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Abstract We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for
implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a con-
servative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit
subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for
complex flow configurations. The wall model operates directly on the Cartesian computational mesh without
the need for a dual boundary-conforming mesh. The combination of wall model and implicit LES is investi-
gated in detail for turbulent channel flow at friction Reynolds numbers from Reτ = 395 up to Reτ = 100,000
on very coarse meshes. The TBLE wall model with implicit LES gives results of better quality than current
explicit LES based on eddy viscosity subgrid-scale models with similar wall models. A straightforward formu-
lation of the wall model performs well at moderately large Reynolds numbers. A logarithmic-layer mismatch,
observed only at very large Reynolds numbers, is removed by introducing a new structure-based damping
function. The performance of the overall approach is assessed for two generic configurations with flow sepa-
ration: the backward-facing step at Reh = 5,000 and the periodic hill at ReH = 10,595 and ReH = 37,000
on very coarse meshes. The results confirm the observations made for the channel flow with respect to the
good prediction quality and indicate that the combination of implicit LES, immersed-interface method, and
TBLE-based wall modeling is a viable approach for simulating complex aerodynamic flows at high Reynolds
numbers. They also reflect the limitations of TBLE-based wall models.
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1 Introduction

Subgrid-scale (SGS) model development for large-eddy simulation (LES) mainly follows the explicit mod-
eling paradigm, where functional or structural concepts are invoked for devising approximations of the SGS
stress tensor or for approximating the small-scale field. Less within the focus of physically motivated SGS
modeling is the implicit modeling paradigm [23]. Implicit SGS models have been considered as inferior
to explicit models by construction since SGS dissipation was generated essentially without strict physical
motivation by nonlinear numerical stabilization mechanisms, for example, such as that provided by shock-
capturing schemes. It has been shown by Garnier et al. [21] that a straightforward application of shock-capturing
schemes for implicit LES in general does not lead to good results. Despite theoretical limitations, in practice,
however, often good results with such implicit SGS models have been obtained [20]. As described by Grinstein
et al. [23], methods for analyzing the effective SGS model provided by the underlying discretization scheme
have become available. A systematic approach for a general, nonlinear discretization framework that allows
for physically consistent implicit SGS modeling has been introduced by Hickel et al. [27], based on the
approximate deconvolution concept [46]. The adaptive local deconvolution method (ALDM) is nonlinear and
solution adaptive and incorporates a physically consistent implicit SGS model, that is, a model that recovers the
subgrid-scale energy transfer in agreement with theoretical predictions for isotropic turbulence. The validity
of the developed implicit model has been demonstrated for a wide range of increasingly complex flows, see
e.g., [26,24].

Despite the fact that ALDM gives improved predictions of turbulence anisotropy compared with com-
mon explicit SGS models [24], the fundamental problem of having to resolve the near-wall region in tur-
bulent flows is shared with all other implicit or explicit LES approaches. A wall-resolving LES needs to
represent the near-wall anisotropy of turbulence which requires a sufficient grid resolution, scaling with the
friction Reynolds number Re2

τ [4]. A high near-wall resolution implies a severe time step constraint, not only
for numerical stability of conditionally stable time integration schemes but also for a proper resolution of tur-
bulent transfer mechanisms. For relaxing these constraints, the concept of wall modeling has been introduced
early in the development of LES methods [16,45]. With wall-modeling approaches, approximate boundary
conditions and wall layer models are employed that imply resolution requirements following exterior flow
scaling as Re0.4 [41]. An essential assumption for wall modeling is a timescale separation between the near-
wall turbulence dynamics and that of the exterior flow. Based on this assumption, the near-wall layer couples
only weakly to the exterior flow and its evolution can be computed on the larger exterior flow timescale [29].
An obvious question is what is the simplest possible coupling model between exterior and near-wall flow. For
the synthetic boundary conditions shifted to a plane away from the wall, proposed by Baggett [3], Dirichlet
velocity boundary conditions are sufficient for an accurate exterior flow; however, the imposed velocity needs
to have correct spectral distributions of auto- and cross-correlations. For passing information about near-wall
turbulence structure to the exterior flow, one usually estimates the wall stress, as it leads to simple and robust
synthetic boundary data. Commonly, the wall-parallel stress components are imposed, while the wall-normal
velocity component is set to zero. Alternative approaches employing approximation theory, such as the filtered
representation of the boundary condition [8], have led to considerable new insight but have not yet resulted in
practically useful wall models.

A generic form of the wall stress model can be written as

τw = f (uo, po, ν, x), (1)

where f is used to relate the wall stress τw in wall-parallel directions to the velocity uo and pressure po
of the exterior flow at the coupling position x = (x1, x2, x3). For f , algebraic closures have been proposed
[16,42,45]. An alternative is to derive a closure from the turbulent boundary layer equations (TBLE) with a
simple algebraic turbulence model [6,50]. More sophisticated is a hybrid approach between LES and the full
Reynolds-averaged Navier–Stokes equations (RANS), see [19]. Hybrid RANS/LES methods are beyond the
scope of this paper and thus are not further discussed here. Cabot [12] stated that using the precise wall stresses
from resolved LES instead of those given by a wall model had little effect on the exterior flow evolution along
a backward-facing step. One can conclude that SGS modeling errors and numerical errors for the exterior
flow contribute to unsatisfactory predictions [40]. A wall model based on suboptimal control theory has been
proposed to compensate for such errors [39]. Although improved results have been obtained, the need for
a priori knowledge for defining the cost function and the increased computational load have prevented a
widespread use of this approach.
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So far, wall models are almost exclusively used in combination with explicit SGS models and on body-
conforming structured meshes. A notable exception to the former observation is the work of Grinstein and
Fureby, see [22]. A detailed investigation of wall models within the framework of implicit LES has not yet
been performed to the authors’ knowledge.

A practical issue is that of performing LES for flows in or around complex geometries. LES on unstruc-
tured meshes is ill advised, as the numerical truncation error can exhibit large local variations and pollutes
the effect of either implicit or explicit SGS models. Structured, curvilinear meshes are hard to generate for
complex geometries. An alternative is provided by immersed-interface methods where the boundary is mapped
onto a, usually Cartesian, mesh [37]. In particular, for implicit LES approaches, where the spatial truncation
error of the discretization scheme functions as SGS model, regular meshes are desirable, so that a benefit
from using immersed-interface methods for the representation of complex boundaries can be expected, see
also [36].

There are only very few published papers focusing on the wall modeling for LES in the framework of
immersed-boundary (IB) methods, although the IB technique itself is rather well established [37]. A wall
model based on simplified TBLE that keeps only the diffusive term, the so-called equilibrium stress bal-
ance model, has been proposed by Tessicini et al. [48] and applied to a hydrofoil flow at high Reynolds
numbers, for which improved mean velocities compared to coarse LES without wall model are observed.
Several additional applications of this model were presented by Cristallo and Verzicco in Ref. [15], where
also the detailed finite difference implementation of the filtered Navier–Stokes equations is discussed. Choi
et al. [14] have used a power law function to interpolate the velocities in the wall-normal direction, which is
claimed to be suitable for high Reynolds number flow simulations. Roman et al. [44] carried out a detailed
investigation for plane turbulent channel flow using the immersed-boundary method on both Cartesian and
curvilinear grids. It was found that in this method, the location and the particular choice of the velocity
reconstruction at the coupling position can crucially affect the predicted mean-velocity profiles. We want to
emphasize that, to the best of our knowledge, all previously published methods are based on discrete-forcing
or penalty techniques using local velocity reconstructions in the framework of finite difference implementa-
tions [15,17]. Such procedures generally do not satisfy mass conservation near the immersed boundary, as the
filtered Navier–Stokes equations are not solved in the entire flow domain but only down to the first or second
off-wall points. Exact mass conservation, however, can be essential for accurate turbulent-flow predictions
[32].

In this work, the Navier–Stokes equations are solved by a finite volume method. Wall boundaries that do
not conform with grid lines are consistently modeled by a conservative immersed-interface method (CIIM)
[35], which is fully conservative by construction. CIIM follows the cut cell approach, that is, the finite volume
flux balance of cells that are cut by the wall interface is discretized in such a way that only the fluid part of the
cell contributes to the solution. When a wall model is employed, the effect of the wall shear force is imposed
on the exterior LES through the interface interaction term within the underlying conservative framework of
the finite volume method.

Explicit SGS models, such as the constant-coefficient Smagorinsky model used by Roman et al. [44] or
the dynamic Smagorinsky model used in Refs. [15,48], are strongly affected by discretization errors in the
comparably large near-wall cells typically used in wall-modeled LES, and therefore cannot account properly
for the anisotropic SGS turbulence in this region. In the present work, the implicit SGS model ALDM [27] is
used, which by construction is based on exploiting truncation errors for physically consistent SGS modeling.
In Ref. [24], it has been shown that ALDM yields grid convergent and accurate results for wall-bounded
turbulence at moderate Reynolds numbers even on very coarse grids. It is therefore expected that the combi-
nation of ALDM and CIIM offers high efficiency and more reliability for complex flow configurations.The
importance of near-wall SGS modeling especially at high Reynolds number will be discussed in the following
sections.

One objective of this paperis to investigate the detailed behavior of a wall model based on the simplified
TBLE within ALDM-based implicit LES. For this particular purpose, turbulent channel flow is considered
at friction Reynolds numbers up to Reτ = 1.0 × 105. The other purpose is to formulate a TBLE-based wall
model for immersed-interface methods without employing a dual-mesh approach, similarly as in Ref. [48]. As
another difference to previous methods, the approach pursued in this paper employs a conservative immersed-
boundary method and a TBLE-based wall model that includes the pressure gradient and time acceleration
term. The overall performanceof the method is assessed for complex generic flows, the backward-facing step
[31], and the periodic hill [18].
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2 Implicit LES and conservative immersed-interface method

ALDM is a finite volume approach based on a nonlinear deconvolution operator and a numerical flux func-
tion, where the spatial truncation error functions as physically consistent implicit SGS model [27]. Efficient
simulations of turbulent flows along complex geometries are achieved by the conservative immersed-interface
method [35]. In the following, these methods are briefly described for completeness.

The Navier–Stokes equations for an incompressible fluid with uniform density are written in non-
dimensional form as

∂u
∂t

+ ∇ · F(u) + ∇ p − ν∇2u = 0, (2)

with F(u) = uu and ν = 1/Re. The incompressible continuity equation is

∇ · u = 0. (3)

The differential equations for the resolved scales are obtained by applying the filter G(x) to the Eqs. (2) and (3)

∂u
∂t

+ G ∗ ∇ · F(u) + ∇ p − ν∇2u = 0, (4a)

∇ · u = 0, (4b)

where the filtered velocity and pressure are obtained by convolution with the filter kernel: u = u∗G. Applying
ALDM to the Eqs. (4), where finite volume averaging functions as real-space top-hat filter, one obtains

∂uN

∂t
+ ˜G ∗ ˜∇ ·˜FN(̃uN) + ∇ pN − ν∇2uN = 0, (5a)

∇ · uN = 0. (5b)

The subscript N indicates the discrete approximation. ũN is the approximate deconvolution of uN. ˜∇ represents
the discrete approximation of the divergence operator. ˜FN is a consistent numerical flux function

˜FN = F((̃u+
N + ũ−

N)/2) − σ |δuN|(δũN), (6)

in which

σ i, j,k = σ

(

L0

�0

�xi, j,k

Li, j,k

)−1/3

,

δui+ 1
2 , j,k = ui+1, j,k − ui, j,k,

δũi+ 1
2 , j,k = ũ−

i+1, j,k − ũ+
i, j,k .

(7)

�xi, j,k are the grid spacings in the three coordinate directions. A compensation of variable grid spacing for
the isotropic model parameter σ = 0.069 is achieved by L0 and �0, denoting a reference integral length scale
and a reference grid size, respectively. For wall-bounded flows, the length scale Li, j,k is damped by

Li, j,k = L0

(

1 − exp

[

−
(

lwuτ

50ν

)3
])

, (8)

where lw is the wall distance and uτ is the friction velocity calculated from a general wall function [24]. In the
following, we refer to Eq. (7) with Eq. (8) as van Driest (VD) damping.

Equations (5) are solved on a staggered Cartesian mesh, and a pressure projection method is used. An
explicit third-order Runge-Kutta scheme is used for time advancement. The time step is dynamically adapted
to satisfy a Courant-Friedrichs-Lewy (CFL) condition with CFL = 1.0. The pressure Poisson equation and
diffusive terms are discretized by second-order central differences, whereas the convective terms are discretized
by a simplified formulation of ALDM for improved computational efficiency [25].

In the framework of immersed-interface method, for the normal cells away from the immersed interface,
the Eqs. (5) reduce to normal finite volume method. However, for the cells cut by the immersed interface, the
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Fig. 1 Flux calculation on a cut cell

fluxes through the interface have to be included and the fluxes at cell faces must be corrected. The Eqs. (5a)
for one cut cell are modified as

∂ui, j,k

∂t
+ 1

Vi, j,k

∑

∂Ii, j,k

[˜F(̃uN) − ν∇(u)] · n�S + ∇ pi, j,k + Mi, j,k = 0. (9)

The control volume Vi, j,k immersed in the fluid is computed using the volume fraction αi, j,k ,

Vi, j,k = αi, j,k�xi�y j�zk . (10)

The area of cell faces �S immersed within the fluid is obtained by the face apertures Al,m,n , as sketched
in Fig. 1,
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Ai− 1
2 , j,k�y j�zk, west,

Ai+ 1
2 , j,k�y j�zk, east,

Ai, j− 1
2 ,k�xi�zk, south,

Ai, j+ 1
2 ,k�xi�zk, north,

Ai, j,k− 1
2
�xi�y j , back,

Ai, j,k+ 1
2
�xi�y j , front,

	i, j,k, immersed interface.

(11)

The convective fluxes and diffusive fluxes are calculated at the face centers of cut cells as with normal fluid
cells, which allows the computation to use ALDM and central discretization scheme without modification.
The convective flux C	i, j,k across the immersed interface

C	i, j,k = ˜F(̃uN)|	i, j,k · n	i, j,k (12)

can be directly calculated when the Dirichlet boundary conditions are used. It is exactly zero when applying
a no-slip boundary condition. The diffusive flux D	i, j,k across the immersed interface can be calculated from
the wall shear stress as

D	i, j,k = −ν∇(u)|	i, j,k · n	i, j,k = τw	i, j,k . (13)

Small cut cells, typically cells with αi, j,k < 0.5, undergo a special treatment by mixing their momen-
tum with their neighbor cells in a conservative fashion, in order to prevent more severe numerical stability
restrictions. For very small cut cells that do not contribute to the pressure Poisson equation, the impermeability
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condition of the interface cannot be achieved by a Neumann condition for the pressure, but by an acceler-
ation of the wall-normal velocity to satisfy the wall-normal momentum balance. This is accomplished by a
momentum-exchange term in the wall-normal direction

Mi, j,k = −u⊥,i, j,k

�t
. (14)

For the details of the momentum-mixing procedure and the pressure Poisson equation modification, see Ref.
[35]. The remaining issue is modeling of the wall shear stress τw, which is detailed in the next section.

3 Wall model for immersed-interface methods

For determining the wall stress in Eqs. (1, 13), several modeling approaches are possible. It appears that a good
compromise between accuracy and computational cost is to determine the wall stress from the TBLE, solved in
a near-wall region. This procedure belongs to the two-layer modeling approaches, introduced by Balaras et al.
[5]. Basic assumption for the validity of the TBLE in the near-wall region is a temporal scale separation between
the exterior flow and the near-wall flow, where also the boundary layer assumptions hold (slow changes in
wall-parallel directions, fast changes in wall-normal direction). The TBLE are further simplified by dropping
convective terms, as friction and pressure effects are expected to be dominant. This assumption is critical for
the choice of the coupling position between LES and TBLE. If it is far from the edge of the buffer layer, the
simplified TBLE fail to include strong convection effects of the outer layer. If it is too close to the wall, the
buffer layer is adversely affected. For our method, we have established that the proper coupling position is in
the lower range of the logarithmic layer for developed channel flow. The following simplified unsteady TBLE
are used

∂

∂x2
(ν + νt )

∂ui

∂x2
= ∂ui

∂t
+ ∂p

∂xi
, (i = 1, 3), (15)

where in a local coordinate system, x2 indicates the wall-normal direction and xi (i = 1, 3) are tangential to the
wall. The mixing-length eddy viscosity model with damping function is adopted to account for the near-wall
turbulence

νt = κνx+
2 (1 − e−x+

2 /A)2, (16)

where κ = 0.4 and A = 19. If the wall-normal velocity is needed like in discrete momentum forcing IB
method, it can be obtained from the continuity equation

v2(x1, x2, x3) = −
x2

∫

0

(

∂u1

∂x1
+ ∂u3

∂x3

)

dx
′
2. (17)

The simplified unsteady TBLE without convective terms are treated as ordinary differential equations
at each time step. Therefore, they can be integrated from x2o = δ down to the wall to give a closed-form
expression of the wall shear stress components

τwi = ν
∂ui

∂x2

∣

∣

∣

x2=0
= 1

∫ δ

0
dx2

ν+νt

⎧

⎨

⎩

uoi − 1

ρ

∂p

∂xi

δ
∫

0

x2dx2

ν + νt
−

δ
∫

0

∫ x2
0

∂ui
∂t dx

′
2

ν + νt
dx2

⎫

⎬

⎭

. (18)

If the time derivative is eliminated, and if the turbulent viscosity νt only depends on the friction velocity and the
wall distance, the above equation can be integrated numerically to obtain the final wall shear stress. Otherwise,
the velocity distribution in the wall layer has to be computed. We discretize Eq. 15 by a second-order central
scheme on a locally defined, one-dimensional stretched grid between the wall and the interpolation point in the
wall-normal direction. The no-slip boundary condition is imposed at the wall. The upper boundary conditions
for velocity and pressure gradients are interpolated from the exterior LES. This results in a tridiagonal linear
equation system that is directly solved using a standard procedure. Note that the TBLE are solved at every
Runge-Kutta substep and the velocities on the embedded grids are updated by the same Runge–Kutta method
as the LES time derivative term.
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Fig. 2 The sketch of interpolation and tangential direction definition

For body-fitted structured meshes, it is straightforward to define an increased-resolution wall-normal grid
for the TBLE and to interpolate velocity and pressure from the LES-grid nodes. Also, it is straightforward to
compute the pressure gradient in the wall-parallel directions. The wall stresses computed from the TBLE can be
used directly as diffusive wall flux in Eqs. (5). The situation is more complex with immersed-interface methods,
because the wall geometry does not conform to the background Cartesian mesh. The local wall-normal and
wall-tangential directions have to be defined for each cut cell separately. First, the unit normal vector n⊥ to the
wall is obtained from the gradient of the level-set function. Second, one wall-tangential direction t1 is defined
from the intersection between the plane spanned by the normal vector and one axis of the underlying Cartesian
system. Any one of the three unit vectors of the underline Cartesian system can be used, but it should not be
chosen along the wall-normal direction. The other wall-tangential direction t3 is obtained by the cross-product
of the wall-normal and the first wall-tangential vectors. Velocity vector and pressure gradient are interpolated
from the LES mesh using trilinear interpolation at points away from the wall in the wall-normal direction.
Subsequently, they are projected onto the wall-tangential directions to obtain the outer boundary conditions
for the TBLE, as sketched in Fig. 2. For imposing wall stresses from TBLE as wall fluxes of the LES, a tensor
transformation is necessary to translate them into the stress components in Cartesian coordinates. A simpler
equivalent alternative is to compute the wall shear force fw from the wall stresses τwi (i = 1, 3) and the local
wall-surface area 	i, j,k and volume of the cut cell Vi, j,k , which is then projected onto the Cartesian coordinate
system. This can be summarized as

fw = ( fwx , fwy, fwz) = 1

Vi, j,k
(t1τw1 + t2τw2)	i, j,k, (19)

where fwx , fwy , and fwz are the three components of the wall shear force. These projected forces can be used
as source terms in the momentum equations Eqs. (5a).

We emphasize that with the present method, only the diffusive flux or wall shear force is provided
to the exterior LES. The wall-normal cell-averaged velocity for the cut cell is the solution of the exte-
rior flow LES, Eqs. (5, 9), and not directly affected by the wall model. The impermeability condition is
imposed by Dirichlet boundary conditions on the convective interface interaction, that is, C	i, j,k = 0 for
non-moving walls, and a homogeneous Neumann boundary condition for the pressure that is directly imple-
mented in the pressure Poisson solver. This is an important difference from immersed-boundary methods
that are based on the discrete momentum forcing at the first off-wall grid point. As the first off-wall grid
point never coincides with the immersed wall boundary, the wall-normal velocity needs to be reconstructed
in discrete-forcing methods and then projected onto the Cartesian coordinate system to evaluate the forcing
term. The present cut cell method is not only fully conservative but also expected to be more robust than the
discrete momentum forcing immersed-boundary method, in particular if high-order discretization schemes
are used.
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Table 1 Simulation cases and resolutions

Case Reτ Nx1 × Nx2 × Nx3 NTBLE

wm1 395 16 × 16 × 16 20
wm2 590 16 × 16 × 16 20
wm3 950 16 × 16 × 16 20
wm4 2,000 16 × 16 × 16 20
wm5 25,000 32 × 32 × 32 40
wm6 100,000 48 × 48 × 48 40
wm7 100,000 32 × 32 × 32 40
wm8 2,000; 25,000; 100,000 48 × 48 × 48 40

4 Assessment of wall model with implicit LES

In this section, the performance of the wall model in conjunction with the implicit LES model is investigated
in detail for turbulent channel flow. An initial test of the further extension to a wall model with implicit LES
and immersed-interface method is also performed, where the channel walls are moved off the computational
grid.

We consider the same setup for the turbulent channel flow with �0 = L0/32 and L0 = 2H/3 in Eq. (7)
as in Ref. [24], where H is the half channel height. The computational domain size is 2π H × 2H × π H in
the streamwise, the wall-normal, and in the spanwise directions, respectively. The grid resolutions for the LES
and the local embedded TBLE are shown in Table 1 and denoted as Nx1 × Nx2 × Nx3 and NTBLE, respectively.
The grid spacing is uniform in each coordinate direction in the LES domain and it is stretched in wall-normal
direction in the TBLE domain. The coupling position x2 is at the first off-wall grid point of the LES mesh,
except for case wm1, where it is centered between the first and second grid points in the lower part of the
logarithmic layer. Periodic boundary conditions are used in the streamwise and in the spanwise directions.

Results for the mean velocity, non-dimensionalized by wall units l+ = ν/uτ and friction velocity uτ , are
compared with direct numerical simulations (DNS) and the logarithmic law in Fig. 3. At moderately large Reτ ,
the mean-velocity profiles are predicted well. However, at very large Reτ = 25,000 and Reτ = 100,000, the
mean velocities exhibit a logarithmic-layer mismatch [9]. From inspecting the results, we find that the damping
function Eq. (8), which was developed for wall-resolving LES, has a relevant effect only on the wall cells
with very weak parameter dependence [24]. In conjunction with the TBLE-based wall model, this results in an
underprediction of wall stresses at large Reynolds numbers. At these large Reynolds numbers, the near-wall
LES-grid cells are very large in terms of viscous length scales l+, and the damping function Eq. (8) ceases
to be physically meaningful. It can be expected that a physically meaningful damping function to be used in
conjunction with wall models may remedy the problem. We found that an adaptive coefficient formulation
based on the findings of Ref. [33] is suitable for this purpose. In the following, we refer to this modification
as coherent structures (CS) damping, details are given in the Appendix. As with the CS modification, the SGS
model dissipation is too small in the wall cells, we copy σi, j,k of Eq. (7) for these cells from the next neighbors
away from the wall. With this fix, the resulting mean-velocity profiles and Reynolds stresses are predicted
as well as for the original formulation at moderately large Reτ , see Figs. 3 and 4, but now are significantly
improved for large Reτ , as shown in Fig. 3 for Reτ = 25,000 and Reτ = 100,000.

The von Kármán constant appears to be slightly underpredicted by the results of Fig. 3 at Reτ = 100,000,
which can be attributed to the fact that at the coupling position of x+

2 = 2,230, convective effects probably are
so strong that they contribute to the near-wall behavior while being neglected in the TBLE. Without increasing
the grid resolution, the coupling point can be moved closer to the wall by employing a stretched grid in the
wall-normal direction, for example, mapped by a hyperbolic tangent function

x2 j = − H

tan h(CG)
tan h

(

CG − 2CG
j

Nx2

)

, (20)

with CG = 1.5. With the same grid resolution as case wm7 in Table 1, the coupling position is now at about
x+

2 = 1, 000. The mean-velocity profiles are compared in Fig. 5. One can see that with the original formulation
for σi, j,k , the predicted mean velocity deteriorates with grid stretching as in this case the overestimated value
of σi, j,k in the near-wall cells becomes even larger. The CS modification is found to behave well and exhibits
only weak grid size dependence. From the comparison of the streamwise shear stress balance in Fig. 6, one
can see that the resolved shear stress becomes larger near the wall and that the modeled subgrid stress becomes
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smaller, while the viscous stress remains almost the same when CS is used. This trend confirms the fact that
mean-velocity artifacts are caused by the overpredicted subgrid stress at several near-wall grid points.

To better assess the effect of the TBLE turbulence model on the dynamics of the wall layer, three different
eddy viscosity RANS models are investigated for case wm4 in Table 1. The first eddy viscosity model, denoted
as M1, is our standard formulation from Eq. (16). As M2, we denote the Baldwin–Lomax model [7] which
uses a two-layer formulation. The inner layer is based on the friction velocity scale and the outer layer is based
on the velocity scale deduced from the resolved vorticity. The last model is the formulation of Balaras et al.
[6] denoted as M3

νt = (κy)2|S|D, D = [1 − exp(−(y+/A)3)], (21)
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Fig. 5 The grid stretching effect on the mean velocity of case wm7. The solid line 2.44ln(x+
2 ) + 5.2; dashdot line with square

VD; dashed line with delta CS

(b)
Fig. 6 Streamwise shear stresses balance comparison using VD and CS. Solid lines with symbols viscous stress; dashed lines
with symbols resolved shear stress; dashdotted lines with symbols SGS shear stress; solid line total shear stress. Lines with square
VD; lines with delta CS. a Case wm5, b case wm7 with wall-normal grids stretched

where |S| is the magnitude of the resolved strain at the coupling position, providing the velocity scale, and
A = 25.

The comparisons of the mean-velocity profiles of inner TBLE and exterior LES are shown in Fig. 7a.
The mean velocity of the TBLE region is best predicted by M1. M3 underpredicts the wall shear stress and
gives poor results for the buffer region. M2 yields almost the same wall shear stress as M1, although the
prediction for outer part of TBLE region is slightly worse. From the comparison of the local von Kármán
constant κ = 1

y+du+/dy+ in Fig. 7b, it can be seen that all TBLE turbulence models result in almost identical
predictions for logarithmic region in the exterior LES. This is confirmed in Fig. 8 by the resolved shear stress
and the non-dimensionalized turbulence production. The Reynolds shear stress is plotted in Fig. 8a. M2 and M3
produce a modeled Reynolds shear stress that approaches the resolved Reynolds shear stress of the LES at the
coupling position. This due to the fact that M2 and M3 use velocity scales in the eddy viscosity formulation that
is based on the resolved strain and vorticity of the exterior LES. With M1, we observe a discontinuity between
the RANS modeled Reynolds stress in the TBLE region and the resolved Reynolds stress in the LES domain.
From the continuous derivative of the mean-velocity profile, see Fig 7a, we can deduce that this discontinuity
properly reflects the differences in modeling approaches of TBLE and LES, in particular the contribution of the
implicitly modeled SGS stress in the LES region. Note that only M1 yields a smooth velocity profile without a
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(b)
Fig. 7 Effect of eddy viscosity model on mean velocity and κ of coarse LES with TBLE model at Reτ = 2,000. Solid
lines DNS; Solid lines with symbols exterior LES; Dashed lines with symbols inner TBLE. Circle M1—present model, see
Eq. (16); uptriangle M2—Baldwin-Lomax model [7]; downtriangle M3—Balaras et al. [6]. a Mean-velocity profiles, b local
von Kármán constant κ

<
u>

+

(b)(a)
Fig. 8 Effect of eddy viscosity model on Reynolds shear stress and turbulence production for coarse LES with TBLE model at
Reτ = 2,000. Lines labeled as in Fig. 7. a Reynolds shear stress, b turbulence production

log-layer mismatch between TBLE and LES domain. The above analysis indicates that a key issue for a wall
model is to provide the correct wall shear stress, and that the exterior LES is not very sensitive to the details
of near-wall turbulence modeling.

The grid resolution of the exterior LES is also investigated. Although a grid convergence study cannot be
carried out as with traditional RANS, we can assess whether the prediction of the resolved part of the flow
improves with increasing grid resolution with the wall model being active. Three cases at Reτ = 2,000 using
different resolutions 16×16×16, 32×32×32, and 48×48×48 are denoted as R1, R2, and R3, respectively.
All the grids are equidistant.

The results for mean velocity and local von Kármán constant κ are compared in Fig. 9a, b, respectively.
As the resolution increases, the first off-wall point approaches the wall, but it is still outside of the buffer layer.
The well-established logarithmic regions extend toward the wall and leave the outer part unchanged, which is
indicated clearly by the local κ in Fig. 9b. It can also be observed that κ is not exactly constant with increasing
resolution, but approaches the DNS result. The resolved turbulence production also approaches that of DNS,
as shown in Fig. 9c, while there still remains a small deficit at the finest resolution in the outer part. A similar
observation can be made for the different shear stresses (resolved, molecular, and modeled subgrid stress), as
shown in Fig. 9d. From the above results, we can see that as long as the constraint of the wall model with
respect to the coupling position is satisfied, consistent results can be obtained when the grid resolution varies.

As our main intention is to use TBLE wall modeling in conjunction with implicit LES and an immersed-
interface method for complex geometries, it is sensible to test this combination first for a very simple config-
uration. For the turbulent channel flow, case wm8 of Table 1, we immerse the plane channel of domain size
2π H × 2H × π H into a computational domain of size 2π H × 2.35H × π H , which is discretized by
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Fig. 9 Effect of resolution of exterior LES on mean velocity, local κ , turbulence production, and shear stress balance for coarse
LES with TBLE model at Reτ = 2,000. In (d), line styles denote different stresses as in Fig. 6. Arrows point to the direction
increasing resolution. a Mean streamwise velocity, b local von Kármán constant κ , c turbulence production, d streamwise shear
stress balance

48 × 48 × 48 regular cells in three directions. Periodic boundary conditions are applied in the streamwise and
the spanwise directions, and the wall model is used at both immersed interfaces. The coupling points between
TBLE and LES grid are placed one wall-normal grid spacing away from the interfaces. The wall model with CS
damping is used. Results for mean velocities and Reynolds stresses are shown in Figs. 10 and 11, respectively.
The mean velocities are predicted with similar accuracy as for the wall-conforming boundary, compare with
Fig. 3. The prediction of the Reynolds stresses is also of similar quality as for the wall-conforming case, com-
pared with Fig. 4. The oscillation over the first few grid points is caused by the momentum-mixing procedure of
the immersed-interface method, see Ref. [35], which for the severe setup chosen above occurs for each wall cell.

From the results presented in this section, we can come to the following conclusions. First, the original
version of ALDM, extended by a simplified TBLE-based wall model gives good results for turbulent channel
flow up to moderately large Reynolds numbers. At very large Reynolds numbers, a logarithmic-layer mismatch
occurs due to overestimated SGS dissipation in the near-wall cells. Nevertheless, the observed effect is weaker
than that of Ref. [13,39] using explicit eddy viscosity models. A significant improvement for the wall model is
achieved by introducing a physically meaningful damping function by CS. Artifacts at large Reynolds numbers
can be almost entirely removed. Second, ALDM and wall model work properly in conjunction with the CIIM.

5 Application of the wall model, ALDM, and CIIM to backward-facing step flow

To test the full approach for a moderately complex geometry, we consider the flow along a backward-facing
step at Reh = 5,000 according to the experiment of Jovic and Driver [31] as reference. Compared to the
turbulent channel flow, additional complications are introduced with respect to wall model formulation and
flow dynamics. With respect to the former, the wall-normal direction is not continuous and jumps at the corners,
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Fig. 11 Reynolds stresses comparisons of case wm8 with DNS at Reτ = 2,000. The lines labeled as in Fig. 10

which poses a difficulty for the underlying level-set representation of the wall and for defining unambiguously
the wall-tangential directions. With respect to the latter, the flow now includes a separation, a separated shear
layer, a recirculation bubble formation, flow reattachment, and recovery. The considered computational domain
extends in streamwise direction for 40h, where h is the step height, including a section of 10h upstream of
the step. The height is 6h at the outlet, the spanwise width is 3h, and an expansion ratio is 1.2. A multiblock
boundary-conforming grid and the CIIM method are used for comparison.

For the boundary-conforming computation, the flow domain is divided into three blocks at the step, which
are discretized by 192 × 32 × 24 cells, with 48 cells upstream of the step. In the streamwise direction, the
grids are refined near the location of the step. A recycling inflow technique [26] and a convective outflow
boundary condition are applied in the streamwise direction. A symmetry boundary condition is used at the
upper boundary. A periodic condition is used in the spanwise direction. At the wall, alternatively, a no-slip
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Fig. 12 Comparisons of friction and pressure coefficients. Square symbols experiment; solid line LES_CS; dashed line WM_CS;
dashdot line WM_IB. a Friction coefficient, b pressure coefficient

condition (LES resolution not resolving the near-wall flow) and the above wall model are used. These cases
are distinguished as LES_CS and WM_CS, respectively.

For the CIIM computation, the computational domain size is 40h × 6.5h × 3h in the streamwise, vertical,
and spanwise directions, respectively. The step is immersed into the computational domain and does not
collapse with computational grid lines. The resolution is 192 × 44 × 24 and is comparable with the boundary-
conforming case using the same grid refinement near the step. The same boundary conditions as for the
boundary-conforming case are used, except for the wall boundaries, where the wall stresses from the wall
model are imposed by CIIM. This case is denoted as WM_IB.

In all cases, the pressure Poisson equation is solved using a fast Fourier transform in the spanwise direction,
and a two-dimensional BiCGStab iterative solver for the other directions. The resolution of the locally embed-
ded TBLE grid is 20 for all cases. The coupling position is about x+

2 = 50, based on the local friction velocity
at inlet. As the friction Reynolds number is comparably low, we cannot distinguish results of the original VD
and the CS modification, as the case for the turbulent channel flow. Therefore, only the results obtained with
the CS modification are presented.

The reattachment length xr/h of LES_CS, WM_CS, and WM_IB are 5.4, 7.4, and 6.85, respectively,
as indicated by the location of zero mean friction coefficient in Fig. 12a. If the 50 % forward-flow criterion
at the first off-wall points is used to identify reattachment, xr/h becomes 5.4, 5.8, and 5.2, respectively.
For the LES_CS case, these points obviously are in the LES region, whereas for the two other cases, these
points are the first off-wall points of the TBLE. This difference is partially responsible for the rather large
discrepancy between the coarse-resolved LES and the wall model results. The computed reattachment lengths
are all quite different from that of the experiment xr/h = 6.0 ± 0.15, as they strongly depend on the boundary
layer upstream of the step and on the effective dissipation in the recirculation region. For the LES without
wall model, LES_CS, the boundary layer upstream of the step is not predicted correctly due to the coarse
resolution. For the cases with wall modeling, although the outer part of incoming boundary layer is more
accurate (see below), the wall model is insufficient for an accurate prediction of the recirculation region. The
DNS of Le et al. [34] shows that a second recirculation occurs at the lower corner of the step and has a length
1.76h and a height 0.8h. For the wall-modeling cases, WM_CS and WM_IB, the main recirculation bubble
extends all the way to the step and no secondary separation bubble is observed, a behavior which has been
reported in Ref. [12] for all kinds of wall model used in this reference and also for a coarse LES without wall
model. It should be pointed out that for our coarse-resolved LES_CS with ALDM, a secondary recirculation
bubble of size 0.75h × 0.7h is observed. This observation supports our conclusion that the occurrence of the
secondary recirculation bubble rather depends on the SGS model quality than on near-wall grid resolution. We
also support the observation that TBLE-based wall modeling is unable to recover such effects.

The friction- and pressure-coefficient distributions

C f = τw

1
2ρU 2

0

, C p = p − p0
1
2ρU 2

0

, (22)

are compared in Fig. 12, where p0 is the reference pressure taken at x1/h = 5.1 upstream of the step. U0
is the upstream reference velocity at x1/h = 3.05, defined following the experiment, which is also used to
non-dimensionalize the mean velocity and Reynolds stresses. From the C f distribution, it can be seen that
C f is strongly underpredicted in LES_CS, as expected. Upstream of the step, the boundary layer develops
under the influence of a weak favorable pressure gradient and the C f is predicted well by the wall models.
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Fig. 13 Comparisons of mean velocity and Reynolds stresses at six stations. Lines labeled as in Fig. 12. a Mean streamwise
velocity, b longitudinal Reynolds normal stress, c transverse Reynolds normal stress, d Reynolds shear stress

In the recirculation region, the wall model fails to recover the correct C f . In the front part of the recirculation,
a weak favorable pressure gradient causes the wall friction to become positive for WM_CS. In the rear part
of the recirculation, the overpredicted adverse pressure gradient results in a negative C f farther downstream
than for the experiment. We conclude that the wall friction is dominated by the pressure gradient through the
simplified TBLE, and the prediction deficiencies may be related to the neglected convection terms.

In the recovery region, C f is predicted well by WM_CS, while being underpredicted in WM_IB. The
absolute values of C f from WM_IB are smaller than those from WM_CS, except near the upstream of the
step. As can be seen from the C p distribution, the pressure recovers more quickly in the wall-modeling cases
than for LES_CS. For WM_CS, the pressure is lower than that of LES_CS in the rear part of the recirculation,
which indicates a stronger recirculation in WM_CS. However, downstream of the position x1/h = 14, the
pressure coefficients are almost the same in both cases. With WM_IB, the pressure is overpredicted near
the step, a behavior that is caused by the cut cells at the upper and lower corners. In the recovery region, the
pressure coefficient is predicted well, where the momentum-mixing results in a larger near-wall velocity and
thus a lower pressure.

The streamwise mean-velocity and Reynolds-stress profiles are shown in Fig. 13a–d at six downstream
stations. Upstream of the step, at station x1/h = −3.1, the flow resembles a developed turbulent boundary
layer with a weak favorable pressure gradient. For the wall-modeling cases, the mean velocities and Reynolds
stresses are predicted well outside of the wall layer at this station. However, for LES_CS, the mean velocity is
underpredicted near the wall and overpredicted away from the wall. The position of the maximum streamwise
Reynolds normal stress is shifted further away from the wall. The other Reynolds stresses are predicted well.
At the location x1/h = 4.0, the maximum mean backflow velocity is underpredicted for LES_CS and for
WM_IB, which is consistent with the too short reattachment length.

In the wall-modeling cases, the coupling positions are approximately at the locations of the maximum
backflow velocity. Beneath those locations, the turbulence production in the real flow is very small [1]. The
mixing-length eddy viscosity model, however, introduces a rather strong turbulence production in the TBLE
and fails to recover this kind of flow. At reattachment and further downstream, the prediction of mean velocities
and Reynolds stresses is generally improved by the wall model, except at the far-downstream stations. It can
be seen that for the wall-modeling simulations, the flow recovers too quickly after the reattachment, as shown
in Fig. 13a. In the rear part of the recovery region, although the pressure gradient is almost zero, the boundary
layer is far from well-developed [31,34]. A inner boundary layer occurs near the wall, and the outer flow is
still affected by the evolution of the free shear layer that has experienced a strong adverse pressure gradient.
The mixing length and the eddy viscosity are much larger than the ones obtained from using Eq. (16) with
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Table 2 Simulation parameters of the periodic hill

Case ReH Nx1 × Nx2 × Nx3 CFL Tavg xsep/H xreatt/H

L E S_C 10,595 96 × 64 × 32 0.25 90 0.52 3.15
W M L E S_C 10,595 96 × 64 × 32 0.25 90 0.65 4.00
W M L E S_F 10,595 192 × 72 × 64 0.25 40 0.50 4.42
W M L E S_C37 37,000 96 × 64 × 32 0.5 90 0.75 3.41
W M L E S_F37 37,000 192 × 72 × 48 0.5 40 0.75 3.80

κ = 0.4 [30]. This fact results in an underprediction of the wall stresses by TBLE, as in Fig. 12a. Thus,
the flow recovers too fast with an overpredicted mean velocity. For WM_IB, the transverse Reynolds normal
stress and Reynolds shear stress are in better agreement with the experiment than those of WM_CS. This can
be attributed to the favorable effect of artificial momentum mixing near the wall, which is consistent with
the more accurately predicted pressure coefficient. Note that again we have chosen a worst-case scenario for
positioning the lower wall with respect to the computational grid. The chosen position leads to the situation
that momentum mixing is applied all along the lower wall downstream of the step.

From the above analysis, we conclude that even the simple TBLE wall model used here generally improves
the prediction of the mean flow. On the other hand, it may prevent the evolution of small-scale near-wall flow
structures such as the secondary separation for the backward-facing step flow. We also have observed that
CIIM with wall model occasionally may lead to a fortuitous situation where the mixing rule employed for
relaxing the numerical stability constraint in CIIM interacts favorably with the wall model.

6 Application of the wall model, ALDM, and CIIM to channel flow with periodic constrictions

We consider the flow over periodic hills in a channel as investigated, e.g., by Fröhlich et al. [18] and Breuer et al.
[11]. The flow is characterized by separation from the smooth curved surface, recirculation area, reattachment
at the flat plate, and acceleration on the windward side of the hill. Most statistical turbulence models have
difficulties to predict these flow features or even the separation length. A simulation with highly resolved LES
on the hill side and wall modeling on the straight side was carried out by Fröhlich et al. [18], investigating the
physical issues of this test case comprehensively at ReH = 10,595. Wall-modeling issues were extensively
investigated combining different SGS models with different wall models on the coarse body-fitted grids [47],
which highlighted the importance of an adequate streamwise resolution of the flow in the vicinity of the
separation line. The near-wall treatment was found to have more effect than the SGS model on the quality of
the results obtained on coarse grids. It should be mentioned that an alternative modeling strategy for separated
flows has been proposed by Breuer et al. [11] using statistical evaluations of wall-resolved LES data. Also,
hybrid LES/RANS approaches including detached-eddy simulation (DES) have been evaluated on this test
case, see, e.g., [10,49], where a massive deterioration of the results was detected when the LES/RANS interface
moves outside of the boundary layer on the crest of the hill.

The overall simulation domain is 9.0H × 3.335H × 4.5H . Periodic conditions are used in the streamwise
and spanwise directions, and wall models are adopted at the immersed interfaces representing the hill. Based
on the results for the backward-facing step, a coarse resolution of 96 × 64 × 32 cells in the streamwise,
vertical, and spanwise directions is used for coarse LES with and without wall modeling. A fine resolution of
192×72×64 is also used to investigate the effect of grid resolution. The computational parameters are shown
in Table 2 for detail, where the streamwise separation and reattachment positions indicated by the streamline
normal to the wall are also given. Although it is not reasonable to deduce these positions using non-body-fitted
coarse Cartesian meshes, it can be seen that the reattachment position is delayed when the wall model or finer
resolution is used. Statistics are sampled for about 90 and 40 flow-through times in coarse and fine cases,
respectively. Non-dimensional wall distances (based on the friction velocity from resolved LES of Fröhlich et
al. [18]) of the matching points between the LES and TBLE domains are about 30 on average, with a maximum
of 135.8 at x1/H = 8.66, as shown in Fig. 14 for case W M L E S_C . This distance is of half values for case
W M L E S_F .

The friction and pressure coefficients are compared with those of Fröhlich et al. [18] in Fig 15a, b, respec-
tively. In case L E S_C without wall modeling, the wall shear stress far from the resolved values except in the
former part of recirculation region from x1/H = 0.52 to x1/H = 2.0. In case W M L E S_C , the TBLE-based
wall model reproduces reasonably well the overall evolution of the friction coefficient, while showing too
low values under adverse pressure gradient conditions. This result is similar to what has been observed for
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Fig. 14 Non-dimensional wall distance of LES/TBLE matching points on coarse resolutions for the periodic hill on the lower
wall at ReH = 10,595. Dashdotted line W M L E S_C ; dashdotdotted line W M L E S_F
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Fig. 15 Comparisons of skin-friction and pressure coefficients for the periodic hill at ReH = 10,595. a Skin-friction coefficient
on the hill, b pressure coefficient, the more shallow curve is for the upper wall

the backward-facing step case. This is another indication for the lack of convective effects in the simplified
TBLE wall model. In the finer resolution case W M L E S_F , for the recirculation becomes larger and stronger
than in the coarser case W M L E S_C , a smaller negative wall shear stress is produced at the back part of the
recirculation. In the recovery region, the wall shear stress is almost the same in these two cases, while in the
reacceleration region, the wall shear stress is heavily overpredicted in finer case W M L E S_F due to its large
favorable pressure gradient as shown in Fig. 15b.

The pressure coefficient is heavily overpredicted on the hill in case L E S_C , but it is reasonable at the
upper wall for all cases. On the lower wall, the pressure coefficient indicates that the flow recovers more
quickly than the resolved LES in the wall-modeled cases, and the maximum pressure is slightly overpredicted.
In the recirculation region, the pressure is lower in case W M L E S_F than in case W M L E S_C , which is
consistent with the smaller wall friction and stronger recirculation in the former case. Note that a low pressure
region on the top of the hill is accompanied by a short closed separation region that cannot be observed in the
wall-modeling LES due to the coarse grid resolution, but can be observed in the solution of TBLE.

The mean velocity, turbulent kinetic energy, and Reynolds shear stress are compared with the results
of highly resolved boundary-conforming LES using LESOCC [43] at ten sections in Fig. 16. The mean
streamwise velocity is overpredicted near the lower wall but it is underpredicted in the upper part of the
channel in case L E S_C due to the constant mass flux. The vertical mean velocity also has large discrepancies
in the recirculation and reacceleration regions, while it is of reasonable values in the recovery region. In
wall-modeled cases, the mean streamwise and vertical velocities agree well with resolved LES. But when the
grid resolution increases, the streamwise mean velocity has large negative values in the recirculation region,
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Fig. 16 Comparison of mean-flow variables for periodic hill at ReH = 10,595, lines labeled as in a. a Mean streamwise velocity,
b mean vertical velocity, c turbulent kinetic energy, d Reynolds shear stress

which causes the streamwise mean velocity upper the recirculation overpredicted. In other attached regions,
the mean velocity is improved in finer case, especially near the wall. Largest discrepancies can be observed
for the mean vertical velocities, in particular at x1/H = 8.0 in wall-modeled cases, although the pressure
gradient is favorable and the non-dimensional wall distance of the LES/TBLE matching point is reasonable as
shown in Fig. 14. The reason for this discrepancy is that the boundary layer at this position is strongly unsteady
and exhibits a “splatting” phenomenon of large-scale eddies [18]. The turbulent kinetic energy and Reynolds
shear stress are heavily overpredicted in the recirculation region for case L E S_C as in the backward-facing
step. They are reasonably well predicted in the wall-modeled cases. When the resolution increases, there is no
obvious improvement, even some larger discrepancies can be observed in the reacceleration region, which can
be attributed to the deficiencies of the wall model.

For an assessment of the grid dependence of LES with wall model, additional simulations at ReH = 37,000
have been carried out using two resolutions as shown in Table 2. Statistics have been collected for about 90
and 40 flow-through times for the coarse and fine resolutions, respectively. It can also be observed that
the reattachment position is delayed in case W M L E S_F37 using the fine resolution, while the separation
position does not change. Results for the mean velocity and the Reynolds stresses are compared with that of
resolved LES using MGLET [43] at ten sections in Fig. 17. Again, the overall prediction of the mean-velocity
profiles is satisfactory while similar discrepancies can be observed as for ReH = 10,595. When the resolution
increases, the recirculation region becomes larger and stronger, so that above the recirculation, the mean
streamwise velocity is overpredicted. In the recovery region, the mean velocities throughout the entire channel
are improved. The turbulent kinetic energy and Reynolds shear stress are reproduced reasonably well, but show
a more pronounced overprediction than for ReH = 10,595 for both resolutions. This larger overprediction is
found for the fine case W M L E S_F37 than for the coarse case W M L E S_C37, which shows that the Reynolds
stresses are rather sensitive to the grid resolution.

7 Conclusions

A wall model based on the simplified TBLE has been constructed in the framework of implicit LES and an
immersed-interface method for representing complex geometries on Cartesian grids. Coarsely resolved LES
for turbulent channel flow at moderately large to very large Reynolds numbers show a clear improvement
due to the wall model. Three different TBLE turbulence models were tested. A simple mixing length model,
with an eddy viscosity depending only on the friction velocity and the wall distance, gave the best results.
Alogarithmic-layer mismatch observed for large Reynolds numbers was removed by introducing a physically
motivated damping function. When the grid resolution increases, the results can also be improved in the
framework of LES. It was confirmed that the wall model also works properly with the immersed-interface
method. For the backward-facing step flow at moderate Reynolds number, it was confirmed that for coarse
LES on the one hand, the wall model improves the prediction of the mean flow, and on the other hand, it
prevents the occurrence of a secondary recirculation area that can be found in the coarse LES without wall
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Fig. 17 Comparisons of mean-flow variables for periodic hill at ReH = 37,000, lines labeled as in a. a Mean streamwise velocity,
b mean vertical velocity, c turbulent kinetic energy, d Reynolds shear stress

model. For the massively separated flow over periodic hills at two high Reynolds numbers, the TBLE-based
wall model can predict the mean flow much better than coarse LES without wall modeling and reproduce the
Reynolds stresses reasonably well on very coarse grids. From the two different Reynolds numbers considered
for the periodic hill, it can be seen that the prediction quality of the Reynolds stresses is more sensitive to
the LES-domain resolution than that of the mean velocity. In general, our results confirm that TBLE-based
wall modeling in conjunction with implicit LES and immersed-interface methods is a suitable and robust way
to deal with complex geometries and flows at high Reynolds numbers, while inheriting the advantages and
disadvantages of this particular kind of wall model.
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Appendix: The coherent structures-based model

An adaptive coefficient formulation based on the coherent structures notion [33] can be constructed by

σ i, j,k = σ |FCS|3/2 F
I i, j,k, (23)

where I i, j,k is units vector of Cartesian coordinates, and

FCS = Q

E
, F
 = 1 − FCS,

Q = 1

2

(

W i j W i j − Si j Si j
)

,

E = 1

2

(

W i j W i j + Si j Si j
)

, (24)

W i j = 1

2

(

∂u j

∂xi
− ∂ui

∂x j

)

,

Si j = 1

2

(

∂u j

∂xi
+ ∂ui

∂x j

)

,

where Si j and W i j are the velocity-strain tensor and the vorticity tensor of the resolved flow field, respectively.
FCS is the coherent structure function defined as the second invariant normalized by the magnitude of the
resolved velocity gradient tensor E . For incompressible flow, the second invariant Q ∝ x2

2 and E ∝ const ,
the 3/2 power of FCS scales the implicit SGS viscosity proportionally to x3

2 near the wall.
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