
Theor. Comput. Fluid Dyn. (2016) 30:129–138
DOI 10.1007/s00162-015-0369-2

ORIGINAL ARTICLE

F. De Vita · M. D. de Tullio · R. Verzicco

Numerical simulation of the non-Newtonian blood flow
through a mechanical aortic valve
Non-Newtonian blood flow in the aortic root

Received: 12 January 2015 / Accepted: 7 October 2015 / Published online: 12 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This work focuses on the comparison between Newtonian and non-Newtonian blood flows through
a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells,
mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of
a non-Newtonian fluid owing to the action of the cells’ membrane on the fluid part. The common practice,
however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the
effective viscosity becomes independent of the former. In this paper, we show that this is not always the case
even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature
of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate
is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning
character might affect the system dynamics. A direct inspection of the various flow features has shown that
the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for
the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood
cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model
than for the Newtonian one.

Keywords Non-Newtonian fluid · Hemolysis · Mechanical aortic valve

1 Introduction

Cardiovascular disorders are nowadays the leading cause of death in developed countries, and the related health
and economic issues have lead to a number of devices and surgical techniques for their treatment [1]. Examples
of such devices range from coronary stenting for stenoses up to the total artificial heart. Among many others,
valvular heart diseases have a relevant incidence [2], and this has motivated the need for major improvements
in the artificial valves as well as in the surgical repair and implantation techniques. The human heart has four
valves since it consists of two pumps (right and left) each one with two chambers: the right heart pumps the
blood to the pulmonic (small) circulation and it provides about 30 mmHg of maximum pressure difference.
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The left heart, on the other hand, feeds the systemic (large) circulation that needs no less than 90–100mmHg to
work properly. The valves ensure that the blood flows only in one direction by opening during the forward-flow
and closing at the beginning of the back-flow thus minimizing the blood regurgitation and maintaining the
pumping efficiency. Because the valves of the left heart have to withstand the largest pressure differences, they
are more subject to damage and the aortic one is affected more frequently [3].

Numerical simulations of the blood flow through the functional unit aortic root/aortic valve are becoming
a precious tool to improve surgical techniques and the performance of prosthetic devices. A computational
model for the complete system is therefore driven by physical, physiological and economic motivations;
sufficiently accurate computational models, in fact, would serve as inexpensive tools for scientific and medical
research that, combined with medical imaging and other cardiovascular diagnostic techniques, would provide
fundamental information for the improvement of the patients care [4]. In fact, numerical simulations allow the
measurement of potentially any primitive or derived quantity that would be prohibitive in in vivo or even in
vitro tests, they permit the proof of concept of innovative technologies and, in the near future, they could be
used for patient-specific diagnoses or surgical planning.

On the other hand, the reliability of numerical simulations depends on the quality of the numerical method
and on the fidelity of the physical model; among the challenges of the former, there is the wide range of spatio-
temporal scales, the intrinsic unsteady nature of the problems and the demanding computational techniques.
The physical model, on the other hand, describes the geometry of the system, the properties of solid materials,
their interactions with the flow and also the constitutive relation for the fluid. Concerning the latter, in the
literature, the common belief is that the blood behaves as a Newtonian fluid in large vessels [6], since its
effective viscosity becomes asymptotically constant for high shear rates. In the aorta, the largest artery, this
assumption is taken for granted and all the studies rely on the Newtonian fluid model where the viscosity is
constant and independent of the deformation rate. Looking at [6], however, it appears that this conjecture is
based on the hypothesis of a steady laminar flow within a rigid cylindrical domain (Hagen–Poiseuille flow).
In reality, the blood flow in the aortic root is pulsatile and transitional (or even turbulent) which implies that
the previous assumption might not be correct.

In this paper we show, by direct numerical simulations, that indeed it is the case and using a non-Newtonian
(shear thinning) fluid model yields quite different results for the phenomenon of hemolysis. On the other hand,
other features like the dynamics of the mechanical valve or the transvalvular pressure drop remain basically
unchanged regardless of the fluid model.

2 The Model

The computational setup is that sketched in Fig. 1 with a bileaflet mechanical valve in a physiological aortic
root, similarly to what simulated in [7]. The geometry of the aortic root exactly reproduces the model used in
[7], and it closely corresponds to the physiological case: at the outlet of the valve, the three sinuses of Valsalva
are placed at equispaced radial positions. The valve is mounted in an intra-annular configuration, meaning that
the valve housing does not extend into the sinuses of Valsalva, and in an asymmetric orientation with respect
to the sinuses. The flow rate is prescribed according to the time law of Fig. 2 through the circular section of
diameter d = 2.3 cm that is also the main scaling length. The fluid flow produces hydrodynamic loads that

Fig. 1 Sketch of the computational setup. Main lengths: D = 1.26d , � = d , L = 5d , H = 1.14d , h = 0.26d
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Fig. 2 Mean axial velocity during the flow cycle. The symbols identify: valve fully open (filled square), peak flow (open square),
valve closing (bullet) and flow settling (open circle). The same symbol meaning will be maintained through the paper

cause the motion of the two leaflets hinged at the frame of the valve (dark gray element of Fig. 1). The time-
dependent position of the leaflets, in turn, determine the geometry of the fluid domain and therefore the flow.
These problems, where fluid and structure influence each other, are referred to as fluid/structure interaction
problems (FSI), and they need the solution of the fluid and the structural part in a coupled way. Details of the
solution procedure can be found in [7]; here, it suffices to mention that the Navier–Stokes equations

Du
Dt

= −∇ p + 1

Re
∇ · [2ν(E)E] + f, ∇ · u = 0 (1)

and the equilibrium to rotation of the leaflets

Ii
d2θi
dt2

= Ti , with i = 1, 2 and Ti =
∫
Si

[(τ · n − pn) × r] · x̂dS (2)

are solved iteratively using a predictor-corrector method. Here, D/Dt is the material derivative, u and p,
respectively, velocity vector and pressure andE = [∇u+(∇u)T ]/2 the symmetric part of the velocity gradient
tensor. f is the body force termused to enforce the no-slip velocity boundary condition on the complex geometry
within the immersed boundary context as described by [8]. Ii is the moment of inertia of the i-th leaflet and θi
its angular position. Ti is the moment of the hydrodynamic loads with respect to an axis passing through the
hinges (whose unit vector is x̂).

The setup of Fig. 1 is ‘immersed’ in a Cartesian structured grid having 262 × 181 × 181 nodes in the
streamwise and cross-stream directions, respectively. The nodes have been distributed non-uniformly so that
they aremainly clustered in the region of the valve and its wake that needmore spatial resolution. The geometry
of the valve is a perfect copy of the real one (Sorin Group) except for the hinge that, being very sophisticated,
would deserve a dedicated investigation. Here, following [7], it has been modeled by a gap of 0.15 mm width
in which five computational nodes have been clustered in order to describe the crossing flow. This spatial
resolution has already been checked in other papers [7] against grid-refinement checks to be adequate to
correctly resolve the main problem (the Reynolds number is later defined).

The incompressible Navier–Stokes equations are discretized in space using second-order-accurate central
differences in conservative form. The resulting system is inverted using a fractional-step method, where the
viscous terms are computed implicitly and the convective terms explicitly ([11]). All the simulations have
been run with a fixed Courant number CFL = 0.25, thus having a variable time step Δt which is dynamically
adjusted during the cycle. The time integration procedure employs a very high temporal resolution; in this
case, the time spacing ranged from 2 to 200µs during a cardiac cycle. A strong fluid–structure interaction
coupling, in which Eqs. (1, 2) are solved together through an iterative procedure, is required to ensure stability
and robustness of the simulation over the whole cardiac cycle owing to the high acceleration of the leaflets.
This is necessary because the added mass effects are relevant in the valve dynamics and a ’loose coupling’
approach, in which the two systems are integrated separately, would diverge [10]. More details on the method
are given in [7].
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Fig. 3 Variation of the kinematic viscosity ν as function of the shear rate norm E , according to the relation (3), for an hematocrit
of 40%. The horizontal dashed line is the value ν∞ used for the Newtonian simulation

Concerning the added mass, it is worth mentioning that, being forces and momenta computed through the
surface integrals (2), its effect is already accounted in those expressions being the pressure and viscous stress
distribution over the leaflet surface determined also by the inertia of the displaced fluid. On the other hand, if
the leaflets dynamics were computed by force and moment coefficients (determined from steady flows), the
added mass effect would need to be considered (Fig. 3).

Ten complete cardiac cycles are simulated and the results are phase averaged. The assumed cardiac output
is about 5 l/min at a fixed beat rate of 70 beats/min, resulting in a stroke volume of about 72 ml. The blood
density is set to ρb = 1060 kg/m3. The peak Reynolds number, based upon the bulk velocity at the peak inflow,
U = 1.1 m/s, the inflow tube diameter and the asymptotic blood kinematic viscosity ν∞ = 3.7× 10−6 m2/s,
is about Re = 6800.

Further details about the numerical values of the various quantities and material properties can be found in
[7] and [9]; the only relevant difference is that here the kinematic viscosity of the fluid can be either a constant
ν(E) = ν0 or a function of the rate-of-strain tensor E. In the first case, the fluid is Newtonian, in the second
non-Newtonian.

Among the various possibilities, we have adopted for the blood the shear thinningmodel of Carreau–Yasuda
[6] that reads

ν(E) = ν∞ + (ν0 − ν∞)[1 + (λE)2](n−1)/2 (3)

where E =| E | is the norm of the rate-of-strain tensor and both λ and n are hematocrit-dependent parameters.
We have chosen the parameters for an adult healthy male with an hematocrit of 40% that yield ν∞ � 3.7 ×
10−6 m2/s for high shear rates and ν0 � 16ν∞ for vanishing shear rates.

3 Results

3.1 Preliminary Considerations

Using the same flow conditions described in the previous section with a Newtonian fluid model, as done by
[9], for each of the four characteristic phases of the cycle indicated in Fig. 2, the modulus of the rate-of-strain
tensorE has been computed from the instantaneous three-dimensional velocity field in each point of the domain
and its probability distribution function (pdf) computed. Since the flow is pulsatile, the pdfs have been phase
averaged over 10 cycles although already a couple of cycles yielded converged statistics. The results are shown
in Fig. 4, and they clearly show that none of the shear rate distributions supports the hypothesis of fluid with
constant viscosity; this is not even true for the pdf computed at the flow peak instant of the cycle where the
velocities are the highest and the shear rates more intense (Fig. 3).

Looking at instantaneous snapshots of the flow (Fig. 5), this result is not surprising since the high shear
rate regions look very localized in space and there are several recirculations and laminar pockets where the
shear rates are reduced. In addition, from Fig. 2 it is evident that for more than 60% of the cycle, the flow
rate is nearly zero and the incipient turbulence that has bursted during the decelerating part of the cycle (with
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Fig. 4 Probability distribution functions of the shear rate for 4 representative instants in the cycle for the Newtonian fluid model.
The pdfs are overlaid onto a curve for the shear rate dependence of the blood viscosity (hematocrit 40%). Symbols as in Fig. 2

Fig. 5 Instantaneous snapshots of axial velocity through a central symmetry plane at three instants of the cycle for the Newtonian
fluid model: a peak flow, b valve closing and c flow settling. (red maximum values, blue minimum values)

an adverse pressure gradient) gradually settles down because of viscosity. In this scenario, the dynamics is
clearly dominated by the low shear rates regions and a non-Newtonian fluid model is more appropriate. These
considerations are the main motivation for the present study.

3.2 Non-Newtonian fluid simulations

The simulations described above have been repeated using the shear thinning relation (3), and some results
are reported and discussed below. A first important finding is that the dynamics of the leaflets (in terms of
positions in time and velocities of opening and closing) is essentially unaffected by the non-Newtonian fluid
model as shown by the results of Fig. 6. This is due to the fact that the largest contribution to the moments
Ti of Eq. (2) is given by the pressure term while the viscous part is generally negligible. Direct evidence
of this statement is given in Fig. 7 showing the separate contributions of the pressure and viscous stresses
contributions, Mp and Mν , respectively (in non-dimensional units), to the moments of Eq. (2). For the same
reason, also the transvalvular pressure drop (which in fact is the overhead paid by the heart) shows negligible
differences for the two fluid models, with a peak value of 1600 Pa (�12mmHg) and a mean systolic value of
490 Pa (� 3.7 mmHg) in both cases (Fig. 8).

The pdfs of the shear rate and the instantaneous snapshots of Figs. 9 and 10, on the other hand, show some
differences either in the structure of the large-scale flow and in the relative importance of large and small
scales. The latter are particularly relevant for the phenomenon of hemolysis that is the permanent damage of
a red blood cell owing to a combination of high levels of shear rates and long exposure times.

In this paper, we have quantified these factors by the hemolysis index (HI) [12], as the ratio of the increase
in the plasma-free hemoglobin concentration (dPHb, in mg/100 ml) after mechanical loading to the total
hemoglobin concentration (Hb, in mg/100 ml): HI = 100 · dPHb/Hb(%). This model has been implemented
in our calculations using a Lagrangian approach that allows to account for the exposure time to a given stress
level. More in detail, 4×105 ‘fluid particles’ are tracked as they flow into the system, andHI is estimated along
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Fig. 6 Angular position of the upper leaflet of the mechanical valve during the flow cycle: solid line for the Newtonian fluid
model, dashed line for the non-Newtonian fluid model
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Fig. 7 Time evolution of the pressure (a) and viscous (b) moments about the hinge for the upper leaflet of the mechanical valve
during the flow cycle: solid line for the Newtonian fluid model, dashed line for the non-Newtonian fluid model
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Fig. 8 Systolic transvalvular pressure drop across the valve: solid line for the Newtonian fluid model, dashed line for the non-
Newtonian fluid model

each trajectory by evaluating the total damage accumulated in time. This requires a modifications of the above
equation in order to improve its accuracy in unsteady flow environments. In particular, the model proposed by
[15] defines ΔH Ii = αCtα−1

i τ(ti )Δti (with C = 3.62× 10−5, β = 2.416 and α = 0.785 for red blood cells)
as the incremental hemolysis index accumulated at time ti over a time interval Δti because of an exposure
to a stress τ . It is worthwhile mentioning that in this analysis, we have not introduced Lagrangian particles
in the flow field; instead, we have only tracked in a Lagrangian way fluid particles; these are not single red
blood cells but rather small elements of fluid still considered as a continuum phase. These particles, therefore,
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Fig. 9 Probability distribution functions of the shear rate for 4 representative instants in the cycle for the non-Newtonian fluid
model. The pdfs are overlaid onto a curve for the shear rate dependence of the blood viscosity (hematocrit 40%). Symbols as in
Fig. 2

Fig. 10 Instantaneous snapshots of axial velocity through a central symmetry plane at three instants of the cycle for the non-
Newtonian fluid model: a peak flow, b valve closing and c flow settling. (red maximum values, blue minimum values)

do not need to be coupled either one-way or two-way with the flow since they are the flow. In other words,
starting from selected initial control points we integrate the equation ẋ(t) = u(x, t) that gives the trajectory of
the fluid particles over which we can compute the damage accumulated by the red blood cells contained in the
fluid particle from the knowledge of the stress level along the trajectory and the exposure time to that stress.

In complex flow fields, defining the scalar quantity, τ , is not trivial since the stress is a tensor and it is
strongly dependent on space and time. An interestingmethod has been proposed in [13], where the deformation
of red blood cells is directly considered. In particular, red blood cells are assumed to behave like neutrally
buoyant liquid droplets with defined physical properties. An evolution equation for a symmetric, positive
definite morphology tensor, S, whose square roots of eigenvalues and eigenvectors represent the half-axes of
the ellipsoidal droplet, is solved [14]. The equation reads:

dS
dt

= −(1 − f2)(Ω · S − S · Ω) = − f1[S − g(S)I] + f2[∇u · S + S · ∇uT ], (4)

where g(S) = 3III/II with III and II the third and the second invariant of the tensor S, respectively, and
f1 = 5.0 s1, f2 = 4.2298 · 104 are model parameters calibrated to capture RBC-specific behavior. Equation
(4) takes into consideration the competing action of interfacial tension on the droplet surface, which recovers
the spherical shape of the droplet, and the forces exerted by the surrounding liquid that tend to deform it. All
the details about the integration of Eq. (4) can be found in [9]. Here, it suffices to mention that from history of S
along each trajectory, the time evolution of the largest (Li ) and smallest (Bi ) half-axes of each i-th ellipsoidal
particle can be computed together with the form factor Φi = (Li − Bi )/(Li + Bi ) from which the strain is
estimated as τ = μ2Φi f1/[(1 − Φ2

i ) f2] being μ the dynamic viscosity of the fluid and f1 and f2 the above
defined constants used in Eq. (4).

The HI for each Lagrangian trajectory is then averaged among the tracers and phase averaged among the
cycles so that a single evolution for each configuration has been obtained. The rationale for this averaging is
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Fig. 11 Time evolution of the HI for the non-Newtonian fluid (NNF) model (solid blue), the Newtonian fluid (NF) model (solid
red) and NF simulation with NNF calculation of viscosity (chaindot red).

Fig. 12 a Time evolution of the averaged viscosity felt by the fluid particles for the non-Newtonian fluid (NNF) model (solid
blue), the Newtonian fluid (NF)model (solid red) andNF simulationwith NNF calculation of viscosity (chaindot red). bAveraged
equivalent shear rate experienced by the fluid particles for the non-Newtonian fluid (NNF) model (solid blue) and the Newtonian
fluid (NF) model (solid red)

that, as noted in [7], the life time of a red blood cell is 120 days, and with a flow rate of 5 l/min and a total
volume of blood of 5 l each red blood cell will cross the aortic valve about 1.75× 105 times; this implies that
every cell is likely to experience every ‘event’ of the flow through the aortic valve and itsHI can be accordingly
obtained by and ensemble average of simultaneous events.

Figure 11 shows that the cycle evolution of the hemolysis index behaves in a very similar way in both cases
although it is evident that the non-Newtonian fluid model yields a larger HI (larger damage): the difference in
the averaged value is of the order of 20%. This is consistent with the results of Fig. 9 showing a stronger flow
activity in the low shear rate region where the non-Newtonian fluid has a larger viscosity.

We wish to stress that being HI computed from the fluid stress, it depends on the viscosity model on two
counts: ı) Because different fluid models (Newtonian and non-Newtonian) produce different flow fields and ıı)
because the calculation of the stress in the HI formula, for a given a flow field, also depends on the local value
of viscosity. In order to separate these two effects, we have also performed the computation ofHI following an
idealized procedure in which the flow field is computed using the Newtonian fluid model while the calculation
of the hemolysis index relies on the non-Newtonian shear thinning model. The result is also reported in Fig. 11,
and it is clear that the two effects are entangled since considering only one of them does not account for the
total difference between Newtonian and non-Newtonian models.
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This observation is reinforced by the curves of Fig. 12a showing that the viscosities themselves behave
differently during the cycle and that even if the viscosity ν(E) were computed according to Eq. (3) but using
the rate-of-strain tensor E coming from the simulation with the Newtonian fluid model, the results would not
be the same.

It is interesting to note, finally, that the cycle-averaged shear rate experienced by the fluid particles for
the non-Newtonian and Newtonian fluid models (Fig. 12b) do not differ much with the latter slightly bigger
than the former as it could be guessed from the reduced viscosity. Nevertheless, when E computed from the
Newtonian fluid simulation is plugged into the Carreau–Yasuda model (3), neither the HI nor the effective
viscosity are correctly predicted. This is because the distribution of the shear rate among the spatial scales turns
out to be different for the two fluid models as is evident from the comparison of the probability distribution
functions of Figs. 4 and 9. This suggests that, even if the increased HI predicted by the non-Newtonian fluid
model could be recovered by an ‘ad hoc’ increase in the ν∞ viscosity of the Newtonian fluid model, this tuning
would not have a general validity. In fact, each flow would have a different structure and a different share of
small and large scales thus yielding different effective viscosities.

4 Conclusions

A series of direct numerical simulations of the blood flow through a mechanical bileaflet aortic valve, under
physiologic conditions, have been performed using a Newtonian and a non-Newtonian (Carreau–Yasuda shear
thinning) fluid model.

Despite the common belief that the blood behaves as a Newtonian fluid in large vessels, the results have
shown that the Newtonian fluid model might not be appropriate in all situations since the flow is very inho-
mogeneous in space and time. Even at the highest flow rate, the zones of high shear rates are very localized
in space while extended regions with recirculations or homogeneous flow are present. In addition, for most of
the cardiac cycle the mean flow rate in the aortic root is zero and the flow is settling down thus producing low
shear rates.

A comparison of the results for the Newtonian and non-Newtonian fluid model, in otherwise identical
conditions, has shown that the valve dynamics and the transvalvular pressure drop are hardly affected by the
fluid model while the hemolysis shows relevant differences. We can then conclude that indeed the blood in the
aorta behaves as a Newtonian fluid for what concerns the dynamics of the valve and the large-scale features
of the flow. In contrast, the blood damage produced by the abnormal shear rates induced by the mechanical
valve is different with a value of the hemolysis index (HI) that is 20% bigger in the case of non-Newtonian
fluid. These aspects and the final goal of the numerical investigation should be kept in mind when selecting the
computational fluid model since the non-Newtonian fluid requires smaller time step sizes for the numerical
integration of the equations and the simulation is about twice more expensive.

It is worth noting that a 20% variation of the hemolysis index might not be significant because there is a
lot of uncertainty in the parameters for a non-Newtonian blood model and even for the structure of the model
itself. Within this scenario, the figures might be easily doubled or halved by a different blood model. The main
claim of this paper, however, is not the specific HI variation but rather that the non-Newtonian character of the
blood can have an effect on some aspects of the hemodynamics even in the aorta where the common belief is
that the blood behaves as a Newtonian fluid.

As an aside, we note that using a shear thinning model for the blood is only a first step toward more realistic
simulations since the blood exhibits also viscoelastic properties and a model should account also for the time
history of the rate of strain. This aspect has not be accounted yet, and it might be the subject for a future study.

References

1. Guccione, J.M., Kassab, G., Ratcliffe, M.: Computational Cardiovascular Mechanics. Springer, Berlin (2010)
2. Votta, E., Le, T.B., Stevanella,M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations

of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)
3. Carrel, T., Englberger, L., Stalder, M.: Recent developments for surgical aortic valve replacement: the concept of sutureless

valve technology. Open J. Cardiol. 4, (2013).
4. Marsden, A.L.: The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow fields in

carotid bifurcation model. Phys. Fluids 25, 101303 (2013)
5. Gijsen, F.J.H., Van de Vosse, F.N. et al.: The influence of the non-Newtonian properties of blood on the flow in large arteries:

steady flow fields in carotid bifurcation model. J. Biomech. 32, 601–608 (1999)



138 F. De Vita et al.

6. Siginer, D.A., De Kee, D., Chhabra, R.P.: Advances in the flow and Rheology of non-Newtonian fluids. Elsevier, Amster-
dam (1999)

7. de Tullio, D., Cristallo, A., Balaras, E., Verzicco, R.: J. Fluid Mech. 622, 259–290 (2009)
8. Vanella, M., Balaras, E.: J. Comput. Phys. 228, 6617–6628 (2009)
9. de Tullio, M.D., Nam, J., Pascazio, G., Balaras, E. Verzicco: R. Eur. J. Mech. B/Fluids 35, 47–53 (2012)
10. Borazjani, I., Ge, L., Sotiropulos, F.: J. Comput. Phys. 227, 7587–7620 (2008)
11. Verzicco, R., Orlandi, P.: J. Comp. Phys. 123, 402–414 (1996)
12. Goubergrits, L., Affeld, K.: Artif. Organs 28, 499–507 (2004)
13. Arora, D., Behr, M., Pasquali, M.: Artif. Organs 28, 1002–1015 (2004)
14. Maffettone, P., Minale, C.: J. Non Newt. Fluid Mech. 78, 227–241 (1998)
15. Giersiepen, M., Wurzinger, L.J., Opitz, R., Reul, H.: Intl J. Artif. Organs 13, 300–306 (1990)


	Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve 
	Non-Newtonian blood flow in the aortic root
	Abstract
	1 Introduction
	2 The Model
	3 Results
	3.1 Preliminary Considerations
	3.2 Non-Newtonian fluid simulations

	4 Conclusions
	References





