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Abstract The problem of rotation of a rigid spheroidal particle about its axis of revolution in a viscous fluid
is studied analytically and numerically in the steady limit of negligible Reynolds number. The fluid is allowed
to slip at the surface of the particle. The general solution for the fluid velocity in prolate and oblate spheroidal
coordinates can be expressed in an infinite-series form of separation of variables. The slip boundary condition
on the surface of the rotating particle is applied to this general solution to determine the unknown coefficients
of the leading orders, which can be numerical results obtained from a boundary collocation method or explicit
formulas derived analytically. The torque exerted on the spheroidal particle by the fluid is evaluated for var-
ious values of the slip parameter and aspect ratio of the particle. The agreement between our hydrodynamic
torque results and the available analytical solutions in the limiting cases is good. It is found that the torque
exerted on the rotating spheroid normalized by that on a sphere with radius equal to the equatorial radius of the
spheroid increases monotonically with an increase in the axial-to-radial aspect ratio for a no-slip or finite-slip
spheroid and vanishes for a perfectly slip spheroid. For a spheroid with a specified aspect ratio, the torque is a
monotonically decreasing function of the slip capability of the particle.

Keywords Particle rotation · Creeping flow · Prolate and oblate spheroids · Slip-flow surface ·
Hydrodynamic torque

1 Introduction

The translational and rotational motions of small particles in a continuous medium at low Reynolds numbers
are of much fundamental and practical interest in the areas of chemical, biomedical, and environmental engi-
neering and science. The theoretical treatment of this subject has grown out of the classic work of Stokes [1]
for a rigid sphere moving in an unbounded viscous fluid. Oberbeck [2] and Jeffery [3] extended this result to
the translation of an ellipsoid and rotation of a particle of revolution, respectively. More recently, the creeping
flow caused by the motion of a particle of more general shape has been treated in the literature by a symbolic
operator method [4], a boundary collocation method [5,6], a singularity method [7,8], and a boundary integral
method [9,10].

When one tries to solve the Stokes problems, it is usually assumed that no slippage arises at the solid–fluid
interfaces. Actually, this is an idealization of the transport processes involved. The phenomena that the adjacent
fluid can slip frictionally over a solid surface occur for cases such as the rarified gas flow around an aerosol
particle [11–13], the water flow near a hydrophobic surface [14–16], the micropolar fluid flow past a rigid
particle [17], and the viscous fluid flow over the surface of a porous medium [18–20] or a small particle of
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molecular size [21]. Presumably, any such slipping would be proportional to the local shear stress of the fluid
next to the solid surface [22–24], known as the Navier slip (see Eq. 7), at least as the velocity gradient is
small. The constant of proportionality, β−1, is termed the slip coefficient of the solid surface. The quantity
η/β (where η is the fluid viscosity) is a slip length defined by Navier/Maxwell and extensively used in the
literature. It can be pictured by noting that the fluid motion is the same as if the solid surface was displaced
inward by a distance η/β with the velocity gradient extending uniformly right up to no-slip velocity at the
surface.

Basset [25] has found that the hydrodynamic torque experienced by a rotating rigid sphere of radius b with
a slip-flow boundary condition at its surface is

T = 8πηb3�
βb

βb + 3η
, (1)

where � is the angular velocity of the particle. When η/βb = 0, there is no slip at the particle surface and
Eq. 1 reduces to the well-known Stokes result. In the limiting case of η/βb → ∞, there is a perfect slip at
the particle surface and the torque vanishes. Recently, the low-Reynolds-number motion of a rigid sphere with
inhomogeneous slip boundary conditions was also analyzed by a perturbation method [26,27].

The problem of rotation of nonspherical particles with frictionally slip surfaces is obviously a matter of
analytical difficulty. The friction coefficients for the uniform rotation of a perfect-slip spheroid in a viscous fluid
(η/βb → ∞) were computed numerically by fitting the slip condition approximately with a general solution
of the Stokes equations in the form of an infinite series of spheroidal harmonics [21]. It was found that there is
no torque when the perfect-slip spheroid is rotated about its axis of revolution, because no fluid is displaced.
Recently, the low-Reynolds-number rotation of a rigid particle, which departs but little in shape from a sphere
with the slip boundary condition [28], was analyzed, and an explicit expression for the hydrodynamic torque
exerted on a spheroid was obtained to the second order in the small parameter characterizing the deformation
from the spherical shape [29,30]. In this article, a general solution in the form of an infinite-series expansion
for the creeping flow in spheroidal coordinates is used to investigate the Stokes problem of a slip prolate or
oblate spheroidal particle rotating steadily about its axis of revolution. The torque acting on the spheroid by
the ambient fluid as a function of the slip parameter and aspect ratio of the spheroid can be expressed in an
approximate but explicit form and calculated numerically using a boundary collocation method. Our torque
results agree quite well with the available analytical solutions in the limiting cases.

2 Analysis

We consider the rotational motion of a spheroidal particle about its axis of revolution in an incompressible,
Newtonian fluid at the steady state, as shown in Fig. 1. The angular velocity of the particle equals �ez , where
ez is the unit vector in the positive z-direction. The fluid may slip frictionally at the surface of the particle and is
at rest at infinity. The right-handed circular cylindrical coordinates (ρ, φ, z) and bifocal coordinates (ξ, ϕ, φ)
[31–33] are established such that the surface of the spheroid is represented by ξ = ξ0 or

z2

a2 + ρ2

b2 = 1, (2)

where a and b are the half-length along the axis of revolution and the equatorial radius, respectively, of the
spheroid. Depending on the aspect ratio of the spheroid, its shape can range widely from a needle (with
a/b → ∞) to a sphere (with a/b = 1) and to a circular disk (with a/b → 0).

The Reynolds number is assumed to be sufficiently small so that the inertial terms in the fluid momentum
equation can be neglected, in comparison with the viscous terms. Therefore, the fluid flow is governed by the
Stokes equations,

η∇2v − ∇ p = 0, (3a)

∇ · v = 0, (3b)

where v is the fluid velocity field and p is the dynamic pressure distribution. Evidently, for the axisymmetric
rotational Stokes flow considered here, the dynamic pressure keeps constant everywhere and the only nonzero
velocity component is vφ(ξ, ϕ) in the φ direction. Thus, Eq. 3 becomes
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Fig. 1 Geometrical sketch for the rotation of a spheroidal particle about its axis of revolution

(λ2 − 1)
∂2vφ

∂λ2 + 2λ
∂vφ

∂λ
− vφ

λ2 − 1
+ (1 − ω2)

∂2vφ

∂ω2 − 2ω
∂vφ

∂ω
− vφ

1 − ω2 = 0, (4)

where ω and λ are the variables related to the bifocal-coordinate transformations.
For prolate spheroids (1 < a/b < ∞), the coordinate transformation used is

λ = cosh ξ, ω = cos ϕ,
z = c cosh ξ cos ϕ, ρ = c sinh ξ sin ϕ,
a = c cosh ξ0, b = c sinh ξ0,

c = (a2 − b2)1/2,

(5)

whereas for oblate spheroids (0 < a/b < 1), the coordinate transformation becomes

λ = i sinh ξ, ω = cos ϕ,
z = ic sinh ξ cos ϕ, ρ = ic cosh ξ sin ϕ,
a = ic sinh ξ0, b = ic cosh ξ0,

c = −i(b2 − a2)1/2.

(6)

The origin (midpoint between the foci) of the bifocal coordinates (with 0 ≤ ξ < ∞ and 0 ≤ ϕ ≤ π) has been
set at the center of the spheroid, and the coordinate surface λ = λ0 = a/c corresponds to the surface of the
spheroid defined by Eq. 2 or ξ = ξ0. Note that the limiting case of ξ0 → ∞ or λ0 → ∞ represents a spheroid
with a/b = 1 (a sphere).

The Navier slip condition states that the relative tangential velocity of the fluid at the particle surface is
proportional to the local shear rate [22,26], and the fluid is motionless far away from the particle. Thus, the
boundary conditions for the fluid velocity are

vφ = ρ� + 1

β
τλφ on λ = λ0, (7)

vφ = 0 as λ → ∞, (8)

where 1/β is the frictional slip coefficient about the particle surface, which is taken to be a constant, and τλφ

is the fluid shear stress, which can be expressed in bifocal coordinates as

τλφ = η

√
λ2 − 1

c
√

λ2 − ω2

(
∂vφ

∂λ
− λ

λ2 − 1
vφ

)
. (9)

A general solution of Eq. 4 in bifocal coordinates can be obtained as a series expansion [3],

vφ = �c
∞∑

k=1

C2k−1 Q1
2k−1 (λ)P1

2k−1 (ω), (10)

where P1
n and Q1

n are the associated Legendre polynomials of the first and second kinds, respectively, of
order n and degree 1, and Cn are unknown coefficients. Because vφ is symmetric about the equatorial plane



176 Y. C. Chang, H. J. Keh

z = 0, only the odd terms of the expansion in Eq. 10 are retained. Note that boundary condition Eq. 8 is
immediately satisfied by a solution in the form of Eq. 10. For the particular case of a spheroid with a no-slip
surface (η/βb = 0) rotating about its axis of revolution, only the first term of the infinite-series solution in
Eq. 10 is needed for vφ .

Applying Eq. 10 to boundary condition 7 at the particle surface, we obtain

∞∑
k=1

C2k−1

⎡
⎣Q1

2k−1 (λ0) − η

βc
g2k−1 (λ0)

√
λ2

0 − 1√
λ2

0 − ω2

⎤
⎦P1

2k−1 (ω) =
√

λ2
0 − 1

√
1 − ω2, (11)

where

gn (λ) = ∂ Q1
n (λ)

∂λ
− λ

λ2 − 1
Q1

n (λ). (12)

The unknown coefficients Cn in Eq. 10 are to be determined using Eq. 11.
The torque T ez acting on the particle by the fluid can be determined by the surface integral of the moment

of stress about the axis of rotation [22], and the result is

T = −16

3
πηc3�C1. (13)

This expression shows that only the lowest-order coefficient C1 contributes to the hydrodynamic torque expe-
rienced by the particle.

In the following two subsections, we present a boundary collocation method to obtain a numerical solution
for the unknown coefficients Cn in Eq. 10 and an analytical method to result in explicit formulas for these
coefficients of leading orders. The fluid velocity profile is completely obtained once these coefficients are
solved.

2.1 Boundary collocation method

To satisfy the boundary condition 11 exactly along the entire semi-elliptic generating arc of the spheroid in a
meridian plane would require the solution of the entire infinite array of the unknown constants Cn . However,
the boundary collocation technique [34,35] enforces the condition at a finite number of discrete points on the
particle’s quarter-elliptic longitudinal arc (from ϕ = 0 to π/2, owing to the symmetry of the system geometry
with respect to the plane z = 0) and truncates the infinite series in Eqs. 10 and 11 into finite ones. The unknown
constants in the finite series permit one to satisfy the exact boundary condition at the discrete points on the
particle surface. Thus, if the boundary is approximated by satisfying condition 11 at M discrete points, then the
infinite series are truncated after M terms, resulting in a system of M simultaneous linear algebraic equations.
This matrix equation can be solved by any of the standard matrix-reduction techniques to yield the M unknown
constants Cn required in the truncated Eq. 10 for the fluid velocity. The accuracy of the truncation technique
can be improved to any degree by taking a sufficiently large value of M . In principle, the truncation error
vanishes as M → ∞.

2.2 Analytical method

On the other hand, an analytical solution for the leading unknowns C1, C3, C5, etc. required in Eq. 10 for the
fluid velocity can be found. To simplify the boundary condition given by Eq. 11, we multiply it by the function
set P1

n (ω), integrate with respect to ω from −1 to 1, and utilize the orthogonality property of the associated
Legendre polynomials in this interval to obtain

Cnsnn Q1
n (λ0) − η

βc

∞∑
k=1

C2k−1x(2k−1)ng2k−1 (λ0) = δ1ns11

√
λ2

0 − 1 for n = 1, 3, 5, . . . , (14)
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where

snn =
1∫

−1

[P1
n (ω)]2dω, (15a)

x jn =
1∫

−1

√
λ2

0 − 1√
λ2

0 − ω2
P1

j (ω) P1
n (ω) dω, (15b)

and the dependence on ω disappears. In Eq. 14, δ1n is the Kronecker delta, which equals unity if n = 1 and
vanishes otherwise.

If Eq. 10 for the fluid velocity is truncated after N terms, the first N equations of Eq. 14 can be used to solve
the N unknown constants Cn . Similar to the case in the previous subsection, the accuracy will be acceptable
when the value of N is sufficiently large. Again, the truncation error disappears as N → ∞. In the Appendix,
the two algebraic equations required to solve the unknown coefficients C1 and C3 and their explicit solution
are given for a specific case that Eq. 10 is truncated after two terms (N = 2). Although we have also obtained
the explicit solution for the unknown coefficients C1, C3, and C5 for the more accurate case of N = 3, its
formulas are not presented here for conciseness.

3 Results and discussion

For a spheroidal particle with a no-slip surface (η/βb = 0) rotating with an angular velocity � about its axis
of revolution in an unbounded fluid, the exact solution for the torque exerted on the particle by the fluid is [3]

T∞ = 8πηb3�

{
3

2

(
λ2

0 − 1
)1/2 [

λ0 − (
λ2

0 − 1
)

coth−1 λ0
]}−1

. (16)

In this section, we first present the numerical results of the hydrodynamic torque experienced by a slip spheroidal
particle undergoing steady rotation about its axis of revolution obtained by using the boundary collocation
method described in Sect. 2.1. Then, the leading-order asymptotic solutions for this torque resulting from
the analytical method introduced in Sect. 2.2 will be given and compared with the convergent collocation
solutions.

3.1 Boundary collocation solutions

The system of linear algebraic equations to be solved for the coefficients Cn using the boundary collocation
method is constructed from Eq. 11. When specifying the M points along the quarter-elliptic generating arc
of the spheroid where the boundary condition 7 or 11 is to be exactly satisfied, the first point that should be
chosen is ϕ = π/2 (or ω = 0), since this point defines the projected area of the particle normal to its axis of
revolution. In addition, the point ϕ = 0 (or ω = 1) is also important. However, an examination of the system
of linear algebraic equations in the truncated form of Eq. 11 shows that the matrix equation becomes singular
if these points are used. To overcome this difficulty, these points are replaced by closely adjacent points, i.e.,
ϕ = δ and π/2 − δ [8,24,34]. Additional points along the boundary are selected to divide the quarter-elliptic
arc of the spheroid into segments with equal angles in ϕ. The range of optimum values of δ has been found to
be quite broad, and here we use 0.01◦, with which the numerical results of the hydrodynamic torque acting on
the particle converge satisfactorily. In principle, as long as the number of the collocation points is sufficiently
large and the distribution of the collocation points is adequate, the solution of the torque will converge and the
shape of the particle can be well approximated.

Hydrodynamic torques about the axis of revolution, calculated using the boundary collocation method, are
presented in Tables 1 and 2 for a prolate spheroid and an oblate spheroid, respectively. Values are normalized
by the torque on a sphere with radius equal to the maximum cross-sectional radius of the spheroid (8πηb3�).
Several representative cases of the axial-to-radial aspect ratio a/b and the slip parameter η/βb are presented.
All of the results were obtained by increasing the number of collocation points M until the calculated value
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Table 1 Leading-order asymptotic results (with N = 2 and N = 3) and boundary collocation results of the dimensionless torque
for the rotation of a prolate spheroid about its axis of revolution for various values of the aspect ratio and slip parameter of the
spheroid

η/βb MorN T/8πηb3�

a/b = 1 a/b = 1.1 a/b = 2 a/b = 5 a/b = 10 a/b = 20
0 N = 2 1.00000 1.06017 1.61335 3.53040 6.80471 13.4239

M = 4 (1.00000) (1.06017) (1.61335) (3.53040) (6.80471) (13.4239)
Exact solution 1.00000 1.06017 1.61335 3.53040 6.80471 13.4239

0.1 N = 2 0.76923 0.81903 1.27410 2.83840 5.50004 10.8726
N = 3 0.76923 0.81903 1.27414 2.83896 5.50151 10.8757
M = 14 (0.76923) (0.81903) (1.27414) (2.83908) (5.50201) (10.8770)
Approximate solution 0.76923 0.81903 1.27569 2.90804 6.00525 13.6120

1 N = 2 0.25000 0.26883 0.44258 1.03872 2.04511 4.06769
N = 3 0.25000 0.26883 0.44262 1.03931 2.04685 4.07161
M = 10 (0.25000) (0.26883) (0.44262) (1.03937) (2.04709) (4.07223)
Approximate solution 0.25000 0.26883 0.44598 1.13571 2.62455 6.87455

3 N = 2 0.10000 0.10784 0.18079 0.43226 0.85625 1.70711
N = 3 0.10000 0.10784 0.18080 0.43248 0.85691 1.70861
M = 10 (0.10000) (0.10784) (0.18080) (0.43250) (0.85699) (1.70882)
Approximate solution 0.10000 0.10785 0.18270 0.48715 1.18247 3.27767

10 N = 2 0.03226 0.03483 0.05889 0.14207 0.28228 0.56345
N = 3 0.03226 0.03483 0.05889 0.14214 0.28247 0.56390
M = 8 (0.03226) (0.03483) (0.05889) (0.14215) (0.28250) (0.56396)
Approximate solution 0.03226 0.03484 0.05959 0.16239 0.40305 1.14440

The values in parentheses are boundary collocation results; exact and approximate solutions are calculated using Eqs. 16 and 17,
respectively

Table 2 Leading-order asymptotic results (with N = 2 and N = 3) and boundary collocation results of the dimensionless torque
for the rotation of an oblate spheroid about its axis of revolution for various values of the aspect ratio and slip parameter of the
spheroid

η/βb M or N T/8πηb3�

a/b = 0.9 a/b = 0.5 a/b = 0.2 a/b = 0.1 a/b = 0.05
0 N = 2 0.94018 0.70502 0.53437 0.47894 0.45156

M = 4 (0.94018) (0.70502) (0.53437) (0.47894) (0.45156)
Exact solution 0.94018 0.70502 0.53437 0.47894 0.45156

0.1 N = 2 0.71962 0.52327 0.37799 0.32878 0.30243
N = 3 0.71962 0.52334 0.37966 0.33343 0.31065
M = 24 (0.71962) (0.52335) (0.38009) (0.33541) (0.31517)
Approximate solution 0.71962 0.52306 0.37762 0.32952 0.30554

1 N = 2 0.23134 0.15949 0.11185 0.09834 0.09197
N = 3 0.23134 0.15953 0.11266 0.10034 0.09518
M = 22 (0.23134) (0.15953) (0.11279) (0.10089) (0.09640)
Approximate solution 0.23133 0.15837 0.10543 0.08812 0.07953

3 N = 2 0.09225 0.06277 0.04395 0.03890 0.03661
N = 3 0.09225 0.06279 0.04425 0.03964 0.03781
M = 18 (0.09225) (0.06279) (0.04430) (0.03985) (0.03828)
Approximate solution 0.09225 0.06217 0.04061 0.03360 0.03014

10 N = 2 0.02972 0.02011 0.01407 0.01249 0.01179
N = 3 0.02972 0.02011 0.01417 0.01273 0.01217
M = 18 (0.02972) (0.02011) (0.01418) (0.01279) (0.01232)
Approximate solution 0.02972 0.01989 0.01289 0.01062 0.00950

The values in parentheses are boundary collocation results; exact and approximate solutions are calculated using Eqs. 16 and 17,
respectively

changed by less than 1 × 10−5 for addition of a single point. The exact solution of T/8πηb3� for the axi-
symmetric rotation of a no-slip spheroid (with η/βb = 0) given by Eq. 16 is also given in these tables for
comparison. It can be seen that our results from the boundary collocation method agree excellently with the
exact solution in this limit. In general, the convergence behavior of the collocation method is very good, even
for the relatively difficult case of large or small axial-to-radial aspect ratio a/b.

Our numerical results of the dimensionless torque T/8πηb3� for the axisymmetric rotation of a prolate
spheroid and an oblate spheroid as a function of the aspect ratio a/b for several different values of the slip
parameter η/βb are plotted in Figs. 2 and 3, respectively. As indicated in Eq. 1, this dimensionless torque
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Fig. 2 Plots of the dimensionless torque for the rotation of a prolate spheroid with a slip surface about its axis of revolution
versus the inverse aspect ratio (a/b)−1 for various values of the slip parameter η/βb. The solid and dotted curves represent the
boundary collocation solutions and approximate solutions given by Eq. (17), respectively
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Fig. 3 Plots of the dimensionless torque for the rotation of an oblate spheroid with a slip surface about its axis of revolution
versus the aspect ratio a/b for various values of the slip parameter η/βb. The solid and dotted curves represent the boundary
collocation solutions and approximate solutions given by Eq. (17), respectively

equals 1/(1+3η/βb) for the special case of a slip sphere (with a/b = 1). For a prolate spheroid with a no-slip
surface (η/βb = 0) or a slip surface having a finite value of η/βb, as shown in Fig. 2, the value of T/8πηb3�
increases monotonically with an increase in the value of a/b because of the increase in the surface area with
an increase in a/b for a given value of the equatorial radius b. For a perfectly slip spheroid (with η/βb → ∞),
T/8πηb3� disappears irrespective of its aspect ratio, consistent with the prediction from previous analyses
[21,30]. On the other hand, T/8πηb3� is a monotonically decreasing function of η/βb for a given shape of
spheroid, and its dependence becomes sensitive when the value of a/b is large (say, greater than 5). It can be
seen that the hydrodynamic torque on the spheroid can be large when a/b is large and η/βb is small.
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Fig. 4 Plots of the normalized torque T/T∞ for the rotation of a spheroid with a slip surface about its axis of revolution versus
the aspect ratio a/b for various values of the slip parameter η/βb

Similar to the axisymmetric rotation of a prolate spheroid, the value of T/8πηb3� decreases monotoni-
cally (and almost linearly) with a decrease in a/b for an oblate spheroid with a no-slip surface or a slip surface
having a finite value of η/βb, as illustrated in Fig. 3. Again, T/8πηb3� is a monotonically decreasing function
of η/βb for spheroids with a fixed value of a/b and vanishes for a full-slip spheroid (with η/βb → ∞).

Recently, Chang and Keh [30] investigated the problem of slow flow of a viscous fluid past a slip particle
whose shape deviates slightly from that of a sphere. Their analytical result corresponding to the hydrodynamic
torque exerted on a spheroid rotating about its axis of revolution, which is correct to the second order in the
small parameter ε = 1 − (a/b) characterizing the deformation, can be expressed as

T

8πηb3�
= γ3 − ε

3γ 2
3

5γ4
+ ε2 3γ 3

3 γ5

175

(
1 + 3ν + 36ν2 + 150ν3), (17)

where γ j = βb/(βb + jη) and ν = η/βb. The values of the dimensionless torque T/8πηb3� calculated from
the approximate formula Eq. 17 are also listed in Tables 1 and 2 and plotted in Figs. 2 and 3 for comparison.
It is found that the solution correct to the second order in ε given by Eq. 17 agrees well with our collocation
solutions for small magnitudes of ε. The errors are less than 1.2% for particles with 0.5 ≤ a/b ≤ 2. However,
the accuracy of this approximate solution begins to deteriorate, as expected, when the value of a/b deviates
from this range, especially for the case of an intensely slip spheroid.

In Fig. 4, the boundary collocation results of T/T∞, the torque for the axisymmetric rotation of a slip
spheroid normalized by that of the spheroid with identical geometry but no slip at surface given by Eq. 16
(a characteristic value that accounts for the particle geometry), are plotted as a function of the axial-to-radial
aspect ratio a/b for various values of the slip parameter η/βb. As expected, T/T∞ equals unity for a no-slip
spheroid (with η/βb = 0) and vanishes for a full-slip spheroid (with η/βb → ∞), regardless of the value of
a/b. Again, this normalized torque is a monotonically decreasing function of η/βb for a specified shape of
spheroid. Interestingly, for a spheroid with a given finite value of the slip parameter η/βb, the value of T/T∞
decreases first with an increase in the value of a/b from a constant value as a/b → 0, reaches a minimum
at some value of a/b, and then increases with a further increase in a/b to another greater constant value as
a/b → ∞.

3.2 Asymptotic analytical solutions

As discussed in Sect. 2.2, the coefficients C1, C3, C5, etc. in Eq. 10 for the Stokes flow induced by a spheroid
rotating about its axis of revolution can be solved explicitly using Eq. 14 when the infinite series are truncated
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into finite N terms. In Tables 1 and 2, we also present the asymptotic results (with N = 2 and N = 3, whereas
some cases of N > 3 can also be obtained but only the case of N = 2 is formulated in the Appendix for
conciseness) of the nondimensional torque T/8πηb3� for the axisymmetric rotation of a prolate spheroid and
an oblate spheroid, respectively, for various values of the aspect ratio a/b and the slip parameter η/βb. One can
see that, in general, the larger the value of N is (say, N = 3, where the analytical solution agrees excellently
with the boundary collocation solutions obtained in the previous subsection for cases of a moderate aspect
ratio in the range 0.2 ≤ a/b ≤ 5), the more accurate the results will be. When the aspect ratio a/b deviates
much from unity, the agreement between the approximate values of the hydrodynamic torque with N = 3 and
the convergent collocation results is not as good as the cases with a/b close to unity. For the limiting case
of no-slip spheroids (with η/βb = 0), only the first term of the infinite series in Eq. 10 is nonzero, and the
explicit expression for the torque derived from Eqs. 13 and 14 is exactly the same as that given by Eq. 16.

4 Concluding remarks

The boundary-collocation numerical solutions and asymptotic analytical solutions for the hydrodynamic torque
acting on a slip spheroidal particle undergoing slow and steady rotation about its axis of revolution in a vis-
cous fluid are obtained in this article. The general solution for the fluid velocity in spheroidal coordinates is
expressed as an infinite-series expansion, in which the unknown coefficients can be determined analytically
to their leading orders and numerically with excellent convergence. It has been found that, for various values
of the slip parameter η/βb and axial-to-radial aspect ratio a/b of the prolate or oblate spheroidal particle, the
agreement between our results of the hydrodynamic torque and the available analytical solutions in the limiting
cases is good. The normalized torque T/8πηb3� acting on the rotating spheroid increases monotonically with
an increase in the aspect ratio a/b for a no-slip or finite-slip spheroid and vanishes for a perfectly slip spheroid.
For a spheroid with a fixed aspect ratio, its hydrodynamic torque is a monotonically decreasing function of the
slip parameter η/βb of the spheroid.

We presented in the previous section only the results for a resistance problem, defined as that in which the
torque T exerted by the surrounding fluid on the rotating particle is determined for a specified angular velocity
�. In a mobility problem, on the other hand, the external torque T applied on the particle is specified and
the angular velocity � will be determined. For the creeping rotation of a spheroidal particle about its axis of
revolution considered in this work, the normalized angular velocity 8πηb3�/T for a mobility problem equals
the reciprocal of the normalized torque given by Tables 1 and 2 as well as Figs. 2 and 3 for its corresponding
resistance problem.
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Appendix: analytical solution for the coefficients in Eq. 10 truncated after two terms

When Eq. 10 for the fluid velocity is truncated after two terms (N = 2),

vφ = �c
[
C1 Q1

1 (λ) P1
1 (ω) + C3 Q1

3 (λ) P1
3 (ω)

]
, (A1)

the boundary condition Eq. 14 for n = 1 and 3 becomes

4

3
C1 Q1

1 (λ0) − η

βc
[C1x11g1 (λ0) + C3x31g3 (λ0)] = 4

3

√
λ2

0 − 1, (A2)

24

7
C3 Q1

3 (λ0) − η

βc
[C1x13g1 (λ0) + C3x33g3 (λ0)] = 0, (A3)

where gn(λ) is defined by Eq. 12,

x11 = λ2
0 − 1 + (

λ2
0 − 2

)
y, (A4a)

x13 = x31 = 3

8

[(
15λ2

0 − 14
) (

λ2
0 − 1

) + (
15λ4

0 − 24λ2
0 + 8

)
y
]
, (A4b)

x33 = 2

32

[(
375λ4

0 − 380λ2
0 + 44

) (
λ2

0 − 1
) + (

375λ6
0 − 630λ4

0 + 264λ2
0 − 48

)
y
]
, (A4c)



182 Y. C. Chang, H. J. Keh

and

y =
√

λ2
0 − 1 tan−1

⎛
⎝

√
λ2

0 − 1

1 − λ2
0

⎞
⎠. (A5)

Equations A2 and A3 are used to determine the coefficients C1 and C3, and their result in explicit forms is

C1 =
√

λ2
0 − 1

[
24

7
Q1

3 (λ0) − η

βc
x33g3 (λ0)

]
�, (A6a)

C3 = η

βc

√
λ2

0 − 1x13g1 (λ0) �, (A6b)

where

� =
{

24

7
Q1

1 (λ0) Q1
3 (λ0) − η

βc

[
18

7
x11g1 (λ0) Q1

3 (λ0) + x33g3 (λ0) Q1
1 (λ0)

]

+3

4

(
η

βc

)2

(x11x33 − x13x31) g1 (λ0) g3 (λ0)

}−1

. (A7)

An explicit expression for the hydrodynamic torque experienced by a spheroid rotating about its axis of rev-
olution results from Eqs. 13 and A6a. After the substitution of Eq. A6a into Eq. 13 taking η/βb → 0, we
obtain the explicit formula for the torque exerted on a no-slip spheroid given by Eq. 16. Taking η/βb → ∞,
we know that the torque vanishes from Eqs. A6a and 13.
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