y

)

(45)

with

A(X) = −(sin θ(X))χ and B(X) = −2(−χ + 1) cos θ(X)(sin θ(X))−2χ

3
(46)

Next, we derive an expression for the temperature gradient at the cylinder surface y = 0. We have

∂Θ

∂y

∣
∣
∣
∣
y=0

=
(

∂T

∂Y

∂Y

∂y

)∣
∣
∣
∣
Y=0

= 3

2

[
YβPe

2χ

]1/3

(sin θ(X))χ
(

∂Θ0

∂Y
+ α

∂Θ1

∂Y
+ · · ·

)
∣
∣
∣
∣
∣
Y=0

(47)

We next calculate each of the terms in the expansion on the right-hand side of the above equation. Using the
relationships Eqs. (41) and (44), we obtain

∂Θ

∂y

∣
∣
∣
∣
y=0

= − 3

2Γ ( 13 )

(
Peβ

χX

)1/3

(sin θ(X))χ + 3

2
α(sin θ(X))χ

(
Pe2χ

4β

)1/3

×
(

1

21/3Γ 2( 13 )X

∫ X

0

A(Ξ)

(XΞ − Ξ2)1/3
dΞ − 22/3

Γ 2( 13 )X

∫ X

0

B(Ξ) Ξ2/3

(X − Ξ)1/3
dΞ

)

(48)

Utilizing the above expression and the fact that for ls � 1 or equivalently α � 1 (which is the case when
α ∼ Pe−1/3), χ ≈ −0.5 and β ≈ λ/2, we eventually arrive at the relationship Eq. (15).
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