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Abstract The stability of the conduction regime of natural convection in a porous vertical slab saturated with
anOldroyd-Bfluid has been studied.AmodifiedDarcy’s law is utilized to describe the flow in a porousmedium.
The eigenvalue problem is solved usingChebyshev collocationmethod and the criticalDarcy–Rayleigh number
with respect to the wave number is extracted for different values of physical parameters. Despite the basic
state being the same for Newtonian and Oldroyd-B fluids, it is observed that the basic flow is unstable for
viscoelastic fluids—a result of contrast compared to Newtonian as well as for power-law fluids. It is found
that the viscoelasticity parameters exhibit both stabilizing and destabilizing influence on the system. Increase
in the value of strain retardation parameter �2 portrays stabilizing influence on the system while increasing
stress relaxation parameter �1 displays an opposite trend. Also, the effect of increasing ratio of heat capacities
is to delay the onset of instability. The results for Maxwell fluid obtained as a particular case from the present
study indicate that the system is more unstable compared to Oldroyd-B fluid.

Keywords Natural convection · Vertical porous layer · Oldroyd-B fluid · Viscoelastic fluid

List of symbols

a Vertical wave number
c Wave speed
cr Phase velocity
ci Growth rate
2d Thickness of the porous layer
�g Acceleration due to gravity
k̂ Unit vector in z-direction
K Permeability
p Pressure
P Modified pressure
�q = (u, v, w) Velocity vector
RD Darcy–Rayleigh number
t Time
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T Temperature
T1 Temperature of the left vertical wall
T2 Temperature of the right vertical wall
(x, y, z) Cartesian coordinates

Greek symbols

α Ratio of heat capacities
β Thermal expansion coefficient
θ Fluid temperature
� Disturbance fluid temperature
λ1 Stress relaxation time constant
λ2 Strain retardation time constant
�1 Relaxation parameter
�2 Retardation parameter
μ Fluid viscosity
κ Effective thermal diffusivity
ρ Fluid density
ρ0 Reference density at T0
ψ Stream function
� Disturbance stream function

1 Introduction

The stability or instability of fluid flows in porous media constitutes an important part of porous media fluid
mechanics. In particular, the interaction between buoyancy and shearing forces on the stability of fluid flows
in a vertical layer of porous medium has been the subject of intensive research interest as many geophysical
and technological phenomena are maintained by these forces. In his pioneering paper, Gill [1] investigated
analytically the stability properties of natural convection in a vertical layer with reference to Darcy’s flow of
a Newtonian fluid with one boundary is uniformly cold while the other is uniformly hot and established that
the system is always stable for all types of infinitesimal perturbations. Barletta and Alves [2] extended the
analysis developed by Gill to the case of a power-law fluid and observed that the instability does not occur
even for such a non-Newtonian fluid. Subsequently, many studies have been undertaken by many authors to
investigate various additional effects on this problem [3–9].

As can be seen, most of the investigations are based on Newtonian fluids although many fluid dynamical
systems display non-Newtonian characteristics. This has prompted researchers to consider non-Newtonian
fluids which demonstrate shear-thinning, shear-thickening, viscoplastic, time-dependent (thixotropic), and
viscoelastic behaviours under appropriate circumstances. For that matter, fluids often display a combination
of two or even all types of the above features depending on the situations. For example, a polymer melt
may show time-independent (shear-thinning) and viscoelastic behaviours simultaneously and a china clay
suspension may exhibit a combination of time-independent (shear-thinning or shear-thickening) and time-
dependent (thixotropic) features at certain concentrations and/or at appropriate shear rates. Thus, there exist
different kinds of non-Newtonian fluids and their behaviour is different from one another. In other words,
non-Newtonian fluids do not lend themselves to a unified treatment such as Newtonian fluids. Among different
types of non-Newtonian fluids, viscoelastic fluids are found to be of considerable importance in various areas in
science, engineering, and technology, such asmaterial processing, petroleum, chemical, and nuclear industries,
carbon dioxide geologic sequestration, bioengineering, and reservoir engineering.

The temporal development of small disturbances in magnetohydrodynamic (MHD) Jeffery–Hamel flows
is investigated by Makinde and Mhone [10]. Beg and Makinde [11] addressed viscoelastic flow and species
transfer in a Darcian high-permeability channel. The stability of natural convection in a vertical layer of
viscoelastic liquid was first considered by Gozum and Arpaci [12], who treated the case of a Maxwell liquid
while Takashima [13] investigated the problem for an Oldroyd-B liquid. Nonetheless, the flow of a viscoelastic
fluid in a porous medium is an area with a multitude of applications. Obtaining oil from rocks or soil below
the Earth’s surface is one area which affects nearly everyone [14]. Therefore, it is pragmatic to investigate the
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stability of natural convection in a vertical layer of porous medium saturated by a viscoelastic fluid which has
not been reported in the open literature.

In the present study, an Oldroyd-B type of viscoelastic fluid saturating a vertical layer of Darcy porous
medium is considered because the Oldroyd-B model represents adequately highly elastic (Boger) fluids for
which the viscosity remains sensibly constant over a wide range of shear rates. Besides, it is one of the simplest
viscoelastic laws that account for normal stress effects which are responsible for the periodic phenomena
arising in viscoelastic fluids. More importantly, almost all experimental measurements and flow visualization
reported on the instability of viscoelastic flow have been conducted on Boger fluids. Comparison between
theory and experiment becomes possible when the Oldroyd-B constitutive equation is used. The eigenvalue
problem is solved numerically using Chebyshev collocation method. The results for the Maxwellian fluid
are also obtained as a particular case from the present study. Although the basic velocity remains the same
for Newtonian and viscoelastic fluids, the numerical study shows that the linearly stable behaviour found by
Gill [1] for Newtonian fluids does not apply for viscoelastic fluids. This paper is organized as follows. The
formulation of the problem including the governing equations and the non-dimensionalization is outlined in
Sect. 2. Linear stability analysis is given in Sect. 3, and the numerical method employed to solve the stability
equations is described in Sect. 4. Results and discussion of the numerical solutions are given in Sect. 5. The
main conclusions arrived at from this study are summarized in Sect. 6.

2 Mathematical formulation

The physical configuration of the problem is illustrated schematically in Fig. 1. We consider an Oldroyd-B
fluid-saturated vertical layer of Darcy porous medium of width, 2d . A Cartesian coordinate system (x, y, z)
is chosen with the origin in the middle of the vertical porous layer, where the x-axis is taken perpendicular to
the plates and the z-axis is vertically upwards, opposite to the direction of gravity �g. The vertical surface at
x = −d is impermeable and kept at a uniform temperature T1, while the vertical impermeable surface at x = d
is maintained at a uniform temperature T2(>T1). It is well known that in the flow of viscous Newtonian fluid at
a low speed through a porous medium, the pressure drop caused by the frictional drag is directly proportional
to the velocity, which is the classical Darcy law. By analogy with Oldroyd-B constitutive relationships, the
following phenomenological model, which relates pressure drop, body force and velocity for a viscoelastic
fluid in a Darcy porous medium, is considered [14–16]:

(
1 + λ1

∂

∂t

)
(∇ p − ρ �g) = − μ

K

(
1 + λ2

∂

∂t

)
�q (1)

where �q = (u, v, w) is the velocity vector, p is the pressure, ρ is the fluid density, μ is the viscosity of the
fluid, K is the permeability, λ1 and λ2 are stress relaxation and strain retardation time constants, respectively.
Typical fluids satisfying the Oldroyd-B constitutive relation are solutions composed of a Newtonian solvent
and a polymeric solute with viscosities μs and μp, respectively. The viscosity of the solution is given by
μ = μs + μp, and hence, the ratio λ2/λ1 = μs/(μs + μp) is always less than or equal to unity [17,18].
We note that when λ1 and λ2 assume the same value, Eq. (1) is simplified to Darcy’s law for the flow of
viscous Newtonian fluid through a porous medium. Thus, Eq. (1) can be regarded as an approximate form of
an empirical momentum equation for the flow of an Oldroyd-B fluid through a porous medium. The Oberbeck–
Boussinesq approximation (since the temperature difference between the vertical plates is assumed to be small,
the density is treated as a constant everywhere in the governing equation except in the gravitational term) is
invoked and the model is completed by adding the continuity and energy balance equations along with the
equation of state as

∇ · �q = 0 (2)

α
∂T

∂t
+ (�q · ∇) T = κ∇2T (3)

ρ = ρ0 {1 − β (T − T0)} (4)

where T is the temperature, κ is the effective thermal diffusivity, β is the thermal expansion coefficient, ρ0 is
the density at reference temperature T = T0 (at the middle of the channel), and α is the ratio of heat capacities.
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Fig. 1 Sketch of the porous channel (xz-plane section)

The quantities are made dimensionless by scaling velocity by κ/d , length by d , pressure by κμ/K , time by
d2/κ , and temperature by 
T (= T2 − T1) to get

(
1 + �1

∂

∂t

) (
∇P − RDT k̂

)
=

(
1 + �2

∂

∂t

)
�q (5)

α
∂T

∂t
+ (�q · ∇) T = ∇2T (6)

where RD = ρ0gβ
T Kd/μκ is the Darcy–Rayleigh number, �1 = λ1κ/d2 is the relaxation parameter, and
�2 = λ2κ/d2 is the retardation parameter. Taking curl on both sides of Eq. (5) to eliminate the modified
pressure term and introducing the stream function ψ (x, z, t) through

(u, 0, w) =
(

−∂ψ

∂z
, 0,

∂ψ

∂x

)
(7)

the governing Eqs. (5) and (6) become

RD

(
1 + �1

∂

∂t

)
∂T

∂x
=

(
1 + �2

∂

∂t

)(
∂2ψ

∂x2
+ ∂2ψ

∂z2

)
(8)

α
∂T

∂t
+ ∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
= ∂2T

∂x2
+ ∂2T

∂z2
. (9)

The isothermal boundaries are impermeable, and the appropriate boundary conditions are

ψ = 0, T = −1 at x = −1

ψ = 0, T = 1 at x = 1. (10)
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3 Linear stability analysis

The flow in the basic state is fully developed, unidirectional, steady, and laminar. Thus,

ψ = ψb(x), T = Tb(x) (11)

where the subscript b denotes the basic state. The basic state solution is found to be

ψb(x) = RD

2

(
x2 − 1

)
, Tb = x (12)

and it is same as that for an ordinary Newtonian fluid [1]. To study the linear stability of the base flow, we
superimpose an infinitesimal disturbance on it in the form

ψ = ψb(x) + ψ ′, T = Tb + T ′. (13)

Substituting Eq. (13) into Eqs. (8) and (9), and using Eq. (12), we get

RD

(
1 + �1

∂

∂t

)
∂T ′

∂x
=

(
1 + �2

∂

∂t

)(
∂2ψ ′

∂x2
+ ∂2ψ ′

∂z2

)
(14)

α
∂T ′

∂t
+ RDx

∂T ′

∂z
− ∂ψ ′

∂z
= ∂2T ′

∂x2
+ ∂2T ′

∂z2
. (15)

Employing the normal mode analysis procedure in which we look for the solution of the form
(
ψ ′, T ′) = [�(x),�(x)] eia(z−ct) (16)

where c is the wave speed which is real and positive and a is the vertical wave number, we then obtain

(1 − ia�2c)
(
D2 − a2

)
� = (1 − ia�1c) RDD� (17)(

D2 − a2
)
� + ia� − ia�RDx = −iaαc� (18)

where D = ∂/∂x .
The associated boundary conditions are:

� = � = 0 at x = ±1. (19)

We may now use Eq. (18) to determine � in terms of �, and substitute it into Eq. (17), to obtain

�′′′′ − 2a2�′′ + a4� + iaRD

[(
1 − iac�1

1 − iac�2

)
�′ − (x�)′′ + a2x�

]

= −iaαc
(
�′′ − a2�

)
(20)

For the Newtonian case, �1 = �2 and then Eq. (20) becomes

�′′′′ − 2a2�′′ + a4� + iaRD

[
a2x� − (

x�′)′] = −iaαc
(
�′′ − a2�

)
(21)

which coincides with Gill [1]. Given that � and � are complex quantities, we now multiply Eq. (20) by �̄, a
complex conjugate of �, and integrate over the channel width. This process yields the following equation

1∫
−1

(∣∣�′′∣∣2 + 2a2
∣∣∣�′ ∣∣∣2 + a4 |�|2

)
dx + iaRD

⎡
⎣(

1 − iac�1

1 − iac�2

) 1∫
−1

�′�̄dx −
1∫

−1

(x�)′′ �̄dx + a2
1∫

−1

x |�|2 dx
⎤
⎦

= iaαc

1∫
−1

(∣∣∣�′ ∣∣∣2 + a2 |�|2
)
dx

(22)
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Equating the real part on both sides of Eq. (22), we get

1∫
−1

(∣∣∣�′′ ∣∣∣2 + 2a2
∣∣∣�′∣∣∣2 + a4 |�|2

)
dx + aRD

(
acr�1 − acr�2

a2c2r�
2
2 + (1 + aci�2)

2

) 1∫
−1

�′�̄dx

= −aαci

1∫
−1

(∣∣∣�′∣∣∣2 + a2 |�|2
)
dx . (23)

From Eq. (23) it is not possible to deduce the stability of the system, in general, as the value of ci cannot be
fixed. Nonetheless, for the Newtonian case (�1 = �2) it is evident that ci is always negative, and hence, the
system is always stable, a result obtained for the first time by Gill [1].

4 Numerical solution

Equations (17) and (18) together with the boundary conditions (19) constitute an eigenvalue problem. This
resulting eigenvalue problem is solved numerically using the Chebyshev collocation method. The kth order
Chebyshev polynomial is given by

ξk (x) = cos kτ, τ = cos−1 x . (24)

The Chebyshev collocation points are given by

x j = cos

(
π j

N

)
, j = 0, 1, . . . , N . (25)

Here, the right and left wall boundaries correspond to j = 0 and N , respectively. The field variables � and θ
can be approximated in terms of Chebyshev polynomials as follows

� (x) =
N∑
j=0

ξ j (x) � j , � (x) =
N∑
j=0

ξ j (x) � j . (26)

The governing Eqs. (17)–(19) are discretized in terms of Chebyshev polynomials to get

(1 − iac�2)

(
N∑

k=0

Bjk�k − a2� j

)
= (1 − iac�1) RD

N∑
k=0

A jkθk, j = 1 (1) N − 1 (27)

ia� j +
(

N∑
k=0

Bjkθk − a2θ j

)
− iax RD� j = −iaαc� j , j = 1 (1) N − 1 (28)

�0 = �N = 0 (29)

�0 = �N = 0 (30)

where

A jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c j (−1)k+ j

ck(x j−xk)
j �= k

x j

2
(
1−x2j

) 1 ≤ j = k ≤ N − 1

2N2+1
6 j = k = 0

− 2N2+1
6 j = k = N

(31)

and Bjk = A jm · Amk . (32)

with

c j =
{
2 j = 0, N
1 1 ≤ j ≤ N − 1.
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Fig. 2 Variation of growth rate ci with wave number a for different values of RD with �1 = 0 = �2 (Newtonian fluid case)
when α = 1

Equations (27)–(30) form the following system of linear algebraic equations

AX = cBX (33)

where c is the eigenvalue and X is the discrete representation of the eigenfunction; A and B are square
(complex) matrices of order 2(N + 1). By this, we mean that when one employs the time representation in ψ
and T of form e−iact with c = cr + ici , then this results in ψ and T having terms of the form e−iacr t · eaci t .
The eigenvalues are found such that the largest value of ci is zero, and then, the result is minimized over the
wave number a. The resulting RD value is then the critical Darcy–Rayleigh number with corresponding wave
number. The value ci = 0 is chosen because this is the threshold at which the solution becomes unstable
according to the linear theory. If ci > 0, then ψ and T grow rapidly like eaci t and the solution is unstable.

5 Results and discussion

A classical linear stability analysis of natural convection has been performed for a vertical porous channel with
impermeable and isothermal boundaries. The saturating fluid is assumed to be viscoelastic of Oldroyd-B type.
The resulting generalized eigenvalue problem is solved numerically using Chebyshev collocation method. It
is found that accurate solutions up to the eighth digit could be reached by taking 10 terms in the Chebyshev
collocation method, and hence, the results are obtained by taking N = 10. The numerically computed growth
rate (ci ) is exhibited in Fig. 2 as a function of wave number for �1 = 0 = �2 (Newtonian fluid case). The
results show that ci < 0 always for a wide range of parametric values, indicating that the system is stable. This
fact is in conformity with the analytically established results of Gill [1].

The numerical computations reveal that the instability sets in always via travelling wavemode (cc �= 0) due
to the elastic nature of the fluid and the related travelling wave neutral stability curves on the (RD, a)−plane
for various values of �1 with �2 = 0.2, and �2 with �1 = 0.2 for a fixed value of α = 1 are demonstrated
in Fig. 3. The neutral stability curves exhibit single but different minimum with respect to the wave number
for various values of these physical parameters. The region below each neutral curve corresponds to the stable
state of the system. Thus, we note that increasing �1 (Fig. 3a) decreases the region of stability, while opposite
is the trend with increasing �2 (Fig. 3b).Thus, the viscoelasticity has both stabilizing and destabilizing effects
on the flow. The results shown for �2 = 0 in Fig. 3b correspond to that for a Maxwell fluid.

The critical Darcy–Rayleigh number RDc corresponding to critical wave number ac and critical wave
speed cc computed for different values of elasticity parameters are displayed in Fig. 4a–c, respectively. In
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these figures, the curves of RDc, ac and cc have emanated from the value of �1 exceeding the value of �2.
Figure 4a shows the variation of RDc as a function of �1 for different values of �2 when α = 1. For higher
values of �2, the curves start from higher values of RDc. Henceforth, all the curves undergo a gradual fall in
their values with a negative slope. For �2 = 0.5, the curve experiences a steep fall in the values of RDc giving
rise to a high but negative slope. Forthwith, the slope reduces (but is still negative) after �1 = 0.3 and the
values of RDc keep on decreasing as the curve progresses with increasing values of �1. For �2 = 0.3, the
curve emanates from RDc = 167 and it experiences a similar steep decrease in RDc values till �1 equals 0.2.
However, in this case the duration of the negative high slope is lesser as compared to �2 = 0.5 curve. Similar
trend is observed for �2 = 0.1 and 0.2. For �2 = 0, the values of RDc keep on decreasing until �1 equals
0.4 after which it almost resembles a horizontal line as the curve progresses with increasing values of �1. All
the curves appear parallel to the �1-axis after the �1 value equals 0.8. This shows that the RDc values do not
show any conspicuous changes in their values compared to lower values of �1 after this point. From Fig. 4a, it
is also obvious that an increase in the value of strain retardation parameter �2 is to increase the value of RDc
and has a stabilizing effect on the system. Also, the curve of �2 = 0 lies well below the curves of �2 �= 0
indicating the elasticity of a Maxwellian fluid has a more destabilizing influence on the system. The results
exhibited also indicate that the effect of an increase in the stress relaxation parameter �1 is to decrease RDc,
and thus, it has a destabilizing effect on the flow. This may be due to the fact that the relaxation time reduces
the shear rate (i.e. increases the elasticity of a viscoelastic fluid), thus causing instability.

Figure 4b establishes a relationship between ac and �1 for different values of �2 when α = 1. Only for
�2 = 0, the curve emerges from a very high value of ac at 4.6. This curve then progresses forward with a
slight positive increase in slope till �1 equals 0.3. Forthwith, the curve resembles a horizontal line with a
minute change in ac with an increase in �1 value. For all the other values of �2, the curves emanate from a
common origin point at ac = 2.188. However, the progression of each curve is very different as the value of
�1 increases. The curve for �2 = 0.5 is a straight horizontal line parallel to the �2-axis. This shows that the
values of ac when �2 = 0.5 remain constant irrespective of the value of �1. However, the curve for �2 = 0.3
display slight variations. The curve progresses with a constant value in ac till �1 equals 0.4. Forthwith, the
values of ac begin to decrease gradually as the curve progresses with increasing values of�1. For�2 = 0.2, the
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Fig. 4 Variation of a RDc, b ac, and c cc with �1 for various values of �2 when α = 1

curve the horizontal and has the same values of ac as curves for �2 = 0.5, 0.3 until �1 equals 0.3. Thereafter
the curves experience digression and the curve for �2 = 0.2 experiences a gradual fall in ac values as the
values of �1 increase. However, once �1 equals 0.6, the values of ac fall sharply with the curve developing a
highly negative slope. �1 = 0.8 is an inflection point where there is a change in the curve and after that point
the slope starts to slightly increase towards the positive side. The curve for �2 = 0.1 has a slightly negative
slope at the beginning until �1 equals 0.45. Till this point, the values of ac keep reducing for increasing values
of �1. However, after this point there is a gradual increase in the values of ac till the curve almost becomes a
straight line with constant values of ac approximately. The curves of �2 = 0.3 and 0.1 intersect at ac = 1, and
this shows that both the curves have the same start point and end point even if their path was very different.

The curves of critical wave speed cc displayed in Fig. 4c as a function of �1 for different values of �2
indicate that the instability sets in via travelling wave mode. It is seen that the curve of cc for a Maxwell fluid
(�2 = 0) is independent on the values of �1 while the curves of cc for other values of �2 �= 0 remain almost
constant and come together with increasing �1. It is also evident that �1 and �2 exhibit opposite effects
on cc.



230 B. M. Shankar, I. S. Shivakumara

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50 (a)

1,1.5,2α =

α =

α =

1

DcR

0.2 0.4 0.6 0.8 1.0
1.80

1.95

2.10

2.25

ca

1

(b)

1

1.5

2

0.2 0.4 0.6 0.8 1.0
-50

-40

-30

-20

-10

0

cc

1

(c)

2,1.5,1

Λ

Λ

Λ

Fig. 5 Variation of a RDc, b ac, and c cc with �1 for various values of α when �2 = 0.1

Figure 5a, b illustrates RDc and ac as a function of �1, respectively, for different values of α = 1, 1.5, 2
when �2 = 0.1. It is evident that all the three curves follow a similar trend. They emanate from RDc = 50.4
and forthwith experience an exponential decline in their values. The curves progress identically till the value of
�1 = 0.2 after which the gradient reduces significantly and the curves diverge. All the three curves experience
a steady decline in RDc with increasing �1. From Fig. 5a, it is clear that increase in the value of α leads to
increase in the value of RDc, and thus, it has a stabilizing effect on the system. This may be due to decrease
in the value of heat capacity of the fluid. The curves of critical wave number emerge from ac = 2.17 for all
the values of α as shown in Fig. 5b and note that increase in α is to increase ac considerably. Thus, the effect
of increasing α is to contract the size of convection cells. Figure 5c shows that increasing α is to increase the
critical wave speed.

6 Conclusions

The stability of natural convection in a vertical layer of an Oldroyd-B fluid-saturated Darcy porous medium
whose vertical walls are impermeable and kept at different uniform temperatures has been investigated. The
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governing dimensionless parameters are theDarcy–Rayleigh number, RD, relaxation parameter,�1, retardation
parameter,�2, and the ratio of heat capacities α. In contrast to the Newtonian and power-law fluids, the system
becomes unstable via travelling wave mode in the case of viscoelastic fluids. The influence of �1 and �2 on
the stability of the system is opposite in nature and they display destabilizing and stabilizing effects on the
system, respectively. Depending on the parametric values, there exist threshold values of �1 and �2, above
and below which the flow becomes unstable, respectively. The effect of increasing ratio of heat capacities has
a stabilizing effect on the system. The results for the Maxwell fluid exhibit that the system is more unstable
compared to Oldroyd-B type of viscoelastic fluids. Moreover, the critical wave numbers for Maxwell fluid are
higher than those of Oldroyd-B fluid.
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