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Abstract This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct
CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate
difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges
associatedwith constructing embedded boundary information, bodymotions and applying boundary conditions
on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the
study of a fluid–structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where
the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work,
and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations
is necessary and forms the main contribution of the paper. A combination of level set-based active contour
segmentation with optical flow and image morphing is shown to enable the image-to-computation process.

Keywords Moving boundaries · Level sets · Optical flow · Morphing · Image-based modeling · Cartesian
grid methods

1 Introduction

This work is directed toward developing methods for modeling complex time-dependent geometries and fluid
transport mechanisms in biological systems. Because biological systems change shape continually during
movement and generally have complex shapes, the tasks of describing their surfaces and interaction with fluids
and computationallymeshing them for computational fluid dynamics (CFD) analyses have proven challenging.
Examples of moving boundary problems of the type that would benefit from image-based modeling include
aquatic animal locomotion studies with motions specified by video imaging, peristaltic motion of the intestine
imaged ex vivo [1], heart valve dynamics imaged with 4D modalities, such as MRI, and a host of others.
Current simulation techniques reported in the literature concerning animal locomotion appear to primarily
involve defining simplified model geometries based upon measurements taken of animals directly, followed by
prescribing some sort of motion in order to replicate observed behaviors, e.g., modeling a fish as an ellipsoid
propelled by an oscillating flat plate [2,3]. Such models certainly lend a great deal of useful physical insight,
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Fig. 1 aAsingle frame of the swimmingAmerican eel video sequence used in developing thiswork;b active contour segmentation
converts the imaged object into a level set field; c optical flow vectors produced by applying the method of Brox et al. to a pair
of frames in the swimming American eel video sequence

though limitations exist when attempting to model complex biological behaviors in a geometrically simplified
fashion.

An alternative approach that may prove attractive, such as the one taken in this work, employs image
segmentation to define directly the shapes of complex objects in a computational flow domain based on
their visual appearance. This allows for accurate representation of geometry and motion and is an ongoing
area of active research, particularly in the fields of medical imagery and computer vision [4–13]. However,
conventional CFD approaches still require surface mesh generation (and volume mesh generation in 3D) in
order to model moving boundaries, making for tedious implementation. It is therefore desirable to develop a
modeling framework that bypasses mesh generation altogether, both to define the surface of themoving entities
and to solve for the flow. This work proposes an approach to establishing such a framework, demonstrating
employed methods on a sequence of video images illustrating the swimming of an American eel (Fig. 1a).

2 From moving images to flow computation

2.1 The flow solver with embedded moving boundaries

Techniques for solving transport phenomena in complex domains (with stationary or moving boundaries)
have been developed in a fixed Cartesian grid Eulerian framework with local mesh refinement [14–16]. The
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challenge of developing techniques for treating the embedded boundaries as sharp entities has been addressed
in several previous publications [14,15,17,18]. The current work is concerned with computing fluid motion
in geometries defined by level sets extracted from images where the flow field is obtained by solving the
incompressible Navier–Stokes equations:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u. (2)

Here, u and p are the fluid velocity vector and pressure, and Re = UL/ν is the Reynolds number.U and L are
characteristic flow velocity and length scales, and ν is the kinematic fluid viscosity. The governing equations
are advanced in time using a second-order four-step fractional step algorithm to segregate the pressure from
the velocity [19,20]. The nonlinear and viscous terms are integrated temporally using the second-order explicit
Adams–Bashforth and semi-implicit Crank–Nicolson schemes, and all spatial derivatives are approximated
using second-order central differencing. The variables are stored at mesh cell centers with the exception of a set
of cell face velocities (satisfying the divergence-free condition over each mesh cell) that are used to construct
the advection terms.

Boundary conditions on embedded boundaries (defined by the zero-contours of the embedded narrow-band
level set field) are applied using a least-squares formulation of the sharp interface method. In this approach, a
quadratic least-squares method is used to extrapolate flow variable values to a set of ghost nodes immediately
outside the flowdomain [19]. The least-squares formulation allows for locally second-order spatial convergence
rates on arbitrarily shaped domains. The implicit filtering inherent to least-squares methods also enhances the
robustness of the approach when geometries with noisy surfaces are simulated. A detailed analysis of the
current interface treatment is described in [19].

2.2 Moving boundaries

In the case of moving interfaces, boundary motion is tracked by advecting a level set field [21] using

(φl)t + Vl · ∇φl = 0. (3)

In Eq. 3, Vl is the lth level set velocity field, which is derived directly from the physics of the problem. A
fourth-order ENO scheme in space and fourth-order Runge–Kutta integration in time are used for the evolution
of the level set field, and the phase of Cartesian grid cells (i.e., solid or fluid) is continuously stored and updated
as necessary as objects move through the domain [15,22,23]. Since Vl is prescribed only by the physics on
the interface (i.e., on the zero-level set), the velocity values at grid points that lie in the narrow band around
the zero-level set need to be obtained. This is done by extension of the interfacial velocity [24] away from the
front using

ψt + Vext · ∇ψ = 0, (4)

where ψ is the quantity (i.e., the interface velocity component Vl,x or Vl,y) that needs to be extended away
from the interface. A natural choice for the extension velocity is Vext = sign (φl)

∇φl|∇φl | , which extends the
velocity in a normal direction outward from an interface. A reinitialization procedure [25,26] is carried out
after level set advection to return the φ-field to a signed distance function, i.e., to satisfy |∇φl | = 1. Defining
(φl)o as the level set field prior to re-initialization, the following equation is solved to steady state, in order to
re-initialize the level set field for the next advection step:

(φl)t + w · ∇φl = sign (φl) (5)

w = sign
(
(φl)o

) ∇ (φl)o∣
∣∇ (φl)o

∣
∣ . (6)

Here, sign
(
(φl)o

) = (φl )o√
(φl )

2
o+(�x)2

and has the initial condition φl (x, 0) = (φl)o (x).

An alternative to reinitialization proposed by Li et al., in which distance regularization is built directly into
the level set formulation, promises to alleviate possible sources of error inherent to the reinitialization process
by doing away with it altogether; for further details about this approach, the reader is referred to [27].
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2.3 Image-based modeling: an Eulerian approach

The primary intent of this work is to devise an image-based approach suited to a purely Eulerian (Cartesian
grid) sharp interface moving boundary flow solver, in which the need to generate meshes to conform to moving
geometries is removed. In fact, in a purely Eulerian setting the need to employ any surface meshing to describe
the embedded geometries is also obviated. Through image segmentation, a level set field can be generated on
an image mesh and then later mapped directly onto a flow solver mesh by interpolation. The surface velocity
of the imaged object is then computed from the image intensity field using optical flow [5,8,11]. However,
image sequence frame rates are much too slow to match the small time steps required for high-resolution CFD
simulations, so intermediate representations of object locations are required to fill in the missing information
between image frames. It was initially thought that optical flow would act as the primary mechanism by which
this missing level set information could be obtained, but advecting surfaces using optical flow field information
alone did not work as anticipated. Thus, another computer vision technique, image morphing [28,29], designed
to fulfill precisely the purpose we seek in completing the Eulerian modeling framework we set out to build,
was employed to supply the missing information between image frames so that the relatively low temporal
resolution of image sequences no longer precludes modeling behavior on much finer timescales. This suite of
techniques that proceed from images to Eulerian flow computations is described in the following.

2.3.1 Processing video images to define embedded boundaries

Embedded surfaces are represented implicitly on the Cartesian mesh using level sets [17,21,24,30] as men-
tioned above. Images are processed using the active contour approach [9,31], which delivers level set fields
that delineate the embedded object boundaries (Fig. 1b). Active contour evolution methods are based on early
applications of elastic deformation theory to computer vision [32]. Contours are modeled as having elastic
properties that act to minimize the energy of mismatch between an evolving field and some underlying topol-
ogy, which in this context is defined by the arrangement of image brightness patterns. The method was initiated
by Mumford and Shah [33] who proposed an energy functional that decomposes the image domain � into
piecewise smooth regions delineated by a segmentation contour C ,

E ( f,C) = μL (C) + λ

∫

�

(Io − I )2 d� +
∫

�\C
|∇ I |2 d�, (7)

in which L(C) is the total arc length of the segmentation contour and λ > 0, μ ≥ 0 are weighting parameters.
The arc length penalty (regularization) term helps ensure that segmentation contours follow object boundaries
smoothly by way of arc length minimization, while the second term quantifies the local mismatch between a
representative function I and the original underlying image intensity Io throughout the image domain, and the
third term directs the evolving contour(s) toward boundaries defined by large gradients. The Mumford–Shah
method was later modified by Chan and Vese [31] to delineate images into piecewise constant regions of
average intensity rather than piecewise smooth regions of slowly varying intensity, eliminating the need for a
smoothness constraint. Chan and Vese [31] also recast the energy minimization problem in terms of level sets,
so that segmentation surfaces could be represented implicitly as zero-level isocontours of a signed distance
level set field φ embedded in the Cartesian image space. This segmentation approach has found success in a
variety of contexts, further details about which can be found in [34,35].

2.3.2 Optical flow

Optical flow has been an active area of research in the field of computer vision since it was first introduced by
Horn and Schunck [11]. In their formulation, Horn and Schunck assumed that the brightness of any moving
structure (measured by the intensity field I ) in the image is constant, so that as the object moves

dI

dt
= 0, (8)

or, in the current Eulerian perspective,
∂ I

∂t
+ u · ∇ I = 0 (9)
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Because intensity is a scalar value measured locally at each pixel comprising an image, another constraint is
needed in order to provide an optical flow velocity, which has two components in a 2D image sequence. To
this end, Horn and Schunck [11] further proposed that objects in an image will always undergo continuous
deformation or rigid body motion and therefore that adjacent object regions must have similar velocities;
the image intensity velocity field must vary smoothly everywhere except at object boundaries, where there
are discontinuities. This introduces a smoothness constraint, the second constraint needed to construct a 2-
component velocity field, which minimizes the magnitude of the gradient of the optical flow field velocity:
√∇u · ∇u =

√
(

∂u
∂x

)2 +
(

∂u
∂y

)2 + (
∂v
∂x

)2 +
(

∂v
∂y

)2
[11].

Thus, the overall aim is to approximately satisfy the constraints by minimizing simultaneously [11]:

(a) the sum of the errors in image brightness

εb = Ixu + Iyv + It (10)

(b) the departure from flow field smoothness

ε2s =
(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

(11)

where subscripts of image intensity I denote partial derivatives with respect to the subscripted variable.
Minimizing these two error equations together is necessary and sufficient to obtain a complete flow field [11].

Since it is desired to determine the optical flow field over the entire image domain, the problem is posed
as an integral functional, which represents a total error or energy to be minimized:

E2 =
∫∫

Fdxdy, (12)

where
F = α2ε2s + ε2b, (13)

with a weighting factor α2 introduced for the purpose of determining the relative importance of velocity and
smoothness errors. Thus, the goal here is to find a mapping F : R

2 → R that minimizes the energy E2

characterizing image space Ω ⊂ R
2, and the mapping F is given by the solution to a pair of Euler–Lagrange

equations [11,36,37]:
Ix

(
Ixu + Iyv + It

) − α2∇2u = 0 (14)

Iy
(
Ixu + Iyv + It

) − α2∇2v = 0. (15)

In practice, the relative weighting α2 between brightness constancy and smoothness constraints is largely
image dependent. Empirically, Jhunjhunwala and Rajagopalan [12] found that the best results were achieved
on their test images by setting α equal to the gradient magnitude calculated at a given pixel, for every pixel in
the domain, i.e.:

αi = ‖∇ Ii‖ (16)

Overall, the variational formulation proposed by Horn and Schunck [11] was found by them to work well for
smooth sample images, but suffered large errors near discontinuities in some of the test images analyzed. A
notable improvement was made by Brox et al. [8], in which gray value constancy is assumed as in previous
works but left in the Lagrangian form

I (x, y, t) = I (x + u, y + v, t + 1) (17)

for I : Ω ⊂ R
3 → R. If x := [x, y, t]T and w := [u, v, 1]T, then Eq. 17 can be written more compactly as [8]

I (x) = I (x + w) . (18)

In addition to assuming brightness constancy, Brox et al. introduced an additional gradient constancy assump-
tion which states that the relative brightness of an object and its surroundings stays the same regardless of an
object’s location or the time at which it is being viewed, effectively reducing sensitivity to overall changes in
image brightness [8]:

∇ I (x) = ∇ I (x + w) . (19)
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With the new constraint imposed on the optical flow field, the brightness error is changed from the standard
Horn and Schunck formulation [11] to:

ε2b = |I (x + w) − I (x)|2 + γ |∇ I (x + w) − ∇ I (x)|2 . (20)

In Eq. 20, γ is a relative weighting between brightness constancy and brightness gradient constancy.
To further reduce sensitivity to violations of the brightness constancy assumption, Eq. 20 is tempered with

a soft penalty function in order to lessen the impact of outliers in the image domain. Based on work by Black
and Anandan [6], Brox et al. chose to achieve this sensitivity reduction using a modified L1 norm function
Ψ

(
s2

) = √
s2 + ε2, where ε is a small value that prevents problems associated with a machine’s attempt to

numerically approximate the square root of zero [8]:

ε2b = �
(|I (x + w) − I (x)|2 + γ |∇ I (x + w) − ∇ I (x)|2) . (21)

In this way, ε2b cannot vary linearly about noisy outlier pixels, but varies less abruptly as the square root of its
original value.

The smoothness constraint is also used as in previous works, but is enforced over the entire spatio-temporal
domain and is modified in the same way as the brightness constraint to lessen the unwanted effects of noise:

ε2s = Ψ
(|∇u|2 + |∇v|2) , (22)

where∇ := [
∂x, ∂y, ∂t

]
. Introducing the usual regularization weight α2, the energy functional to be minimized

takes on the familiar form

E2 (x, y) =
∫∫∫ (

ε2b + α2ε2s
)
dx. (23)

As with the original optical flow approach, the goal is to find the functions u and v that minimize E2 (x, y).
The variational formulation again leads to a set of Euler–Lagrange equations, which now have the form [8]

Ψ ′ (I 2t + γ I 2xt + γ I 2yt
)

· [
Ix It + γ Ixx Ixt + γ Ixy Iyt

] − α2∇ · [
Ψ ′ (|∇u|2 + |∇v|2)∇u

] = 0 (24)

Ψ ′ (I 2t + γ I 2xt + γ I 2yt
)

· [
Iy It + γ Iyy Iyt + γ Ixy Ixt

] − α2∇ · [
Ψ ′ (|∇u|2 + |∇v|2)∇v

] = 0, (25)

with �
′ (
s2

) = 1
2
√
s2+ε2

TheEuler–Lagrange equations defined in thisway are nonlinear inw, so fixed-point iterations are performed

using a multigrid approach. If wk := [
uk, vk, 1

]T
with initialization wo = [0, 0, 1]T at the coarsest grid level,

then wk+1 is the solution of [8]

Ψ ′
([

I k+1
t

]2 + γ
[
I k+1
xt

]2 + γ
[
I k+1
yt

]2) ·
[
I kx I

k+1
t + γ I kxx I

k+1
xt + γ I kxy I

k+1
yt

]

−α2∇ ·
[
Ψ ′

(∣
∣∣∇uk+1

∣
∣∣
2 +

∣
∣∣∇vk+1

∣
∣∣
2
)

∇uk+1
]

= 0 (26)

Ψ ′
([

I k+1
t

]2 + γ
[
I k+1
xt

]2 + γ
[
I k+1
yt

]2) ·
[
I ky I

k+1
t + γ I kyy I

k+1
yt + γ I kxy I

k+1
xt

]

− α2∇ ·
[
Ψ ′

(∣
∣∣∇uk+1

∣
∣∣
2 +

∣
∣∣∇vk+1

∣
∣∣
2
)

∇vk+1
]

= 0. (27)

Once a fixed-point solution in wk is reached, the solution grid is refined and the coarse grid solution is used as
an initialization at the new scale. However, Ψ ′ and I k+1∗ remain nonlinear and thus must be linearized before
a solution for the optical flow field may be obtained. First-order Taylor expansions linearize I k+1∗ [8]:

I k+1
t ≈ I kt + I kx du

k + I ky dv
k (28)

I k+1
xt ≈ I kxt + I kxxdu

k + I kxydv
k (29)
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I k+1
yt ≈ I kyt + I kxydu

k + I kyydv
k . (30)

where

uk+1 = uk + duk (31)

vk+1 = vk + dvk . (32)

For shorthand, Brox et al. define

(
Ψ ′)k

b := Ψ ′
([

I kt + I kx du
k + I ky dv

k
]2 + γ

[
I kxt + I kxxdu

k + I kxydv
k
]2 +γ

[
I kyt + I kxydu

k + I kyydv
k
]2)

(33)
and

(
Ψ ′)k

s := Ψ ′
(∣∣∣∇

(
uk + duk

)∣∣∣
2 +

∣∣∣∇
(
vk + dvk

)∣∣∣
2
)

. (34)

They term Eq. 33 “data term robustness” and Eq. 34 “smoothness diffusivity,” and with these new shorthand
definitions write the Euler–Lagrange equations once again as

(
Ψ ′)k

b ·
{
I kx

[
I kt + I kx du

k + I ky dv
k
]}

+ γ
(
�

′)k

b

{
I kxx

[
I kxt + I kxxdu

k + I kxydv
k
]

+I kxy
[
I kyt + I kxydu

k + I kyydv
k
]}

− α2∇ ·
{(

�
′)k

s
∇

(
uk + duk

)}
= 0 (35)

(
Ψ ′)k

b ·
{
I ky

[
I kt + I kx du

k + I ky dv
k
]}

+ γ
(
�

′)k

b

{
I kyy

[
I kyt + I kxydu

k + I kyydu
k
]

+I kxy
[
I kxt + I kxxdu

k + I kxydvk
]}

− α2∇ ·
{(

�
′)k

s
∇

(
vk + dvk

)}
= 0. (36)

It should be noted that this is still a nonlinear system of equations for fixed point k, but now in increments of
duk and dvk [8]. The remaining nonlinearity in Ψ ′ is removed using a second inner fixed-point iteration loop
over a new step l, where duk,l and dvk,l denote the variables iterated on, with duk,0 := 0 and dvk,0 := 0 [8].
Now the Euler–Lagrange equations take on the final form

(
Ψ ′)k,l

b ·
{
I kx

[
I kt + I kx du

k,l+1 + I ky dv
k,l+1

]}
+ γ

(
�

′)k,l

b

{
I kxx [I kxt + I kxxdu

k,l+1 + I kxydv
k,l+1]

+I kxy
[
I kyt + I kxydu

k,l+1 + I kyydv
k,l+1

]}
− α2∇ ·

{(
Ψ

′)k,l

s
∇

(
uk + duk,l+1

)}
= 0 (37)

(
Ψ ′)k,l

b ·
{
I ky

[
I kt + I kx du

k,l+1 + I ky dv
k,l+1

]}
+ γ

(
�

′)k,l

b

{
I kyy[I kyt + I kxydu

k,l+1 + I kyydv
k,l+1]

+I kxy
[
I kxt + I kxxdu

k,l+1 + I kxydv
k,l+1

]}
− α2∇ ·

{(
Ψ

′)k,l

s
∇

(
vk + dvk,l+1

)}
= 0. (38)

Applying their method to a set of test images with known displacements, Brox et al. [8] found that resultant
errors in the optical flow field were diminished significantly when compared to the Horn and Schunck [11]
approach. Figure 1c illustrates the optical flow vector field resulting from applying the method of Brox et al.
[8] to a pair of frames in the American eel video sequence used to develop this work.
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2.3.3 Translating information from image domain to computational domain

Akey issue in developing a purelyEulerian level set-based approach to using images/video inflowcomputations
is the need to translate information processed in the image (i.e., pixelized) domain onto the computational
(adaptively refined flowmesh) domain. This issue assumes two forms: temporal interpolation by way of image
morphing and spatial interpolation onto the flow mesh.

2.3.3.1 Temporal interpolation

Temporal interpolation between image frames addresses the need to obtain the intermediate configurations
of an object that are not captured directly in the imaging sequence, so that its variations in position may be
rendered with the temporal density required to couple it with a simulated fluid flow environment. For instance,
if a fluid flow of maximum velocityU = 1 is simulated on a uniformmesh with a grid spacing of�x = 0.001,
the Courant–Friedrichs–Lewy (CFL) condition requires that

CFL = U�t

�x
≤ 1. (39)

Thus, using the same example, two image frames separated by a time step of �T Image = 1 would need to be
divided into 1000 smaller steps in order for the object motion to match smoothly with the fluid motion.

In practice, the maximum flow velocity is not constant throughout a CFD simulation (nor is the minimum
grid spacing, if adaptive mesh refinement is employed), so time step sizes are continuously being updated
by checking whether the CFL condition is being satisfied everywhere on the flow mesh. For this reason, it is
necessary to keep track of the running time in the CFD solution process and correlate it to the frame rate in
the image sequence being used to construct the moving boundaries embedded in the fluid mesh. To elucidate
this point, let �T Image represent a local image timescale, which has an initial time of TImage,o = 0 for the
source frame and a final time of TImage, f = 1 for the target frame of an ordered pair in a sequence. Let �T flow
denote a corresponding flow timescale, having a start time t f 1 during which an object’s location is given by
the source frame, and an end time t f 2 during which an object’s location matches that of the target frame. Any
intermediate time t∗f between t f 1 and t f 2 can then be correlated to a fraction of �T Image, and this fraction can
be used to determine the deformation required to correctly update the object’s position (Fig. 2).

2.3.3.2 Image advection using optical flow

It was demonstrated in the previous section that the nonlinear optical flow method of Brox et al. offers an
Eulerian description of objects moving through image frame sequences that promises a relatively high degree
of accuracy. In our own tests, detailed in the next section, linear motion was captured quite well, even when the
geometry was complex and the displacements between image frames were large. Errors for rotational motion
were found to be higher, but those errors were often limited to regions located away from object boundaries.
As such, it was hoped that an accurate description of motion could still be achieved in real image sequences,
provided that they have adequate spatio-temporal resolutions to justifiably approximate their motions as linear
within local pixel neighborhoods near object boundaries. It was thus also hoped that supplying an image or a
segmented level set boundary with its corresponding optical flow vector field would be sufficient to move an
object to its correct target location matching the next frame of the sequence. However, in practice this did not
turn out to be the case.

The iterative process followed in the method of Brox et al. [8] is nonlinear, and pixels undergoing dis-
placement do not, in general, follow the straight path that is represented by the final result in reaching their
target destination. Thus, when the image brightness is advected in the usual sense by projecting the optical
flow vectors onto the intensity gradient at each pixel location with the assumption of brightness constancy,
that is by solving the advection problem,

∂ I

∂t
+ u · ∇ I = 0 (40)

or
∂ I

∂t
= −u

∂ I

∂x
− v

∂ I

∂y
, (41)

the same end result is not achieved. It can easily be seen that this way of moving brightness patterns becomes
particularly inaccurate in regions where optical flow vectors are oriented normal to the brightness gradient



Computation of biological fluid–structure interaction problems 49

tf1 tf2

Δtf , set by the CFL condition

Timage,o = 0 Timage,f = 1

tf*

TI*

Flow Time Scale

Image Time Scale

Morphing Time Scale

tmorph*tmorph=0 tmorph=∞

Fig. 2 Image-basedmodeling process involves three timescales. The flow timescale (top) is defined by the physics of the problem,
e.g., Strouhal number, and is divided into flow time step sizes that are determined by satisfying the CFL condition. The image
timescale (middle) is defined by the interval between image frames, within which the flow timescale determines the fraction
of progress between source and target frames. This in turn determines a morphing timescale (bottom), during which elastic
deformation moves the object of interest the desired fraction between source and target locations

(tangent to the object’s boundary): u · ∇ I → 0 in this situation, resulting in little or no motion of the imaged
objects there regardless of the magnitude of the optical flow vector |u|.

Attempts to move the level set representation of imaged objects, rather than the brightness patterns directly,
under the influence of optical flow vectors failed for precisely the same reason. According to the level set
equation, the motion of a level set occurs in a direction normal to itself driven by some speed function F :

∂φ

∂t
+ F |∇φ| = 0. (42)

In this case, F is comprised of the optical flow vectors projected onto the normal vectors of the level set field
surrounding an object’s boundary or F = u · n, giving

∂φ

∂t
+ u · n |∇φ| = 0. (43)

Rewriting the normal vector in terms of the gradient of the level set field,

n = ∇φ

|∇φ| , (44)

the level set equation becomes
∂φ

∂t
+ u · ∇φ

|∇φ| |∇φ| = 0, (45)

or
∂φ

∂t
+ u · ∇φ = 0. (46)
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Fig. 3 Filling the gaps between image frames: a initial attempts to advect the level set using optical flow information resulted
in jumps between frames in the tail region; b elastic morphing provided smooth, consistent motion throughout the gaps between
image frames

This leaves us in exactly the same predicament we were in using the brightness advection equation (Eq. 40),
because the gradient of a level set field about an object boundary is oriented the same way as the pixel intensity
gradients marking the edge of the object. Thus, attempts to advect a level set field using optical flow vectors
produced the same unfavorable results as similar attempts to advect the intensity field.

Figure 3 helps to elucidate the problems encountered during optical flow-based advection. Figure 3a shows
five intermediate zero-level set positions describing the contour of the swimmingAmerican eel, taken at regular
intervals for each of two optical flow field solutions that are temporally adjacent (9 positions total). It can be
seen that along the part of the eel’s body away from the tail near the left side of the figure, the level set contours
are spaced regularly, indicating near constant motion there—the desired result. In this part of the image, the
optical flow vectors are predominantly normal to the interface, pointing in the direction of the level set gradient
and thus in the direction of the image brightness gradient. However, at the tip of the eel’s tail, velocity vectors
are oriented tangentially to the level set normal vectors, resulting in an under-prediction of motion there. The
result is that the tail experiences a jump in position between the final advection step of one image frame pair
and the first advection step of the subsequent image pair.

Despite the fact that the optical flow vectors produced by the method of Brox et al. possess a high degree of
accuracy, these problems limit their usefulness for temporal interpolation; anothermethod ofmoving interfaces
through intermediate steps between image frames is needed. This is the subject of the next section.

2.3.3.3 Image morphing

Image morphing is defined as the process of constructing a smooth, natural-looking sequence of images
between an ordered image pair [29], and consists of two steps. The first is warping, which typically involves a
nonlinear coordinate transformation that aligns user-defined landmarks while imposing regularity or smooth-
ness constraints on the coordinates that lie between landmarks [29]. The second step is blending, which fills
in the differences in detail and color not captured during the warping process, and is typically based on pixel
color/intensity interpolation. Applying the two steps incrementally results in a smooth transition from one
image to the other that includes both the shape (warping) and the intensity/color (blending) [29].

In [29], Whitaker proposes an approach to image blending that is based on the shapes of level sets in the
input images, making it well suited for the level set-based formulations recurring throughout this work. In
this approach, a distance metric is constructed that penalizes images based on differences in the shapes of
their level sets and thus acts in similar fashion to an elastic force that deforms the shapes of image objects as
they are evolved between frames. This results in a set of transition images that represent intermediate shapes
naturally through the blending process. Treating an image as a continuous function F : � �→ I , where� ⊂ R

2

is the image domain and I ⊂ R is the set of intensity values contained in the image, F (x, y) and G (x, y)
represent a source and a target image, respectively, with (x, y) ∈ �. The image blending strategy involves
constructing a family of images, indexed by α and starting with the source image F (x, y) at α = 0, which
progressively appear more like the target image G (x, y) as α increases [29]. Regarding the functions F and
G as representations of points in some higher-dimensional function space, a linear interpolation is simply a
straight-line path through the function space between F andG, parameterized by α. The path from F toG may
be constructed by gradient descent over parameter t on a distance function that approaches zero as F → G.
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Alternatively, a path may be constructed on which F and G are both allowed to progress toward each other
simultaneously with respect to t . The paths of these functions through the function space can be defined as
f (x, y, t) and g (x, y, t), where f (x, y, 0) = F (x, y) and g (x, y, 0) = G (x, y), and the point where they
meet in function space is the transition image between F and G. In this way, a blend, b (x, y, α), is obtained
by re-parameterizing the solutions of f forward in time and the solutions of g backward in time to produce a
sequence from F to G with respect to the parameter α.

Clearly, different metrics will produce different paths through the function space occupied by F to G and
will thus lead to different blends between image frames. A metric typically employed in image analysis is the
L2 norm:

ε (t) = 1

2

∫

�

( f (x, y, t) − g (x, y, t))2 dxdy. (47)

Setting the temporal derivatives of f and g to the negative of the first variation of Eq. 47 gives a system of
gradient descent equations over time t ,

∂ f (x, y, t)

∂t
= g (x, y, t) − f (x, y, t) (48)

∂g (x, y, t)

∂t
= f (x, y, t) − g (x, y, t) , (49)

where f (x, y, 0) = F (x, y) and g (x, y, 0) = G (x, y). Since Eqs. 48 and 49 only contain derivatives in t , x
and y may be regarded as parameters and the equations may be treated as a coupled pair of ordinary differential
equations at each point in the domain, with the solution

f (x, y, t) = 1

2
(G (x, y) + F (x, y)) + 1

2
(F (x, y) − G (x, y)) e−2t (50)

g (x, y, t) = 1

2
(G (x, y) + F (x, y)) + 1

2
(G (x, y) − F (x, y)) e−2t . (51)

The steady-state solution to this pair of equations, f (x, y, t) = g(x, y, t) = 1
2 (G(x, y) + F(x, y)), is the

transition image between F and G.
Because Eqs. 50 and 51 represent an exponential decay toward the transition image, the final blend is

obtained by

b (x, y, α) =
{
f (x, y,− ln (1 − 2α)) for 0 ≤ α ≤ 1

2
g (x, y,− ln (2α − 1)) for 1

2 ≤ α ≤ 1
. (52)

Here, it is noted that such a distance metric formulation on the image domain is limited in that it only considers
single-pixel comparisons between images and that it is sensitive to nonlinear transformations acting on the
intensity functions f and g. Therefore, it is proposed in [29] to treat the image domain as a set of isocontours
(level sets) rather than a collection of individual pixels. This allows for inter-pixel relationships to be considered
in the difference metric when blending an image from one frame to the next. Defining the kth level set of path
f through function space from F to G as

Lk =
{(

x
y

)∣
∣∣∣ f (x, y) = k

}
, (53)

a point’s location can be determined to be either “inside” or “outside” of the level set k by applying the
Heaviside function to the values of f : H ( f (x, y) − k) (the definition of what is considered “inside” versus
“outside” of a level set is arbitrary, as long as the definition is applied consistently).

Using this new level set definition of the image domain, a distance metric may be constructed as before,
but now based upon the differences between regions contained within level sets on the two images ( f and g),
so that the metric’s potential is proportional to the area of level set shapes in one image that are not in the other.
Defining functions of f and g that are negative inside the kth level set and positive outside as

Dk [ f ] = 1

2
(H (k − f ) − H ( f − k)) (54)
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Dk [g] = 1

2
(H (k − g) − H (g − k)) , (55)

the overall distance metric for level set k is given by

ε (t) = 1

2

∫

�

(Dk [ f (t)] − Dk [g (t)])2 dx dy

= 1

4

∫

�

([H (k − f (t)) − H ( f (t) − k)] − [H (k − g (t)) − H (g (t) − k)])2 dx dy. (56)

Minimizing the metric with respect to a single level set k leads to a pair of Euler–Lagrange equations

−dεk, f = 1

2
[H (k − g) δ (k − f ) + H (k − g) δ ( f − k) − H (g − k) δ (k − f ) − H (g − k) δ ( f − k)]

(57)

−dεk,g = 1

2
[H (k − f ) δ (k − g) + H (k − f ) δ (g − k) − H ( f − k) δ (k − g) − H ( f − k) δ (g − k)] ,

(58)
inwhich δ is theDirac delta function (the derivative ofH), and (H (x) − H (−x)) δ (x) = 0. Because δ (−x) =
δ (x), Eqs. 57 and 58 reduce to

−dεk, f = g − k

|g − k|δ ( f − k) (59)

−dεk,g = f − k

| f − k|δ (g − k) . (60)

Since the δ functional performs a wave front propagation of the kth level set of f , while the gradient magnitude
of f gives the same result on all level sets of f simultaneously, the Dirac delta term δ ( f − k) in Eq. 59 can be
remapped to |∇ f | whenever f = k (the same holds true for g in Eq. 60). Thus, performing gradient descent
on f and g and parameterizing the sequence of images by t give a pair of differential equations that are the
level set equivalent of Eqs. 48 and 49:

∂ f

∂t
= g − f

(
ε2 + (g − f )2

)1/2 |∇ f | (61)

∂g

∂t
= f − g

(
ε2 + ( f − g)2

)1/2 |∇g| , (62)

where ε is a small constant (set to 10−4 in [29]) provided to safeguard against division by zero in the limiting
case where f = g.

In Whitaker’s approach to morphing [29], the resulting distance metric equation (Eq. 47) is solved using
gradient descent to give a pair of coupled ordinary differential equations (Eqs. 48, 49) and then resampled from
the time parameter t to the transition parameter α. This resampling equation (Eq. 52) is constructed to ensure
that the sum of absolute values of image differences will decrease at a constant rate with respect to α, giving
a blend that appears to change consistently as α is varied from 0 to 1. This type of behavior may be replicated
in the level set formulation of image blending by adjusting the sampling rate to produce a constant change in
some image metric D (t), thereby giving the intervals in t at which to take “snapshots” in order to produce
the desired sequence of blended images. Due to its straightforward implementation and the qualitatively good
results it is able to consistently give, Whitaker proposed a root-mean-squared metric [29],

D (t) =
[∫

�

( f − g)2 dxdy

]1/2
, (63)

with the discrete form

D (t) =
n∑

i=1

m∑

j=1

ABS
(
Fi, j − Gi, j

)
(64)

to be used during implementation.
The algorithm given to produce n transition images between frame F and frame G is thus summarized as

follows:
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Fig. 4 Exponential decay of the elastic force through themorphing process requires sampling at exponentially increasing numbers
of time intervals in order to produce a consistent motion

(1) Compute the difference metric on the source and target images to give

D (0) =
[∫

�

(F − G)2 dxdy

]1/2
. (65)

(2) For each of the k transition images out of n total transition images between image frames, solve the level
set blending equations (Eqs. 61, 62) with a forward differencing or Adams–Bashforth scheme until a time
t is reached that satisfies

D (t) = n − k

n
D (0) . (66)

In this way, image morphing proceeds consistently through the intermediate steps between image frames.

2.3.3.4 The image morphing algorithm

As shown in Sect. 2.3.3.3, the elastic force chosen to produce morphing is not linear, but rather decays
exponentially as D(x, y) → 0 (Fig. 4). Morphing must therefore take place on a third timescale �Tmorph,
ranging between tmorph = 0, when α = 0 and ki, j (0) = fi, j , and tmorph = ∞, when α = 1 and ki, j (1) = gi, j .
In order to deal with the disparity between the morphing timescale and the image timescale, the root-mean-
squared metric proposed by Whitaker was used to obtain a sampling rate in which morphed image objects
would match up with their correct locations throughout progression through the fluid flow timescale (Fig. 2).
The algorithm is summarized as follows:

(1) Calculate the initial image metric value D(0) = [∫
�

(F − G)2dxdy]1/2.
(2) For any instant t∗f falling between flow time intervals t f 1 and t f 2, find the corresponding time fraction

T ∗
I between image frame times TImage,o = 0 and TImage, f = 1 using an appropriate scaling relationship

between t f and TI , i.e.,

T ∗
I = t∗f − t f 1

�T flow
. (67)

(3) Evolve the morphing process until the appropriate morphing pseudotime t∗morph is reached by checking
the metric value

D
(
t∗morph

)
= D (0) + D (0) − D (∞)

TImage,o − TImage, f

(
T ∗
I − TImage,o

)
. (68)

Because D(∞) = 0 when morphing is complete, and TImage,o = 0 and TImage, f = 1, Eq. 68 reduces to

D
(
t∗morph

)
= D (0)

(
1 − T ∗

I

)
. (69)
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The morphing process is evolved until Eq. 69 is satisfied, thus giving morphed images at regular time
intervals corresponding to the intervals at which flow field solutions are computed.

Figure 3b shows five zero-level set configurations obtained by morphing for each of two image frame pairs
(9 total configurations). Comparing to Fig. 3a, it can be seen that the jumps in image position between the final
morph of one frame and the initial state of the next have been eliminated; a consistent motion of the boundary
has been achieved through use of the elastic force model and an appropriate sampling rate. However, like any
method, the elastic force model chosen for image morphing is not perfect. The primary difficulty found with
respect to our purposes involves the morphing path rather than the final result. Careful examination reveals that
the eel’s tail does not take a linear trajectory when morphing from one frame to the next, as one would expect
based on the image information, but rather follows a trajectory in which the eel’s overall body length appears
to slightly shorten and then lengthen again. This happens because the distance metric has a zero value at nodes
where the initial and final zero-level set contours cross; the contours are not separated there, and so there is no
driving potential for motion. The effect is that contour motion can occur around this zero-potential point, but
not through it, so a curved path around it is found during the iterative morphing process. This problem will
always exist where zero-level contours of initial and target fields overlap, but can be minimized with greater
temporal resolution to ensure that object boundaries are not largely displaced between frames.

2.3.3.5 Spatial Interpolation onto the Flow Mesh

The morphing algorithm just outlined provides a temporal interpolation from a coarsely sampled image
timescale to a finely sampled fluid flow timescale. Similarly, modeled objects must be spatially interpolated
from a coarse image domain consisting of pixels to a fine flow domain consisting of grid cells that may be
locally refined to capture flow phenomena of interest. Thus, a key process in generating a purely Eulerian CFD
model involves mapping the level set fields obtained by image analysis onto the flow domain.

This mapping is performed in two steps:

(1) First, the image pixel locations are converted to real (x, y) pairs (mapping the image domain� �−→ R
2),

so that imaged objects can be easily scaled and placed wherever desired on the corresponding flow mesh.
For example, flow domains in this work are typically constructed with dimensions of O (1) or O(10),
having grid spacing�x � 1 and containing objects that are ofO (1) in size, in order to nondimensionalize
the fluid flow problems and to facilitate the variation of important parameters like the Reynolds number.
Thus, an imaged object with dimensions of, for example, 1000 pixels in length and 200 pixels in height
could be converted to a modeled object of 1.0 unit length and 0.2 unit height by multiplying each (x, y)
by a scaling parameter s. In addition, x- and y-shifting constants dx and dy can be added to position the
zero-level set interface within the flow domain as desired. The result is a scaled, shifted version of each
pixel location x̂i, j = sxi, j + di, j .

(2) With each of the image pixels defined as a point with a scaled and shifted spatial address, the flow mesh
points are swept over to examine whether they are within the bounds of x̂i, j , i.e., between x̂min and x̂max
in the horizontal direction, and between ŷmin and ŷmax in the vertical direction. If they are, then their
4 nearest neighbors on the corresponding scaled and shifted image domain are used to interpolate the
image level set value onto the flow mesh via bilinear interpolation. It is important to note here that when
an image domain is rescaled and shifted for mapping to the fluid mesh, �ximage is still not the same
as �xflow in general. Thus, when mapping level set values from an image domain onto a fluid domain,
the level set values must also be scaled appropriately. In this work, the pixel size �ximage is set to 1.0
for convenience, allowing us to simply multiply level set values interpolated from the image domain by
�xflow to get the correct scaling. A narrow-band approach [21] is chosen for efficiency, such that any
flow mesh cell containing a level set magnitude |φ| > 6�xflow is simply set to φ = 6�xflowsign (φ).

Although the elastic force model was chosen for image morphing due to the limitations of optical flow-
based advection, optical flow vectors are still used to set boundary conditions on the zero-level set contour in
moving boundary flow simulation problems; indeed, optical flow may be the only way to do this in a Eulerian
setting without relying on the use of surface points. So, the optical flow vector field is interpolated onto the
flow mesh from the image domain just as the level set field values are (Fig. 5). Since optical flow vectors are
computed on image sequences under the assumption that pixels are unit size and frames are separated by some
arbitrary unit time, the resultant vector field is given in terms of pixels/ f rame. The optical flow velocity
field is mapped from the image domain to the flow mesh in just the same manner as the level set field, scaling
by �xflow to get the correct velocity magnitude. Furthermore, varying the image frame rate �Timage allows
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Fig. 5 Optical flow vectors computed at the object boundary are extended normally into the level set narrow band [21] to supply
boundary velocity conditions during flow computations

for the evaluation of different physical conditions. For example, the swimming eel’s Strouhal number can be
doubled by simply halving the defined frame rate �Timage. Since the optical flow field is piecewise constant
between image frames, a 3-frame strategy is used to create a piecewise linear optical flow field and thereby
avert the discontinuous jumps in velocity otherwise produced by a piecewise constant profile:

u = u1→2 + u2→3T
∗
image, (70)

where u1→2 and u2→3 represent optical flow velocity vectors solved between one ordered frame pair and
the next, respectively, and T ∗

image is the (dimensionless) fraction of time elapsed between frames 1 and 2.
Over-relaxation may also be used to smooth the transition between piecewise linear segments.

It is noted that an image must be morphed and re-mapped to the corresponding flow domain after each
fluid time step during CFD simulations. While this accounts for little of the total run time compared with
solving for the optical flow field, or certainly compared to solving for the fluid flow field, it would still be
computationally wasteful to sweep over the entire flow domain every single time step, find corresponding
image domain locations and then update the values everywhere (even if they’re “updated” to the same value).
To eliminate this inefficiency, the flow solver code has a built-in memory structure containing only points that
lie within the narrow-band level set, storing their spatial locations within the flow domain along with their level
set values. Mapping the image level set and interface velocity from the scaled and shifted image domain to
the flow domain need only takes place within the narrow band where such information is necessary for setting
boundary conditions. By sweeping over these level set “tube” points rather than the entire flow domain, the
vast majority of flow grid points can often be eliminated from the search and update process.

To summarize the entire image-to-computation process, an outline of the algorithm is provided in Fig. 6.

3 Results

3.1 Testing optical flow

The optical flow method of Brox et al. was tested on a test image prescribed with three types of motion
before applying it to the real image sequence (Fig. 7). The image was of dimension 128 × 128 pixels and
consisted of a 7-pointed star shape defined in [38], which was given a numerical Heaviside function contour
to provide a smooth but steep edge gradient. This shape was chosen for several reasons: It features regions
of high curvature near its edges and center, it possesses nonuniform gradients, and its radial nature allows for
combinations of linear and angular motion to be imposed. As suggested in [8], calculating optical flow fields
in a multi-resolution manner on grids of increasing levels of refinement can help reduce the chances of an
optical flow solution becoming trapped in a local minimum that does not satisfy global minimization of the
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Fig. 6 Summary of the image-to-computation algorithm

constraint equations. Thus, optical flow was solved on three different grid levels of side length 32, 64 and 128
pixels, respectively, with each coarse solution providing the initial conditions interpolated onto the grid at the
next level of refinement. In all of the test image cases, the smoothness weight α2 was set to 10.0, with the
gradient weight (the weighting of the nonlinear terms) set to γ = 1.0.

The first tests were run by imposing a simple translational motion on the shape by setting U = V =
5.0pixels/frame. Figure 8 and Table 1 illustrate the small error given by the method of Brox et al. [8] when
solving for translational motion, even with large displacements. Maximum magnitude error was under 2%
and maximum angular error was under 0.5◦ (these maxima were also restricted to small regions within the
domain, with the overall error being under 1% and 0.02◦, respectively). Imposing pure rotational motion of
θ̇ = π

24 rad/frame (Fig. 9) gave substantially larger maximum magnitude errors approaching 50% and angular
errors approaching 6◦. However, the error was predominantly located away from the shape’s boundaries
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Fig. 7 A128×128 star-shapedHeaviside imagewas used for optical flow testing (a). The shapewas prescribedwith three different
types of motion: b translation with = V = 5.0pixels/frame; c rotation at a rate of θ̇ = π/24 rad/frame; and d a combination of
translation with U = V = 1.0pixel/frame, rotation of θ̇ = π/24 rad/frame, and radial expansion of ṙ = 1.0pixel/frame

(Fig. 9c, d) where the error was considerably smaller on average (4.2% and 1.03◦). Finally, three types of
motion were imposed on the Heaviside star shape simultaneously: translation withU = V = 1.0pixel/frame,
rotation with θ̇ = π

24 rad/frame and radial expansion of the shape at a rate of ṙ = 1.0pixel/frame. In this case,
the Brox method [8] began to give larger errors (Fig. 10) even at the boundaries (11.9% and 4.2◦ average).
However, it is notable that the majority of this error was concentrated along the left arms of the shape near the
shifted center of rotation where velocity magnitudes were low and thus sensitive to error. This is particularly
true where the arms converge at the center and thus the radius of curvature of the angular velocity field is
small, giving a strongly rotational sense to the flow. These results were considered encouraging given the
translational nature of local motions observed in the swimming eel video sequence toward which this work
is directed. However, the results do indicate that caution must be exercised if optical flow is to be applied to
image sequences exhibiting combinations of significant translational and rotational motion.

3.2 Image-to-computation algorithms applied to simulate swimming of an eel

The prototype image case used for this development project was that of a swimming American eel, modeled
from video footage supplied byDr. Eric Tytell. The eel was imagedwhile swimming in awater tunnel apparatus
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Fig. 8 Optical flow solution of the translating Heaviside star, = V = 5.0pixels/frame: a exact vector field; b Brox et al. vector
field; c velocity magnitude error %; d velocity angular error in degrees

Table 1 Average velocity magnitude and angular errors for three test image cases: translating motion with U = V =
5.0pixels/frame; rotating motion with θ̇ = π

24 rad/frame; and a combination of translation with U = V = 1.0pixel/frame,
rotation with θ̇ = π

24 rad/frame, and radial expansion of ṙ = 1.0pixel/frame

Imposed motion Average velocity magnitude error (%) Average angular error (◦)

Image domain Object boundary Image domain Object boundary

Translation 0.095 0.118 0.019 0.027
Rotation 24.96 4.165 2.310 1.031
Translation, rotation, expansion 32.45 11.91 5.397 4.202

Errors are averaged both over the entire image and over pixels adjacent to the object boundary

during hydrodynamic studies of its anguilliform swimming motion. The eel’s dimensions and boundary condi-
tions for the experimental setup are supplied in [39]. For the current investigation, 36 video frames containing
one complete tail beat cycle of the eel’s motion were selected for segmentation and then copied ninemore times
in sequence to produce a total of 360 video frames containing ten identical tail beats. Maximum displacement
occurred at the tip of the eel’s tail at a rate of ∼2pixels/frame in the y-direction. Image segmentation was
performed with active contours [9,31] as described in [34].

In Tytell’s work, the eel being studied was measured to be L = 20 cm in length and was placed in a
water tunnel in which it swam at a steady-state rate of 28 cms−1, or 1.4 Ls−1. Thus, the Reynolds number
of the swimming eel based on its body length is roughly 56,000. The Strouhal number of the swimming eel
(St = f A

U , where f is vortex shedding frequency, A is the characteristic length of the problem—the peak-
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Fig. 9 Optical flow solution of the rotating Heaviside star, θ̇ = π/24 rad/frame: a exact vector field; b Brox et al. vector field; c
velocity magnitude error %; d velocity angular error in degrees

to-peak amplitude, or distance traversed by the eel’s tail in this case—and U is the free-stream velocity of
the fluid environment) was reported to be ∼0.3, based upon tail beat amplitude of approximately 7% of the
eel’s body length (∼0.07L) and a frequency f of 3.1Hz. The direct numerical simulation (DNS) nature of
the flow solver used for these simulations limited cases to Reynolds numbers that were more than an order of
magnitude lower than that produced by the swimming eel in the experimental setup; a Reynolds number of
5000 was studied here. Three different Strouhal numbers, St = 0.3, 0.5 and 0.7, were simulated and examined
for variations in wake structure and thrust magnitude, for reasons of hydrodynamic interest.

For each case, the eel geometry was scaled to one unit body length and initialized in a domain of dimension
5 units length by 2 units height, with a coarse grid spacing of �xflow1 = 0.0125 and four levels of mesh
refinement, giving a minimum grid spacing of �xflow4 = 0.0025. Open flow conditions were approximated by
initializing the velocity field with a horizontal (u-velocity) magnitude of 1.0 Ls−1, imposing inlet conditions
of u = 1.0 Ls−1 on the west side of the domain, specifying the east as an outlet and setting Dirichlet conditions
with u-velocity of 1.0 Ls−1 on the north and south boundaries. In each case, the eel’s position was fixed for
1000 time steps in order to allow for flowfieldmaturation before imposing swimmingmotion. Fluid densitywas
specified as ρ = 1.0, so that the Reynolds number could be assigned simply by setting the dynamic viscosity
value μ. Strouhal number variation was accomplished by specifying the time step size �Timage between each
of the 36 video frames.

Results of the three cases simulated (Figs. 11, 12, 13) are encouraging in that they appear to share some of
the physical trends revealed on review of Tytell’s experimental observations (keeping in mind that we are still
limited to a 2-D representation here). In their analysis of wake structures created by the steadily swimming
eel using particle image velocimetry (PIV), Tytell et al. reported finding a 2p-type wake structure dominated
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Fig. 10 Optical flow solution of the translating, rotating and radially expanding Heaviside star; U = V = 1.0pixel/frame,
θ̇ = π/24 rad/frame, ṙ = 1.0pixel/frame: a exact vector field; b Brox vector field; c velocity magnitude error %; d velocity
angular error in degrees

by lateral jets, formed by vortex pairs of opposite sign aligned parallel with the direction of flow [39]. They
observed that each reversal of the eel’s tail direction during swimming began a process of shedding boluses
of fluid that were “sucked” into the troughs of waves traveling along the eel’s body and accumulated in the
boundary layer. The continuous lateral sweeping of the tail resulted in vorticity being advected downstream
from the tail’s tip in the form of an elongated vortical shear layer, which, once shed from the rear of the
body, was unstable in its geometric configuration and rolled up into two vortices—a primary and a secondary
vortex—of the same rotational sense. As the tail changed direction, the same thing happened on the opposite
side of the body to give another primary and secondary vortex pair, each possessing a sense opposite to the
previous vortex pair. In this way, two sets of vortex pairs were formed during each complete tail beat, resulting
in two lateral jets of opposite direction alternately staggered in the eel’s wake.

Examination of Figs. 11, 12 and 13 reveals similar behaviors exhibited by our CFD results, though perhaps
with more subtlety due to the reduced Reynolds number and the fact that this is a 2D simulation of a highly
three-dimensional flow. Vorticity contours in Fig. 14 show an elongated shear layer affected by the eel’s
traversing tail, though the weaker of the two vortices generated by the shear layer’s unstably high aspect ratio
is diffused shortly after formation in each instance, again likely due in part to the relatively low Reynolds
number prescribed in these simulations. In each case, the primary vortices shed from the eel’s tail remain
close to the center of the wake, in single file 2s formation rather than alternately staggered to each side.
Thus, the wake signature features strong lateral components (Fig. 11) and lacks the clearly defined axial
flow acceleration often found in the wakes of carangiform swimmers (Fig. 12). This intuitively follows from
kinematic differences between the two types of swimmers; carangiform swimming is marked by a rigid body
propelled with an isolated tail, whereas anguilliform swimming involves a large percentage of the body in the
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Fig. 11 Lateral component of velocity computed at the three Strouhal numbers evaluated

swimming motion. Thus, it is not unexpected that a significant amount of forward motion should be provided
bymomentum generated along the length of an eel’s body as proposed by Tytell et al. in [39], an idea supported
by the apparent axial acceleration experienced by fluid in the troughs of the swimming eel’s waveform as it
proceeds distally as illustrated in Fig. 13.

3.3 Limitations of the present image-to-computation algorithm

This novel Eulerian method completed for this work dispenses with many of the limitations that are inherent
in Lagrangian or semi-Lagrangian approaches by obviating the process of generating meshes to conform to
or describe embedded moving objects. However, the current approach comes with limitations of its own. One
such limitation lies with the assumptions made regarding motion; in the optical flow calculations, objects are
assumed to move along the direction of their intensity gradients. The constraint of smoothness in combination
with the nonlinear iterative path taken in the method of Brox et al. [8] gives optical flow vector components
that are not constrained to follow image gradients everywhere per se, but there are still problems with assessing
tangential boundarymotion (i.e., parallel to the imaged boundary and normal to its intensity gradient) correctly.
This is particularly true in regions that have little or no curvature. Another limitation of the present Eulerian
method lies with the morphing process. The elastic force model used to move a level set contour between
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Fig. 12 Axial component of velocity at the three Strouhal numbers evaluated. The eel’s anguilliform swimming motion produces
a set of vortical structures from which momentum is ejected with a strong lateral component in the wake; thus, a clear thrust
generation signature such as that found in the wakes of carangiform swimmers is absent here

frames does not conserve contour length and produces errors where contours cross each other at steep angles.
In the case of the American eel, this created the effect of shortening the tail between image frames, leading to
errors between the level set’s actual motion and that described by the optical flow field used to set boundary
conditions in that region. It should also be pointed out that the present methods suffer the same limitation
inherent to all image-based modeling algorithms, namely that of image quality. Low-quality images plagued
by noise, poor contrast, low resolution and inconsistent features between image frames will all conspire to
produce unacceptable results when used for CFD simulations. Much effort has been made in the field of
image processing to alleviate these issues, including specialized denoising techniques (e.g., [40,41]), contrast
enhancement methods (e.g., [42,43]) and image segmentation tools designed to work in the presence of noise
and poor contrast (e.g., [44,45]). However, it still remains that any algorithm—particularly one designed to
perform over many frames of a moving image sequence such as that described in this work—is dependent upon
relatively high-quality images in order to function reliably. Finally, it should be pointed out that the present
formulation is limited to moving 2D images; however, in our experience, contour-based segmentation and
morphing have proven equally effective when applied to 3D image sets, leaving optical flow as the primary
limiting factor. This limitationmay be addressed in a couple of different ways: First, if themotion being studied
is mostly planar in nature, like in the present case of the swimming American eel, 2D optical flow techniques
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Fig. 13 Axial velocity plotted over a complete tail beat helps illustrate fluid transport along the troughs of the eel’s axial waveform

may be applied to individual slices of a 3D data set just as they are to individual image frames currently.
Otherwise, it is possible to extend the entire framework to 4D (3D + time) with the addition of a 3D optical
flow constraint as suggested in, e.g., [46,47], thus giving a true representation of 3D motion.

4 Conclusions

The Eulerian method developed here provides a route to image-basedmodeling of moving boundary biological
flows, as the implementation is straightforward and entirely (i.e., all the way from the image domain to flow
computations) follows the level set framework employed in the CFD code. There is no tedious point generation
algorithm, no surface smoothing, no assumptions regarding point correspondence and no need to convert from
an Eulerian image field to a Lagrangian surface mesh and then back to an Eulerian field again. Through image
segmentation, a level set field is generated on an image mesh and then mapped directly onto a flow solver
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Fig. 14 Contours of vorticity computed at three different Strouhal numbers

mesh by interpolation. The surface velocity of the imaged object is computed from the intensity field using
nonlinear optical flow, which has been tested in this work on a synthetic 7-pointed star shape with prescribed
kinematics. Gaps between image frames acquired at rates too slow for high-resolution CFD simulations are
filled in with another computer vision technique, image morphing, to supply the missing information between
image frames so that the relatively low temporal resolution of image sequences would no longer preclude
modeling behavior on much finer timescales. By linking together active contour segmentation, optical flow
motion tracking and image morphing techniques, a purely Eulerian sharp interface route to modeling moving
boundaries has been successfully obtained.
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