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Abstract Instability of a thin electrolyte film undergoing a direct current electroosmotic flow has been
investigated. The film with a compliant electrolyte–air interface is flowing over a rigid charged substrate.
Unlike previous studies, inclusion of the Maxwell stresses in the formulation shows the presence of a new
finite wavenumber shear-flow mode of instability, alongside the more frequently observed long-wave inter-
facial mode. The shear mode is found to be the dominant mode of instability when the electrolyte–solid and
electrolyte–air interfaces are of opposite charge or of same charge but have very large zeta-potential at the elec-
trolyte–air interface. The conditions for mode-switch (interfacial to shear) and the direction of the travelling
waves are discussed through stability diagrams. Interestingly, the analysis shows that when the interfaces are
of nearly same zeta potential, the ‘free’ electrolyte–air interface behaves more like a ‘stationary’ wall because
of the ion transport in the reverse direction of the flow.
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1 Introduction

Recent technological advances in the miniaturised applications have attracted considerable interest in high-
precision control over the flow of extremely small amount of liquids. Among the other electrokinetic methods
to fuel up flows inside the small-scale devices [1–4], electroosmotic flow (EOF) is found to be one of the very
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promising and versatile methods [5–9] because it allows facile flow control at less energy budget, is devoid of
moving parts and is easier to fabricate in microfluidic circuits [10,11]. Since electroosmosis (EO) is governed
by surface reactions, EOF is supposed to be more efficient in the micro or nano dimensions owing to the
large surface-to-volume ratio. A number of reviews on the fundamentals of EOF can be found in the literature
[1–4,12].

Among the other interesting aspects, the studies related to the interfacial deformations of thin films under-
going EOF are an exciting area of research because of the rich physics associated with it. Technologically,
the interfacial instabilities of EOF can find many applications in the next generation microscale devices for
mixing, cleaning, heat and mass transfer, and emulsification processes. The interfacial instabilities because
of the EOF of a thin film are engendered by the coupled interaction between the applied electric field in the
flow direction and the subsequent zeta potential gradient developed across the electrolyte film [13–27]. Recent
studies [19–22] have reported the presence of an unconditional long-wave interfacial mode of instability for an
open-channel EOF with free-boundary, employing widely accepted Gouy–Chapman–Stern model to formulate
the electric field due to ion transport inside the electrolyte film. A number of studies have also shown the char-
acteristics of the two-phase EOF inside microchannels assuming a non-deformable interface [10,11,13–17].
Interestingly, recent experimental studies [23,24] have shown that the instabilities at the free surface of a thin
electrolyte film undergoing EOF exhibits reduction in speed because of the accumulation of surface charges.
The electrical potential at the liquid-air free surface is generated by a preferential adsorption, accumulation,
depletion or dissociation of ions near the surface compared with the bulk electrolyte. Even in a pure liquid,
the preferred dipole orientations near the surface are responsible for surface potential [18]. Unlike all previous
theoretical works [19–22], considering the Maxwell stresses in the governing equations and the boundary
conditions [25–27], the wall-like behaviour of the free surface is explained by Choi et al. [28]. However, many
issues such as the types of instability modes that prevail, the direction of the travelling waves under varied
conditions, the parameter space for the wall-like behaviour of the electrolyte–air interface, etc. are very much
among unexplored areas.

In this paper, considering the Maxwell stresses in the governing equations and the boundary conditions
[25–27], we study the linearly unstable modes of the free surface of a thin electrolyte film employing an
Orr–Sommerfeld (O–S) analysis (Fig. 1). Extending the study by Choi et al. [28], for the first time, we show
the co-existence of both long-wave interfacial mode and finite-wavenumber shear-flow mode. The analysis
also uncovers the travelling wave nature of the instabilities and predicts the direction of the waves. The study
compares the dominant modes of instabilities for a range of key parameters, which can be of importance for
future EOF applications.

2 Problem formulation

In this study, a two-dimensional EOF of an incompressible and Newtonian electrolyte is considered with
density ρ, kinematic viscosity ν, dielectric coefficient ε, and mean thickness d . The EOF is driven by a direct

Fig. 1 Flow configuration for a two-dimensional electroosmotic flow (EOF) in a microchannel. SL Immobile shear layer, EDL
Electric double layer (thickness of EDL exaggerated for clarity). The sign conventions in our formulation ensure EOF from right
to left
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current (DC) of electric field Eel in the direction of the flow, as shown in Fig. 1. The equations are formulated
in a Cartesian coordinate system (x, y) with the origin fixed at the shear line (SL). The electrolyte flowing over
a rigid charged surface develops zeta potentials ζs and ζa at the electrolyte–solid and electrolyte–air interfaces,
respectively. The modelling of EOF involves the continuity and momentum equations from hydrodynamics
and Maxwell’s equations for the electrostatics [26,27]. Hydrodynamics and electrostatics are coupled through
the interfacial stresses, leading to a set of coupled partial differential equations. The governing equations for
such an EOF with Maxwell stress contributions can be expressed by the following non-dimensional forms:

Du
Dt

= −∇ p + ∇2u + EO

ER
∇2φ∇φ, (2.1)

∇ · u = 0. (2.2)

Where, u{u, v}, p, and φ are the velocity vector, pressure and the electric potential, respectively. The fol-
lowing dimensionless parameters are employed to obtain the above non-dimensional equations from their
respective dimensional expressions, {x, h} = {x∗, h∗}/d; t = t∗(μ/ρd2); {u, v} = {u∗, v∗}(ρd/μ); p =
p∗(ρd2/μ2); � = γ (ρd/μ2);φ = (φ∗/Eeld); EO = (εEeldζs/ρν2); ER = (ζs/Eeld); Eel = (φo/de).
In these expressions, the notations with ‘∗’ represent dimensional variables and the notations γ, φo, and de
represent the dimensional surface tension, the applied voltage and the distance between the electrodes, respec-
tively. The dimensionless parameters EO and ER measure the electro-osmotic force and the zeta potential
on the bottom surface, respectively. To complete the problem definition for the system shown in Fig. 1,
no-slip and impermeability boundary conditions are imposed along the shear line (SL) as u = 0 at y = 0,
and the normal (n.T.n = −�κ) and tangential (t.T.n = 0) stress balance boundary conditions are enforced
at the electrolyte–air interface (y = h). The notations n, t, κ and T are the unit normal vector, unit tan-
gent vector, curvature of the free surface, and total stress combining Maxwell and hydrodynamic stresses
[= μ(∇u + ∇uT ) + ε(EE − 0.5(E · E)I)], respectively, where E is the electric field. The location of the free
surface, h(x, t) which is the local thickness of the electrolyte film is defined by the kinematic condition,
ḣ = −u(∂h/∂x) + v.

The stresses from the electric field (φ) in Eq. 2.1 has contributions from the external field applied, φE, and
from the zeta potentials, φζ . In this study, the surface charge density is assumed to be fixed and no induced-
charge is generated at the interface. To establish an axial field, a voltage, φo, is applied to one electrode while
the other is earthed. This generates a reference dimensional field strength as EE = 1. The field lines are per-
pendicular to the electrodes and parallel with the flow. In agreement with the Taylor–Melcher theory, the liquid
is treated as an Ohmic conductor so the electric potential and electric field follow from solutions of Laplace’s
equation ∇2φE = 0, with the field strength defined by −∇φE = EE = 1 [25–27]. The externally applied
electric field (φE) is assumed to decay linearly across the electrodes, (∂φE/∂x) = −1, which leads to the
expression φE = −x after enforcing the boundary condition, φE = 0 at x = 0. If we limit the present analysis
to microchannels, where the dimensional Debye length λd is much smaller than d , the Poisson–Boltzmann
equation with the Debye–Huckel approximation, ∇2φζ = (φζ /De2), reasonably expresses the potential dis-
tribution, where De(= λd/d) is the Debye number. The electric field arising from the ζ -potentials is modelled
by solving ∇2φζ = (φζ /De2), with the boundary conditions, φζ = ER, at y = 0 and φζ = ER ZR, at y = h
where ZR = (ζa/ζs). The final expression obtained for the potential because of the difference in ζ -potentials
at the interfaces is: φζ = ER[cosh(y/De) + A sinh(y/De)]. Combining the expressions for both the fields
leads to the expression for the total potential,

φ = −x + ER[cosh(y/De) + A sinh(y/De)]. (2.3)

Here, A = [ZR − cosh(h/De)]/sinh(h/De).

2.1 Base-state analysis

A unidirectional steady EOF with undisturbed free surface is obtained from the above system as h = 1, v = 0.
The x-momentum equation in the base state, u(y) = EO[cosh(y/De) + A sinh(y/De)]+C1 y+C2, along with
the no-slip boundary condition, u = 0 at y = 0 and the tangential stress balance, uy = −(EO/ER)φζ y(φζ x − 1)
at y = 1, leads to the following base-state profile,

u(y) = EO[cosh(y/De) + A sinh(y/De) − 1], (2.4)
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Fig. 2 Plot a shows the base-state velocity profiles, where curves 1 (1a)–4(4a) correspond to ZR = −1.0, 0, 1 and 2, respectively.
Plot b shows the variation of linear growth rate at different ZR when EO = 9.0. Curves 1–5 correspond to ZR = −0.5, 0, 0.5, 1
and 1.5, respectively, when De = 0.2. Lines labelled with ‘i’ interfacial mode, those with ‘s’ shear mode The other parameters
used are ER = 1.0 and � = 100

where A = [ZR − cosh(1/De)]/ sinh(1/De). The base-state velocity profile shows dependence on the free-
surface zeta potential ZR [26]. The fluid velocity on the free undeformed surface, u(1) = −EO(1 − ZR)
indicates that the electrolyte–air interface behaves like (i) a stationary wall at ZR = 1, (ii) a shearing wall
towards the EOF direction when ZR < 1, generating additional flow, and (iii) a wall shearing in the reverse
direction of the EOF when ZR > 1, generating a reverse flow at the free surface. In Fig. 2a, the electrostatic
response of the electrolyte–air interface for two different layer thicknesses is shown. It is important to note
here that the sign conventions in our formulation ensure the direction of EOF from right to left. The thicker
layer (De = 0.1) exhibits a plug-flow region near y = 1/2 with the velocity on the bottom and the free surface
unaltered from that for the thinner layer (De = 0.2). When the free surface is electrically neutral (ZR = 0), the
plug flow continue till the surface, whereas when ZR > 0 or ZR < 0, the free surface reacts electrostatically
to the electric field imposed like “a thread of volumeless but charged particles,” and in turn imposes positive or
negative shear stress to promote or hinder the EOF. A more detailed explanation about these base-state velocity
profile is given elsewhere [28]. In essence, electric field generates EOF near a stationary solid surface, but
generates an electro-phoretic flow for the charged free surface that can move like a charged suspension particle
under the influence of applied electric field. The directions of these electro-osmotic and electro-phoretic flows
are opposite for the same signs of the surface potentials on a fixed wall and on a mobile surface. Thus, a flow
reversal can occur near the free surface for a large enough ZR as electrophoresis of the charged free surface
dominates in its vicinity. The experimental [23] and theoretical [29] evidences of similar velocity profiles are
available in the literature.

2.2 Linear stability analysis

The stability of the unidirectional EOF can be studied by imposing small perturbations to the base-state
profiles, u = u + u′, ν = ν′, φ = φ + φ′, p = p + p′ and h = 1 + h′, where the bars and primes on
the variables denote mean and perturbed variables, respectively. The resulting perturbed governing equations
and the boundary conditions are then linearised employing the normal modes, u′ = δ[ũ(y)eik(x−ct)], ν′ =
δ[ν̃(y)eik(x−ct)], p′ = δ[ p̃(y)eik(x−ct)], φ′ = δ[φ̃(y)eik(x−ct)]′ and h′ = δ[h̃(y)eik(x−ct)] where δ(<< 1), k
and c(= cr + ici ) are amplitude, wavenumber and phase speed of the infinitesimal perturbation, respectively,
resulting in an eigenvalue problem analogous to the Orr–Sommerfeld (O–S) equation:

(D2 − k2)2ν̃ = ik[(u − c)(D2 − k2)ν̃ − ν̃uyy + ((1/De2) − k2)(EO/De2)Bh̃ cosh(y/De)]
+ k4(EO ER/De2)B[sinh2(1/De) + 0.5A sinh(2y/De)]h̃. (2.5)

Here, D and subscript y denote d/dy and B = (ZR cosh(1/De) − 1)/sinh2(1/De). The boundary conditions
on the rigid bottom (y = 0) are transformed to ν̃ = ν̃y = 0, whereas the free-surface (y = 1) boundary
conditions are expressed as:
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(
d3ν̃/dy3) − [

ik (u − c) + 3k2] (dν̃/dy) + ik
[
ν̃ − B

(
EO/De3) sinh (1/De)

]

− k2h̃
[
2ik (EO/De)

(
A cosh (1/De) + sinh (1/De)

) − 2ik (du/dy) − (
EO ER/De3) B A + k2�

] = 0,
(
d2ν̃/dy2) + k2ν̃ + (

EO ER/De2) (
k2 B − 1

)
h̃ sinh2 (1/De) + (

EO ER/2De2) (
k2 B − 2

)
Ah̃ sinh (1/De)

− ik
(
EO/De2) Bh̃ cosh (1/De) +

[
(EO/ER) − (

EO ER/De2) A
2
cosh2 (1/De)

]
h̃ = 0,

h̃ = ν̃/ik(u − c). (2.6)

The eigenvalue system is solved numerically using a spectral collocation method, which is easier to implement
for nonlinear problems or problems with non-constant coefficient. The computational domain is mapped to
(−1, 1) for the liquid layer by employing the transformation z = 2y − 1, where y = −1 corresponds to the
solid substrate and y = 1 correspond to the free interface. The resulting system is then solved by using the
Chebyshev collocation algorithm with enhanced accuracy [30,31] to obtain the linear growth coefficient (kci )
for a corresponding wavenumber (k) for instability.

3 Results and discussions

The typical magnitudes of dimensionless parameters (EO, ER, �) used in generating the following results are
obtained based on the physically realistic ranges of the parameters [22]: ρ ∼ 1, 000 kg/m3, μ ∼ 0.001Pa s,
ε ∼ 80, ε0 = 8.85 × 10−12 F/m, d ∼ 1–100 μm, ζs, ζt ∼ 10–100 mV, φ0 ∼ 10–100 V and γ ∼ 0.05 N/m.
Figure 2b shows the variation in the linear growth rate kci with the wavenumber k for different values of
the ratio of the zeta potentials at the electrolyte–air and electrolyte–solid interfaces, ZR. The curves 1i and
1s indicate that when EO = 9 and ZR < −0.3, the strong applied field leads to a strong EOF and the addi-
tional inertia empowers the finite-wavenumber shear-flow instability to be the dominant mode. Interestingly,
the condition ZR < 0 ensures that the interfaces are with opposing charge and the electrolyte–air interface
behaves more like a ‘shearing’ wall moving towards the direction of the EOF as shown by the curve 1 of
Fig. 2a. Thus, appearance of the dominant shear-flow mode can be attributed to the larger Reynolds stresses at
the liquid layers because of the stronger flow rate engendered by the interface movement in the flow direction.
In contrast, the curves 2 indicate when the core of the film displays more of plug-flow behaviour (ZR = 0),
the more commonly found long-wave interfacial mode of instability [18,19,21] is the only existing mode. The
figure also confirms that when the interface behaves like a ‘stationary’ wall (ZR = 1) or a ‘shearing’ wall with
a velocity opposite to the flow direction (ZR > 1), the dominant long-wave interface mode (curves 4 and 5)
coexists with the subdominant shear mode (broken curves 4s and 5s).

The finite wavenumber shear mode of instability in EOF can be more clearly understood in Fig. 3, where the
maximum growth rate (kci )m, corresponding dominant wavenumber km, real phase speed crm corresponding
to (kci )m and critical wavenumber kc are plotted against ZR for two different film thicknesses, De = 0.2
(solid lines) and De = 0.1 (broken lines), at constant ER = 1 and � = 100. The km can be correlated to the
dominant wavelength of instability,λm, by the relation km = 2π/λm. The critical wavenumber, kc, is obtained
by identifying the neutral stability condition, kci = 0. Similar to Fig. 2b, the curves in plot (a) of Fig. 3
shows that for ZR < 0, the shear mode [curves with label ‘s’] is the dominant mode of instability. Importantly,
for a range of ZR above zero, the long-wave interface mode [curves with label ‘i’] is the dominant mode of
instability before the shear mode become the dominant mode again at high ZR. Under this situation the inertial
force at the electrolyte–air interface is fuelled up by the motion of the interface in the opposite direction of
the EOF. The value of ZR at which the shift in the dominant mode occurs from interface to shear mode is
comparatively low for a thicker film (curve 2s) than the same with a thinner film (curve 2s), which can be
attributed to the larger inertial force because of the smaller viscous resistance at the electrolyte–air interface
for a thicker film. The plots also reveal that as the zeta potential near the electrolyte–air interface diminishes
(ZR = 0), the system is either more stable [minimum (kci )m] or completely stable [(kci )m < 0]. Plot (b) in
this figure shows that the instability shows up a larger wavelength when ZR = 0 and progressively moves
towards shorter wavelength under the conditions ZR > 1 or ZR < 0. Plots (a) and (b) together show that
the films are more unstable due to lesser viscous resistance and evolve at a shorter wavelength when the film
thicknesses are higher (lower De). It is important to note here that the EOF instabilities always travel across
space as it grows because the eigenvalues (c) always contain a nonzero real part, cr, along with the imaginary
part ci. Curves 1i and 2i in plot (c) show a clear change in direction of the travelling waves [change in sign of
crm] when u at the interface changes its sign from positive to negative, with the variation in ZR. The curves in
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Fig. 3 Plots a–d show the variation of (kci )m, km, crm and neutral stability curves, respectively, with against ZR at constant
EO = 9.0 and for De = 0.2 (solid lines, line label 1) and De = 0.1 (broken lines, line label 2). Lines labelled with ‘i’ interfacial
mode, those with ‘s’ shear mode and in plot d, S stable domain, U unstable domain. The other parameters used are ER = 1.0
and � = 100

plot (c) also supports the fact that the interface behave more like a (i) ‘stationary’ wall as crm tends to diminish
near ZR = 0, (ii) ‘shearing’ wall in the direction of the flow when ZR < 1 and (iii) ‘shearing’ wall against
the direction of the flow when ZR > 1. It is also very important to note here that change in the direction
of the wave speed takes place only for the interface mode [curves 1i and 2i], whereas the shear-flow mode
always travels [curves 1s and 2s] in the direction of the flow. The backward shearing motion of the interface
only reduces the magnitude of the wave speed. The neutral stability diagrams in plot (d) more clearly depict
the coexistence of both the interfacial and shear mode of instabilities. Curves 1i and 2i here correspond to
interfacial mode of instability, which ensures the long-wave nature of the interfacial mode. The curves 1s and
2s depict the finite-wave number nature of the shear mode and demonstrate that this mode appears only after
the EOF achieves a critical flow rate. For ZR ≈ 0, the neutral stability diagram shows a single instability
zone indicating the existence of solitary interfacial mode. However, for both ZR ≤ 0 and ZR > 0 beyond a
critical value of ZR, the shear-flow mode coexist with the interfacial modes of instability [curves 1s and 2s].
The diagrams also show that the span of unstable wavenumber increases significantly as the film thickness is
increased (lower De).

Figure 4 shows the influence of the external field strength (EO) on the EOF. Plots (a) to (d) show the
variations of (kci )m, km, crm and kc with EO at different ZR. The curves 1 and 2 in plot (a) show that when
ZR ≈ 0, the interface mode is the only existing mode and progressively becomes more unstable as EO is
increased due to larger stresses from the electric field (EO ∝ Eel) at electrolyte–air interface. However, the
curve 3 shows the coexistence of interface [3i] and shear-flow [3s] modes of instabilities at ZR > 1 and a
dominant shear mode at high EO where curve 3s crosses curve 3i. The figure confirms that the increase in
electric field accelerates the flow, which leads to a dominant shear mode at very high EO. The transition from
the longer to shorter wavelength because of the switchover of the dominant mode from interface to shear-flow
instability is also well supported by the plot (b). The crm curves in plot (c) show that the absolute wave speed
of the travelling waves reduces as EO is reduced and again we observe reverse flow for the interface mode
when ZR > 1. Similar to plot 3(c), the shear mode always travel towards the EOF; however, the magnitude of
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Fig. 4 Plots a–d show the variation of (kci )m, km, crm, and neutral stability curves, respectively with against EO for ZR = −0.2,
0 and 1.5 (curves 1–3). Lines labelled with ‘i’ interfacial mode, those with ‘s’ shear mode and in plot d, S stable domain,
U unstable domain. The other parameters taken are ER = 1.0, De = 0.2 and � = 100

wave speed of the travelling waves reduces as EO reduces. The neutral stability diagrams in plot (d) indicate
that the shear-flow instability originates beyond a critical value of EO (=9 for ZR = 1.0 and =6 for ZR = 1.5).

4 Conclusions

We perform a linear stability of an electrolyte film with a compliant electrolyte–air interface and undergo-
ing EOF on a charged rigid surface. Unlike most of the previous stability analyses [18–21] involving EOF,
we consider the Maxwell stress contributions in the formulation. Along with the previously found long-
wave interfacial mode of instability, a new finite wavenumber shear-flow mode, engendered by the strong
applied field in the direction of the EOF, is uncovered for sufficiently higher flow rates. The interfacial mode
originates because of the growth of surface waves under the strong influence of frictional forces present
inside the film beyond a critical EO and remains dominant when the free surface behaves more like a wall.
Under the influence of an accelerating wall in or in the opposite direction of the flow increases the Rey-
nolds stresses in the fluid layers, which develops the finite wavenumber shear mode. Further, in compari-
son with conventional pressure driven flows, for EOF, the additional stresses because of the movement of
the charges/dipoles under the applied field add strength to the unstable modes. Interestingly, the analysis
shows that it is the interfacial mode of instability which enforces the electrolyte–air interface to behave
like a (A) ‘stationary wall’ when the zeta potential of the electrolyte–solid and electrolyte–air interfaces
are similar, (B) ‘shearing wall’ towards the EOF direction when the interfaces are of opposing charge and
(C) ‘shearing wall’ in the reverse direction of the EOF when the zeta potential of the electrolyte–air interface
is very high. In contrast, the shear mode is always found to travel in the direction of the EOF with the variation
in the magnitude of wave speed as the applied field strength is tuned. Another important observation is that for
(thinner) films, lesser (larger) viscous resistance allows larger (lesser) inertial influence, which often leads to
a dominant shear (interface) mode. Concisely, the study uncovers many interesting aspects of EOF instability
of a thin electrolyte film, which can be of importance for many microfluidic, drug delivery, heat and mass
transfer applications in future.
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