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Abstract Idealized models of reduced complexity are important tools to understand key processes underlying
a complex system. In climate science in particular, they are important for helping the community improve our
ability to predict the effect of climate change on the earth system. Climate models are large computer codes
based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of
100km,whereas unresolved processes are handled by subgridmodels. For instance, simplemodels are routinely
used to help understand the interactions between small-scale processes due to atmospheric moist convection
and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented
and solved numerically. Themodel is based on theGalerkin projection of the primitive equations of atmospheric
synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is
coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor
in both the free troposphere and the ABL, while the processes of convection and precipitation are represented
through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and
the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical
method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on
the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and
two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative
system is solved via a central scheme,which does not require hyperbolicity since it avoids theRiemann problem
by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical
methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via
the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order
convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon
conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in
two distinct parameter regimes.
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1 Introduction

Climate change remains one of the grand challenges of the century for humankind, despite continued inter-
national efforts on various fronts, such as coordinated policies for reducing greenhouse gas emissions or the
constant search for sustainable/renewable energy sources. Yet the actual impact of global warming and its
effect on local weather and climate remain poorly understood due in part to major uncertainties in the current
computer models used for long term weather and climate predictions, known by the generic names of global
climate models (GCMs) or earth system models (ESMs).

GCMs and ESMs are based on a discretization of the 3D governing fluid equations for the atmosphere and
the oceans, known as the Navier–Stokes equations, forced by various external processes such as solar radiation,
Earth topography, and the ice and vegetation covers [22,37,51,58]. The climate system dynamics involves a
hierarchy of scales ranging from a fewmicrometers andmilliseconds due to processes such as condensation and
cloud droplet interactions, to planetary-scale oscillations with periods of months to decades. Atmosphere and
ocean turbulent flows andwaves of various sorts fill up this wide spectrum and exchange energy andmomentum
via strong nonlinear interactions that cannot be ignored. However, due to limitations in computing power, only
a small range of these scales can be represented at once in a climate or weather forecasting simulation. For
instance, climate simulations spanning several years to a few decades have horizontal resolution around 100–
200km, and processes occurring at that grid scale or smaller are represented by various closure recipes known
as parameterizations [4,58].

One of the climate model biases of paramount importance is their inability to predict the distribution and
variability of rainfall patterns, especially in the tropics [43]. This adds to the uncertainty in using the model
predictions for policymaking by government officials. The dominant precipitation events in the tropics occur in
association with organized deep convection, which is believed to be the Achilles’s heel of climate models [46].
The challenge arises because tropical convection involves a hierarchy of scales ranging from the convective
cloud or cell of a few kilometers to mesoscale cloud clusters of around 100–500km, which are modulated
by synoptic (1000–5000km) and planetary (≥10,000km) scale waves [34,48]. A good understanding of the
interaction of organized tropical convection and clouds in general with large-scale atmospheric and oceanic
circulation patterns is not only an interesting scientific issue but also an important one since it contributes to
the improvement of climate models. Such understanding is often gained through the analysis of observational
data generated by massive collections of satellite images [63], or meticulously designed and executed field
campaigns [64,65], or the design and study of process oriented simplified numerical models [16,20,21,34,49].

An important force that drives atmospheric and oceanic flows is induced by the differential stress imposed
by the rotation of the Earth, due to its curvature, known as the Coriolis force [22]. In the midlatitudes,
where the Coriolis force is nonzero, synoptic-scale atmospheric and oceanic flows are always in a state of
near equilibrium, known as the quasi-geostrophic (QG) balance, where the pressure gradient is balanced by
this Coriolis force [22]. This state of affairs allowed early meteorologists to gain a good understanding of
the formation and propagation of midlatitude weather systems and even allowed the fabrication of the first
prototype of numerical weather prediction models, via the use of what is known as the QG equations [22,47].
The QG equations are equivalent in complexity to the 2D Euler equations [5], which is a huge simplification
from the global 3D primitive equations. However, because the Coriolis force vanishes and changes sign at
the Equator, the QG equations break down in the tropics and the Equator acts as a wave guide for a large
spectrum of waves that are trapped near and travel along the Equator in both East and West directions [17,47].
Not surprisingly, the design and study of simple models to study the interactions of equatorial waves with
each other, with convection, and with extra-tropical and planetary motions are a very active research area
[34,36,39].

On top of its extraordinarily rich wave activity, the tropical atmosphere harbors a multitude of mean flow
circulation patterns due essentially to the nonisotropic solar radiation intake, the geographic distribution of
oceanic warm waters and topography, and their interactions with the Coriolis force. The mean rainfall, for
instance, shows a long band of intense activity, which extends along the Indian and the Pacific Oceans and
through a large portion of the tropical Atlantic and Africa. This elongated region of intense precipitation is
known as the intertropical convergence zone (ITCZ), which, on average, is characterized by the raising of warm
and moist air, which then cools and dries and descends a few thousands of kilometers on its Northern and
Southern flanks, resulting in some of the driest deserts on Earth such as the Sahara and the Australian Outbacks.
The associated circulation, closed through converging air near the surface and divergence aloft, is known as the
Hadley circulation [2,17,34,45]. Because themaximum incoming solar radiationmoves North–South between
the two hemispheres throughout the year, resulting in the four seasons, the ITCZ lies North of the Equator
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during the northern hemisphere summer and right at or somewhat South of the Equator during winter. The
northward migration of the ITCZ results in a phenomenal shift in winds and precipitation patterns so that, over
the Arabian sea for instance, southwesterly winds prevail during summer and northeasterlies prevail during
winter, connecting back and forth the Indian continent and the Somali Coast [39]. Also, this northern migration
coincides with the Indian rainy seasonwhere tremendous amounts of rain fall over the continent, without which
India will be just a large hot desert much like the Sahara. This climate phenomenon is known as the monsoon,
from the Arabic word for season, most likely coined by Arab sailors and merchants. The amount of rain that
falls during one monsoon season, its timing, and its frequency are of paramount importance for the Indian
agriculture, economy, and society as a whole [38]. Nonetheless, the monsoon phenomenon is predominant
in many other locations that have similar geographic conditions as the Indian continent (a land mass located
poleward of a tropical ocean basin) with the same consequences, including all the West African countries
surrounding the Gulf of Guinea, Northern Australia, and Southern United States, and the Gulf of Mexico [39].

In this work, we develop a zonally symmetric numerical model for the large-scale Hadley circulation, ambi-
ent winds, and precipitation associated with the summer monsoon season. The planetary-scale atmospheric
circulation is coupled with both the small-scale processes of deep convection and the boundary layer dynamics
that sustains shallow convection. This axially symmetric model allows to study the propagation and initiation
of convection and its interaction with the large-scale circulation without the effects of zonally propagating
atmospheric waves. Such axially symmetric models have been used by several authors to study meridional
circulation features and Hadley-monsoon dynamics. For instance, Drbohlav and Wang [14] emphasized the
importance of the barotropic and baroclinic modes in the propagation and initiation of convection and studied
monsoon intraseasonal oscillation using a 2D axially symmetric model. Pauluis [53] used an axisymmetric
model to investigate the role of the atmospheric boundary layer in the Hadley circulation. See also the pio-
neering work of Webster, Goswami and co-workers [20,62, for example]. However, these models use simple
deterministic parameterizations of convection, which revealed to be inadequate for organized tropical convec-
tion [43,48] or a fewer vertical modes. The model in [14], for instance, is based on two free tropospheric layers
and one boundary layer and uses a moisture convergence convection scheme, while the model in [53] uses the
Emanuel parameterization scheme and is based on a fully resolved numerical model for the free troposphere
plus a bulk mixed boundary layer. The model proposed here is based on a new stochastic convection scheme,
which proved to be successful in the representation of some key features of tropical wave dynamics including
the monsoon [2,3,11,12,27,35, etc.].

The present model is based on the multicloud model (MCM) of Khouider and Majda [30,32], which was
originally proposed to study convectively coupled equatorial waves and later used successfully as a cumulus
parameterization in a GCM [35]. Here we extend the MCM to include the dynamical effects of atmospheric
boundary layer (ABL) turbulence and shallow convection. The ABLmodel was proposed and studied byWaite
and Khouider [61] in the linear case and with a deterministic convective parameterization. It is shown in [61]
that the boundary layer coupling enhances the instability of convectively coupled waves by enforcing ABL
convergence and mechanical coupling between the ABL and the free troposphere and is essential for modeling
the diurnal cycle of precipitation over land and over the ocean [15]. However, unlike the aforementioned work,
here the convection processes are represented by the stochastic multicloud (SMCM) of Khouider et al. [27]
with its key timescale parameters inferred from a large eddy simulation [25] of convection over the tropical
Atlantic ocean by De La Chevrotiere et al. [10].

We note that the main novelties here are multifold. Firstly, this is the first time that the multicloud model
with a dynamical boundary layer is considered with all nonlinear advection terms retained. Secondly, it is
also the first time that this four-layer model is coupled to the SMCM. Thirdly, unlike previous studies where
zonal flows along the Equator were considered in order to study convectively coupled equatorial waves, here,
as already pointed out, we consider the zonally symmetric case of North–South-oriented flows, especially
associated with monsoon conditions, i.e., when the sea-surface warm pool is moved a significant distance
North of the Equator.

Thiswork ismotivated by ongoing efforts of several research groups to implement the SMCMin operational
climatemodels to improve their forecasting skills in terms of tropical weather and climate, especially associated
with tropical waves and monsoons [1–3,11–13,54,55]. Studies based on simplified models such as the one
presented here would contribute enormously not only toward our understanding of how the SMCM interacts
with the large-scale circulation in theGCMcontext, but also serve as roadmaps for its effective implementation
in operational models. Building model hierarchies with increasing complexity is important when dealing with
complex systems such as the Earth’s climate, since the simpler models can be used to draw conclusions
about the results obtained from the more complex ones [21]. However, because the present model, although
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simplified, remains fairly complex and particularly highly nonlinear, this paper is mainly concerned with the
design and implementation of a numerical solution strategy for the simplified model, though some discussion
is provided near the end to demonstrate its performance in two distinct parameter regimes.

The simplified dynamical model starts with a Galerkin projection of the governing equations into the three
first modes of vertical structure in the free troposphere: the zeroth or barotropic mode, which is uniform in the
vertical, and the first and second baroclinic modes whose horizontal velocity vertical structures consist of a
half cosine shear and a full cosine jet shear, respectively. The corresponding vertical velocity and temperature
anomalies consistently follow half-sine and full-sine profiles, respectively. The ABL is represented through
bulk equations derived via a systematic vertical averaging of the primitive equations from the surface to an
assumed fixed ABL height, hb.

As already stated above, while the model setting and derivation follow the work of Waite and Khouider
[61], here we are interested in the North–South (meridional) circulation in the presence of a summer ITCZ as
a boundary value problem with the full nonlinear advection terms, while previous studies [30, for example]
were concerned solely by zonal (East–West) linear wave dynamics forced by convection. Moreover, as already
mentioned, this is the first time the coupled SMCM-ABLmodel is considered. Previously, Khouider andMajda
[28] considered the full 2D case for the 2 modes model reduced to a barotropic and a first baroclinic mode,
and Stechmann et al. [57] studied the case of nonlinearly coupled first and second baroclinic modes. This is
the first time all four modes (ABL, barotropic and first two baroclinic) are coupled together through advective
nonlinearities. A common feature of these coupled vertical mode derivations is that they all result in partial
differential systems of first order that are neither conservative nor strictly hyperbolic. Following in the steps
of [28,57], a numerical methodology for solving the coupled system is designed and validated. As in [28]
and [57], we adopt a time-splitting strategy where the coupled system is divided into a conservative part, a
hyperbolic part, and a nilpotent part so that each component can be handled with its own appropriate numerical
scheme to preserve both numerical stability and key physical properties [28,57].

The paper is organized as follows: In Sect. 2, we expose the derivation of the three vertical modes model
coupled through nonlinear advection for the monsoon circulation, and its coupling to the bulk boundary layer
dynamics. This is followed by a discussion of theMarkov chain SMCM for convective forcing and its two-way
coupling with the large-scale dynamics. In Sect. 3, we present the numerical strategy of splitting the model
equations into various components that can be handled transparently with state-of-the-art numerical methods.
We then report some validation test results in the form of numerical convergence under grid refinement for
the model dry dynamics, i.e., without convective forcing or moisture coupling. Finally, we end the paper with
some concluding remarks in Sect. 5.

2 Model derivation and stochastic convective forcing

Here, we describe the derivation of the zonally symmetric model for the monsoon with a crude vertical
resolution, reduced to the barotropic and the first two baroclinic modes in the free troposphere and a bulk,
vertically averaged, model for the boundary layer. This is followed by the stochastic model for convection and
its two-way coupling to the large-scale equations.

2.1 The zonally symmetric model with a mechanical boundary layer

We consider the hydrostatic Boussinesq equations on the equatorial β-plane for the free troposphere [17,
47], with zonal symmetry, i.e., neglecting zonal advection and East–West propagating waves. These are in
nondimensional form:

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
− yv = Su, (1a)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
+ yu = −∂p

∂y
+ Sv, (1b)

∂p

∂z
= θ, (1c)

∂θ

∂t
+ v

∂θ

∂y
+ w

∂θ

∂z
+ w = Hθ + Sθ , (1d)
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∂v

∂y
+ ∂w

∂z
= 0. (1e)

Here y and z are, respectively, the meridional and vertical coordinates with positive directions from South
to North, and bottom to top, respectively; t > 0 is time. The free troposphere is capped with the tropopause
at height HT = 16km, and sits on top of an atmospheric boundary layer (ABL) of depth hb = 500m.
For convenience, the free troposphere and ABL have dimensional vertical extents of 0 ≤ z ≤ HT and
−hb ≤ z ≤ 0, respectively, so that the top of the ABL is located at z = 0 and the Earth’s surface at
z = −hb. The horizontal velocity u = (u, v) has zonal (along the Equator) component u and meridional
(North–South) component v. The vertical velocity is w. The scalars p and θ are the pressure and potential
temperature (i.e., the temperature that a parcel of air would have if displaced adiabatically to a reference
pressure) perturbations, respectively. The effective total potential temperature θtot is expressed in dimensional
units as θtot(y, z, t) = θref + θ0(z) + θ(y, z, t), where θref = 300K is a reference potential temperature, θ0
sets the background stratification, and θ is the (dimensional) deviation from this background. The background
state θ0 is based on an assumed linear stratification with a constant Brunt–Väisälä buoyancy frequency Nv ,
given by

N 2
v = g

θref

dθ0
dz

= 10−4 s−2, (2)

where g = 9.8 ms−2 is the gravitational acceleration.
For simplicity, the zonal pressure differential is neglected. The forcing terms Su , Sv ,Hθ and Sθ represent

the sources and sinks of zonal andmeridionalmomentum, and potential temperature, respectively. In particular,
Sθ includes heating and cooling resulting from convective and radiative processes, which will be specified
through the stochastic cloud model below.

The equations in (1) are written in nondimensional units using equatorial synoptic dynamic scales as a
reference, such that both the gradient of the Coriolis parameter f (y) = 2Ω sin(y) (Ω is the Earth’s rotational
frequency) at the Equator,

β = ∂ f (y)

∂y

∣
∣
∣
∣
y=0

= 2.28 × 10−11 m−1s−1, (3)

and the buoyancy frequency (2) are unity [47]. The first baroclinic dry gravity wave speed c = NvHT /π ≈ 50
ms−1 and the equatorial Rossby deformation radius L = √

c/β ≈ 1500km are the horizontal velocity
and length scales, respectively. We use T = L/c ≈ 8h as the timescale, and the dry static stratification
α = HT N 2

v θref/πg ≈ 15K as the temperature scale. For convenience, the vertical length scale is set to HT /π
and the free troposphere vertical velocity scale is given by ν = HT /Tπ ≈ 0.17m/s (Table 1). Consistently, the
mass-weighted pressure scale is c2. The equations in (1) are supplemented with rigid lid boundary conditions
at the top of the troposphere (z = π) and at the Earth’s surface (z = −δπ), that is,

w
∣
∣
z=π,−δπ

= 0, (4)

where δ = hb/HT is the ratio between the ABL and free tropospheric heights.
The full model for the atmosphere incorporates a free troposphere, whose vertical structure is truncated to

the first three internal normal modes, sitting on top of a mixed ABL, described by a bulk dynamical model. The
equations for the free troposphere are systematically coupled to the ABL equations by assuming continuity of
pressure and vertical velocity across the fixed interface, located at z = 0:

lim
z→0+ w(y, z, t) = wt , lim

z→0+ p(y, z, t) ≡ pt , (5)

where wt and pt are the vertical velocity and pressure at the top of the ABL (the subscript t should not be
confounded with a time derivative). As a consequence, the ABL vertical velocity is a source of divergence of
the horizontal component of the barotropic flow in the troposphere [see (9)]. This nonzero divergence of the
troposphere horizontal barotropic flow leads to (i) important contributions to the free troposphere equations
through vertical advection and (ii) a nontrivial Poisson pressure equation, presented in Sect. 2.2.
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Table 1 Troposphere model parameters and scaling factors

Parameter or Derivation Approximate value Description
Scaling factors

HT 16km Tropopause height
θref 300 K Reference potential temperature
g 9.8 m/s Gravitational acceleration
θ0 Function of height z Background potential temperature, in K

Nv

√
g

θref

dθ0
dz

10−2 s−1 Brunt-Väisälä buoyancy frequency

c NvHT /π 50 m/s Horizontal velocity scale

β
∂ f (y)

∂y

∣
∣
∣
∣
y=0

2.28 × 10−11 m−1s−1 Variation of Coriolis parameter

f at the Equator
L

√
c/β 1500km Equatorial Rossby deformation radius/

Horizontal length scale
T L/c 8h Reference timescale

α
HT N 2

v θref

πg
15 K Potential temperature scale

ν
HT

πT
0.17 m/s Free troposphere vertical velocity scale

Following [61], we impose the following ansatz of truncating the free troposphere wave dynamics to the
first three modes of vertical structure:

(

u
p

)

(y, z, t) =
(

u0
p0

)

(y, t) +
(

u1
p1

)

(y, t)C1(z) +
(

u2
p2

)

(y, t)C2(z), (6)
(

θ
w

)

(y, z, t) =
(

0
w0(y, z, t)

)

+
(

θ1
w1

)

(y, t)S1(z) +
(

2 θ2
w2

)

(y, t)S2(z), (7)

for 0 ≤ z ≤ π . Here S j (z) = √
2 sin( j z) and C j (z) = √

2 cos( j z), 0 ≤ z ≤ π , j = 1, 2, are the Galerkin
truncation basis functions associated with the first and second baroclinic modes of vertical structure [47]. The
zeroth-barotropic mode is set to C0(z) = 1, for 0 ≤ z ≤ π . The factors

√
2 are added to obtain an orthonormal

basis in the L2 inner product 〈F,G〉 = 1
π

∫ π

0 F(z)G(z)dz, that is, 〈Ci ,C j 〉 = δi j and 〈Si , S j 〉 = δi j . The
horizontal velocity and potential temperature structures associated with these three modes are illustrated in
Fig. 1. The potential temperature and vertical velocity baroclinic wave amplitudes are found by substituting
(6) and (7) into the hydrostatic equation (1c) and the incompressibility condition (1e):

θ j = −p j , w j = −1

j

∂v j

∂y
, j = 1, 2. (8)

As mentioned earlier, the nonvanishing free troposphere vertical velocity at the lower boundary (5) induces an
active “barotropic” component

w0(y, z, t) = ∂v0

∂y
(y, t)(π − z), 0 ≤ z ≤ π. (9)

To see this, first integrate the divergence equation (1e) with the ansatz (6) and apply the boundary condition at
top of the troposphere (4). Projecting the divergence equation (1e) onto the barotropic mode now gives

∂v0

∂y
= 1

π
wt = −δ

∂vb

∂y
. (10)

The vertical structure profiles of the coupled free troposphere-ABL model are depicted in Fig. 2.
A systematic Galerkin projection procedure applied to the zonally symmetric primitive equations (1) onto

the modes C j , S j , j = 0, 1, 2, yields the following system of eight equations:
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Fig. 1 Vertical structure for the horizontal velocity and potential temperature θ associated with the barotropic and first and second
baroclinic modes. a Barotropic mode u0 and first two baroclinic modes u1 and u2. b First two baroclinic modes θ1 and θ2
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Fig. 2 Vertical structure of the model. The subscripts s, t and m indicate vertical levels located at the surface, top of the ABL,
and middle troposphere, respectively

D0u0
Dt

+ ∂ (u1v1)

∂y
+ ∂ (u2v2)

∂y
− √

2(u1 + u2)
∂v0

∂ y
− yv0 = Su

0 ,

D0v0

Dt
+ ∂(v21)

∂y
+ ∂(v22)

∂y
− √

2(v1 + v2)
∂v0

∂ y
+ yu0 = −∂p0

∂y
+ Sv

0 ,

D0u1
Dt

+ v1
∂u0
∂y

+
√
2

2

(

v1
∂u2
∂y

+ v2
∂u1
∂y

+ 2u2
∂v1

∂y
+ 1

2
u1

∂v2

∂y

)

−
(

1
2
u1 + 8

3
u2

)
∂v0

∂ y
− yv1 = Su

1 ,

D0v1

Dt
+ v1

∂v0

∂y
+

√
2

2

(

v1
∂v2

∂y
+ v2

∂v1

∂y
+ 2v2

∂v1

∂y
+ 1

2
v1

∂v2

∂y

)

−
(

1
2
v1 + 8

3
v2

)
∂v0

∂ y
+ yu1 = ∂θ1

∂y
+ Sv

1 ,

D0θ1

Dt
− ∂v1

∂y
+

√
2

2

(

2v1
∂θ2

∂y
− v2

∂θ1

∂y
+ 4θ2

∂v1

∂y
− 1

2
θ1

∂v2

∂y

)

+
(

1
2
θ1 − 8

3
θ2

)
∂v0

∂ y
+ √

2
∂v0

∂ y
= Hθ

1 + Sθ
1 ,

D0u2
Dt

+ v2
∂u0
∂y

+
√
2

2

(

v1
∂u1
∂y

− u1
∂v1

∂y

)

+
(

2
3
u1 − 1

2
u2

)
∂v0

∂ y
− yv2 = Su

2 ,
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Table 2 Closure equations for convective and turbulent mixing forcing terms

Forcing term Closure equation

Momentum turbulent drag for barotropic mode Su
0 = δEuΔtu

Momentum turbulent drag for baroclinic modes Su
j =

√
2δ

τT
Δtu − 1

τR
u j , j = 1, 2

Velocity jump at top of boundary layer Δtu = ub − ut = ub − u0 − √
2(u1 + u2)

First baroclinic convective heating Hθ
1 = Hd

Deep convectiona Hd =
{

σd Q + σd
σd τ 0c

[

a1θ ′
eb + a2q ′ − a0(θ ′

1 + γ2θ
′
2)
]}+

Second baroclinic convective heating Hθ
2 = Hc − Hs

Stratiform heating Hs = σsαs
Hm

√
CAPE+

Convective available potential energya CAPE = CAPE + R[θ ′
eb − a′

0(θ
′
1 + γ2θ

′
2)]

Congestus heating Hc = σcαc
Hm

√

CAPE+
l

Low-level convective available potential energya CAPEl = CAPE + R[θ ′
eb − a′

0(θ
′
1 + γ ′

2θ
′
2)]

Convective available potential energy at RCE CAPE = H2
mQ

2

Radiative Cooling Sθ
j = −QR, j − 1

τD
θ j , j = 1, 2

Precipitation rate P = 2
√
2

π
Hd

Moisture source Sq = δEΔtθe +
(

δMd + ∂v0
∂y

)

Δmθe

Surface turbulent moist thermodynamic fluxes (φ = θ, θe)
1

δπ
〈w′φ′〉s = 1

τe
(φs − φb)

Surface momentum turbulent drag
1

δπ
〈w′u′〉s = −CdUub.

Moist thermodynamic turbulent entrainment (φ = θ, θe)
1

δπ
〈w′φ′〉t = Mu(φb − φt ) − Md (φm − φt )

Momentum turbulent entrainment
1

δπ
〈w′u′〉t = 1

τT
(ub − ut )

Total downdraft mass flux Md =
{

Dc + ∂vb

∂y

}+

Convective updraft mass flux Mu = 1
αm

Dc

Mass flux velocity from large-scale and convective downdrafts Dc = m0

{

1 + μ
QR1

(Hs − Hc)
}+

Moist thermodynamic turbulent entrainment velocity at top of ABL E =
(

Mu − Md + ∂vb
∂y

)+

Momentum turbulent entrainment velocity at top of ABL Eu =
(

1
τT

+ ∂vb
∂y

)+

Boundary layer radiative cooling (φ = θ, θe) 〈Sφ〉 = −QRb

a The primes in the associated equations indicate deviations for the radiative convective equilibrium (RCE) solution

D0v2

Dt
+ v2

∂v0

∂y
+

(
2
3
v1 − 1

2
v2

)
∂v0

∂ y
+ yu2 = ∂θ2

∂y
+ Sv

2 ,

D0θ2

Dt
+

√
2

4

(

v1
∂θ1

∂y
− θ1

∂v1

∂y

)

− 1

4

∂v2

∂y
+ 1

2

(
4
3
θ1 + θ2

)
∂v0

∂ y
+

√
2

4
∂v0

∂ y
= 1

2
Hθ

2 + 1

2
Sθ
2 . (11)

The shorthand notation (D0/Dt) = (∂/∂t) + v0(∂/∂y) is the barotropic transport operator. The nonzero
horizontal divergence of the barotropic wind, Eq. (10), leads to linear and nonlinear contributions to the basic
equations of motion (11), which are evidenced in bold.

The right-hand terms Su,v,θ
j , Hθ

j represent the radiative, convective, and turbulent forcing, respectively.
For simplicity in exposition and streamlining, these are listed in Table 2 with the associated parameters listed
in Table 3, following earlier work [29,61]. We note that some parameters are not specified in Table 3 but bear
the mention “determined at RCE.” An RCE is short for a radiative convective equilibrium, which is essentially
a space and time homogeneous solution to the model equations. Without constraints, the model equations
admit multiple equilibria. To construct a physical RCE solution, we fix a few key variables to their observed
climatological values and use the RCE equations to constrain the remaining variables. Details of this procedure
can be found in earlier publications [8,29,61].



A zonally symmetric model for the monsoon-Hadley circulation 97

Table 3 Multicloud and ABL model parameters

Parameter Value (in dimensional units) Description

Hm 5km Average height of the middle troposphere
R 320 J kg−1 K−1 CAPE constant
QR1 1 K/day Longwave first baroclinic radiative cooling rate
QR2 Determined at RCE Longwave second baroclinic radiative cooling rate
Q Determined at RCE Heating potential at RCE
m0 Determined at RCE Downdraft velocity reference scale
τ 0c 2h Reference convective timescale
αc, αs 0.25, 0.25 Contribution of CAPE to congestus, stratiform heating
a0 1 or 3 Contribution of θ1 to deep convective heating anomalies
a1 0.45 Contribution of θeb to deep convective heating anomalies
a2 1 − a1 Contribution of q to deep convective heating anomalies
a′
0 1.7 Contribution of θ1 to CAPE anomalies

γ2 0.1 Relative contribution of θ2 to deep convective anomalies
γ ′
2 2.0 Relative contribution of θ2 to low-level CAPE anomalies

CAPE0 200 J kg−1 Reference value of CAPE
T0 10 K Reference value of CAPE
α2 0.1 Relative contribution of θ2 to θem
μ 0.25 Contribution of convective downdrafts to Md
τc, τs 1h, 3h Congestus, stratiform adjustment timescales
τconv 2h Convective timescale
θ

−
, θ

+
10 K, 20 K Moisture switch threshold values

τD 50days Newtonian cooling timescale
τR 75days Rayleigh drag timescale
τT 8 h Momentum entrainment timescale
hb 500 m ABL depth
τe Determined at RCE, ofO(7h) Surface evaporation timescale
U 2 m/s Strength of turbulent velocity
Cd 0.001 Surface drag coefficient
τT 8h Momentum entrainment timescale
QRb Determined at RCE, ofO(5 K/day) ABL radiative cooling rate
δ 0.03125 Ratio of boundary layer depth to height of the troposphere
αm 0.2 Ratio of Dc to Mu

The free troposphere dynamics is coupled to the moisture equation (conservation of water vapor) through
the processes of precipitation and latent heat release. Following [29,61], the troposphere moist dynamics has
a background moisture profile that is exponentially decaying in the vertical, and the perturbation from this
background is vertically averaged over the free troposphere depth which yields the bulk moisture equation, in
nondimensional form:

D0q

Dt
+ ∂

∂y

(

(α̃1v1 + α̃2v2)q + Q̃1v1 + Q̃2v2 − Q̃0v0

)

−κq
∂v0

∂ y
= −P + Sq . (12)

The detailed form of the precipitation rate P and moisture source Sq , due to turbulent mixing and evaporation,
is also given in Table 2. The details of the derivation of the bulk moisture equation can be found in [8] and
[29]. Here, following [8], we use the nondimensional parameter/constant values Q̃0 = 1.674, Q̃1 = 0.559,
Q̃2 = 0.209, α̃1 = 1, α̃2 = 0.1, and κ = 2.

The ABL is assumed to be well mixed at all times such that no stratification is allowed to settle. It is
represented by a Reynolds-averaged hydrostatic Boussinesq fluid on the β-plane with horizontal velocity
u = (u, v), fluctuation potential temperature θ , and equivalent potential temperature θe. Since the ABL is
effectively homogenized by turbulence, a bulk description, following the approach of Stevens [59] (see also
[61]), is a justifiable approximation. The bulk model consists of integrating out the vertical dependencies to
represent the bulk dynamic and thermodynamic structure of the ABL.

Following [59,61], we assume the Reynolds decomposition [22] of the flow variables in the form φ =
〈φ〉+φ′, where 〈φ〉 represents the (slowly evolving) resolved scales and φ′ represents the unresolved turbulent
fluctuations. Here φ is a generic scalar field. Defining φb to be the vertical average of 〈φ〉 over the ABL of
nondimensional depth δπ , φb = 1

δπ

∫ 0
−δπ

〈φ〉dz, it is straightforward (see [8]) to show that the zonally averaged
dimensionless equations for the ABL are [61]:
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∂ub
∂t

+ ∂ (vbub)

∂y
+ 1

δπ
〈w〉t 〈u〉t − yvb = − 1

δπ
〈u′w′〉t + 1

δπ
〈u′w′〉s, (13a)

∂vb

∂t
+ ∂

(

v2b

)

∂y
+ 1

δπ
〈w〉t 〈v〉t + yub = −∂pb

∂y
− 1

δπ
〈v′w′〉t + 1

δπ
〈v′w′〉s, (13b)

∂θb

∂t
+ ∂ (vbθb)

∂y
+ 1

δπ
〈w〉t 〈θ〉t = − 1

δπ
〈θ ′w′〉t + 1

δπ
〈θ ′w′〉s + 〈Sθ 〉, (13c)

∂θeb

∂t
+ ∂ (vbθeb)

∂y
+ 1

δπ
〈w〉t 〈θe〉t = − 1

δπ
〈θ ′

ew
′〉t + 1

δπ
〈θ ′

ew
′〉s + 〈Sθe 〉. (13d)

Here we used the rigid lid boundary condition at the surface (4), the divergence relation to write the equations
in flux form, and the following approximation from [59]:

1

δπ

∫ 0

−δπ

〈v〉〈φ〉 dz ≈ vbφb.

The new terms 〈u′w′〉 and 〈v′w′〉 are vertical turbulent fluxes of horizontal momentum, whereas 〈θ ′w′〉 and
〈θ ′

ew
′〉 are vertical turbulent heat and moisture fluxes. The subscripts s and t denote evaluations at the Earth’s

surface z = −δπ , and at the top z = 0 of the ABL, respectively. The terms Sθ and Sθe are source terms for the
ABL potential and equivalent potential temperatures, respectively. Vertical averaging of the incompressibility
and hydrostatic equations over the ABL depth gives [8,61]

wt = −δπ
∂vb

∂y
,

pt = ps + δπθb. (14)

The former was obtained using the rigid lid condition (4). Moreover, the pressure and vertical velocity fields,
in the ABL, are assumed to have the linear profiles (see Fig. 2) [61],

w(z) = −(z + δπ)
∂vb

∂y
, −δπ ≤ z ≤ 0, (15)

p(z) = ps + (z + δπ)θb, −δπ ≤ z ≤ 0, (16)

and a vertical average of the last equation yields the bulk ABL pressure in terms of the bulk potential temper-
ature,

pb = ps + δπ

2
θb, −δπ ≤ z ≤ 0. (17)

The turbulent fluxes are closed through simple aerodynamics formulas [59,61] and are summarized in
Table 2, for convenience.

With the closures in Table 2 and the above simplifications, the ABL bulk equations read

Dbθeb

Dt
= −EΔtθe − MdΔmθe + 1

τe
Δsθe − QRb (18a)

Dbθb

Dt
= −EΔtθ − MdΔmθ + 1

τe
Δsθ − QRb (18b)

Dbub
Dt

− yvb = −EuΔt u − CdUub (18c)

Dbvb

Dt
+ yub = −∂pb

∂y
− EuΔtv − CdUvb (18d)

Here (Db/Dt) = (∂/∂t) + vb(∂/∂y) is the meridional boundary layer transport operator, while the newly
introduced forcing terms are defined in Table 2. The scalar and momentum differences between two heights
were conveniently written as downward gradients. We have,

Δsφ ≡ φs − φb, Δtφ ≡ φb − φt , Δmφ ≡ φb − φm, (19)

for a scalar φ. The ABL parameter values are listed in Table 3.
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2.2 The Poisson equation for pressure

We now derive the Poisson equation for barotropic and ABL pressure. In the three vertical mode framework,
the free tropospheric pressure satisfies p = p0+ p1C1+ p2C2, whereC1 andC2 are the cosine basis functions
defined above, and p0, p1 and p2 are the pressure wave amplitudes of modes 0, 1, and 2. While the first and
second baroclinic pressure components relate directly to the baroclinic potential temperatures according to
(8), the barotropic pressure p0 is left to be determined, along with the ABL bulk pressure pb.

Assuming continuity of pressure across the interface between the free troposphere and the ABL, we must
require that limz→0+ p(y, z, t) ≡ pt , where pt = pb +δπθb/2 is found from (17). We then have the following
relation between the barotropic and ABL pressures:

p0 = pb + δπ

2
θb + √

2 (θ1 + θ2) , (20)

where the baroclinic hydrostatic relations (8) were used. A governing equation for the ABL pressure is found
by taking the divergence of both the barotropic and ABL meridional momentum equations and using the
divergence relation (10) together with relation (20). We have:

∂2 pb
∂y2

= 1

δ + 1

(
∂Φ

∂y
− ∂2φ

∂y2

)

(21a)

Φ = √
2(v1 + v2)

∂v0

∂y
− y(u0 + δub) − δEuΔtv − δCdUvb + Sv

0 , (21b)

φ = δ

2
vb

2 + 1

2
v0

2 + v1
2 + v2

2 + δπ

2
θb + √

2(θ1 + θ2). (21c)

In practice, we solve only for the pressure gradient ∂pb/∂y through a straightforward integration starting at the
southern boundary point, enforcing a Neumann boundary condition ∂(·)/∂y = 0 on both ends for all pressure
and potential temperature components.

2.3 The stochastic multicloud parameterization for subgrid scale cloud processes

The stochastic multicloud model is introduced in [27] to represent the unresolved variability due to organized
tropical convection in GCMs. The motivation for the use of a stochastic model in a GCM is at least twofold.
Firstly, it introduces significant background noise for the model simulation and increases the likelihood of the
ensemble average to be closer to the true climate state, i.e., the stochasticity is regarded as representative of
the model error [52] and secondly, as in this case, it can be targeted to mimic the variability of some particular
unresolved process without significant computational overhead [13,27,44,55]. The SMCM is based on a
Markov chain lattice model that mimics small-scale convective elements, which interact with each other and
with the large-scale environment according to a set of probability rules. It is assumed to represent the unresolved
dynamics of the three cloud types that are observed to characterize tropical convective system building blocks
and to set the heating and cooling profiles of the tropical atmosphere, namely cumulus congestus cloud decks
that heat the lower troposphere and cool the upper troposphere, deep convective towers that heat the entire
troposphere, and stratiform anvils that warm and dry the upper troposphere and cool and moisten the lower
troposphere. Our meridional (South–North) domain is thus meshed into uniform gridboxes of about 100km
each. Each gridbox is associated with a rectangular lattice of n × n sites. The parameter n is a positive integer
ofO(100), so that the lattice sites have horizontal extent of about 1 kilometer. The multicloud model associates
with each lattice site i a four-state stochastic Markov process (Y i

t )t>0 taking the values 0, 1, 2, or 3, depending
on whether it is clear sky, or occupied by a congestus, deep, or stratiform cloud, respectively. A given site will
switch from its current cloud configuration to another according to transition probabilities, which depend on
the large-scale resolved variables. In the simple case where local interactions are ignored, all n2 stochastic
processes (Y i

t )t>0 are independent and identically distributed [27], and the probability rules depend only on the
large-scale resolved variables. These large-scale variables are the scaled convective available potential energy
(CAPE, a measure of atmospheric instability to moist convection) integrated over the whole troposphere (C)
and over the lower troposphere (Cl ),

C = CAPE

CAPE0
and Cl = CAPEl

CAPE0
,
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Table 4 Rates r jk and timescales τ jk of the cloud transitions in the multicloud model

Cloud transition Probability rate Timescale (h)

Formation of congestus r01 = 1
τ01

Γ (Cl)Γ (D) τ01 = 31.789

Decay of congestus r10 = 1
τ10

Γ (D) τ10 = 1.761

Conversion of congestus to deep r12 = 1
τ12

Γ (C)
(

1 − Γ (D)
)

τ12 = 0.238

Formation of deep r02 = 1
τ02

Γ (C)
(

1 − Γ (D)
)

τ02 = 11.821

Conversion of deep to stratiform r23 = 1
τ23

τ23 = 0.257

Decay of deep r20 = 1
τ20

(

1 − Γ (C)
)

τ20 = 9.552

Decay of stratiform r30 = 1
τ30

τ30 = 1.021

The transition rates r jk are functions of the large-scale variables CAPE (C), low-level CAPE (Cl ), and mid-troposphere dryness
D, via the activation function Γ defined in (22). The transition timescales are obtained from cloud simulation data based on a
Bayesian inference technique [9,10]

and the mid-troposphere dryness (D) defined as

D = θeb − θem

T0
, where θem ≈ 2

√
2

π
(θ1 + α2θ2) + q.

Here CAPE0 and T0 are (nondimensional) reference values for CAPE and dryness, respectively. The inter-
action rules between the different cloud types and the environment, which are designed in accordance with
observations of cloud dynamics in the tropics, are summarized as follows [27]:

1. A clear site turns into a congestus site with high probability if low-level CAPE is positive and the middle
troposphere is dry;

2. A congestus or clear sky turns into a deep convective site with high probability if CAPE is positive and the
middle troposphere is moist;

3. A deep convective site turns into a stratiform site with high probability;
4. All three cloud types decay naturally to clear sky at some fixed rate;
5. All other transitions are assumed to have negligible probability.

These rules are formalized by the probability transition rates rkl listed in Table 4, in terms of the Arrhenius-type
activation function

Γ (x) = {1 − e−x if x > 0, 0 otherwise
}

, (22)

and a set of cloud transition timescale parameters τkl . Note that from Assumption 5, we have r03 = r13 =
r21 = r31 = r32 = 0.

In practice, evolving in time each one of the N = n2 microscopic Markov chains has a high computational
overhead. Since the chains are independent, however, a coarse-graining technique is easily applied, leading to
the stochastic dynamics of the GCM gridbox cloud coverages alone, without the detailed knowledge of the
microstate configuration [24,33]. The cloud coverages or area fractions σc, σd , and σs occupied by clouds of
type congestus, deep, or stratiform are given by

σ t
c = 1

N

N
∑

i=1

1{Y i
t =1}, σ t

d = 1

N

N
∑

i=1

1{Y i
t =2}, σ t

s = 1

N

N
∑

i=1

1{Y i
t =3}, (23)

where 1{Y i
t =k} is the indicator function, which takes the value one if Y i

t = k and zero otherwise.

As a function of time, the triplet (σ t
c , σ

t
d , σ

t
s ) is effectively a three-dimensional birth–death-like process

with probability transition rules that are given in terms of the microscopic rates rkl . Given the large-scale
thermodynamic state, the birth–death process is easily evolved in time using Gillespie’s exact algorithm
[6,18,27] and yields the dynamical evolution of the cloud fractions σc, σd , and σs .

The SMCM is feedbacked onto the free troposphere dynamic equations in (11) by modulating the heating
and cooling rates. Following [30], the first baroclinic mode is forced by deep convection, and the second
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Fig. 3 Vertical profiles of heating and cooling fields associated with the three cloud types of the multicloud model. The deep
heating vertical profile has the half-sine structure of S1, whereas the congestus and stratiform have the full-sine structure of S2.
The heating curves intersect the vertical straight lines at zero heating points. a Congestus. b Deep. c Stratiform

baroclinic mode is forced by both congestus and stratiform clouds, as depicted in Fig. 3. Therefore, the
Markov model discussed here and the dynamical core large-scale model presented in the previous subsection
interact both ways and form a closed system. The large-scale model provides the convective predictors, namely
CAPE and mid-tropospheric moisture, which change the stochastic transition rates as defined in Table 4, while
the stochasticMarkovmodel provides the area fractions whichmodulate the associated heating rates as defined
in Table 2.

The heating rates Hc, Hd , and Hs associated with the three cloud types are assumed to be proportional to
the area coverages σc, σd , and σs and are closed in terms of the large-scale variables as summarized in Table 2.

3 Numerical strategy and validation

The eight free tropospheric equations in (11), the mid-tropospheric moisture equation in (12), the bulk ABL
equations (18) coupled to the elliptic equation for pressure (21), the closure equations in Table 2 supplemented
with the stochastic multicloud parameterization presented in Sect. 2.3, and the parameter values defined in
Table 3 form the full zonally symmetricmodel for the tropical meridional circulationwith stochastic convective
forcing. It is a highly nonlinear and nonconservative system of PDEs. Here, we focus on the dynamical core,
i.e., the equations of motion in (11) and (18), together with the mid-tropospheric moisture equation (12) and
the equation for pressure (21), without the forcing terms on the right-hand side, putting aside the stochastic
convection parameterization in particular. This is still a fairly large set of PDEs coupled through the advection
nonlinearities. We present now a numerical method for this system and its validation using an artificial exact
solution with the expected second-order convergence under grid refinement. Our strategy is based on the time
operator splitting of Strang [60], where the nonconservative system is judiciously divided into a conservative
part, a hyperbolic part, and a nilpotent part, following an idea put forward in [28] and used in [57]. The three
parts are handled separately by the nonoscillatory central scheme of Nessyahu and Tadmor [50] (NT below;
see also [23]), the wave propagation method of LeVeque [41], and the method of lines, respectively.

3.1 Numerical discretization of the nonconservative system

We start by writing the coupled system formed by (11), (12) and (18) as

∂ξ

∂t
+ ∂F(ξ , pb)

∂y
+ Dnc(ξ)

∂ξ

∂y
+ Nnc(ξ)

∂ξ

∂y
= S(ξ), (24)

Here, ξ(y, t) : R × R → R
13 is a vector field representing the 13 unknown prognostic variables (winds,

temperature, and moisture), F(ξ , pb) : R13 × R → R
13 is a flux vector, Dnc ∈ R

13×13 is a diagonal matrix,
and Nnc ∈ R

13×13 is a matrix of nilpotency 4. These are listed in Table 5 for the sake of completeness. As
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Table 5 Components of the split nonconservative system for zonally symmetric tropical circulation

ξ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θeb
θb
ub
vb
u0
v0
u1
v1
u2
v2
θ1
θ2
q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, F(ξ , pb) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

v2b/2 + pb
u1v1 + u2v2

v20/2 + v21 + v22 + pb + δπθb/2 + √
2(θ1 + θ2)√

2u2v1/2−θ1√
2u1v1/2−θ2√

2v1θ2 − v1 + √
2v0√

2v1θ1/4 − v2/4 + √
2v0/4

(α̃1v1 + α̃2v2)q + Q̃1v1 + Q̃2v2 − Q̃0v0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Dnc(ξ) = diag

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

vb
vb
vb
0
v0

−√
2(v1 + v2)

v0 + √
2v2/2

v0 + 3
√
2v2/2

v0
v0

v0 − √
2v2/2

v0
v0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Nnc(ξ) =
(
03×4 03×6 03×3

010×4 Ñnc(ξ) 010×3

)

, Ñnc(ξ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 −√

2(u1 + u2) 0 0 0 0
0 0 0 0 0 0
v1 −u1/2 − 8u2/3 0

√
2u2/2 0

√
2u1/4

0 v1/2 − 8v2/3 0 0 0 3
√
2v1/4

v2 2u1/3 − u2/2 0 −√
2u1 0 0

0 2v1/3 + v2/2 0 0 0 0
0 θ1/2 − 8θ2/3 0

√
2θ2 0 −√

2θ1/4
0 2θ1/3 + θ2/2 0 −√

2θ1/2 0 0
0 −κq 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pointed out earlier, the barotropic divergence relationship (10), ∂v0/∂y = −δ∂vb/∂y, is enforced through the
one-dimensional elliptic equation for pressure (21). Since the equation for the barotropic meridional wind is
also enforced through (21a), it may be eliminated from (24) and v0 is calculated from vb using the low-cost
divergence relation (10). The forcing term S(ξ) in (24) contains the remaining right-hand terms of (11), (12),
and (18), and the associated Coriolis forcing terms.

The choice of the split form (24) is preferred over various other mathematical forms because of the system’s
important following properties:

1. It has a nonlinear conservative part, that is, terms that can be arranged as

∂ξ

∂t
+ ∂F(ξ , pb)

∂y
= 0,

∂F
∂ξ

:= Ac(ξ), (25a)

where the flux function F is a nonlinear function of ξ , and Ac is the flux Jacobian matrix. Since the matrix
of wave propagation speeds Ac depends on the solution ξ , spontaneous discontinuities in the solution may
develop from smooth initial data. The eigenstructure of Ac is not accessible analytically, and thus, regions
of hyperbolicity of the system for physically relevant values of pb are not known. In the nonhyperbolic
regime, the solution can develop instabilities (see [57]).

2. It has a nonconservative nonlinear hyperbolic part which takes the form

∂ξ

∂t
+ Dnc(ξ)

∂ξ

∂y
= 0, (25b)

where Dnc is a diagonal matrix which depends on the solution ξ .
3. It has a nonconservative nonlinear advection system of the form

∂ξ

∂t
+ Nnc(ξ)

∂ξ

∂y
= 0, (25c)

where Nnc was chosen so that all its eigenvalues (linear wave speeds) are zero. In particular, Nnc has a
nilpotency degree 4 (N 4

nc = 0).

The list above highlights mathematical properties that need to be considered when designing a numerical
method for the nonconservative PDE system (24). It presents the system as a combination of three subproblems
(four with the forcing term S), each of which is discretized separately using its own proper method.
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The subproblem (25a) is the conservative part of the system and is tied to the evaluation of the pressure.
Here we use the second-order nonoscillatory NT scheme, despite the fact that (25a) is (for constant pressure) at
most only conditionally hyperbolic. The pressure is diagnosed simultaneously with the NT scheme by solving
the one-dimensional elliptic equation (21) at every time step. We can expect a degradation of the method’s
accuracy and even possible instabilities occurring when the system falls into a nonhyperbolic regime. A careful
analysis of the system’s hyperbolic/nonhyperbolic regions of the state space is beyond the scope of this paper.
However, Stechmann et al. have demonstrated with numerical experiments, for the case of the two baroclinic
modes alone, that the corresponding numerical scheme remains stable even when the solution is driven to
regions of nonhyperbolicity [57].

For the nonlinear hyperbolic part of the system, we use the wave propagation method of [42] with a
linearized Riemann solver. Although the method gives second-order accuracy when applied to quasilinear
hyperbolic problems with a constant coefficient matrix, formal second-order accuracy is not granted when
used on variable-coefficient problems of the form (25b) [40].

Finally, the method of lines [42] is used to solve the nonconservative subproblem (25c). The method of
lines reduces the initial PDE system (25c) into a system of ODEs after using centered finite differences on the
spatial derivatives.We solve the resulting system in time using conventional ODE solvers where a second-order
Runge–Kutta scheme is used to advance in time. It remains to solve the pressure gradient. Integrating (21a)
once readily gives

∂pb
∂y

= C + 1

1 + δ

[

Φ − Φ|y=a − ∂φ

∂y
+ ∂φ

∂y

∣
∣
∣
∣
y=a

]

, y ∈ [a, b], (26)

Where C is the integration constant. The pressure gradient, which arises naturally as a forcing term in the
momentum equations, is thus determined up to an arbitrary additive constant by this method. The choice here
for that constant is C = ∂pb/∂y|y=a = 0, which is obtained by setting y = a in (26). This in turn constrains
the barotropic pressure gradient and ABL/baroclinic temperature gradients via the relationship (20):

∂pb
∂y

= ∂p0
∂y

+ δπ

2

∂θb

∂y
+ √

2
∂

∂y
(θ1 + θ2) = 0 at y = a, b. (27)

This is automatically satisfied for the case of Neumann boundary condition imposed here:

∂pb
∂y

= ∂p0
∂y

= ∂θb

∂y
= ∂θ1

∂y
= ∂θ2

∂y
= 0 at y = a, b. (28)

This corresponds to a situation where the fluid is not driven out of the computational domain by a pressure
gradient; we are interested in the case of pure Boussinesq buoyancy driven flows.

3.2 Validation and grid convergence error analysis

Although the true solution to the governing PDE is not known, we can monitor grid convergence toward a
nontrivial exact solution by adding the appropriate forcing to the PDE. The necessary condition is that the
solution be nontrivial, that is, that it has significant solution structure to exercise higher-derivative calculations
[56]. To this end, we use a traveling sinewave solution on a 2π-periodic domain for each one of the components
of ξ :

ξmwav(y, t) = sin(y − t), m = 1, . . . , 13, y ∈ [0, 2π], t ≥ 0. (29)

Although this mathematically naive solution is unphysical, it allows to accomplish the code verification just
as well as physically realistic solutions.

We verify the numerical scheme for the advection part of the PDE, which we denote L(ξ) := ξ t +
[F(ξ , pb)]y + Nnc(ξ)ξ y + Dnc(ξ)ξ y . The vector ξwav of traveling wave solutions (29) will then satisfy the
following “balanced” system

L(ξ) = Ψ (30)
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Fig. 4 Comparison of exact (black) and numerical (blue) solutions for the vb sine wave (29) at t = 0.6 using a grid with 32, 64,
128, and 256 points. The time step is Δt = CFLΔy/100 with CFL = 0.1. a 32 grid points. b 64 grid points. c 128 grid points. d
256 grid points

exactly, where Ψ = L(ξwav). In summary, the grid convergence test is carried on the following problem:

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L(ξ) = Ψ , y ∈ [0, 2π],
2π − periodic BC on ξ : ξ(0) = ξ(2π),

∂2 pb
∂y2

= 1

1 + δ

[
∂Φ

∂y
− ∂2φ

∂y2

]

,

BC on ∂pb/∂y
ξ(y, 0) = ξwav(y, 0).

(31)

Note that Φ and φ are given by (21b) and (21c) except for the Coriolis and radiative convective forcing terms
which are neglected. The ABL pressure gradient BC is merely a constant and is immaterial for the convergence
results; it is set here to zero for simplicity, albeit inconsistent with periodic BC on the field variables. The
system is solved using the Strang splitting strategy, with a trapezoidal second-order ODE solver for the forcing
term.

A graphical comparison of the exact and numerical solutions is shown in Fig. 4 for the vb variable using a
grid with 32, 64, 128, and 256 points. The error between the exact and the numerical solutions is quantified at
a fixed time for themth component of ξ using the 1-norm ‖em‖1 = Δy

∑J
j=1 |ξmj − ξmwav j

|, and the max-norm
(or ∞-norm) ‖em‖∞ = max1≤ j≤J |ξmj − ξmwav j

|, where J is the total number of grid points. Since the solution
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Fig. 5 Second-order convergence in the 1- and ∞-norm

ξwav is smooth, we expect pointwise convergence as measured by the max-norm. As expected, a second-
order rate of convergence for all variables is demonstrated in Fig. 5a, b in both the 1-norm and max-norm,
respectively.

4 Application to an idealized summer monsoon setting

In this section, we present simulation results of the dynamics of the Hadley-monsoon circulation and show
that on an aquaplanet [2] with nonuniform sea-surface temperature (SST), realistic mean Hadley cells with
monsoonal-type flow are reproduced with this simple model. More specifically, we integrate in time the fully-
coupled free atmosphere-ABL numerical model forced by the radiative, convective, and turbulent source terms
listed in Table 2 supplemented by the SMCMmodel for the cloud area fractions. The various parameters used
here are listed in Table 3. The system is integrated as an initial value problem with the initial condition set
to a radiative convective equilibrium (RCE) solution [29], i.e., a space and time homogeneous solution of the
coupled model equations. The RCE value of CAPE is given by the solution of the nonlinear algebraic equation
[27]

QR1 = 1

Hm
σd(CAPE)

√

CAPE,

where σd is the statistical RCE of the deep cloud coverage, defined as the equilibrium distribution [27] of the
multistateMarkov chainYt described in Sect. 2.3. For the stochastic part, the equilibriumvalues are given by the
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limiting distribution of the ergodic Markov chain. Details on how to construct an RCE solution for the coupled
system can be found in [8] (see also [26,27]). In the context of climate modeling, the computation of a realistic
RCE solution is a useful exercise, which starts by imposing climatological values for air temperature and
moisture profiles and constrain some unknown parameters such as the evaporative timescale or the reference
scale for downdraft mass flux [29]. The RCE solution used here is based on temperature and moisture profiles,
leading to the discrepancy values

Δs θ̄e = 10K, Δs θ̄ = 0,Δt θ̄e = 5K, Δt θ̄ = 0, Δm θ̄e = 11K, Δm θ̄ = −5.5K,

where the overbars denote RCE values. These RCE values are not only based on realistic climatology, but they
represent a stable equilibrium based on linear theory [8,29,61].

The system is forced by the uniform radiative cooling and by imposing a constant (in time) SST with a
nonuniform meridional distribution on the form of a Gaussian centered at 15◦ N to mimic the location of the
ITCZ during the Northern Hemisphere summer monsoon season. We note that for the model, this amounts
to specifying the meridional distribution of Δs θ̄ and Δs θ̄e as shown in Fig. 6a for Δs θ̄e. The computational
domain is reduced to a meridional slice of the troposphere between 40◦ S and 40◦ N latitudes (roughly
−4500 km ≤ y ≤ 4500km) with a grid size of 256 points and a time step of 3min. The climate simulations
are carried for 2000days or roughly 6years with this perpetual summer monsoon conditions. The stochastic
model is called at every time step and evolved independently over the duration of the time step using the
exact algorithm of Gillespie as already mentioned. We note that this adds very little computational overhead
since evolving the coarse-grained birth–death process to the next transition involves only two samples of the
uniform distribution and that the effective timescales of the stochastic system are bounded from below by the
transition timescales τkl in Table 4 divided by the number of lattice sites under each large-scale model gridbox,
N = n2 = 30 × 30. We note that the transition times in Table 4 are inferred from large eddy simulation data
representing realistic dynamics of tropical convective clouds using a rigorous Bayesian approach [9,10].

Numerical simulation results show that the stochastic monsoon circulation model has a very rich dynamics
in terms of both climatology and variability [8], and which vary considerably with the choice of parameters.
Themodel simulations exhibit some physical behavior reminiscent of themonsoon climatology [19].We report
here two cases to illustrate these results.

We consider two cases with all model parameters fixed to their standard values reported in Table 3 except
for the parameter a0 which takes the values a0 = 1 and a0 = 3, respectively. The parameter a0 is an important
one in the model since it parameterizes the convective response to fluctuations in the dry static buoyancy
(θ1 + γ2θ2); increasing the magnitude of a0 increases the effect of the dry static stability (see Table 2, closure
equation for Hd ), and thus reduces conditional instability [31].

In Fig. 6b, we report the root-mean-square time series of all the prognostic variables for the a0 = 3 case.
From this figure, we can see that the solution undergoes a transient phase of roughly 250days (roughly three
times the Newtonian damping timescale in Table 3) and then enters its statistical equilibrium and randomly
oscillates around it. The oscillations have a period of roughly 25days. This statistical equilibrium defines the
new climatology for the model, which is concurrent with the imposed non uniform surface forcing.

We take the time average of this solution over the last 1000days of the simulations and plot in Fig. 7
the climatologies associated with the two statistical steady states, corresponding to a0 = 1 and a0 = 3,
respectively. These plots include the convective heating and cooling profiles, the three velocity component
profiles, the pressure field, the potential temperature field, with the (v, w) wind vectors overlaid. Recall that the
evolved baroclinic and barotropic components are the coefficients of the vertical sine and cosine expansions
used in the Galerkin truncation procedure and the same basis functions are used here to reconstruct the total
fields reported in Fig. 7. These pictures display many features reminiscent of the summer monsoon circulation,
including a local Hadley circulation [19] with rising air in the Northern Hemisphere and sinking slightly
South of the Equator consistent with the results of [2]. The rising branch coincides with the region of active
deep convection marked by positive heating in the mid- and upper troposphere. The pressure field displays
a region of significant pressure drop, near the surface, in the region of active convection which delimits the
monsoon trough [2,19]. More importantly, the zonal wind displays an interesting twist with easterlies at the
Equator, shifting to westerly South of the pressure trough and then back to easterlies. This is a signature of
the reversed wind directions associated with the summer monsoon season as relayed earlier. However, there
are some differences between the two runs. The main difference resides in the potential temperature profiles:
While the case with a0 = 1 displays warm temperature maximum in the middle of the troposphere, the case
with a0 = 3 has a top heavy temperature profile. Further discussion of the physical significance including the
wave dynamics (deviations from this climatology) and mechanisms associated with the model parameters and



A zonally symmetric model for the monsoon-Hadley circulation 107

-40 -20 0 20 40

8
10

12
14

16

 ° Latitude
θ e

s -
 θ

eb
   

(K
)

(a)

0 500 1000 1500 2000

2
3

4
5

6

time (days)

m
/s

u b
u0
u1
u2

(b)

Fig. 6 a Imposed sea-surface temperature profile. b The root-mean-square time series for the zonal wind fields in the case of
a0 = 3

their relevance to Nature is above the scope of this paper. They will be analyzed and discussed extensively
elsewhere by the authors. Nonetheless, this somehow illustrates howmuch complex and howmuch fascinating
a climate model can be and exhibits some of the grand challenges faced by the climate modeling community,
especially regarding the convective parameterization problem.

5 Conclusion

We presented a zonally symmetric model for themeridional circulation of the summermonsoon and the associ-
ated local Hadley circulation. The model is based on the multicloud model with a dynamically active boundary
layer of Waite and Khouider [61] coupled to the stochastic convection model of Khouider et al. [27]. The
dynamical core of the model is based on a systematic projection of the β-plane primitive equations of tropical
dynamics onto the first three baroclinic modes of vertical structure, the vertically uniform barotropic mode and
the first two baroclinic modes, in the free troposphere. The three modes are coupled with each other through
advective nonlinearities and through a bulk boundary layer dynamical model that directly forces the barotropic
mode through horizontal convergence. Finally, the stochastic cloud model provides the diabatic heating for
the free troposphere dynamics and forces the boundary layer both dynamically and thermodynamically.

This paper discusses the design and implementation of a numerical method to solve the multimode model
and its coupling to the stochastic cloud model. The coupled 4-mode model dynamical core is a nonlinear
and nonconservative first-order PDE system of 13 equations, which can potentially lose hyperbolicity [57].
Inspired by previous work [28,57], we use an operator time-splitting strategy [60] where this dynamical core
is divided onto three main components, a conservative system, a hyperbolic system, and a nilpotent part. The
resulting initial value problem is discretized by combining, respectively, the central scheme of Nessyahu and
Tadmor [50], the wave propagation method of Leveque [40], and the method of lines. Other splitting strategies
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Fig. 7 Mean Hadley-monsoon circulation simulation by the coupled three vertical and ABL mode model with the stochastic
convection parameterization. a a0 = 1 and b a0 = 3

are conceivable [7], but as demonstrated by Stechmann et al. [57], the one used here has the advantage of not
blowing up even when the system is forced and driven, in phase space, toward regions of nonhyperbolicity. It
is not clear whether unsplit or other splitting discretizations can pass this hard test [7].

The splitting strategy is validated using a synthetic exact solution and formal second-order convergence,
under grid refinement is recovered. Finally, the dynamical core forced by the stochastic cloud model is applied
to an idealized test case ofmonsoon conditions. Themodel reproducesmany important features of themonsoon
dynamics and the local Hadley circulation [2].
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