
Theor. Comput. Fluid Dyn. (2012) 26:37–50
DOI 10.1007/s00162-010-0214-6

ORIGINAL ARTICLE

G. B. Jacobs · W. S. Don · T. Dittmann

High-order resolution Eulerian–Lagrangian simulations
of particle dispersion in the accelerated flow behind
a moving shock

Received: 2 February 2010 / Accepted: 8 October 2010 / Published online: 20 November 2010
© Springer-Verlag 2010

Abstract This paper presents a computational study of the two-dimensional particle-laden flow developments
of bronze particle clouds in the accelerated flow behind a moving normal shock. Particle clouds with a particle
volume concentration of 4% are arranged initially in a rectangular, triangular and circular shape. Simulations
are performed with a recently developed high-order resolution Eulerian–Lagrangian method that approxi-
mates the Euler equations governing the gas dynamics with the improved high order weighted essentially non-
oscillatory (WENO-Z) scheme, while individual particles are traced in the Lagrangian frame using high-order
time integration schemes. Reflected shocks form ahead of all the cloud shapes. The detached shock in front of
the triangular cloud is weakest. At later times, the wake behind the cloud becomes unstable, and a two-
dimensional vortex-dominated wake forms. Separated shear layers at the edges of the clouds pull particles ini-
tially out of the clouds that are consequently transported along the shear layers. Since flows separated trivially
at sharp corners, particles are mostly transported out of the cloud into the flow at the sharp front corner of the
rectangular cloud and at the trailing corner of the triangular cloud. Particles are transported smoothly out of
the circular cloud, since it lacks sharp corners. At late times, the accelerated flow behind the running shock
disperses the particles in cross-stream direction the most for the circular cloud, followed by the rectangular
cloud and the triangular cloud.
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1 Introduction

Shock waves are encountered in many technological environments, like supersonic aircraft, hypersonic space
vehicles, jet engines and explosions. Often, the flow containing shocks interact with solid or liquid particles.
For example, liquid or solid fuel particles interact with a chemically reacting fluid containing shock waves
in high-speed combustors. Debris and dust particles interact with shocks and fluid turbulence in dust explo-
sions. The particle dynamics and density distributions are of vital importance to the efficiency of combustors
performances and the impact that particles have on the environment.

The analysis of particle-laden high-speed flow is challenging. At high-speeds, experimental investigations
of the fluid mechanics are already extremely challenging, let alone the transport of high-velocity particles and
their dynamics. The direct computational analysis of the particle-laden shocked flow requires the computation
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of the complete flow over each particle, the tracking of individual solid or liquid complex particle boundaries
along their paths, and the tracking of shock waves in the moving framework. The individual computational
components are difficult to resolve and currently barely within reach even with the advances of computational
technologies. The combined problem of shock and particles has an immense complexity, scale range and size,
which can currently potentially be analyzed in highly idealized situation with a few particles.

Simplified models are required to handle more realistic situations. Eulerian-Lagrangian (EL) methods have
provided outcome for particle-laden flows. In particular, EL methods that model particles as points like the
particle-source-in-cell (PSIC) method [6]. In PSIC, the carrier gas is solved in the Eulerian frame on a mesh,
while individual particles are modeled as points and are traced along their path in a Lagrangian formulation.
The carrier gas and the particles are coupled through interpolation. The point modeling of particles enables
the computation of a large, realistic number of particles and simulation of particle-laden flow in engineering
applications, but the point model also inherently limits the type of flows that can be investigated to a dilute
particle concentration.

The EL method typically relies on relatively simple, coarse grids and/or numerical schemes with low order
of accuracy, i.e. first-order or second-order methods. Lower-order-based methods limit the accurate computa-
tion of particle-laden flows with a large range of active temporal and spatial scales. Dispersion and diffusion
errors plague the accuracy of the solution. Shock-capturing schemes typically suffer even more from these
errors, since the excessive diffusion that is needed to stabilize the methods near the shock dissipates important
smaller-scale flow structures in the wake of the shock that governs the particle dynamics. In the EL approach,
interpolation errors and high noise levels in the representation of particle influence on the flow can, more-
over, contribute to numerical errors well in excess of model errors leading to misrepresentation of the true
particle-laden flow physics.

For problems in which a large number of scales coexist, high-order and high-resolution numerical
algorithms have great potential to accurately and efficiently capture all flow features for long time. In [7],
we initiated the development of a high-order PSIC algorithm for the computation of particle-laden flow with
shocks. We solved the gas dynamics with an improved high-order weighted essentially non-oscillatory schemes
(WENO-Z) [2]. WENO-Z scheme is an improved version of the classical WENO-JS scheme as designed by
Jiang and Shu [9]. The WENO-Z scheme uses a global higher order smoothness indicator formed by a linear
combination of lower order local smoothness indicators to form new WENO nonlinear weights. The new
WENO-Z nonlinear weights satisfy the necessary and sufficient condition to guarantee the formal order of
accuracy of the WENO-Z scheme, which the classical WENO-JS scheme has failed to achieve for smooth
functions. Numerical experiments also demonstrate that the WENO-Z scheme has higher resolution than the
WENO-JS scheme in shocked flows. The WENO-Z based PSIC method proven very effective for the simulation
of the fine scale and delicate structures of the physical phenomena involving shocks [5,11,12]. A consistent
and stable high-order ENO interpolation was introduced for interpolation of the gas flow to the particle. A
smooth higher-order weighting ensured a low noise and accurate coupling of the particles to the gas. Time
integration of the carrier phase and the particles is performed with a high-order Runge–Kutta TVD method
without splitting.

In this paper, we initiate our effort towards a thorough validation of the EL method and assessment of
numerical and model errors. We aim to validate our high-order resolution EL against experiments in Boiko et
al. [3] and Kiselev et al. [10] on the dispersion of cloud of particles in the accelerated wake behind a moving
shock. Boiko et al. analyzed the interaction between an initially rectangular cloud shape of particles with the
accelerated flow behind a running shock experimentally in a shock tube. In Boiko et al. [3], these experi-
ments were partially validated. Later, Kiselev et al. [10] reported on the same results but with improved grid
resolution.

We focus on the effect of the initial shape of the particle cloud on the dispersion patterns at later times. We
consider an initially rectangular, triangular and circular shape of bronze particles with dilute particle volume
concentrations. The findings set the stage for a detailed ongoing comparison of the computationally and exper-
imentally determined dispersion patterns. We show that the change of initial shape dramatically changes shock
patterns and shear flows that affect the particle dispersion and concentration at early and late times. Detonation
type shock waves will have the largest impact on particle dispersion in the circular cloud shape, while the
particles in the triangular cloud shape disperse the least in the accelerated flow behind a moving shock.

We will briefly review the developed high-order resolution EL method followed by a discussion of a moving
shock interacting with a cloud of particles that have three different initial shapes including a rectangle, a triangle
and a circle. In Sect. 2, the PSIC formulation is presented. We give a brief description of the improved fifth-
order weighted essentially non-oscillatory WENO-Z scheme. We summarize the high-order particle algorithm,
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including interpolation, weighing and time integration. In Sect. 3, we discuss the two-dimensional shock-
particles cloud interactions computed with the high-order PSIC method. In Sect. 4, the effect of initial shape
of particle clouds (rectangular, triangular and circular shapes) on the dispersion patterns of the particles and
the evolution of the flow fields will be presented and discussed. Conclusion and direction of future research
are given in Sect. 5.

2 The physical model and particle-source-in-cell method

In the particle-source-in-cell (PSIC) method, the Eulerian continuum equations are solved for the carrier flow
in the Eulerian frame, while particles are traced along in the Lagrangian frame.

In the following, we shall denote the subscript p for the particle variables and f for the gas variables at
the particle position. Variables without subscript refer to the gas variables unless specified otherwise.

2.1 Euler equations in the Eulerian frame

The high-speed flows that we are considering have very high Reynolds numbers and are thus convection
dominated flows. We, therefore, do not model viscous effects in the governing Eulerian equations for the gas
flow (1). The governing equations for the carrier flow are the two-dimensional Euler equations in Cartesian
coordinates given by:

Qt + Fx + Gy = S, (1)

where

Q = (ρ, ρu, ρv, E)T ,

F = (
ρu, ρu2 + P, ρuv, (E + P)u

)T
, (2)

G = (
ρv, ρuv, ρv2 + P, (E + P)v

)T
,

and the equation of state is

P = (γ − 1)

(
E − 1

2
ρ

(
u2 + v2)

)
, γ = 1.4 (3)

T = γ P M2

ρ
, (4)

where M = U/
√

γ RT is a reference Mach number determined with the reference velocity, U , and reference
temperature, T . The source term, S, accounts for the effect of the particles on the carrier gas and will be
discussed in more detail below.

2.2 Particle equation in the Lagrangian frame

Particles are tracked individually in the Lagrangian frame. The kinematic equation describing the particle’s
position, xp, is given as

dxp

dt
= vp, (5)

where vp is the particle velocity vector.
The particles’ acceleration is governed by Newton’s second law forced by the drag on the particle. With

particles assumed spherical, we take the drag as a combination of the Stokes drag corrected for high Reynolds
and Mach number and the pressure drag leading to the following equations governing the particle velocity [3],

dvp

dt
= f1

(
v f − vp

τp

)
− 1

ρp
∇P| f , (6)
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where v f is the velocity of the gas at the particle position, ρp the particle density. The first term on the right-
hand side describes the particle acceleration resulting from the velocity difference between the particle and
the gas. f1 is an empirical correction factor [3] that yields an accurate determination within 10% of measured
particle acceleration for higher relative particle Reynolds number up to Rep = pf dp|v f | Rep = 10,000 and
relative particle Mach number up to M f = |v f |/

√
T f = 1.2 and is given by

f1 = (
18 + 0.285Rep + 3

√
Rep

)
(

1 + exp

[
−0.43

M4.67
f

])

. (7)

The second term is the particle acceleration induced by the pressure gradient in the carrier flow at the particle
position. The particle time constant τp = Red2

pρp/18, where dp is the particle diameter, is a measure for the
reaction time of the particle to the changes in the carrier gas. Ref = U L/ν is the Reynolds number of the
carrier gas flow with L a reference length and ν the dynamic viscosity.

The particle temperature is mostly affected by convection. From the first law of thermodynamics and
Fourier’s law for heat transfer, the equation for temperature is derived as,

dTp

dt
= 1

3

Nu

Pr

(
T f − Tp

τp

)
, (8)

where Pr = 1.4 is the Prandtl number, taken as its typical value for air in this paper. Nu = 2 + √
Rep Pr0.33

is the Nusselt number corrected for high Reynolds number.

2.3 Source term S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow. The volume-averaged summation
of all these contributions gives a continuum source contribution on the momentum and energy equation in (1)
as:

Sm(x) =
Np∑

i=1

Ki (xp, x)Wm,i , (9)

Se(x) =
Np∑

i=1

Ki (xp, x)(Wm,i · vp + We,i ), (10)

where Ki (xi , y) = K(|xi − y|)/V is a normalized weighting function that distributes the influence of each
particle onto the carrier flow. Wm,i = [m p f1(v f − vp)/τp]i and We,i = [m p(Nu/3Pr)

(
T − Tp

)
/τp]i are

weight functions describing the momentum and energy contribution of one particle, respectively. m p is the
mass of one spherical particle that can be derived from τp. Np is the total number of particles in a finite volume
V . The normalized weighting function will be further discussed below.

2.4 Flow solver

The carrier flow Eq. 1 are discretized spatially with a fifth-order weighted essentially non-oscillatory con-
servative finite difference scheme (WENO-Z) [4] on a uniform mesh and temporally with the third-order
Runge–Kutta TVD scheme.

The nonlinear nature of the hyperbolic Euler equations admits finite time singularities in the solution even
when the initial condition is smooth. It is important that the numerical methods employed avoid non-phys-
ical oscillations, also known as the Gibbs phenomenon, when the solution becomes discontinuous. Among
many high-order shock-capturing schemes, the weighted essentially non-oscillatory finite difference schemes
(WENO) for conservation laws [9] has been very successfully employed for the simulation of the fine scale
and delicate structures of the physical phenomena related to shock-turbulence interactions.

The essence of the WENO scheme is the nonlinear adaptive stencils, where a nonlinear convex combination
of lower-order polynomials adapts either to a higher-order central upwinding approximation at smooth parts of
the solution, or to an upwind lower-order spatial discretization that avoids interpolation across discontinuities
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and provides the necessary dissipation for shock capturing. The nonlinear coefficients of the convex combi-
nation, hereafter referred to as classical weights, are based on the local smoothness indicators, which measure
the sum of the normalized squares of the scaled L2 norms of all derivatives of the lower-order polynomials. An
essentially zero weight is assigned to those lower-order polynomials whose underlining stencils contain high
gradients and/or shocks, yielding an essentially non-oscillatory solution at discontinuities. At smooth regions,
higher order is achieved through the mimicking of the central upwinding scheme of maximum order, when
all the smoothness indicators are about the same size. The classical weights were later further improved by
Borges et al. that made use of existing higher-order information contained within the stencils. The improved
weights [4] (WENO-Z) were shown to satisfy the necessary and sufficient conditions for the optimal order of
the given fifth-order scheme.

At each grid point, the first-order Lax-Friedrichs flux splitting is used as the low-order building block to
split the Euler flux, ignoring the source term, into the positive and negative going fluxes. The positive and
negative going fluxes are then decomposed into the characteristic variables via the left eigenvectors and eigen-
values of the Euler flux. The eigensystem of the Euler flux is obtained via the linearized Riemann solver of
Roe [13]. The characteristic variables are then reconstructed via the improved high-order weighted essentially
non-oscillatory (WENO-Z) scheme as discussed above. The reconstructed characteristic variables are then
re-projected back into the physical space as the numerical flux via the right eigenvectors (see Shu et al. [9] for
further details.)

2.5 Particle solver

Lagrangian tracking of the particles consists of three stages per particle, including searching the element a
particle is located in, interpolating the field variables to the particle location and moving the particle forward
with a time integration method.

Locating the host cell of a particle is a trivial task on a structured grid. Following Jacobs and Hesthaven
[8], to avoid aliasing errors and an unphysical numerical total energy increase, the order of interpolation has
to equal the approximation order k of the stencil Sk and the time integration of the particle solver and the
carrier phase solver have to match. To determine the field variables at the particle location, we use the ENO
interpolation introduced by Jacobs and Don [7] suited to flows containing shock discontinuities. The ENO
interpolation was shown to prevent Gibbs oscillations that plague the accuracy of the centered interpolation
over shocks.

In smooth flow areas without shocks, the WENO-Z method uses a central difference scheme. A cen-
tered interpolation to the particle position is then most accurate and preferred. We use Lagrange interpolating
polynomial of degree k,

Pk(x p) =
i p+k/2∑

i=i p−k/2

Q(xi )li (x p), (11)

where i p represents the nearest cell center to the left of the particle position. The number of points k should be
equal to the number of points used as the order of the WENO scheme [8]. In the case of the fifth order WENO
scheme, k = 5.

In shocked regions, the centered interpolation will produce undesirable Gibbs oscillations. With an ENO
interpolation [14], these oscillations are essentially removed. ENO interpolation is only necessary in WENO-
domains identified by the smoothness indicator. In those domains, the interpolating points are determined
based on smoothness of the function indicated by the divided differences. The k-th degree-divided differences
are determined first.

The 0th-order divided differences of Q are defined by:

Q[xi ] ≡ Q(xi ). (12)

The j th degree-divided difference for j ≥1 are defined by

Q[xi , . . . , xi+ j ] ≡ Q[xi+1, . . . , xi+ j ] − Q[xi , . . . , xi+ j−1]
xi+ j − xi

. (13)
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Fig. 1 Two-dimensional ENO stencil for interpolation to a particle located near to a shock. The left and bottom point of the
interpolation stencil is determined based on the divided differences along the horizontal grid lines and the vertical grid lines at
the particle’s nearest grid point to the left and bottom of the particle

Starting from a two-point stencil, xi p , xi p+1, the interpolation stencil is expanded to k points based on a com-
parison of the divided differences of the increasing order at i p. The smallest second order divided differences
at i p of the two potential three point stencils min

{
Q[xi p−1, xi p , xi p+1], Q[xi p , xi p+1, xi p+2

}
indicates the

smoothest interpolation stencil and is therefore chosen. This procedure is repeated until a k point interpolant
is found. The Lagrange interpolant in (11) then interpolates to the particle position.

In two dimensions, the same procedure can be used along the separate dimension on the tensor grid. The
divided differences are determined along horizontal and vertical lines in the grid. With the 1D approach outline
above, we find the left most and bottom most grid point of the interpolation stencil with k × k points for each
grid point in the domain.

We give an example of a two-dimensional ENO stencil in Fig. 1. The particle’s nearest grid point is found
to the bottom, left of the particle. The left and bottom point of the ENO stencil is determined by comparison
of the divided difference along the horizontal and vertical line crossing the nearest grid point. If a particle is
located in a cell with a shock, then the ENO is one-sided to the left and bottom of the particle. We note that if
two shocks cross the k interpolation stencil, then this procedure will fail to recognize the second shock. This
is, however, mostly a rare short-lived event. We did not encounter stability problems in the simulations we
performed below.

To determine the particle influence on the carrier flow (10), we use the high-order spline interpolation
discussed in Ref. [1] and presented in Ref. [7]. The high-order weighing reduces aliasing and noise in the
sources (10) that couple the particles to the gas flow. The spline Sk is constructed by the convolution of the
square nearest-grid-point or zero order weighting function, where k is the degree of the spline interpolant.
For k = 0 this yields a tophat function, which is often used in lower order PSIC methods. For large k the
spline approaches the Gaussian function. In this case, the 0_th mode of function in wave space is free of
aliasing errors, and the higher component of the function in wave space are smaller than equivalent Lagrangian
interpolations.

3 Dispersion patterns of an initially rectangular cloud in accelerated flow behind a shock

In [7], we revisited the interaction of a moving shock with a cloud of bronze particles in 1D and 2D studied by
Boiko et al. [3] and Kiselev et al. [10]. We demonstrated that the high-order resolution EL method improved
the capturing of the small-scale flow structures behind the moving shock, while the global features compared
well to the computations and experiments by Boiko and Kiselev. We also discussed the long-time particle
dispersion of an initial rectangular cloud shape in the accelerated flow behind a shock. In this section, we will
summarize the findings from [7], which sets the stage for a comparison with a initially circular and triangular
cloud shape in the next section.
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3.1 Initialization

The rectangular cloud is seeded with uniformly distributed particles at [0.175, 0.352] × [0.044, 0.044] with
zero initial velocity. The volume concentration of the particles in all cloud shapes is 4% to ensure a relatively
dilute particles concentration according to the model assumption. The particle response time and density are
τp = 51.69 and ρp = 7.42 × 104, respectively, corresponding to an experiment with bronze particles in
[10]. We take the Reynolds number needed to compute the particle traces according to the experiment at
Rep = 3.387 × 107.

We initialize a right moving shock with Ms = 3 at xs = 0.175 in a rectangular domain [0, 3] ×
[−0.611, 0.611]. The state of the pre-shock flow is [ρR, u R, pR] = [1, 0, 1]. The post-shock state can be
computed via the well-known Rankine–Hugoniot relations for a given Mach number Ms . Free stream inflow
and outflow boundary conditions are imposed in the inflow and outflow boundaries, respectively, in the x
direction. A periodical boundary condition is imposed in the y direction. The cloud is seeded directly before
the shock at time, t = 0.

The number of grid points used to find the flow solution in the Eulerian frame is 1, 500 × 500 in the x and
y directions, respectively. The total number of particles is 40 K. Each computational particle represents 3,600
real bronze particles.

3.2 Particle-laden flow patterns

In Fig. 2, we present snapshots of the vorticity magnitude |ω| (left column) and the trajectory of the particles
(right column) at non-dimensional times t = 0, 0.05, 0.1, 0.225, 0.5, 0.75. The dotted rectangle in the figures
shows the original shape and position of the particles at t = 0 for reference.

In the time interval from t = 0 to t = 0.05, the right moving Mach 3 shock hits the particle and a
reflected bow shock forms at the front end of the shape as seen in the vorticity plot (Fig. 2, left column). The
right-moving shocks move along the top and bottom sides of the shape and are curved close to the shape.
Strong vorticity ω is generated by the accelerated flow in the wake of the curved shock. The shear layer
emanating from the front corners of the shape is also clearly visible by the increased vorticity magnitude in
Fig. 2 (left column). The accelerated flow stagnates at the front of the shape and compresses the shape. The
particles at the front end move towards the right at this early time and increase the particle density (Fig. 2, right
column).

At times t = 0.1 and t = 0.225, the main shock has moved past the shape and the two curved shocks
originated from the top and bottom of the shape have moved towards and crossed the symmetry line at y = 0.
A Mach reflection occurs once the curved shocks have crossed the symmetry lines, which connects the curved
shock and the right-moving main shock. Further in time, the flow complexity significantly increases, when
the non-linearly interacting curved shocks affect the compression wave in the particle cloud, and the vorticity
generated at the rear end of the cloud.

The force exerted by the particles on the accelerated gas behind the main shock leads to a flow pattern
comparable to a flow over a blunt body. The flow separates on the top and bottom sides of the shape, and a
recirculation forms at the back of the shape. The shape is compressed inward on the top and bottom sides
toward the symmetry line at y = 0 as shown in the trajectory of the particles. The strong vorticity in the
separated shear zones pulls the particles out of the shape, which leads to the formation of the particle arms and
legs on the side and the back of the shape. The arms and legs follow the separated shear layers. At the back of
the shape, the particle legs thus bend inward and the particle arm on the sides moves upward and downstream.

The gas density increases inside the shape, but the pressure remains constant (not shown). The particles
cool the gas through heat exchange [10]. The lowered temperature leads to an increased density to satisfy the
ideal gas law, since the pressure remains constant in the cloud to balance the particle force. The overall flow
field maintains its symmetry up to this point in time.

The flow becomes unstable and loses its symmetry at later time (See figures for t = 0.5 and t = 0.75). In
the wake of the shape, an asymmetric shedding is observed in the vorticity contour (Fig. 2, left two column).
Increasingly, more particles are dispersed upward and downstream of the cloud forming long and thicker
particle arms into the main flow and around the shape. A compression wave that formed at the side of the
shape at early time has now moved sideways away from the symmetry line and has run into the particle arms.
This compression wave reshocks the particle-laden flow in the arms and further widens the particle arms. This
re-shocking induces intermittent wave patterns in the side shear layer that interacts with the particles forming
streaks and bunching of the particles.
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Throughout the computed time interval, the side arms shield the high-speed flow generated by the right-
moving shock from the wake of the shape. Only a small number of particles are dispersed in the legs at the
rear of the shape, since the side arms divert the main high-speed flow away from the shape and the relatively
low flow velocities in the wake of the shape do not carry the particles as much as in the side arm.

4 Effect of initial cloud shape on dispersion patterns

4.1 Initialization of particle clouds

To make a fair comparison between cases with different initial cloud shapes, we ensure that we initialize the
particle clouds with the same volume concentration covering the same geometric area and at the same location.
The circle is thus initialed with a radius of 0.0704 yielding the same surface area as the rectangle. The circle
center is at (0.2454, 0). For the initial triangle to cover the same surface area as the rectangle and the circle,
the height of the triangle has to be 0.176. The volume concentration of the particles in all cloud shapes is 4%.
Further initialization is the same as discussed above for the initially rectangular cloud shape.

4.2 Particle-laden flow development at early time

We discuss the particle-laden flow development through snapshots of the vorticity and the particles at four
non-dimensional times of t = 0.1, 0.225, 0.5, 0.75 in Figs. 2, 3 and 4. The vorticity magnitude |ω| is plotted
in the left column and the trajectory of the particles in the right column. A dotted rectangle, circle and triangle
in the figures show the original shape and position of the particles at t = 0 for reference.

The overall flow field maintains its symmetry at early times up to t = 0.225. At later times, the wake
behind the cloud is unstable.

When the right-moving shocks hit the particle cloud, a reflected shock forms at the front end of the cloud for
each cloud shape. This shock development as visualized by the vorticity magnitude generated by the shock is
comparable for the rectangular and circular shape. In both cases, a strong detached “bow” curved shock forms
with a large part of the shock normal to the flow, as typical for blunt objects. The bow shock moves upstream
at comparable velocity from t = 0.1 to t = 0.225 for the rectangle and circle. At the sharp front corner of the
triangle, the reflected shock, however, stays attached until t = 0.1 and does not move significantly upstream
throughout the flow development.

The right-moving shock moves along the top and bottom sides of the clouds and has passed the cloud at
time t = 0.1. The refracted shock is curved towards the symmetry line at y = 0. Since the triangle is wider at
the back end and hence the distance to the symmetry line larger, the curvature of the right shock is larger for
the triangle when compared to the other two cases.

At early times, the particle clouds act like solid bodies in gas flow. The interaction of the accelerated flow
with the particle cloud leads to an increased vorticity near the cloud. At sharp edges, the flow separates from
the cloud. The flow separates at the front corners of the rectangular cloud. The shear layer reattaches to the
cloud further downstream and separates again at the trailing edge. In the triangular cloud shape cases, a shear
layer separates only at the sharp trailing edge. The circle has no sharp edge, and the separation location moves
forward from time t = 0.1 to t = 0.225 along the boundary of the circle.

The separated shear layer is strongly correlated to the transport of particles out of the cloud into the flow
at early times. The strong vorticity in the separated shear zones pulls the particles out of the shape, hence,
forming the distinct arms and legs observed in the previous section for the rectangle [7], and the two particle
streaks at the rear of the triangular cloud shape. Since the shear layer moves for the circular cloud shape case,
the particle streaks out of the shape are less sharp as for the other two cases.

The accelerated flow stagnates at the front of the blunt rectangular and circular cloud shapes and compresses
these clouds. The particles at the front end move towards the right at this early time and increase the particle
density. The sharp edge of triangle yields a much lesser compression, and the front location of the triangle has
not moved towards the right as far as for the other two cases at t = 0.225. The sides of the triangle, however,
are pushed more inward toward the symmetry line. The rectangular shape is also slightly compressed inward
by the reattached flow on the top and bottom sides toward the symmetry line at y = 0.

In the wake of the shapes, initially, two typical recirculation zones form that stretch in flow direction from
t = 0.1 to t = 0.225. The reduced pressure and negative flow velocity push the rear edge of the particle cloud
perhaps counter intuitively upstream.
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Fig. 2 A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds (right column) for time
t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth-order WENO-Z/PSIC-5 method with ENO interpolation
scheme. The dotted rectangle in the particle’s trajectory figures shows the original shape and position of the rectangular particle
cloud at t = 0 for easy reference. The shock Mach number is Ms = 3. The number of grid points used in the Eulerian frame is
1, 500 × 500 in the x and y directions, respectively. The number of bronze particles in the rectangular cloud is 40 K
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Fig. 3 A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds (right column) for time
t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth-order WENO-Z/PSIC-5 method with ENO interpolation
scheme. The dotted triangle in the particle’s trajectory figures shows the original shape and position of the circular particle cloud
at t = 0 for easy reference. The shock Mach number is Ms = 3. The number of grid points used in the Eulerian frame is
1, 500 × 500 in the x and y directions, respectively. The number of bronze particles in the circular cloud is 40 K
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Fig. 4 A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds (right column) for time
t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth order WENO-Z/PSIC-5 method with ENO interpolation
scheme. The dotted triangle in the particle’s trajectory shows the original shape and position of the triangular particle cloud at
t = 0 for easy reference. The shock Mach number is Ms = 3. The number of grid points used in the Eulerian frame is 1,500
×500 in the x and y directions, respectively. The number of bronze particles in the triangular cloud is 40 K
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Fig. 5 A snapshot of the magnitude of the fluid velocity superimposed with the flow’s streamlines, trajectories of the particles
and colored particle streaks at early times, t = 0.04, 0.15 and 0.25 (top to bottom), for the (left) rectangular, (middle) triangular
and (right) circular shaped particle clouds

Since the particle dynamics are greatly influence by the velocity magnitude and direction of the carrier
fluid according to (6), we inspect the particle dynamics at early time in Fig. 5 against contours of the velocity
magnitude and streamlines in the flow. We trace the development of initially horizontally oriented streak of
particle identified by different coloring.

The fluid velocity is naturally lower inside the shape than outside. As a result, the particles that are located
inside the cloud do not show significant motion at early time. The particles move mostly at the edges for all
shapes. Whereas for the circular and triangular shape, the particles move along the front edges of the shape, the
particles move away from the rectangular shape on the front and the rear corners. Particularly, the yellow and
red streaks in the rectangular cloud shape show a significant deformation along the entire edge at t = 0.15.
Since at the front end of the shape, the velocity magnitude and streamline deflection increase with increased
distance from the symmetry, the particle streaks show a larger deformation away from the symmetry line.

At time t = 0.15, recirculation patterns have formed at the rear of the rectangular and circular particle
clouds that compress the rear of the shape stream upwards, whereas for the triangular shape, there is no
noticeable recirculation and compression.

At time t = 0.25, the increased carrier fluid velocity inside the cloud affects the particle streaks. The
triangular shape flow shows streamlines that move into the shape inducing a compression of the streaks
towards the symmetry line. The streamline and the streaks in the rectangular shape are deflected away from the
symmetry line, whereas in the circular shape, the streamlines and streak are not showing significant deflection.

4.3 Particle-laden flow development at late time

The wake behind all shapes becomes unstable and loses its symmetry at later time (See Figures for t = 0.5
and t = 0.75). An asymmetric shedding is observed in the vorticity contour. Increasingly, more particles have
dispersed out of the cloud, and the initial shape is hardly recognizable at later times.
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Fig. 6 A snapshot of the magnitude of the fluid velocity superimposed with the flow’s streamlines, trajectories of the particles
and colored particle streaks at late times, t = 0.5 and 0.75 (top to bottom), for the (left) rectangular, (middle) triangular and (right)
circular shaped particle clouds

The particles have mostly compressed or have formed long and thicker particle streaks into the main flow
originating from the initial shape.

For the rectangle case, most particles are transported in the arm that forms at the front corner of the rect-
angle. The flow separation at the front corners and hence the particle streak emanating from the front corners
persist throughout the computed interval. The particle arm shields the wake flow from the rear of the rectan-
gular shape. This results in low flow velocities at the rear stagnating the transport of particles into the legs at
the rear at later times.

A separated shear layer also persists for the circle case at later times, yielding a continuous transport of
particles in the particle streak. Initially, particles are drawn from the front half of the circle. Later on, the front
half of the circle is compressed in streamwise direction, and flow that accelerates to the right encounters the
wider rear half of the circle that was initially pushed upstream by the recirculation behind the circle. The rear
half of the circle induces a new shear layer at time t = 0.5 that widens the influence of the particle cloud on the
flow as seen through the larger cross-stream dispersion and wider wake at t = 0.75 when compared to t = 0.5.
The particle-laden wake of the circle is approximately fifty percent wider than the rectangle particle-laden
wake.

The wake from the triangular cloud shape is significantly narrower than the rectangular and circular cloud
shapes. At later times, the front edge of the triangle has been compressed into a blunt nose. Two new particle
streaks form off the front corners of this blunt following the separated shear layers in a comparable fashion to
the case of the rectangular cloud shape. These new streaks reach further into the flow shielding the streaks at
the rear end, which are further compressed toward the symmetry line.

With an increasing number of particles pulled out of the rectangular and circular shapes at late times, the
particle concentrations reduce. As a result, the velocity magnitudes increased inside these shapes (Fig. 6), and
the particles’ velocity also increases. The streaks that were initially separated out of the rectangular cloud are
now transported downstream, while maintaining their general shape.

The streaks in the triangular shape behave rather different when compared to the other two shapes. They
continue to move towards the symmetry line at t = 0.5 and cross the symmetry line at t = 0.75. The streaks
that stay straight form distinct diamond patterns at the rear end of the particle cloud at late times.

5 Conclusions and future developments

We have compared the computationally determined particle-laden flow developments of an initially rectan-
gular, triangular and circular cloud of bronze particles in the accelerated flow behind a moving (detonation)
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shock. The dispersion patterns and the dynamics of the particles from the three shapes are shown to be distinctly
different, but there are similarities in the flow mechanisms.

At early times, particles are transported out of the initial shape following the separated shear flows from
the shape. The flow separates trivially at the sharp corners of the rectangular and triangular shapes, leading to
sharp particle streaks emanating from the clouds at these locations. The separation location is non-trivial and
unsteady in case of the circular cloud shape and moves upstream at early times. Particles are transported into
the flow from different locations of the shape at different times and hence form a particle streak that is less
sharp.

The particle-laden wake is widest, and particles are dispersed most in cross-stream, for the initially circular
cloud shape, while the particle-laden wake is narrowest for the triangular shape despite it being the widest
shape initially. The primary reason for the narrow wake is that particles are only moving out of the shape
towards the symmetry line following the separated shear layer at the rear of the triangle that curves inward
toward the symmetry line. No separation occurs at the front of the triangle, since the reflected shock at the
front of the triangular cloud is attached and weaker when compared to the shock reflected in the blunt circular
and rectangular clouds. The flow also remains attached along the front edges of the triangle. The rectangle and
circle both have a separated shear layers at the front of the shape that moves away from the center symmetry
lines and hence widen the wake area. The particle-laden wake of the circular cloud is wider than the rectangular
cloud, since a secondary separated shear layer away from the symmetry line is induced by the back half of the
circle when the front half of the circle is compressed into the cloud by the accelerated flow.

We are currently characterizing the particle-laden flow developments for a large range of particle cloud
shapes and particle materials in the accelerated flow behind moving shocks and will report on the complete
characterization of the particle-laden flow developments when a shock hits a cloud of particles at rest in the near
future. The purpose of this study is to generate a database for and a basic understanding of the basic features
of flows that will enable the characterization of particle dispersion in dust explosion and the validation against
complex experimental particle initializations. To model the physical problems of interest, a full Navier–Stokes
solver is currently under development to take into account the viscous and thermal conductivity effects of the
carrier fluids and we will report on the results of these simulations in future papers.
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