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Abstract This work proposes a new simulation methodology to study variable density turbulent buoyant
flows. Themathematical framework, referred to as homogeneous buoyant turbulence, relies on a triply periodic
domain and incorporates numerical forcing methods commonly used in simulation studies of homogeneous,
isotropic flows. In order to separate the effects due to buoyancy from those due to large-scale gradients, the linear
scalar forcing technique is used tomaintain the scalar variance at a constant value. Two sources of kinetic energy
production are considered in themomentum equation, namely shear via an isotropic forcing term and buoyancy
via the gravity term. The simulation framework is designed such that the four dimensionless parameters of
importance in buoyant mixing, namely the Reynolds, Richardson, Atwood, and Schmidt numbers, can be
independently varied and controlled. The framework is used to interrogate fully non-buoyant, fully buoyant,
and partially buoyant turbulent flows. The results show that the statistics of the scalar fields (mixture fraction
and density) are not influenced by the energy production mechanism (shear vs. buoyancy). On the other hand,
the velocity field exhibits anisotropy, namely a larger variance in the direction of gravity which is associated
with a statistical dependence of the velocity component on the local fluid density.

Keywords Buoyant mixing · Variable density turbulence · Numerical forcing

1 Introduction

Turbulent buoyant flows are found in an array of naturally occurring processes (e.g., heat transfer within
stars, supernovae formation, sub-sea hydrothermal vents), as well as in engineering applications (e.g., inertial
confinement fusion, furnaces, accidental fires). The efficiency of these processes is dependent on the interplay
between shear effects and buoyancy effects. The nature of this interplay is not entirely known, and simulation
studies are commonly performed in an effort to advance the state of current understanding. Typically, simulation
studies of turbulent buoyantmixing have focused on unstably stratifiedRayleigh–Taylor (RT) flows (e.g., [1,2]).
This configuration considers two fluids of differing densities that are unstably stratified in the presence of
gravity. Density variations lead to differential fluid accelerations and fluid transfer from regions of high density
to regions of low density. Traditionally, the pure fluid reservoirs are included in the simulation domain [1,2].

The use of unstable RT flows has enabled insightful examinations of variable density and turbulent buoyant
mixing, and this geometry is commonly used to produce high-quality direct numerical simulation (DNS) data.
For instance, from simulation studies of RT flows, it is known that buoyant flows differ from non-buoyant
flows in the following ways. First, it was observed that buoyant flows have an asymmetric mixing rate. This
manifests through a skewed density probability density function (PDF) and indicates that the more dense
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fluid in the RT unstable configuration mixes at a slower rate than the less dense fluid [3–5]. Second, as a
consequence of this, the penetration depth of larger density fluids exceeds that of lower density fluids [3].
Third, distinct stages in the RT unstable mixing process have been identified, each with different governing
dynamics [1]. Fourth, turbulent buoyant flows are known to be anisotropic as potential energy is converted
into kinetic energy [6]. Lastly, while generally not a self-similar process, these flows may become self-similar
under special circumstances [1,2,4]

However, this geometry is not ideal for parametric studies of buoyant flows. There are four main reasons for
this. First, the inclusion of the pure fluid reservoirs can render sufficiently resolved simulations computationally
expensive and, for all practical purposes (i.e., high Reynolds number), inaccessible. Second, the physics
simulated are unsteady; throughout the process, the thickness of the mixing layer continues to increase. Third,
the mixing process generated in a canonical RT geometry is subject to two sources of anisotropy: the (mean)
density gradient (from global stratification) and the gravitational body force. This makes it difficult to ascribe
the effects of each on the resultant mixing process. Lastly, the RT configuration couples the inertial effects
and gravitational effects acting on the fluid system. A consequence of this is that Reynolds and Richardson
numbers cannot be varied independently, limiting the utility of RT flows for parametric studies of turbulent
buoyant mixing.

There are currently three simulation methods that offer alternatives to the classical RT unstable geometry
for the study of buoyant mixing. The first alternative method was developed by Chung and Pullin [7]. This
simulation method involves the use of a fringe region to continuously add high (low) density fluid at the top
(bottom) of the simulation domain to maintain an unstably stratified RT flow. This perpetuates the variable
density mixing process, enabling stationary statistics to be determined. It also mitigates the computational
expense associated with including the pure fluid reservoirs in the domain. In summary, this fringe region-based
approach addresses and resolves only two of the four nonidealities described above. Namely, the turbulent
flow is still subject to two sources of anisotropy, preventing the attribution of specific aspects of the mixing
problem to either gravity or globally acting (density) gradients, and gravitational and inertial effects remain
linked.

The second alternative was developed first by Batchelor et al. [8] for the Boussinesq limit and then extended
to variable density by Livescu et al. [3,4,6]. It is referred to as homogeneous Rayleigh–Taylor (HRT) or homo-
geneous buoyancy-generated turbulence. This approach does not include the pure reservoirs of fluids, but
instead it makes use of a triply periodic, homogeneous box containing a variable density fluid. Gravity is
applied to an initially quiescent velocity field, which drives the variable density fluid to a turbulent state. As
the mixing process proceeds, the turbulent kinetic energy increases until a maximum is reached. After this,
it decays due to the homogenization of the density field. Although this reduces the computational expense of
the simulations, this approach remains unsteady, and mixing data can only be collected for a limited period of
time. In addition, inertial and gravitational effects cannot be separated from one another.

The third framework, referred to as unstably stratified homogeneous (USH) turbulence, was developed
recently by Soulard et al. [24]. It corresponds to a forced, buoyant simulation methodology analogous to the
frequently used forced, homogeneous isotropic turbulence (HIT) simulation methods. HIT methods make use
of source terms to create a state of statistically stationary turbulent mixing [9–12] and have enabled multiple
parametric studies of turbulent mixing problems [13–17]. Analogous to HIT, the configuration of Soulard
et al. [24] is triply periodic and is argued to be a smallAtwoodnumberRayleigh–Taylor flowof an integral length
scalemuch smaller than themixing zonewidth.As forHRT, this framework allows for buoyantmixing to be less
expensively interrogated than traditional RT flows, as the pure fluid reservoirs are not included in the simulated
domain. In addition, the flows have the advantage of reaching a state of statistically stationary turbulence.
Unfortunately, the framework remains nonideal: there are still two sources of anisotropy, namely gravity and
the imposed mean scalar gradient, and gravitational and inertial effects cannot be varied independently.

Based on these observations, a simulation framework that combines all four critical requirements, namely
reduced computational cost, statistically stationarity, no mean scalar gradient, and independence of inertial
and gravitational effects, remains elusive. The objective of the present work is to develop such framework and
to analyze the resulting turbulent buoyant flow field.

More precisely, the objective is to develop a statistically stationary version of HRT, yet without imposing
anisotropy in the scalar field via an imposed scalar gradient as in USH. The ultimate goal is to quantify the con-
tributions of all competing processes by varying independently four dimensionless groups, the Reynolds (Re),
Richardson (Ri), Atwood (A), and Schmidt (Sc) numbers. The Reynolds number defines the relative strength
of inertial and viscous forces, while the Richardson number defines the relative strength of gravitational and
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inertial forces. The Schmidt number denotes the relative importance of kinematic viscosity to diffusivity, and
the Atwood number indicates the extent of density variation present in the fluid system.

This paper is organized as follows. Section 2 describes the framework developed and the integration
of numerical forcing methodologies. Global turbulent kinetic energy and scalar variance balances are also
presented. Section 3 discusses the relevant four nondimensional parameters. Section 4 describes the results
obtained fromvalidation test cases. Lastly, Sect. 5 describes themeans bywhich the nondimensional parameters
can be adjusted to provide the desired turbulent buoyant flow conditions.

2 Proposed simulation methodology

The present analysis is focused on simple mixing, namely the mixing of two fluids with either different tem-
peratures or different molecular weights. This type of mixing is often referred to as “two-fluid mixing,” and
multiple approaches have been used for the numerical simulations of such flows. The reader is referred to [18]
for an extensive review. The present work relies on the low Mach number formulation of the Navier–Stokes
equations [19,20], which has been used extensively for mixing (including stratified flows) and combustion
applications [21–23]. The framework is first presented followed by a discussion of the velocity and scalar
forcing techniques to be used.

2.1 Forced homogeneous buoyant turbulence

The computational domain in which the present framework is developed is that of a homogeneous, triply
periodic box containing a variable density fluid. This is similar to the geometry adopted by Batchelor et al. [8],
Livescu et al. [3,4,6], and Soulard et al. [24]. A box of turbulence is preferred as a geometry over the original
RT configuration, as it reduces the computational cost of performing the simulations. The removal of any mean
gradients (density or velocity) allows for periodicity and homogeneity to be assumed.

One could interpret this simulation domain as corresponding to a small volume inside of a buoyant mixing
layer (not necessarily a Rayleigh–Taylor mixing layer) after the mixing process has begun, but before fluid
mixing has ended [24]. It could also be seen as the state of peak turbulent kinetic energy found in HRT, when
energy production by buoyancy forces balances (temporarily) energy dissipation by viscous forces [6,8]. In
an attempt to differentiate it from the unsteady HRT configuration, the present framework will be referred to
as forced homogeneous buoyant turbulence or HBT.

2.2 Governing equations

In the low Mach formulation [19], the governing equations needed to describe variable density mixing are the
continuity equation (Eq. 1), the momentum equation (Eq. 2), and the scalar transport equation (Eq. 3),

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)

∂ρui
∂t

+ ∂ρuiu j

∂x j
= − ∂p

∂xi
+ ∂τi j

∂x j
+ (ρ − 〈ρ〉) gi + fui , (2)

∂ρZ

∂t
+ ∂ρZu j

∂x j
= ∂

∂x j

(
ρD ∂Z

∂x j

)
+ fZ . (3)

Throughout this paper, ρ represents the density, 〈ρ〉 represents the ensemble average density, ui represents the
i-component of velocity, D is the molecular diffusivity, ν is the kinematic viscosity, μ = νρ is the dynamic

viscosity, and τi j = μ
(

∂ui
∂x j

+ ∂u j
∂xi

)
− 2

3μ
∂uk
∂xk

δi j is the deviatoric contribution to the stress tensor. Here, ν and

D are spatially constant, making the Schmidt number (Sc = ν/D) spatially constant; any changes in density
correspond to an equivalent change in the dynamic viscosity and diffusivity.

Consistently with previous studies [23], the hydrodynamic pressure is decomposed as the sum of the
hydrostatic pressure head, 〈ρ〉gi xi , and fluctuations around this hydrostatic pressure, p. As evidenced by this
decomposition, the ensemble average of the pressure fluctuations is zero, 〈p〉 = 0. This decomposition has the
advantage of rendering the system of equations homogeneous (and periodic), even in the presence of gravity.
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The scalar quantity, Z , is related to the local composition of the mixture and can be thought of as either
a nondimensional temperature or the local mass fraction of one of the two fluids being mixed. The exact
definition of this scalar quantity and its relationship to the mixture density are discussed in more detail in the
following section.

As in USH turbulence [24], the role of the scalar source term, fZ , is to sustain the scalar field at a constant
variance. This prevents the scalar field from homogenizing. In turn, a heterogeneous scalar field ensures, via the
equation of state (Eq. 5), a heterogeneous density field.With a nonhomogeneous density field, the effects of both
buoyant (body) forces andpseudo-shear forces can be investigated.On the one hand, the influence of the buoyant
body force, (ρ − 〈ρ〉) gi , is determined by the magnitude of the gravity vector, gi . On the other hand, the influ-
ence of the pseudo-shear term is determined by the magnitude of the isotropic source term, fui . When mixing
is driven by shear (gi = 0), HIT is recovered; when mixing is driven by gravity ( fui = 0), HBT is recovered.

2.3 Equation of state

The main difference between the fully compressible Navier–Stokes equations and the low Mach number for-
mulation is in the equation of state. In the low Mach number formulation, the hydrodynamic pressure (present
in Eq. 2) does not appear in the equation of state; only the background/thermodynamic pressure does [19]. In
other words, the mixture density is entirely determined by the local temperature and mixture molecular weight
(assuming an ideal gas).

As mentioned earlier, we focus on “two-fluid mixing,” i.e., the mixing between two fluids with either
different molecular weights or different temperatures. For the first case, fluid 1 (resp. 2) has a mass fraction
Y1 (resp. Y2 = 1 − Y1) and a molecular weight W1 (resp. W2). The mixture density is given by

ρ = P0
RT

[
Y1
W1

+ 1 − Y1
W2

]−1

, (4)

with R the universal gas constant, T the temperature (constant during mixing), and P0 the thermodynamic
pressure. The scalar Z is often defined as the mass fraction of one of the two fluids (i.e., Z = Y1), and hence,
it is physically bounded, 0 ≤ Z ≤ 1. For reasons that will become more apparent in the following section (and
without loss of generality), it is more convenient to define Z as the deviations away from the state where the
two fluids are perfectly mixed. For instance, for a domain composed equally of fluid 1 and 2, the new scalar
Z would be defined as Z = Y1 − 0.5. With this simple shift, the scalar Z has a distribution about a zero mean.

After re-arrangement of Eq. 4, the mixture density takes the form

ρ = 1

aZ + b
, (5)

where a and b are constants that determine the variance and the mean of the density field, respectively. They are
more fully detailed in Sect. 4.2. Considering mixing of two fluids with different temperatures would lead to the
same final equation (Eq. 5). This equation defines the density at every point in the domain based on the fluctuat-
ing scalar value at that point. It is important to note that within the present lowMach number formulation, there
is no limit on the range of density fluctuations or equivalentlyAtwood numbers to be investigated (see Sect. 4.3).

2.4 Necessary restrictions on forcing methods

Without assuming a specific velocity or scalar field forcing method, four conditions are required to implement
the proposed approach. These constraints are obtained by considering the implications of statistical stationarity.

Following a Reynolds decomposition, all variables are decomposed into the sum of an ensemble average,
〈 · 〉, and a fluctuating component, (·)′, according to: ρ = 〈ρ〉 + ρ′, ui = 〈ui 〉 + u′

i , and Z = 〈Z〉 + Z ′.
Statistical stationarity implies,

∂〈ρ〉
∂t

= 0,
∂〈ρui 〉

∂t
= 0,

∂〈ρZ〉
∂t

= 0. (6)
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Physically, these correspond to a constancy in density, momentum, and scalar concentration. For the current
purposes, and without loss of generality, the average values of momentum and scalar concentration are chosen
to be zero,

〈ρui 〉 = 0, (7)

〈ρZ〉 = 〈ρZ〉t=0 = 0. (8)

Returning to the forced momentum and forced scalar transport equations (Eqs. 2 and 3), when ensemble-
averaged, they reduce to,

∂〈ρui 〉
∂t

= 〈 fui 〉 = 0, (9)

∂〈ρZ〉
∂t

= 〈 fZ 〉 = 0. (10)

Here, the condition of homogeneity has been applied, under which spatial derivatives of ensemble-averaged
terms vanish. It is important to remember that homogeneity (invariance by translation) does not imply isotropy
(invariance by rotation). The present turbulent buoyant flows are homogeneous, but not isotropic because of
the presence of gravity.

Equations 7–10 constitute the four needed constraints for the system of forced governing equations. To
this point, the presented equations have been general; no specific forcing method for either the velocity field
or scalar field has been offered. Specific forms for the two source terms are now provided.

2.5 Velocity field forcing

In variable density flows, fluidmixing is driven primarily by twomechanisms, shear and buoyancy. The forcing
term, fui , and the body force term, ρ′gi , in Eq. 2 are meant to model these two processes. The effects of shear
are modeled by fui , which necessitates that the implemented velocity field forcing source term be chosen with
care. The velocity field forcing method [25] used in this study is a modification of Lundgren’s linear velocity
forcing scheme [10,11]. This is motivated by its analogy to a shear term, the physical mechanism responsible
for the development of turbulence in real flows. Further, Lundgren’s linear forcing method has been shown to
be more consistent with turbulent statistics reported in decaying wind tunnel experiments than those generated
using low waveband spectral forcing approaches [27,28]. Additionally, Lundgren’s method is more easily
adaptable to variable density flow conditions.

By including a non-buoyant source term in the governing momentum equation, pseudo-shear effects can be
considered together with and separate from buoyant effects. The momentum source term for the linear forcing
approach takes the form,

fui = Q

k
ρui , (11)

where Q is a constant forcing coefficient related to the energy dissipation rate, ε, which is defined as,

ε = 1

〈ρ〉 〈2μSi j Si j 〉 = 1

〈ρ〉

〈
μ

2

(
∂ui
∂x j

+ ∂u j

∂xi

)2
〉

, (12)

and k is the instantaneous turbulent kinetic energy, which is defined as,

k = 1

〈ρ〉
〈
1

2
ρuiui

〉
. (13)

Equation 11 is a pseudo-shear term [10]. The coefficient Q determines the amplitude of the forcing, and, in
purely isotropic turbulent flows (gi = 0), it imposes an energy dissipation rate on the simulated turbulence.
Since the forcing term acts only on the fluctuations in fluid momentum, ρui , it imparts, on average, the same
magnitude of momentum flux in the three ordinate directions, making it an isotropic source term. With the
above momentum source term, Eq. 9 is verified due to Eq. 7, and the forced momentum equations become,

∂ρui
∂t

+ ∂ρuiu j

∂x j
= − ∂p

∂xi
+ ∂τi j

∂x j
+ Q

k
ρui + ρ′gi . (14)
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The turbulent kinetic energy equation can be obtained by multiplying Eq. 14 by ui . After manipulation
and using mass conservation (Eq. 1), it is found,

∂ 1
2ρu

2
i

∂t
+ ∂ 1

2ρu
2
i u j

∂x j
= −∂pui

∂xi
+ p

∂ui
∂xi

+ ∂τi j ui
∂x j

− τi j
∂ui
∂x j

+ Q

k
ρu2i + ρ′giui . (15)

After ensemble averaging, using the definitions of kinetic energy, k, and dissipation, ε, using that 〈ρ〉 is constant,
and applying homogeneity (∇ · 〈〉 = 0), the energy equation reduces to,

∂k

∂t
= 1

〈ρ〉

(〈
p
∂ui
∂xi

〉
+ 2

3

〈
μ

(
∂ui
∂xi

)2
〉)

− ε + 2Q + 1

〈ρ〉 〈ρ
′ui 〉gi . (16)

This expression states that the time rate of change of kinetic energy is a balance between two dilatation terms,
energy dissipation and energy production from isotropic and anisotropic (buoyant) sources. A steady state
manifests when dissipation grows sufficiently to counter the other contributing terms. At steady state, it can
be written,

ε = 1

〈ρ〉

(〈
p
∂ui
∂xi

〉
+ 2

3

〈
μ

(
∂ui
∂xi

)2
〉)

+ 2Q + 1

〈ρ〉 〈ρ
′giui 〉. (17)

The two dilatation terms are present regardless of the source of turbulence (buoyancy or pseudo-shear) and are
found in all numerical tests (Sect. 4) to account for nomore than 2%of the stationary energy dissipation rate (ε).

From Eq. 17, a power density ratio, denoted by α, can be expressed,

α = Pbuoy
Pbuoy + Pshear

= 〈ρ′gui 〉δi,2
〈ρ′gui 〉δi,2 + 2Q〈ρ〉 . (18)

The power density ratio so defined is an indicator of the amount of power injected into the mixing fluids from
purely buoyant forces relative to the total power being injected into the fluids. A value of α = 0 indicates a
purely non-buoyant mixing process, while a value α = 1 indicates a purely buoyant mixing process. Thus, by
adjusting the values of Q and g, the proposed equations can model all flows from fully isotropic, pseudo-shear
(g = 0, α = 0) to purely buoyant (Q = 0, α = 1) turbulent conditions.

2.6 Scalar field forcing

In buoyant flows, there are two sources of anisotropy in the velocity field. These sources are gravity and the
scalar being advected. If the scalar field is anisotropic, this can couple back on the flow dynamics via the density
field (Eq. 5), promoting the permeation of anisotropy into the velocity field. The most commonly used scalar
forcing method applies a mean spatial gradient across the scalar field as a means of generating a statistically
stationary scalar field [14,15]. Previous studies of unstably stratified homogeneous (USH) turbulence have
relied on such mean scalar gradient (in the direction of gravity) to prevent complete homogenization of the
scalar field [24]. Unfortunately, with such forcing technique, it is unclear whether the subsequent anisotropic
nature of the velocity field is due to the scalar forcing technique or the presence of gravity.

In this work, the source of anisotropy in the scalar field is eliminated by adopting a scalar field forcing
method that has no preferred direction or directional dependence. This forcing method, termed the linear scalar
forcing method [26], does not assume any particular scalar field distribution, nor does it enforce one. It simply
preserves the (isotropic or non-isotropic) character of the scalar field. Consequently, this provides a means by
which to isolate the impact that buoyancy alone has on turbulent mixing. The linear scalar forcing term takes
the form,

fZ =
(

1

τI

(
β

σZ
− 1

)
+ χ

2σ 2
Z

)
ρZ , (19)
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where τI is an inertial timescale, β2 is the long-time steady-state variance to which the scalar field is compelled
to evolve, and σ 2

Z and χ are the instantaneous scalar field variance and scalar dissipation rate, respectively.
These are defined as,

σ 2
Z = 1

〈ρ〉 〈ρZ
2〉, (20)

χ = 1

〈ρ〉
〈
2ρD ∂Z

∂x j

∂Z

∂x j

〉
. (21)

It follows that the final advection–diffusion equation can be written,

∂ρZ

∂t
+ ∂ρZu j

∂x j
= ∂

∂x j

(
ρD ∂Z

∂x j

)
+

(
1

τI

(
β

σZ
− 1

)
+ χ

2σ 2
Z

)
ρZ . (22)

When Eq. 22 is multiplied by the fluctuating scalar quantity, Z , and ensemble-averaged, an evolution
equation for the scalar field variance emerges,

∂σ 2
Z

∂t
= 2

σ 2
Z

τI

(
β

σZ
− 1

)
. (23)

The linear scalar forcing drives the scalar field to a specified variance value. When the standard deviation of
the scalar field reaches this value (σZ = β), the right-hand side of Eq. 23 vanishes. This induces a statistically
stationary state in the scalar field and, hence, in the density field through Eq. 5.

3 Relevant nondimensional parameters

3.1 Definitions

As mentioned earlier, the four dimensionless groups of primary importance in turbulent buoyant flows are the
Atwood, Schmidt, Reynolds, and Richardson numbers.

The Atwood number, A, indicates the extent of density variation in the mixing fluids. It is defined tradi-
tionally as,

A = ρ2 − ρ1

ρ2 + ρ1
, (24)

where ρ1 and ρ2 are the densities of the two fluids being mixed. The larger the difference in the densities of
the pure fluids, the larger the Atwood number. In the present work, an alternative definition of the Atwood
number is used,

A = σρ

〈ρ〉 , (25)

where σρ is the standard deviation of the density field and 〈ρ〉 is the mean density. The standard deviation of
the density is informative of the spread in density values throughout the domain, as there are not any regions
of pure fluids at ρ1 or ρ2.

The scalar field evolution is controlled by the Schmidt number,

Sc = ν

D , (26)

which is indicative of the relative strength of viscous (fluid) diffusion versus molecular (scalar) diffusion (e.g.,
thermal conductivity).

To express the Reynolds and Richardson numbers, it is necessary to define characteristic length scales and
velocity scales. The current work adopts the following definitions. For the velocity scale, the root-mean-square
of the velocity field is taken, and it is calculated according to,

uRMS =
√
1

3

( 〈ρu2〉
〈ρ〉 + 〈ρv2〉

〈ρ〉 + 〈ρw2〉
〈ρ〉

)
. (27)
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The characteristic length scale, in turn, is defined as,

l = u3RMS

ε
. (28)

Following Eqs. 27 and 28, the Reynolds number is defined as,

Re = uRMS l

ν
, (29)

and the Richardson number is defined as,

Ri = Agl

u2RMS

. (30)

3.2 Nondimensional governing equations

The roles played by inertia, gravity, density variation, and other physical properties in the mixing process
can be understood by nondimensionalizing the continuity (Eq. 1), momentum (Eq. 14), and scalar transport
(Eq. 22) equations. Using characteristic length, time, and velocity scales, pertinent flow variables can be
nondimensionalized as,

ρ̂ = ρ

〈ρ〉 , ûi = ui
uRMS

, p̂ = p

〈ρ〉 u2RMS

, x̂i = xi
l

, t̂ = t

τc
, Ẑ = Z

σZ
,

where
(·̂) variables are unitless and of order one, and τc = l/uRMS.

Variable density flows can be classified as either Boussinesq or non-Boussinesq types, and the nondimen-
sional form of the continuity equation can be used to illustrate the distinction. Using the defined characteristic
scales, the continuity equation can be written,

A
Dρ′/σρ

Dt̂
+ ρ̂

∂ û j

∂ x̂ j
= 0. (31)

As the density fluctuations scale with the standard deviation of the density field, the ratio ρ′/σρ is of order
one. The derivatives of the mean density vanished due to homogeneity and stationarity. A Boussinesq flow
has only a weak variation in density, and the Atwood number approaches zero. This reduces the material
derivative to zero, the incompressible limit is recovered, and the velocity field becomes divergence free. As a
result, the density is assumed constant everywhere except in the gravitational term [29]. Under non-Boussinesq
conditions, the Atwood number is nonzero, and the velocity field retains a nonzero divergence.

The momentum equation can be examined similarly. When the (forced) momentum equation is nondimen-
sionalized, it is obtained,

∂ρ̂ûi
∂ t̂

+ ∂ρ̂ûi û j

∂ x̂ j
= − ∂ p̂

∂ x̂i
+ 1

Re

∂

∂ x̂ j

{
ρ̂

(
∂ ûi
∂ x̂ j

+ ∂ û j

∂ x̂i

)
− 2

3
ρ̂

∂ ûk
∂ x̂k

δi j

}

+ τc
Q

k
ρ̂ûi + Ri

ρ′

σρ

δi,2. (32)

Note that the non-buoyant forcing term contains a ratio of timescales. The forcing amplitude, Q, has units of
an energy dissipation rate, such that its ratio with the turbulent kinetic energy, k, yields a timescale related to
the eddy turnover timescale. The left-hand side of Eq. 32 is of order one, and the right-hand side clarifies the
effect of varying Re or Ri . If Re is increased, the viscous term is reduced in magnitude, and the inertial terms
become increasingly dominant. If Ri is increased, the magnitude of the buoyant term grows relative to inertia.

Lastly, the (forced) advection–diffusion equation is addressed. Here, the forcing term is written in terms of
a scalar timescale (τZ = σ 2

Z/χ ) and β = σZ is assumed. The nondimensional form of the advection–diffusion
equation is,

∂ρ̂ Ẑ

∂ t̂
+ ∂ρ̂û j Ẑ

∂ x̂ j
= 1

ReSc

∂

∂ x̂ j

(
ρ̂

∂ Ẑ

∂ x̂ j

)
+ τc

2τZ
ρ̂ Ẑ . (33)
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From this expression, increasing either the Re or Sc numbers reduces the relative importance of scalar diffu-
sion; conversely, decreasing either parameter increases the importance of scalar diffusion. The product of the
Re and Sc numbers is also referred to as the Peclet number. As with the momentum equation, the effect of the
scalar forcing term is to impose a timescale.

4 Simulation framework validation

4.1 Code description

The simulation code used in this work is NGA [21], which is an extension of the high order conservative finite
difference scheme developed by Morinishi et al. [30]. It is discretely conservative of mass, momentum, and
kinetic energy, and it can provide an arbitrarily high order of accuracy. NGA makes use of staggered variables
(in time and space) [31] to ensure high accuracy with a compact stencil when evaluating derivatives.

NGA solves the mass conservation (Eq. 1), momentum conservation (Eq. 2), and scalar transport (Eq. 3)
equations. The system of equations is closed by connecting the scalar field to the density field via an equation
of state (Eq. 5). The NGA code makes use of a fractional step approach based on a predictor–corrector formu-
lation [32,33]. Only a brief overview of the fractional step procedure is given below. More details can be found
in [33,34]. An iterative procedure (where the subscript k denotes the iteration number) is used to advance the
momentum equations from a time step n to the new time step n + 1 and the scalar equations from a time step
n + 1/2 to the new time step n + 3/2.

1. Solve the mixture fraction equation (Eq. 3) for Zn+3/2
k+1 using the velocity un+1

k .

2. Evaluate the density, ρn+3/2
k+1 , using the equation of state (Eq. 5).

3. Predict the momentum by solving the momentum equation (Eq. 2) for ρu∗
k+1.

4. Solve a (fixed coefficient) Poisson system for the pressure correction, δpk+1

∇2 (δpk+1) = 1

�t

[
ρ
n+3/2
k+1 − ρn+1/2

�t
+ ∇ · ρu∗

k+1

]
(34)

5. Correct the momentum to ensure continuity (Eq. 1) is satisfied discretely and update the pressure field

ρun+1
k+1 = ρu∗

k+1 − �t∇δpk+1 (35)

pn+1
k+1 = pn+1

k + δpk+1 (36)

6. Iterate back to step 1 until sufficient convergence (in practice, four sub-iterations were found sufficient).

For the current work, the momentum equation is solved using second-order spatial accuracy in both the
convective and viscous terms. It was found that increasing to higher orders had negligible impact on the
data obtained. For the scalar field, a minimally dissipative, fifth-order HOUC scheme was implemented [35].
The procedure to solve this system of equations includes a second-order semi-implicit Crank–Nicolson time-
advancement scheme for the velocity and scalars [21,33].

In all simulation data to be presented, the meshes are strictly uniform. As mentioned earlier, the boundary
conditions for all equations are triply periodic. The velocity, scalar, and density fields are initialized following
Eswaran and Pope [12,13]. In the present case, the initial pressure is set to zero for simplicity. Recall that the
pressure is not the full hydrodynamic pressure, but only the fluctuations around the hydrostatic pressure head
(see Sect. 2.2).

4.2 Numerical tests

To investigate how the physics of mixing changes under buoyant and non-buoyant (pseudo-shear) conditions,
a parametric simulation study spanning a broad range of conditions using the proposed forced approach is
conducted. There are three classes of simulations performed. Note that, in all simulations, the Atwood and
Schmidt numbers are held fixed; this is done to facilitate comparisons. Also, the width of the domain is set to
2π in all cases.
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Table 1 (Pseudo) shear-driven turbulent flows under the proposed configuration with Sc = 1, A = 0.13, and α = 0

No. ε Q Re |g| Ri κmaxη N 3

Se01 0.12 0.065 122 0 0 1.55 963

Se05 0.53 0.301 217 0 0 1.41 1283

Se1 0.96 0.519 248 0 0 1.83 1923

Se2 2.01 1.07 326 0 0 2.02 2563

Se4 3.88 2.00 405 0 0 2.57 3843

Se6 5.80 3.03 515 0 0 2.33 3843

Ie2 2.01 1.07 417 0 0 2.02 2563

Note that case Ie2 corresponds to a (incompressible) constant density simulation. Ia0e2 is included for comparison purposes in
Sect. 5

Table 2 Buoyantly driven turbulent flows under the proposed configuration with Sc = 1, A = 0.13, and α = 1

No. ε Q Re |g| Ri κmaxη N 3

Be005 0.05 0 193 1 1.10 1.96 963

Be008 0.08 0 231 1.50 1.10 1.74 963

Be009 0.09 0 265 1.75 1.10 1.64 963

Be010 0.10 0 231 2 1.10 1.60 963

Be05 0.50 0 541 5 1.10 1.44 1283

Be1 1.02 0 654 8 1.10 1.81 1923

Be2 2.22 0 957 12 1.10 1.99 2563

Be4 4.02 0 934 18 1.10 2.57 3843

Be5 5.27 0 1240 20 1.10 2.40 3843

The first class of simulations corresponds to purely non-buoyant conditions, similar to homogeneous
isotropic turbulence (HIT) simulations of variable densitymixing. These cases are listed in Table 1, and they are
characterized by a power density ratio of α = 0. These non-buoyant cases span a sufficient range of energy dis-
sipation rates, which is here used as a proxy for the Reynolds number, such that meaningful inferences about the
impact of the simulation framework on the generated flowfields can be determined. The test cases are denoted in
Table 1 by theirmixingmechanism (shear, “S”) and their stationary energy dissipation rate (ε, “e”). One incom-
pressible, constant density simulation is included, and it is denoted by “I” followed by its dissipation rate “e.”

The second class of simulations uses only buoyant forcing. In these cases, the linear velocity forcing is set
to zero (Q = 0), and the only source of power for the fluid system comes from the gravitational body force.
Accordingly, these buoyant simulations have a power density ratio of α = 1, and they are delineated in Table 2.
As with the non-buoyant data, a substantial range of energy dissipation rates are covered so that the effects
of the simulation framework on the resultant flow fields could be determined. The test cases are denoted in
Table 2 by their mixing mechanism (buoyancy, “B”) and their stationary energy dissipation rate (ε, “e”).

The final class of simulations included in this work corresponds to cases with both non-buoyant (pseudo-
shear) effects and buoyant effects, and these have power density ratios bounded by 0 < α < 1. These partially
buoyant simulations are listed inTable 3.More test cases are performed for this class of flows, as there is a greater
span of α space to explore. The test cases are denoted in Table 3 by their mixing mechanism (partial buoyancy
and partial shear, “P”), their power density ratio (α, “a”), and their stationary energy dissipation rate (ε, “e”).

While all test cases are presented in the current work, for illustrative purposes, four test cases are presented
in greater detail than the rest (Table 4). These four cases are taken as representative, and their results are
reflective of the findings and behavioral trends noted for all cases in each mixing class.

4.3 The density field

It is generally accepted that a scalar field subject to isotropic incompressible turbulent conditions has a nearly
Gaussian probability density function (PDF) [7,14,16,17]. To verify that this is preserved when density is
nonconstant, focus is placed on four representative test cases (Table 4). The PDFs of the scalar fields in cases
Se2 (non-buoyant), Be2 (buoyant), Pa06e2 (partially buoyant), and Ie2 (constant density) are calculated. As
shown in Fig. 1a, the scalar fields in all cases are approximately Gaussian.
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Table 3 Partially buoyantly driven turbulent flows under the proposed configuration with Sc = 1 and A = 0.13

No. α ε Q Re |g| Ri κmaxη N 3

Pa0006e02 0.006 0.196 0.112 164 0.20 0.09 1.36 963

Pa003e002 0.028 0.018 9.85×10−3 70 0.10 0.08 1.64 643

Pa003e01 0.031 0.144 0.079 153 0.40 0.11 1.47 963

Pa01e01 0.126 0.109 0.053 153 0.60 0.26 1.57 963

Pa01e008 0.131 0.080 0.038 144 0.50 0.24 1.70 963

Pa02e005 0.246 0.047 0.019 121 0.50 0.39 1.94 963

Pa03e009 0.254 0.092 0.038 177 0.75 0.41 1.64 963

Pa04e003 0.417 0.032 9.85×10−3 133 0.50 0.58 2.14 963

Pa05e04 0.470 0.430 0.122 347 3 0.89 1.49 1283

Pa05e08 0.500 0.820 0.219 456 5 0.91 1.90 1923

Pa05e5 0.530 4.68 1.230 672 17 1.00 2.46 3843

Pa05e008 0.543 0.079 0.019 215 1.00 0.70 1.71 963

Pa06e2 0.570 2.00 0.455 711 9 1.05 2.03 2563

Pa06e4 0.620 4.39 0.898 902 15 0.96 2.50 3843

Pa06e01 0.640 0.100 0.019 234 1.50 1.08 1.60 963

Pa08e4 0.840 4.31 0.301 1011 15 0.91 2.51 3843

Pa1e01 1.000 0.106 2.41×10−6 309 1.75 1.10 1.60 963

Table 4 Four selected representative test cases taken from Tables 1, 2, and 3 (Sc = 1, N 3 = 2563)

No. α ε Q Re |g| Ri κmaxη A

Se2 0 2.01 1.07 326 0 0 2.02 0.13
Ie2 0 2.01 1.07 417 0 0 2.02 0
Pa06e2 0.57 2.00 0.455 711 9 1.05 2.03 0.13
Be2 1 2.22 0 957 12 1.10 1.99 0.13

(a) (b)

Fig. 1 Probability density functions of the scalar, Z , and density, ρ, fields for cases in Table 4. a Scalar field distribution. b
Density field distribution

Additionally, the PDFs of the density fields for cases Se2, Be2, and Pa06e2 are calculated, and they are
depicted in Fig. 1b. As the scalar field is Gaussian in distribution and the density field is defined in terms of
the scalar field (Eq. 5), a theoretical distribution for the density field can be expressed analytically as,

PDF(ρ) = 1

aρ2β
√
2π

exp

(
− 1

2β2

{
1

a

(
1

ρ
− b

)
− 〈Z〉

}2
)

, (37)

which produces the curve denoted “Theoretical” in Fig. 1b. Note the close agreement between this theoretical
PDF curve and the PDF data calculated from the density field data. Consistent with previous studies of variable
density turbulent mixing [3–5], the density PDFs in all test cases are skewed toward lower density values.
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Table 5 Mean (〈X〉), variance (σ 2
X ), skewness (SX ), and flatness (FX ) of the scalar (Z ) and density (ρ) fields obtained in cases

Se2, Be2, Pa06e2, and Ie2

No. 〈Z〉 σ 2
Z SZ FZ 〈ρ〉 σ 2

ρ Sρ Fρ

Se2 0.091 0.93 0.052 2.99 1.00 0.015 0.705 4.14
Ie2 0.000 1.00 −0.118 3.17 1.00 0 – –
Pa06e2 0.092 0.92 0.044 3.12 1.00 0.015 0.746 4.24
Be2 0.095 0.95 0.131 2.88 1.00 0.015 0.557 3.42

To be more quantitative, the skewness (S) and flatness (F) are calculated for cases Se2, Be2, Pa06e2, and
Ie2 according to,

SX = 〈(X − 〈X〉)3〉
〈(X − 〈X〉)2〉3/2 FX = 〈(X − 〈X〉)4〉

〈(X − 〈X〉)2〉2 . (38)

The results are listed in Table 5. It is known that a Gaussian (normal) distribution has a skewness value of
zero and a flatness (kurtosis) value of three. The data included in Table 5 suggest a nearly Gaussian distribution
in the scalar field, while confirming the non-Gaussianity of the density field distribution.

Based on these findings, the current formulation is capable of sustaining variable density mixing consis-
tent with previously published results under any (buoyant or non-buoyant) flow condition. Further, it offers a
straightforward way to determine the needed values of a and b in the equation of state to get a desired Atwood
number. Using the results of Fig. 1a, which shows that the scalar field is distributed about a mean of zero
(〈Z〉 ≈ 0), and using Eq. 37, it can be written as,

〈ρ〉 ≈ 1/b,

σρ ≈ σZa, (39)

and, consequently,

A ≈ a

b
σZ ≈ a

b
β. (40)

In the present work and without loss of generality, the scalar variance is set to unity (β2 = 1), and the
density field is prescribed to have a mean of unity (b = 1). The desired Atwood number is obtained, then, by
specifying the value of the coefficient a.

Other statistics of the scalar field were also evaluated to investigate the differences between isotropic tur-
bulence and buoyant turbulence on the scalar field. In summary, as observed for the distribution of mixture
fraction, there were no distinguishable differences in the scalar energy spectra. This led to similar mean scalar
dissipation rates (Eq. 21) for a given imposed scalar variance. In other words, the scalar integral timescales,
defined as τZ = σ 2

Z/χ , were similar for both sources of turbulence. A similar behavior was observed for the
scalar integral length scales.

4.4 The velocity field

With the density field behaving as desired, the velocity fields generated under the proposed method are now
considered. The PDFs of the normal stresses are first calculated (Fig. 2). Under non-buoyant conditions, the
three normal stress components are equivalent (i.e., the flow is isotropic), as is to be expected. Then, as the
power ratio is increased from α = 0 to α = 1, the PDFs begin to differentiate (Fig. 2). While the normal
stresses from the velocity components orthogonal to gravity (u and w) remain equivalent, the velocity com-
ponent aligned with gravity (v) behaves differently. This is related to the larger variance (σ 2

v = 〈v2〉 − 〈v〉2)
found in the v component relative to the u and w components. The non-buoyant data are reflective of isotropic
energy production. The buoyant and partially buoyant cases are subject to anisotropic energy production, as
turbulent kinetic energy is preferentially supplied to the v component.

The trends observed in the PDFs of the velocity field stress components have implications for other flow
parameters, specifically the characteristic length scale defined in Eq. 28. To determine the effect of the power
density ratio on the characteristic length scale imposed on thefluid system, all of the simulation data contained in
Tables 1, 2, and 3 are considered. Under purely non-buoyantmixing conditions (α = 0), it is found that the ratio
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(a) (b)

(c)

Fig. 2 Probability density functions (PDFs) of the normal stresses for the variable density test cases in Table 4. The variances
of each of the velocity components are denoted as σ 2. a Non-buoyant (case Se2). b Partially buoyant (case Pa06e2). c Buoyant
(case Be2)

of the integral length scale and the domain size oscillates about l/L ≈ 0.19 (Fig. 3a). Note that this finding is
consistent with results from constant density simulations performed by others [11]. Under purely buoyant mix-
ing conditions (α = 1), it is found that l/L ≈ 0.38 (Fig. 3b). These ratios define the limiting values of l/L under
the present simulationmethod.Todetermine the integral length scale for partially buoyant cases, the power ratio,
α, must be considered. As illustrated in Fig. 3c, as the power ratio tends toward that of a purely buoyant flow
(α → 1), the length scale predicted progressively approaches that found in Fig. 3b. Similarly, as the power ratio
tends toward that of a purely non-buoyant flow (α → 0), the length scalemoves toward the one found in Fig. 3a.

Time-averaged length scales are extracted from each of the simulation results, and their functional depen-
dence on α is depicted in Fig. 3d. There is an approximately linear relationship between the length scale
imposed and the power density ratio. As progressively more of the power supplied to the fluid system is
provided by buoyant forces, the characteristic length scale grows. This finding is consistent with the trends
noted in the PDFs of the normal stresses; the larger magnitude of the v component variance under buoyant (or
partially buoyant) conditions results in a larger overall length scale.

The larger v variance also affects the integral timescale. As the total dissipation rate is kept constant when
the power ratio is changed, the integral timescale, defined as τc = l/uRMS = l2/3ε−1/3, increases simulta-
neously when the integral length scale increases. An increase by a factor of about 1.6 was observed between
purely isotropic and purely buoyant turbulent flows. Given the almost constant scalar timescale, τZ (Sect. 4.3),
the ratio of velocity to scalar timescales was found to vary between 1.35 and 0.86 for the purely isotropic (case
Se2) and purely buoyant turbulent flows (case Be2), respectively.

4.5 The buoyant flow field

To investigate how turbulent mixing is affected by the presence of buoyancy effects, it is necessary to under-
stand the buoyant energy production mechanism. Buoyant energy production is dependent on the correlation
between the density field and the component of velocity aligned parallel to the gravity vector, as shown in
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(a) (b)

(c) (d)
Fig. 3 Characteristic length scale under non-buoyant (Table 1), buoyant (Table 2), and partially buoyant (Table 3) conditions. In
(d), DNS data are included as open circles, and an approximate linear fit is shown. The standard deviation is determined according

to: σl/L =
√

〈(l(α, t)/L)2〉 − 〈l(α, t)/L〉2. a Non-buoyant (α = 0): l/L ≈ 0.19. b Buoyant (α = 1): l/L ≈ 0.38. c Partially
buoyant. d Relationship between α and l/L

Fig. 4 Contour plots of field variables from case Se2. a u component of velocity. b v component of velocity. c ρ field

Eq. 16 (〈ρ′v〉g/〈ρ〉). As the strength of buoyant effects can be quantified through the power density ratio, the
dependence of 〈ρ′v〉g/〈ρ〉 on α needs to be characterized. This dependence can be determined by revisiting
the density field (Sect. 4.3) and the velocity field (Sect. 4.4).

4.5.1 Contour plots

Qualitatively, the dependence of the velocity field on the density field can be observed through examination of
contour plots. Two-dimensional planar cuts of the u, v, and ρ fields are provided in Figs. 4 and 5 for cases Se2
and Be2, respectively. These represent cuts at the midplane in z direction. Recall that g is in the y direction.
The w velocity component is not included here, as it is statistically equivalent to the u component.
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Fig. 5 Contour plots of field variables from case Be2. a u component of velocity. b v component of velocity. c ρ field

(a) (b)
Fig. 6 Conditional averages of the velocity components on the density for the cases in Table 4. a Component parallel to gravity.
b Components perpendicular to gravity

Figure 4 suggests that there is no correlation between the velocity field and the density field. As the non-
buoyant case implements an isotropic forcing term, it is expected that the velocity field components would
not display any directional dependence. However, consistent with its energy production term, Fig. 5 depicts a
clear correlation between the v velocity component and the density field, while the u component field exhibits
no such correlation. In regions of low density in Fig. 5c, there are corresponding regions of upward moving
fluid in Fig. 5b; in the regions of high density in Fig. 5c, there are corresponding regions of downward moving
fluid in Fig. 5b.

4.5.2 Conditional averages

The physical traits illustrated in Figs. 4 and 5 can be more quantitatively expressed by considering the con-
ditional averages of the velocity field components (u, v, and w) on the density field. A vanishing conditional
average indicates that the two flow parameters are decorrelated from each other; a nonzero conditional average
indicates a correlation between flow variables. The conditional average of the three velocity components on
the density field is shown in Fig. 6.

Figure 6a suggests a correlation between the v velocity field and the ρ field, and this correlation becomes
stronger as the power density ratio increases from α = 0 to α = 1. This behavior is both consistent with
the contour plots presented, and it is reasonable, as a heavy fluid (ρ > 〈ρ〉) will fall (v < 0) and a light
fluid (ρ < 〈ρ〉) will rise (v > 0). Further, Fig. 6c confirms the negligible correlation between the u and w
components and the ρ field, as depicted in Figs. 4 and 5. As a note, the large conditional average values present
at small density values (ρ − 〈ρ〉 < 2σρ) are not statistically meaningful, as they are infrequent occurrences
contained in the tails of the density field PDFs (Fig. 1b).

4.5.3 Importance of the power density ratio

In Sect. 4.3, it was shown that a statistically stationary variance can be maintained in the density field under
any flow condition (non-buoyant, partially buoyant, or buoyant). Sections 4.4, 4.5.1, and 4.5.2 showed that
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(a) (b)
Fig. 7 Effect of power ratio (α) on the constant of proportionality [C(α)]. DNS data are included as open circles, and an
approximate curve fit is shown. The standard deviation is determined according to:σC(α) =

√
〈C(α, t)2〉 − 〈C(α, t)〉2. aC(α = 1)

for purely buoyant conditions. b Dependence of C(α) on α

Fig. 8 Flow chart describing non-buoyant simulations (α = 0, g = 0)

a constant variance could be sustained in the velocity field and that its correlation with the density field is a
function of the power density ratio. These flow features are now connected to define the effect of α on buoyant
energy production.

Using Bayesian statistics, it can be written,

〈ρv〉(α) =
∫

ρ〈v|ρ〉(α) PDF(ρ) dρ, (41)

which provides the means by which the density field and velocity field effects can be connected. Note that the
density field distribution is independent of the power density ratio (Fig. 1b), but the conditional average term
is dependent on the power density ratio (Fig. 6a). The result is that the correlation term is a function of α also.
To characterize the behavior of the buoyant production term as a function of power density ratio, a scaling
approach is instructive. The buoyant production term can be expressed as,

〈ρ′v〉 = C (α) σρuRMS, (42)

where C(α) is unitless and of order one.
The purely buoyant flow condition is first examined, as this can be used to define the (upper) limiting

behavior of C(α). The test cases listed in Table 2 are examined, and it is found that for all test cases, there is
convergence ofC(α = 1) toward a value of approximately 0.91 (Fig. 7a). Aswith the buoyant data, the partially
buoyant data (see Table 3) are examined. It is found that a unique value forC is emerged for each power density
ratio (Fig. 7b). Within the indicated standard deviation bounds, the data can be adequately captured by a power
law (C(α) = 0.9α1/4). As to be expected, C(α) increases monotonically as the power density ratio increases.

5 Using the developed simulation framework

The procedure needed to perform (and control) non-buoyant, buoyant, and partially buoyant mixing simu-
lations is now outlined. The success of this simulation method hinges on the ability to control the relative
magnitude of buoyant and non-buoyant body forces acting on the mixing fluids. By manipulating the relative
magnitude of these two summed terms through the power density ratio (α), the full range of purely buoyant
and purely non-buoyant cases can be simulated.
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Fig. 9 Flow chart describing buoyant simulations (α = 1, Q = 0)

5.1 Non-buoyant simulations

The flowchart depicted in Fig. 8 illustrates the process needed to simulate purely non-buoyantmixing.Once it is
decided that the simulation is to be purely non-buoyant, the characteristic length scale is known (Fig. 3a, l/L =
0.19). This leaves two degrees of freedom to be selected. The first is the kinematic viscosity, ν, and the second
is the Reynolds number to be achieved. The maximum possible Reynolds number achieved can be expressed
in terms of the number of grid points in one direction, N , and the grid resolution (κmaxη = (N/2)(ν3/ε)1/4),

Remax =
(
2

N

1

l
κmaxη

)−4/3

. (43)

Once the grid size (N ) and the desired resolution (κmaxη ≥ 1.5, in general [36]), are chosen, the Reynolds
number is defined. Then, using the Reynolds number, the length scale, and the viscosity, the root-mean-square
velocity, uRMS, may be evaluated. From these, the total energy dissipation rate can be calculated. As this is
a non-buoyant simulation, it can be written that ε = 2Q (assuming the two dilatation terms in Eq. 17 are
negligible), from which the needed forcing coefficient, Q, is determined. The desired Schmidt number can
then be used to select the diffusion coefficient: D = ν/Sc. Lastly, the Atwood number can be controlled by
varying the a and b values, as discussed in Sect. 4.3.

5.2 Buoyant simulations

A similar process is used for purely buoyant simulations, and this process is illustrated in Fig. 9. Following
Fig. 3b, purely buoyant flows impose a characteristic length scale of l/L = 0.38. Following the choice of
kinematic viscosity (ν) and selecting the grid size (N ) needed for the desired Reynolds number (Remax),
the root-mean-square velocity can be calculated. These, in turn, define the total energy dissipation rate, ε.
Following Fig. 7a, the needed value of g for any purely buoyant simulation can be determined according to,

g = ε

C(α = 1)AuRMS
= ε

0.91AuRMS
. (44)

Once again, the two dilatation terms in Eq. 17 were assumed to be negligible. Similar to the non-buoyant
case, the Schmidt and Atwood numbers can then be fixed via the choice of D, a, and b.

It should be noted that there is only one Richardson number possible for an α = 1 condition. Using the
definition of Ri (Eq. 30), the definition of l (Eq. 28), and the global energy balance for buoyant flows (Eq. 44),
it can be obtained,

Ri = 1

C(α = 1)
= 1.1. (45)

5.3 Partially buoyant simulations

The procedure to simulate partially buoyant simulations is now discussed (Fig. 10). Initially, the process is
similar to the other two. There are three free parameters available, the kinematic viscosity (ν), the grid size
(N ), and the power density ratio (α). Once the power density ratio is specified, the length scale ratio (l/L) is
known (Fig. 3d). Then, the Reynolds number is determined by the resolution desired and the grid size (Eq. 43).
Using these three values, the root-mean-square velocity and the total energy dissipation rate can be calculated.
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Fig. 10 Flow chart describing partially buoyant simulations

Similar to the buoyant case, the global energy balance for ε can be used to determine the Q and g values
needed for a given partially buoyant condition. Assuming the two dilatation terms in Eq. 17 are negligible, the
stationary global energy balance can be written,

ε = 2Q + C(α) A g uRMS. (46)

When used in concert with the definition of Ri (Eq. 30), the integral length scale (Eq. 28), and the power
density ratio (Eq. 18), it is found,

g = ε α

C(α) A uRMS
, (47)

Q = ε (1 − α)

2
, (48)

Ri = α

C(α)
. (49)

Using the above equation, the Ri can be evaluated from the power density ratio. Alternatively, the power
density ratio can be obtained from the Ri . Following this, the Schmidt and Atwood numbers can be specified.

6 Summary and conclusions

In this work, we proposed a new mathematical framework for the numerical simulation of turbulent buoyant
flows. In contrast to previous high-fidelity direct numerical simulations of traditional Rayleigh–Taylor instabil-
ities primarily focused on the large-scale behavior [1,2], the focus was placed on developing a computationally
efficient framework to investigate the small-scale dynamics of turbulent buoyant flows.

The geometry adopted was the same as that of Batchelor et al. [8], Livescu et al. [3,4,6], and Soulard
et al. [24], namely a triply periodic domain of homogeneous turbulence. This geometry was preferred over the
original Rayleigh–Taylor configuration [1,2], as it reduces the computational cost of performing the simula-
tions. Unfortunately, without the presence of the two reservoirs of heavy and light densities of the traditional
RT configuration, the resulting homogeneous turbulent flow is unsteady [6,8]. Initially, the turbulent kinetic
energy increases due to production by buoyant forces. Then, after homogenization of the density field, the
turbulent kinetic energy decreases due to dissipation by viscous forces.

As an alternative to this unsteady configuration, we proposed to sustain the turbulent flow field at a state
of constant turbulent kinetic energy by supplementing the mixture fraction equation with a source term in a
manner similar to the work of Soulard et al. [24]. They used the scalar mean gradient forcing technique [14,15]
in the direction of gravity to generate a statistically stationary homogeneous turbulent flow. Unfortunately, the
scalar mean gradient is known to create anisotropy in the scalar field [26] that is difficult to distinguish from
the anisotropy generated by gravity.

In order to separate the effects of buoyancy from those due to large-scale gradients (present in Soulard’s
work and in the traditional RT configuration), we proposed to replace themean scalar gradient with the recently
developed linear scalar forcing [26]. This forcing technique has the advantage of preserving the inherent nature
of the density field without introducing any artificial anisotropy. In addition, we supplemented the momentum
equation with an additional source term to provide pseudo-shear energy production [10,11,25]. With these
modifications, the present framework can simulate any homogeneous turbulent flows from purely isotropic
turbulence (HIT) to purely buoyant turbulence (HBT). Four nondimensional parameters can be adjusted inde-
pendently, namely the Reynolds number, Re, the Richardson number, Ri , the Atwood number, A, and the
Schmidt number, Sc.

Test cases spanning a range of Reynolds and Richardson numbers have been presented and examined.
First, it was observed that neither the variable density nature nor the buoyant nature of the turbulent flow field
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influences the mixture fraction field; its distribution remains very close to a Gaussian, which is characteristic
of passive scalar mixing. On the other hand, anisotropy starts to develop in the velocity field as the Richardson
number is increased; the variance of the velocity component in the direction of gravity increases. Simulta-
neously, a conditional dependence is introduced in this velocity component with respect to the local density:
Heavier (resp. lighter) fluid tends to move in the direction of gravity (resp. in the opposite direction). While
this result may not be surprising for laminar or turbulent Rayleigh–Taylor configurations, it is interesting to
note that these concerted fluctuations are still present in homogeneous flows and contribute to most of the
variance in the velocity component (more than 75%). Finally, these concerted fluctuations are the mechanism
by which energy is produced in buoyant flows.

These results highlight critical differences between isotropic and buoyant homogeneous turbulent flows and
suggest directions to investigate for future subgrid-scale modeling for applications in large-eddy simulations.
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