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Abstract A theoretical method based on mathematical physics formalism that allows transposition of turbu-
lence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale
models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform
of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of
non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correla-
tion tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation
allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum
splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type
of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models
used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses
underlying these models are then discussed by reference to physical considerations with emphasis on identi-
fication of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as
the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel
flow and a wall injection induced flow are then considered as typical possible applications for illustrating the
potentials of these models.

Keywords Turbulence · Mathematical turbulence modeling · Spectral modeling · Partial integrated transport
models · Multiple-scale models · Subgrid-scale models

PACS 47.27E (Turbulent flows, simulation and modeling)

1 Introduction

Mathematical turbulence modeling methods have made significant progress in the past decade for predicting
both internal and external turbulent flows. Many different approaches in turbulence modeling have been
developed up to now, such as Reynolds-averaged Navier–Stokes (RANS) models of first- and second-order
based on one-point statistical closures ranging from algebraic models to transport equation models using
various types of formulations [1–3], multiple-scale models derived from two-point statistical closure [4,5],
and the method of large eddy simulations [6] (LES). LES method based on subgrid modeling techniques
has been now extensively developed because of the increase of computer power and speed. All these various
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approaches have often been developed independently and the connection between them is not always clearly
established. Generally, the RANS models appear well suited to handle engineering applications involving
strong effects of streamline curvature, system rotation, wall injection or adverse pressure gradient encountered
for instance in aeronautics and complex flows in industry and environment [7–10]. LES models are rather
applied for simulating turbulent flows in fundamental studies with a special emphasis focused on tracking
turbulent flow structures, two-point velocity distribution and spectra, pressure–strain fluctuating correlations
and dissipation that cannot be obtained from experiment, but also for simulating turbulent engineering flows
in which a particular difficult phenomenon occurs [11]. Considering the performances and drawbacks of these
two different approaches that are RANS and LES, it seems that the decision of applying one model rather
than the other depends on several criteria. The choice is not only governed by the intrinsic performances of
the model itself, but it depends also on the type of the physical phenomena involved and the answers that
are expected to the problem. Also, the computational framework, academic or industrial, is influential. It is
of interest to remark that recently new turbulence models that take advantage of RANS and LES approaches
based on hybrid zonal methods [12–15] or on hybrid continuous methods with seamless coupling [16–18] have
been developed for simulating engineering flows on relatively coarse grid when the spectral cutoff is located
before the inertial zone of the energy spectrum. This line of thought appears to have gained major interest both
from a fundamental and theoretical point of view because it bridges different levels of description as well as
on the applied point of view for developing efficient practical methods [19,20]. Considering these various and
numerous turbulence modeling models, developed often independently from each other, it appears that there
is a need to throw a bridge between these apparently different approaches, referring to their basic physical
foundations. With a particular emphasis upon the connection between RANS and LES, we shall show that
useful transpositions are possible if some approximations however are conceded.

The two-point approach of non-homogeneous turbulent fields as an expansion about homogeneity is used
to develop both multiple scale statistical models and subfilter transport closures. Many important works have
been done in the past years on the methods to extend two-point closures and spectral closure to the case of non-
homogeneous turbulence. Theses various approaches, based on two-point correlations allow one to represent all
the turbulence scales and the directional properties of structures. After the work of Cambon et al. [21] dealing
with the extension of EDQNM (eddy-damped quasi-normal Markovian) closures to homogeneous anisotropic
turbulence, several efforts have been made to extend the method to non-homogeneous turbulence. Burden [22]
was among the first attempts introducing weak inhomogeneity based on developments about homogeneity.
Among these contributions also, the work of Besnard et al. [23] provides the exact equations of double
correlation spectra in the case of non-homogeneous fields, used as a basis for developing non-homogenous
spectral closures. Laporta and Bertoglio [24,25] derived the full equations for two-point correlations and spectra
in non-homogeneous fields. But considering the high complexity of the algebra, the model was reduced to one
dimension by shell integration. The variations of mean velocity in space was accounted by the use of Taylor
series approximations rather than complete Fourier transform. This method is useful for introducing free flow
inhomogeneity that extend in all space but the presence of walls bring new considerable complexities. These
complexities are indeed reflecting the fact that Fourier transform is not the appropriate operator to apply for fully
inhomogeneous fields. It can however still be very useful if some approximations are accepted. A simplified
form of spectral model based on the energy spectrum has been developed by Bertoglio and Jeandel [26] and
afterwards by Parpais [27] for practical applications. The extension to the one-dimensional spectral tensor
of double velocity correlation has been considered by Touil et al. [28,29]. The works of Clark and Zemach
[30] as well as Rubinstein and Clark [31] are also related to spectral dynamic closures based on DIA (direct
interaction approximation) or on Heisenberg model, that are able to exhibit refined properties of the turbulence
field. One may cite also the work of Yoshisawa [32] that introduces a two scale expansion in the DIA equations
formalism. An interesting overview is also given in reference [33]. Two-point correlation equations in physical
and in spectral space have also been used to develop one point statistical multiple scale models. Assuming
that turbulent scales vary much faster than the mean flow field, non-local operators can be approximated in
Taylor series. So that when the development is limited to a linear term, it can be interpreted has a locally
tangent homogeneous space. Assuming these hypotheses, multiple scale models based of transport equations
for several spectral slices have been developed by Schiestel [5,34,35]. Note that another multiscale approach
based on the spectral model of Clark and Zemach [30] has been also developed by Cadiou et al. [36]. These
authors have introduced several characteristic length scales that are deduced from the series of moments of the
spectral one dimensional tensor.

In the present paper, we propose a theoretical method based on mathematical physics formalism that
allows transposition of turbulence modeling from RANS to LES. Some efforts have been made these last
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years by various authors that attempt to bridge the gap between the traditional RANS method and the
LES approach, giving further insight into VLES (very large eddy simulation), as made by Liu and Shih
[37], for instance. Several works in the recent literature also show that the use of more advanced model
for subgrid closure, including algebraic models or stress transport models inspired from RANS may be
beneficial [38,39]. This can be related also to the hybrid RANS/LES approach with seamless coupling
[15,20].

Spectral turbulence theory provides the main ingredient of this development. The theory deals with the dyna-
mic equation of the two-point velocity fluctuating correlations with extensions to the case of non-homogenous
flows. This choice is motivated by the fact that the two-point velocity correlation equation enables a detailed
description of the turbulence field that also contains the one point information as a special case. Then, using
Fourier transform and performing averaging on spherical shells on the dynamic equation, leads formally to
the evolution equation of the spectral velocity correlation tensor in one-dimensional spectral space. In this
situation, the turbulence quantities are represented by functions of the scalar wave number rather than a wave
vector. This spectral equation has been retained for developing one-dimensional non-isotropic spectral models
[40,21,41]. On the one hand, a full integration over the wave number space of the resulting evolution equation
of the spectral velocity correlation tensor allows one to recover formally usual one-point statistical models.
On the other hand, a partial integration over a split spectrum, with a given spectral partitioning, yields par-
tial integrated transport models (PITM) that can be transposed both in statistical multiple-scale models and
in subfilter scale modeling for large eddy simulations [16,17]. Closure of these different transport equations
needs modeling of the pressure-strain correlation, inertial and fast transfers, diffusive and dissipative processes.
These physical processes are identified and discussed in spectral space. In usual turbulent flows, the spectral
energy distribution is evolving in time and space and in the multiple-scale framework, the splitting wave num-
bers also vary accordingly. This procedure provides a clue for deriving the flux equations in statistical split
spectrum models. In the case of large-eddy simulations, however, the filter width is imposed and we show how
the transfer terms can be directly computed. The dissipative terms are considered equals to the corresponding
spectral fluxes issuing from the last slice of the spectrum.

Some typical applications are considered for illustrating the capabilities of each turbulence model. The
homogeneous axisymmetric contraction flow and the decay of isotropic turbulence with an initial perturbed
spectrum are presented in the framework of multiple-scales models. LES simulations using partial integrated
models for unsteady turbulent channel flow subjected to a periodic forcing or wall injection including laminar
to turbulent transition regimes are then considered and briefly discussed. These concepts give rise to continuous
hybrid modeling techniques.

2 Transport equation of the two-point velocity fluctuation

We consider the turbulent flow of a viscous fluid. In the present case, each flow variable is decomposed into
a statistical mean value and a fluctuating turbulent part which is developed into several ranks of fluctuating
parts using an extension of the Reynolds decomposition. For the velocity component, we write then

ui = 〈ui 〉 +
N∑

m=1

u
′(m)
i , (1)

where the partial fluctuating velocities are defined by partial integration of their generalized Fourier transform

u
′(m)
i (ξ) =

∫

κm−1<|κ |<κm

û′
i (κ) exp ( jκξ)dκ, (2)

where û′
i (κ) denotes the Fourier transform of u′

i (ξ) and κm is a series of evolving partitioning wave numbers.
Applying the basic decomposition of the turbulent velocity defined by relations (1) and (2) for m = 1 enables

one to recover the velocity decomposition ui = 〈ui 〉 + u
′(1)
i used in RANS models in which the whole

spectrum is modeled. For m = 2 or higher, we find the usual decomposition retained for the multiple-scale
statistical models. The two-level decomposition m = 2 is also relevant for the decomposition used in large eddy
simulations where only one part of the spectrum containing the small eddies is modeled ui = 〈ui 〉 + u<i + u>i
with u<i = u(1)1 and u>i = u(2)2 , whereas for the other part of the spectrum containing large eddies is resolved
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by the simulation. In this case, it is of interest to note that the velocity computed as ūi = 〈ui 〉 + u<i represents
in fact the filtered velocity which contains both statistical mean and large eddies fluctuations whereas u>i is
the subgrid-scale fluctuation of the small eddies. This definition can be viewed in fact as a special particular
case of the Yoshizawa statistical filter [42,43]

ūi (ξ) =
∫

|κ |<κc

ûi (κ) exp ( jκξ)dκ +
〈 ∫

|κ |<κc

ûi (κ) exp ( jκξ)dκ

〉
. (3)

In the present case, we shall consider that the approximation of locally homogeneous anisotropic turbulence
can be used, so that the statistical mean of the Fourier modes are all zero

〈
ûi (κ)

〉 = 0 except for κ = 0. Then,
the zero mode give rise to the constant mean value 〈ui 〉 and

ūi = 〈ui 〉 + u<i = 〈ui 〉 +
∫

|κ |<κc

û′
i (κ) exp ( jκξ)dκ . (4)

The approximation of tangent homogeneous field will be discussed in the remainder of the paper. It implies
also that the mean value will not be Fourier transformed but is approximated by a Taylor series. One can
remark, already, that the filter (4) presents the twofold interpretation of a statistical filter, in the sense that
being defined as a linear combination of modes which are random variables, it is a Fourier space filter but it is
also a partial statistical mean. This twofold character will be useful for RANS/LES transpositions.

The general case of non-isotropic inhomogeneous turbulence is considered in the present formalism
for linking the different turbulence modeling approaches. In this case, the two-point velocity correlation

Ri j =
〈
u′

i Au′
j B

〉
is function of the distance between the points A and B, denoted ξ , but also of the location of

these points x A and x B in the flow field because of the inhomogeneity of the turbulence field. New independent
variables defined by the vector difference ξ = x B − x A and the midway position X = 1

2 (x A + x B) are then
introduced in the present derivation in order to distinguish the effects of distance separation from the effects
of space location. So that each variable can be regarded as a function of the two variables ξ and X . Taking into
account these considerations, we can write the complete dynamic equation for the double velocity correlation
for incompressible fluid flow as follows [44]

∂Ri j (X, ξ)

∂t
+ 1

2

( 〈uk A〉 + 〈uk B〉 )∂Ri j (X, ξ)

∂Xk

= −R jk(X, ξ)
(
∂ 〈ui 〉
∂xk

)

A
− Rik(X, ξ)

(
∂

〈
u j

〉

∂xk

)

B

−( 〈uk B〉 − 〈uk A〉 )∂Ri j (X, ξ)

∂ξk
− 1

2

∂

∂Xk

( 〈
u′

i Au′
k Bu′

j B

〉
+

〈
u′

i Au′
k Au′

j B

〉)
(X, ξ)

− ∂

∂ξk

( 〈
u′

i Au′
k Bu′

j B

〉
−

〈
u′

i Au′
k Au′

j B

〉 )
(X, ξ)− 1

2ρ

(
∂

∂Xi

〈
p′

Au′
j B

〉
+ ∂

∂X j

〈
p′

Bu′
i A

〉)
(X, ξ)

+ 1

ρ

(
∂

∂ξi

〈
p′

Au′
j B

〉
− ∂

∂ξ j

〈
p′

Bu′
i A

〉)
(X, ξ)+ ν

2

∂2 Ri j

∂Xl∂Xl
(X, ξ)+ 2ν

∂2 Ri j

∂ξl∂ξl
(X, ξ). (5)

The Fourier transform of this equation in the general case of non-homogenous turbulence is developed in
Laporta work [24]. The main complexities arises from the production and convection terms that involve the
mean velocity. This method [24] allows one to avoid the Fourier transform of the mean velocity itself. It is
based on a Taylor series representation of the mean velocity such that

〈uk B〉 − 〈uk A〉 ≈ ξm
∂ 〈uk〉
∂Xm

+ · · · , (6)

〈uk A〉 + 〈uk B〉 ≈ 2 〈uk〉 (Xm)+ ξmξp

2

∂2 〈uk〉
∂Xm∂X p

+ · · · , (7)
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R jk

(
∂ 〈ui 〉
∂xk

)

A
+ Rik

(
∂

〈
u j

〉

∂xk

)

B

≈ R jk
∂ 〈ui 〉
∂Xk

+ Rik
∂

〈
u j

〉

∂Xk
− ξm

2
R jk

∂2 〈ui 〉
∂Xk∂Xm

+ ξm

2
Rik

∂2 〈ui 〉
∂Xk∂Xm

+ · · · .

(8)

Then, if the development is restricted to its first term only, then 〈uk〉 (Xm + ξm) = 〈uk〉 (Xm)+�k jξ j , and the
Fourier terms are identical to the ones in homogeneous anisotropic turbulence. This approach is equivalent to
consider that the mean velocity gradient is locally “constant”. The complete equation in physical space which
contains additive contributions of homogeneous and non-homogenous terms can be written in the following
way:

∂Ri j (X, ξ)

∂t
+ 〈uk〉 ∂Ri j (X, ξ)

∂Xk

= − R jk(X, ξ)
∂ 〈ui 〉
∂Xk

− Rik(X, ξ)
∂

〈
u j

〉

∂Xk

− ξp
∂ 〈uk〉
∂X p

∂Ri j

∂ξk
(X, ξ)− 1

2

∂

∂Xk
(Si,k j − Sik, j )(X, ξ)− ∂

∂ξk
(Si,k j − Sik, j )(X, ξ)

− 1

2ρ

(
∂K(p) j

∂Xi
+ ∂Ki(p)

∂X j

)
(X, ξ)+ 1

ρ

(
∂K(p) j

∂ξi
− ∂Ki(p)

∂ξ j

)
(X, ξ)

+ ν

2

∂2 Ri j (X, ξ)

∂Xl∂Xl
+ 2ν

∂2 Ri j (X, ξ)

∂ξl∂ξl
, (9)

where the term Si, jk and Sik, j denote the turbulent diffusion terms due to the fluctuating velocities

Si,k j (X, ξ) =
〈
u′

i A
u′

kB
u′

jB

〉
,

Sik, j (X, ξ) =
〈
u′

i A
u′

kA
u′

jB

〉
,

(10)

and the terms K(p)i and Ki(p) are turbulent diffusion terms due to the fluctuating pressure defined by

K(p)i (X, ξ) = 〈
p′

Au′
iB

〉
, (11)

and

Ki(p)(X, ξ) = 〈
p′

Bu′
i A

〉
. (12)

Note that K(p)i (X, ξ) = Ki(p)(X,−ξ), and K(p)i (X, ξ) = −K(p)i (X,−ξ). This is demonstrated in detail
in reference [44]. In Eq. (9), we have chosen the analytic form, which gives a direct connection with the
one-point Reynolds stress equation [5,40]. In particular, we emphasize that Taylor series expansion in space
have been applied for computing the velocity at different points. So, the mean velocity field will not be the
Fourier transformed but is rather approximated by a Taylor series. As mentioned by Schiestel [5], the non-
homogenous terms that appear in Eq. (9) correspond to the usual terms in one-point equation whereas the others
terms involving the distance ξ can be treated as in homogeneous anisotropic turbulence. Therefore, this method
can be viewed as considering the tangent homogeneous anisotropic field at point X of the non-homogenous
field. This useful concept will be used throughout the paper. It is based on the idea that a locally tangent
homogeneous turbulence field can be defined by analytic continuation from the knowledge of derivative of
correlations at ξ = 0. More precisely, the knowledge of ∂i j ···mC(ξ = 0) where C is a statistical correlation is
thus equivalent to the knowledge of the spectrum Ĉ(κ), rebuilt from its moments

∫
κiκ j · · · κmĈ(κ)dκ . (13)

Indeed, this approach encounters difficulties when wall boundaries are introduced [24] because Fourier trans-
form is no longer the appropriate mathematical tool. In this case, the equations can still be considered formally
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and empirically adapted to account for wall effects. Considering the Fourier transform of Ri j (X, ξ) that is
expressed as

R̂i j (X, κ) =
∫

Ri j (X, ξ) exp (− jκξ) dξ , (14)

the transport equation of the double velocity correlation in locally tangent spectral space then reads

∂ R̂i j (X, κ)

∂t
+ 〈uk〉 ∂ R̂i j (X, κ)

∂Xk

= − R̂ jk(X, κ)
∂ 〈ui 〉
∂Xk

− R̂ik(X, κ)
∂

〈
u j

〉

∂Xk

+ κk
∂ 〈uk〉
∂X p

∂ R̂i j

∂κp
(X, κ)− 1

2

∂

∂Xk
(Ŝi,k j + Ŝik, j )(X, κ)− jκk(Ŝi,k j − Ŝik, j )(X, κ)

− 1

2ρ

(
∂ K̂(p) j

∂Xi
+ ∂ K̂i(p)

∂X j

)
(X, κ)+ j

ρ

(
κi K̂(p) j − κ j K̂i(p)

)
(X, κ)

+ ν

2

∂2 R̂i j (X, κ)

∂Xl∂Xl
− 2νκ2 R̂i j (X, κ). (15)

Referring to the work of Besnard et al. [23], this equation appears as a first order approximation of the exact
spectral transport equations. Pressure terms can be calculated from the Poisson equations obtained by applying
the divergence operator to the double correlation equations [25,44,45].

3 One-dimensional models by spherical mean

For each variable f (x) and its Fourier transform f̂ (κ), we define the spherical mean of the Fourier transform
by the relation

( f (x))� = f �(κ) = 1

A(κ)

∫ ∫

∂A

f̂ (κ)dA(κ), (16)

where dA(κ) is the area element on the sphere of radius κ = |κ |. The transport equation of the one-dimensional
spectral tensor of the double velocity correlations, which governs the turbulent processes which develop in the
one-dimensional Fourier space, is obtained by taking the Fourier transform and mean integration over spherical
shells of original Eq. (15) in physical space. Spherical averages allow one to make some useful simplifications
in the spectral equations, loosing the directional information, the averaged spectral correlations are then only
function of the wavenumber and not any more of the wavevector. This practice has been currently used in the
Lyon group in France [21,26,28,29]. Remaining within the framework of the tangent homogeneous spectral
space, this equation then reads

∂ϕi j

∂t
(X, κ)+ 〈uk〉 ∂ϕi j (X, κ)

∂Xk

= Pi j (X, κ)+ θi j (X, κ)+ ζkimj (X, κ)
∂ 〈uk〉
∂Xm

+�i j (X, κ)− 1

2

∂

∂Xk

(
ςi,k j + ςik, j

)
(X, κ)+ϒi j (X, κ), (17)

where the function ϕi j denotes the spherical mean of the Fourier transform of the two-point correlation tensor

ϕi j (X, κ) = (
Ri j (X, ξ)

)�
. (18)
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This type of approach is the basis of spectral models developed in references [21,40]. On the right-hand side
of Eq. (17), Pi j represents the production term defined by

Pi j (X, κ) = −ϕik(X, κ)
∂

〈
u j

〉

∂Xk
− ϕ jk(X, κ)

∂ 〈ui 〉
∂Xk

, (19)

the first transfer term θi j related to the triple velocity correlations, is the inertial cascade

θi j (X, κ) = −
( ∂

∂ξk

(
Si,k j − Sik, j

)
(X, ξ)

)�
, (20)

the second transfer term ζkimj represents the fast transfer by action of mean velocity gradients

ζkimj (X, κ) = −
(
ξm
∂Ri j

∂ξk
(X, ξ)

)�
, (21)

the turbulent diffusion terms ςi, jk and ςik, j are due to fluctuating velocities

ςi,k j (X, κ) = (
Si,k j (X, ξ)

)�
,

ςik, j (X, κ) = (
Sik, j (X, ξ)

)�
,

(22)

the pressure terms in Eq. (17) are obtained as

�i j (X, κ) = 1

ρ

(
∂K j

∂ξi
− ∂Ki

∂ξ j

)
− 1

2ρ

(
∂K j

∂Xi
+ ∂Ki

∂X j

)
, (23)

where Ki is the turbulent diffusion due to fluctuating pressure defined by

Ki (X, κ) = (
Ki(p)(X, ξ)

)� = (
K(p)i (X, ξ)

)� (24)

Equation (24) makes use of the properties given in preceding section (2). The Ki term appears through its
gradient in Xi in the general transport equation of the spectral tensor and consequently can be interpreted as a
contribution of pressure to the turbulent diffusion. According to the present choice of independent variables,
and in agreement with the one-point Reynolds stress equations deduced from the integration of Eq. (17), the
following splitting is introduced [45]

�i j (X, κ) = �i j (X, κ)− 1

ρ

(
∂K j

∂Xi
+ ∂Ki

∂X j

)
(25)

with

�i j (X, κ) = 1

ρ

(
∂K j

∂ξi
− ∂Ki

∂ξ j

)
+ 1

2ρ

(
∂K j

∂Xi
+ ∂Ki

∂X j

)
, (26)

which satisfies the condition �i i = 0 in homogeneous turbulence because of the continuity equation. The
right-hand side of Eq. (25), thus, embodies two physical processes: first is the pressure-strain correlation effect
and second is the turbulent diffusion effect.

The term ϒi j embodies all the viscous terms, including molecular diffusion and viscous dissipation rate

ϒi j (X, κ) = ν

2

∂2ϕi j (X, κ)

∂Xl∂Xl
− 2νκ2ϕi j (X, κ). (27)

The form of this term is a consequence of Fourier transform along with the particular choice of variable change
introduced in paragraph 2. This splitting is different from what would be guessed from physical intuition. For
this reason, we prefer to introduce the equivalent splitting

ϒi j (X, κ) = ν
∂2ϕi j (X, κ)

∂Xl∂Xl
− Ei j (X, κ), (28)
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which is consistent with the one point usual transport equation of the Reynolds stresses. The first term in the
right-hand side of Eq. (28) is the molecular viscous diffusion term and the second term Ei j represents the
dissipation rate

Ei j (X, κ) = ν

2

∂2ϕi j (X, κ)

∂Xl Xl
+ 2νκ2ϕi j (X, κ), (29)

which is now composed of two different contributions (see also a remark given by Jones and Launder [46]).
Equation (29) defines the dissipation rate in the general case of non-homogeneous turbulence. For the scalar
dissipation rate, this implies

E(X, κ) = ν

2

∂2 E(X, κ)
∂Xl Xl

+ 2νκ2 E(X, κ) (30)

with

E(X, κ) = 1

2
ϕ j j (X, κ). (31)

These relations have been also considered in the work of Jovanovic et al. [47] and Jakirlic and Hanjalic [48]
who introduce the homogeneous dissipation rate

Eh(X, κ) = E(X, κ)− ν

2

∂2 E(X, κ)
∂Xl Xl

(32)

in the near wall modeling. For homogeneous turbulence, the definitions for�i j in Eq. (26) and Ei j in Eq. (29)
reduce to the following form

�i j (X, κ) = �h
i j (X, κ) = 1

ρ

(
∂K j

∂ξi
− ∂Ki

∂ξ j

)
(33)

and

Ei j (X, κ) = Eh
i j (X, κ) = 2νκ2ϕi j (X, κ). (34)

We will verify in the next section that expressions for the pressure–strain correlation term as well as for the
dissipation rate indeed correspond to the usual definitions used in one-point statistical models. For the clarity
of the presentation, Eq. (17) is rewritten in a more compact form

Dϕi j (X, κ)

Dt
= Pi j (X, κ)+ Ti j (X, κ)+�i j (X, κ)+ Ji j (X, κ)− Ei j (X, κ) (35)

with the definition

Dϕi j (X, κ)

Dt
= ∂ϕi j (X, κ)

∂t
+ 〈uk〉 (X)∂ϕi j (X, κ)

∂Xk
. (36)

In this equation, Ti j is the total transfer term defined by

Ti j (X, κ) = θi j (X, κ)+ ζkimj (X, κ)
∂ 〈uk〉
∂Xm

, (37)

and Ji j embodies all the diffusion like terms

Ji j (X, κ) = − 1

ρ

(∂K j

∂Xi
+ ∂Ki

∂X j

)
− 1

2

∂

∂Xk

(
ςi,k j + ςik, j

) + ν
∂2ϕi j (X, κ)

∂Xl Xl
. (38)
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4 Integration in the spectral space

4.1 Full integration in spectral space for usual one-point statistical turbulence models

The full integration in the spectral space of Eq. (17) allows one to recover usual one-point statistical models
in the physical space. Indeed, it corresponds to the limiting case in which the distance between the two-points
goes to zero (ξ = 0) in physical space. The usual one-point turbulent stress tensor Ri j is computed as follows

Ri j =
∞∫

0

ϕi j (X, κ)dκ. (39)

The production term Pi j is simply calculated from Eq. (19)

Pi j =
∞∫

0

Pi j (X, κ)dκ = −Rik
∂

〈
u j

〉

∂xk
− R jk

∂ 〈ui 〉
∂xk

. (40)

The calculation of the pressure–strain correlation is quite difficult because of the presence of several terms
in Eq. (26). However, using the reciprocal change in variables for evaluating the gradients (cf. Appendix A1)
allows one to obtain the usual expression

�i j =
∞∫

0

�i j (X, κ)dκ =
〈

p′

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
. (41)

The dissipation rate εi j is obtained by integrating the tensor Ei j defined in Eq. (29) in the spectral space. By
developing the calculation (cf. Appendix A2), we finally get the usual expression of the dissipation-rate

εi j =
∞∫

0

Ei j (X, κ)dκ = 2ν

〈
∂u′

i

∂xm

∂u′
j

∂xm

〉
. (42)

The diffusion term Ji j computed from Eq. (38) requires also some algebra (cf. Appendix A3) to give

Ji j =
∞∫

0

Ji j (X, κ)dκ = − 1

ρ

(
∂

∂xi

〈
p′u′

j

〉
+ ∂

∂x j

〈
p′u′

i

〉) − ∂

∂xk

〈
u′

i u
′
j u

′
k

〉
+ ν

∂2 Ri j

∂xl xl
. (43)

As expected, the total transfer term Ti j that corresponds to the integration of the term Ti j defined in Eq. (37)
vanishes because of the one-point correlations properties (cf. Appendix A4)

Ti j =
∞∫

0

Ti j (X, κ)dκ = 0. (44)

From the results of Eqs. (40), (41), (42), (43), (44), one can see that the present mathematical formalism
provides therefore a direct connection between spectral tensor equations and the usual one-point transport
equation of the turbulent Reynolds stress

DRi j

Dt
= Pi j +�i j + Ji j − εi j (45)

whereas a tensorial contraction of Eq. (45), yields the transport equation of the turbulent kinetic energy

Dk

Dt
= P + J − ε. (46)
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4.2 Partial integration in spectral space for statistical multiple-scale turbulence models

The transport equation of the partial turbulent stress R(m)i j is obtained by partial integration of the spectral

spectrum in the wave number range [κm−1, κm]. The partial turbulent stress R(m)i j is defined by

R(m)i j =
κm∫

κm−1

ϕi j (X, κ)dκ. (47)

Keeping in mind that the wave numbers are evolving in time, integration of Eq. (35) over the range [κm−1, κm]
provides the transport equation for the partial turbulent stress R(m)i j

DR(m)i j

Dt
= P(m)i j + F (m−1)

i j − F (m)i j +�
(m)
i j + J (m)i j − ε

(m)
i j , (48)

where

P(m)i j =
κm∫

κm−1

Pi j (X, κ)dκ = −R(m)ik

∂
〈
u j

〉

∂xk
− R(m)jk

∂ 〈ui 〉
∂xk

, (49)

F (m)i j = F (m)
i j − ϕi j (X, κ)

∂κm

∂t
, (50)

F (m)
i j = −

κm∫

0

Ti j (X, κ)dκ, (51)

and

�
(m)
i j =

κm∫

κm−1

�i j (X, κ)dκ, (52)

J (m)i j =
κm∫

κm−1

Ji j (X, κ)dκ, (53)

ε
(m)
i j =

κm∫

κm−1

Ei j (X, κ)dκ. (54)

The transport equation of the partial turbulent kinetic energy k(m) is simply obtained by contracting the indices
of Eq. (48)

Dk(m)

Dt
= P(m) + F (m−1) − F (m) + J (m) − ε(m) (55)

with the following definitions

F (m) = F (m) − E(X, κ)
∂κm

∂t
, (56)

where E(X, κ) = 1
2ϕi i (X, κ) and P(m) = 1

2 P(m)i i , F (m) = 1
2 F (m)i i , J (m) = 1

2 J (m)i i , ε(m) = 1
2ε
(m)
i i . On a sche-

matic point of view, equilibrium high Reynolds number turbulence is attained when all the contributions ε(m)i j
are reduced to zero in all the wave number ranges [κm−1, κm] except for the last one (the dissipation range),
which verifies the relation ε(m+1)

i j = F (m)i j .



From single-scale turbulence models to multiple-scale 211

4.3 Practical case of two-scale turbulence models

The turbulent stress in the range [κ1, κ2] is denoted R(2)i j and is defined by the integration of the spectral tensor
ϕi j (X, κ) over the range domain [κ1, κ2]

R(2)i j =
κ2∫

κ1

ϕi j (X, κ)dκ. (57)

It is considered that the energy contained in the range of wave numbers [κ2,∞[ is entirely negligible. The
general Eq. (48) can be applied in particular to any wave number range such as [0, κ1], [κ1, κ2] and [κ2,∞[.
Taking into account the significant processes which develop in the spectral space, one can easily obtain the
resulting approximated equations

DR(1)i j

Dt
= P(1)i j − F (1)i j +�

(1)
i j + J (1)i j − ε

(1)
i j , (58)

DR(2)i j

Dt
= P(2)i j + F (1)i j − F (2)i j +�

(2)
i j + J (2)i j − ε

(2)
i j , (59)

0 = F (2)i j − ε
(3)
i j , (60)

where at high Reynolds number, we can consider that ε(1)i j = ε
(2)
i j ≈ 0, ε(3)i j ≈ εi j , F (1)i j = Fi j (κ1) and

F (2)i j = Fi j (κ2). Equation (60) indicates that the dissipation rate ε can indeed be interpreted as a spectral flux.
Taking into account these relations, we can write Eq. (59) in the more usual form

DR(2)i j

Dt
= P(2)i j + F (1)i j +�

(2)
i j + J (2)i j − εi j (61)

with the definitions

P(2)i j =
κ2∫

κ1

Pi j (X, κ)dκ = −R(2)ik

∂
〈
u j

〉

∂xk
− R(2)jk

∂ 〈ui 〉
∂xk

, (62)

�
(2)
i j =

κ2∫

κ1

�i j (X, κ)dκ, (63)

J (2)i j =
κ2∫

κ1

Ji j (X, κ)dκ (64)

and where the terms F ( j)
i j and F ( j)

i j are given by previous Eqs. (50) and (51), respectively. Equation of the

fine grained energy denoted k(2) is then obtained by tensor contraction of Eq. (61) over its indices, so that we
obtain

Dk(2)

Dt
= P(2) + F (1) + J (2) − ε. (65)

5 The need of closures hypothesis

5.1 The pressure–strain correlation terms

As in standard one-point Reynolds stress models, the pressure–strain correlation term �i j plays an essential
role in redistributing the energy among the Reynolds stress components [49]. This term is decomposed into a
slow and a rapid part that characterize the return to isotropy

�i j = �1
i j +�2

i j (66)
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where the non-linear interactions term �1
i j describes action of turbulence on itself

�1
i j = −c1

ε

k

(
Ri j − 2

3
kδi j

)
, (67)

whereas the linear term �2
i j describes the action of mean velocity gradients

�2
i j = −c2

(
Pi j − 2

3
Pδi j

)
(68)

The quantities c1 and c2 are two coefficient functions that may depend on the invariants of the anisotropy
tensor defined by ai j = (Ri j − 2/3kδi j )/k. Note that expressions (67) and (68) are the basic modeling used in
standard RSM models, but in the past decade, more sophisticated closures have been developed in the literature
[2,3,50]. The closure proposed in multiple-scale models [5] consists of applying locally Eqs. (67) and (68)
in a particular spectral slice defined by the range [κm−1, κm]. For each slice contribution �(m)i j and �(m,1)i j ,
extension of Eqs. (67) and (68) is written in the following way

�
(m,1)
i j = −c(m)1

F (m)

k(m)

(
R(m)i j − 2

3
k(m)δi j

)
, (69)

�
(m,2)
i j = −c(m)2

(
P(m)i j − 2

3
P(m)δi j

)
, (70)

where in these expressions, the spectral flux F (m) is now introduced instead of the dissipation rate ε. Each
spectral slice (m) is characterized by the quantities F (m) and R(m)i j . As it can be intuitively justified, the spectral

flux F (m) which embodies several mechanisms is chosen to build the time scale because it is sensitive to the
location of the spectral splitting. Considering for instance the self similar decay of grid turbulence in the initial
period [34,35], the partial energy equations

dk(1)

dt
= −F (1) (71)

dk(2)

dt
= F (1) − F (2) (72)

together with F (2) ≈ ε, imply

k(1)

F (1)
= k(2)

ε − F (1)
(73)

using the hypothesis

dk(1)

k(1)
= dk(2)

k(2)
= dk

k
, k = k(1) + k(2) (74)

of a similar decay. Consequently,

F (1)

ε
= k(1)

k
(75)

The corresponding scale varies according to the ratio of partial kinetic energy. Moreover, in order to increase
the return to isotropy for high wave numbers, the coefficient c(m)1 is no longer considered as a constant but is
now dependent on the spectral slice. It increases versus the wave number κ . The specific values may be chosen
empirically by reference to experimental behaviours (see for instance paragraph on the application of two and
three-scale stress models). On the other hand, the coefficient c(m)2 is still taken as a constant. Note that these
type of models can also be deduced from a spectral calculation of the term �h

i j which is defined in Eq. (33),
as indicated in references [5,40].
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5.2 The transfer terms

The spectral energy transfer terms appear in the transport Eqs. (48) and (59) respectively for the multiple-scale
models and two-scale models as a consequence of two-point statistics. These terms need to be modeled. In
this case, it is necessary to define the partitioning wave numbers through the spectrum. Indeed, because of the
evolution of the turbulent characteristic scale and energy distribution in time and space, it is assumed that the
splitting wave numbers are related to the local parameters k(m) and F (m) by the dimensional relation

κm − κm−1 = αm
F (m)

(k(m))3/2
, (76)

where αm is a numerical constant. This practice allows the splitting location to remain meaningful because it
complies with the spectrum changes. The derivative of Eq. (76) with respect to time using both Eqs. (56) and
(55) for evaluating the derivatives of the splitting wave number κ(m) and the partial energy k(m), respectively,
provides the equation of the spectral flux

dF (m)

dt
= C(m)1

F (m)P(m)

k(m)
+ C(m)2

F (m)F (m−1)

k(m)
+ C(m)3

(
F (m)

)2

k(m)
+ C(m)4

F (m)ε(m)

k(m)
, (77)

where C(m)i are coefficients depending on the spectral slice. The tensorial flux F (m)i j is then determined by the

scalar flux F (m) assuming the empirical relation

F (m)i j = F (m)

k(m)

[
A(m)R(m)i j + 2

3
(1 − A(m))k(m)δi j

]
, (78)

where the A(m) coefficients depend also on the wave numbers range. These coefficients are expected to go
to unity at small wave numbers and to vanish at high wave numbers where the flow becomes more isotropic.
Obviously, the tensorial contraction of F (m)i j in Eq. (78) satisfies the condition F (m) = 1

2 F (m)i i . More information
can be found in original papers of Schiestel [5,34,35].

5.3 The dissipative terms

The transport equations of the turbulent stress (45), (48) for one-point statistical models, statistical multiple-
scale models require the modeling of the dissipation rate tensor εi j . Due to the fact that the dissipation rate
tensor εi j is usually assumed to be quasi-isotropic at high Reynolds number, it is sufficient and more convenient
to model the dissipation rate ε. The case of homogeneous anisotropic flows is first considered. In full statistical
modeling, the dissipation rate represents the spectral flux computed for the splitting wave number κ1 = κd .
This characteristic wave number is the inverse of the macroscale related to the dissipation rate and the turbulent
kinetic energy by a relation of the type

κ1 = ζ1
ε

k3/2 , (79)

where the coefficient ζ1 is a numerical constant chosen such that κ1 is located after the inertial range. Inserting
the previous relation (79) into Eq. (80)

∂κ2

∂t
= F(κ2)− F(κ2)

E(κ2)
, (80)

which is deduced from Eq. (56), and considering also Eq. (46) for evaluating the derivative of the turbulent
energy, yields the dissipation rate transport equation

∂ε

∂t
= cε1

ε

k
P − cε2

ε2

k
, (81)

where cε1 = 3/2 and

cε2 = 3

2
− k

κ2 E(κ2)

(F(κ2)

ε
− 1

)
. (82)
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These coefficients cε1 and cε2 are equal to the coefficients commonly used in one point statistical closures.
Reference [5] first proposed this alternative derivation of the ε equation where the dissipation rate itself is
interpreted as a spectral flux rather than a true viscous dissipation. In the case of multiple-scale statistical
models, a hierarchy of flux Eq. (77) is solved and the dissipation rate is simply obtained by the flux out of the
last spectral range. So, from Eq. (77), in the particular case of two-equation multiscale models

dF (1)

dt
= C(1)1

F (1)P(1)

k(1)
+ C(1)3

(
F (1)

)2

k(1)
(83)

dε

dt
= C(2)1

εP(2)

k(2)
+ C(2)2

εF (1)

k(2)
+ C(2)3

ε2

k(2)
, (84)

where F (2) = ε, ε(1) ≈ 0 and ε(2) ≈ 0.

5.4 The diffusive terms

The diffusion terms which appear in Eq. (48) for the turbulent stresses are modeled assuming a gradient law
as usually retained for the statistical model

J (m)i j = ∂

∂xk

(
ν
∂R(m)i j

∂xk
+ cs

k(m)

ε
R(m)kl

∂R(m)i j

∂xl

)
, (85)

where cs is a numerical coefficient. In the same approach, the diffusion term of the dissipation rate Jε is also
modeled by a general gradient hypothesis

J (m)ε = ∂

∂xk

(
ν
∂ε

∂xk
+ cε

k(m)

ε
R(m)kl

∂ε

∂xl

)
. (86)

6 Transposition to subgrid-scale turbulence models

The approach in the case of large eddy simulations is somewhat different from the one proposed in statistical
modeling, but useful transpositions can be made with the previous formalism. In this section, the point of view
of the tangent homogeneous space at a point of the non-homogeneous flow field must be still kept in mind.
Large eddy simulations make use of filtering operation instead of statistical averaging. It is of interest to remark
that definition (2) is indeed a filter operating in Fourier space. As usually made in large eddy simulations, the
spectrum is then partitioned using the cutoff wave number κ1 = κc introduced in the beginning of the inertial
range of eddies. In very large eddy simulations, the cutoff may be located before the inertial range. Another
wave number κ2 = κd located at the end of the inertial range of the spectrum can also be used like previously
for convenience, assuming that the energy pertaining to higher wavenumbers is entirely negligible. It is then
possible to define the large scale fluctuations (resolved scales) u<i and the fine scales (modeled scales) u>i
through the relations

u<i =
∫

|κ |≤κc

û′
i (κ) exp ( jκξ) dκ (87)

u>i =
∫

|κ |≥κc

û′
i (κ) exp ( jκξ) dκ . (88)

Then, the instantaneous velocity ui can be decomposed into a statistical part 〈ui 〉, the large scale fluctuating
u<i and the small scale fluctuating u>i such that ui = 〈ui 〉 + u<i + u>i . In the same way, the filtered velocity ūi
can be computed into its statistical part and its large scale fluctuating such that ūi = 〈ui 〉 + u<i . The velocity
fluctuation u′

i used in the decomposition ui = 〈ui 〉 + u′
i contains the large-scale and small-scale fluctuating

velocities, u′
i = u<i + u>i . This particular filter, as a spectral truncation, presents some interesting properties
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that are not possible with continuous filters. In particular, it can be shown [34,35] that large scale and small
scale fluctuations are uncorrelated 〈ϕ>ψ<〉 = 0 implying for instance the relations

Ri j = 〈
ui u j

〉 − 〈ui 〉
〈
u j

〉 =
〈
u′

i u
′
j

〉
=

〈
u<i u<j

〉
+

〈
u>i u>j

〉
(89)

and

〈
ūi ū j

〉 = 〈ui 〉
〈
u j

〉 +
〈
u<i u<j .

〉
(90)

In aiming to transpose the statistical models to subgrid-scale models, it is useful to obtain first some interesting
relations between the subgrid and statistical stresses that can be deduced from their transport equations in the
physical space. Then, we show how the present formalism developed in the spectral space and particularly
Eq. (35) is compatible with the usual transport equations of the subgrid-scale tensor in the physical space.

The transport equation of the mean statistical velocity is

∂ 〈ui 〉
∂t

+ ∂

∂x j

(
〈ui 〉

〈
u j

〉 ) = − 1

ρ

∂ 〈p〉
∂xi

+ ν
∂2 〈ui 〉
∂x j∂x j

− ∂Ri j

∂x j
(91)

whereas the transport equation for the filtered Navier–Stokes equations takes the form

∂ ūi

∂t
+ ∂

∂x j

(
ūi ū j

) = − 1

ρ

∂ p̄

∂xi
+ ν

∂2ūi

∂x j∂x j
− ∂τ(ui , u j )

∂x j
(92)

in which, following Germano’s derivation [51], the subgrid scale tensor which is a function of the velocities
ui and u j is defined by the relation

τ(ui , u j ) = ui u j − ūi ū j (93)

The transport equations for the large scale fluctuation can also be derived easily and we obtain

∂u<i
∂t

+ ∂

∂x j

(
ūi ū j − 〈ui 〉

〈
u j

〉 ) = − 1

ρ

∂p<

∂xi
+ ν

∂2u<i
∂x j∂x j

− ∂

∂x j

[
τ(ui , u j )− Ri j

]
(94)

whereas the transport of the small-scale fluctuation is:

∂u>i
∂t

+ ∂

∂x j

(
ui u j − ūi ū j

)
= − 1

ρ

∂p>

∂xi
+ ν

∂2u>i
∂x j∂x j

+ ∂τ(ui , u j )

∂x j
. (95)

Obviously, they add up to give the transport equation of the statistical fluctuating velocity

∂u′
i

∂t
+ ∂

∂x j

(
ui u j − 〈ui 〉

〈
u j

〉 ) = − 1

ρ

∂p′

∂xi
+ ν

∂2u′
i

∂x j∂x j
+ ∂Ri j

∂x j
(96)

The work of Germano shows that the form of the transport equations for the subgrid scale tensor remain
the same if they are written in terms of central moments, thus showing their generic character. As shown in
Ref. [51], the resulting equation is

∂τ(ui , u j )

∂t
+ ∂

∂xk

[
τ(ui , u j )ūk

]

= − ∂τ(ui , u j , uk)

∂xk
+ ν

∂2τ(ui , u j )

∂xk∂xk

− 1

ρ

∂τ(p, ui )

∂x j
− 1

ρ

∂τ(p, u j )

∂xi
+ τ

(
p,
∂ui

∂x j
+ ∂u j

∂xi

)
− 2ν τ

(
∂ui

∂xk
,
∂u j

∂xk

)

− τ(ui , uk)
∂ ū j

∂xk
− τ(u j , uk)

∂ ūi

∂xk
(97)
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with the general definition

τ( f, g) = f g − f̄ ḡ (98)

and

τ( f, g, h) = f gh − f̄ τ(g, h)− ḡτ(h, f )− h̄τ( f, g)− f̄ ḡh̄ (99)

for any turbulent quantities f , g, h. As a result of interest, it can be shown that the function τ verifies the useful
following properties

〈τ( f, g)〉 = 〈
f >g>

〉
(100)

and

〈τ( f, g, h)〉 = 〈
f >g>h>

〉
. (101)

The transport equation for τ(ui , u j ) can also be written in order to single out the role of the statistical mean
velocity

∂τ(ui , u j )

∂t
+ 〈uk〉 ∂τ(ui , u j )

∂xk

= − ∂

∂xk

[
τ(ui , u j , uk)+ τ(ui , u j )u

<
k

]
+ ν

∂2τ(ui , u j )

∂xk∂xk

− 1

ρ

∂τ(p, ui )

∂x j
− 1

ρ

∂τ(p, u j )

∂xi
+ τ

(
p,
∂ui

∂x j
+ ∂u j

∂xi

)
− 2ν τ

(
∂ui

∂xk
,
∂u j

∂xk

)

−τ(ui , uk)
∂

〈
u j

〉

∂xk
− τ(u j , uk)

∂ 〈ui 〉
∂xk

− τ(ui , uk)
∂u<j
∂xk

− τ(u j , uk)
∂u<i
∂xk

. (102)

The mean Eqs. (58) and (59) pertaining to the wave number ranges [0, κ1], [κ1, κ2] can be recovered by

statistical averaging of the Eq. (102) taking into account that
〈
τ
(s)
i j

〉
= R(2)i j =

〈
u>i u>j

〉
and using the property

(100). This equation reads

∂

∂t

〈
τ
(s)
i j

〉
+ 〈uk〉 ∂

∂xk

〈
τ
(s)
i j

〉
= P(2)i j + F (1)i j − F (2)i j +�

(2)
i j + J (2)i j , (103)

where

P(2)i j = −
〈
τ
(s)
ik

〉 ∂
〈
u j

〉

∂xk
−

〈
τ
(s)
jk

〉 ∂ 〈ui 〉
∂xk

, (104)

F (1)i j = −
〈
τ
(s)
ik

∂u<j
∂xk

〉
−

〈
τ
(s)
jk

∂u<i
∂xk

〉
, (105)

F (2)i j = 2ν

〈
∂u>i
∂xk

∂u>j
∂xk

〉
≈ εi j , (106)

�
(2)
i j =

〈
p>

(
∂u>i
∂x j

+ ∂u>j
∂xi

)〉
, (107)

J (2)i j = − ∂

∂xk

[ 〈
u>i u>j u>k

〉
+ 〈
τ(ui , u j )u

<
k

〉 ]

− 1

ρ

∂

∂x j

〈
p>u>i

〉 − 1

ρ

∂

∂xi

〈
p>u>j

〉
+ ν

∂2

∂xk∂xk

〈
τ
(s)
i j

〉
. (108)

Similarly, the resolved scale tensor can be defined by the relation

τ (r)(ui , u j ) = ūi ū j − 〈ui 〉
〈
u j

〉
(109)
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with the property
〈
τ (r)(ui , u j )

〉 =
〈
u<i u<j

〉
. So that, one can remark that the Reynolds stress tensor Ri j can

be computed by the sum of the statistical average of subgrid and resolved stresses Ri j = 〈
τ (s)(ui , u j )

〉 +
〈
τ (r)(ui , u j )

〉
. It is also possible then to determine the transport equation of averaged resolved stress

〈
τ
(r)
i j

〉
=

R(1)i j =
〈
u<i u<j

〉
, and we obtain

∂

∂t

〈
τ
(r)
i j

〉
+ 〈uk〉 ∂

∂xk

〈
τ
(r)
i j

〉
= P(1)i j − F (1)i j +�

(1)
i j + J (1)i j − ε

(1)
i j (110)

where

P(1)i j = −
〈
τ
(r)
ik

〉 ∂
〈
u j

〉

∂xk
−

〈
τ
(r)
jk

〉 ∂ 〈ui 〉
∂xk

, (111)

F (1)i j = −
〈
τ
(s)
ik

∂u<j
∂xk

〉
−

〈
τ
(s)
jk

∂u<i
∂xk

〉
, (112)

�
(1)
i j =

〈
p<

(
∂u<i
∂x j

+ ∂u<j
∂xi

)〉
, (113)

J (1)i j = − ∂

∂xk

[ 〈
u<i u<j u<k

〉
− 〈
τ(ui , u j )u

<
k

〉 ]

− 1

ρ

∂

∂x j

〈
p<u<i

〉 − 1

ρ

∂
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〈
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〉
+ ν

∂2

∂xk∂xk

〈
τ
(r)
i j

〉
, (114)

ε
(1)
i j = 2ν

〈
∂u<i
∂xk

∂u<j
∂xk

〉
� F (2)i j . (115)

As previously mentioned, the mathematical formalism put in place in Sect. 4.3 allows one to recover formally
Eq. (103) as well as Eq. (110) which are now deduced from the spectral space. In particular, Eq. (103) is
formally identical to Eq. (59)

DR(2)i j

Dt
= P(2)i j + F (1)i j +�

(2)
i j + J (2)i j − εi j (116)

with the definitions

P(2)i j =
κ2∫

κ1

Pi j (X, κ)dκ = −R(2)ik

∂
〈
u j

〉

∂xk
− R(2)jk

∂ 〈ui 〉
∂xk

, (117)

F (1)i j = F (1)
i j − ϕi j (X, κ)

∂κ1

∂t
, (118)

F (1)
i j = −

κ1∫

0

Ti j (X, κ)dκ, (119)

�
(2)
i j =

κ2∫

κ1

�i j (X, κ)dκ, (120)

J (2)i j =
κ2∫

κ1

Ji j (X, κ)dκ, (121)

where εi j ≈ F (2)i j . In contrast to multiple-scale models which require the modeling of the transfer terms Fi j

in order to close the system equation, the term F (1)i j , which appears in Eq. (116), is directly computed when
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performing large eddy simulations. Indeed, using the relation

R(2)ik
∂ 〈ui 〉
∂xk

=
〈
τ
(s)
ik
∂ 〈ui 〉
∂xk

〉
(122)

and introducing the large-scale fluctuating velocity component, the production term in Eq. (117) can be
decomposed in the following way:

P(2)i j = −
〈
τ
(s)
ik
∂ ū j

∂xk

〉
−

〈
τ
(s)
jk
∂ ūi

∂xk

〉
+

〈
τ
(s)
ik

∂u<j
∂xk

〉
+

〈
τ
(s)
jk

∂u<i
∂xk

〉
(123)

showing that

P(2)i j + F (1)i j = −
〈
τ
(s)
ik
∂ ū j

∂xk

〉
−

〈
τ
(s)
jk
∂ ūi

∂xk

〉
, (124)

where F (1)i j in Eq. (124) is given by Eq. (105). Equation (105) shows that the spectral flux F (1)i j at the cutoff
wave number corresponds to the transfer process due to the action of large-scale structures on the subgrid-scale
turbulence. Taking into account Eq. (124), the transport Eq. (116) of the subgrid turbulent stresses can be finally
rewritten in the usual form

∂

∂t

〈
τ
(s)
i j

〉
+ 〈uk〉 ∂

∂xk

〈
τ
(s)
i j

〉
= −

〈
τ
(s)
ik
∂ ū j

∂xk

〉
−

〈
τ
(s)
jk
∂ ūi

∂xk

〉
+�

(2)
i j + J (2)i j − εi j , (125)

whereas equation of the subfilter energy is then obtained by tensor contraction of Eq. (125)

∂

∂t

〈
k(s)

〉
+ 〈uk〉 ∂

∂xk

〈
k(s)

〉
= −

〈
τ
(s)
i j
∂ ūi

∂x j

〉
+ J (2) − ε (126)

For LES, Eqs. (97) will be solved in space and time. These equations are fluctuating and have a similar form
as Eqs. (125) and (126). In this case, the convective term in Eq. (125) involves the filtered velocity instead of

the mean statistical velocity. A part of this term ∂
(

u<k τ
(s)
i j

)
/∂xk is thus reported in turbulent diffusion terms.

These fluctuating equations read

∂τ
(s)
i j

∂t
+ ūk

∂τ
(s)
i j

∂xk
= P(s)i j +�

(s),(2)
i j + J (s),(2)i j − ε

(s)
i j , (127)

where the (s) values denotes fluctuating instantaneous quantities and P(s)i j is the production term defined by

P(s)i j = −τ (s)ik
∂ ū j

∂xk
− τ

(s)
jk
∂ ūi

∂xk
. (128)

The corresponding equation for subfilter energy reads

∂k(s)

∂t
+ ūk

∂k(s)

∂xk
= P(s) + J (s),(2) − ε(s), (129)

where P(s) = P(s)mm/2. Because of the properties in the Fourier space of the truncation filter, it appears that
the mean statistical and filtered equations can both be written in a similar form. As a consequence, we shall
assume that closures approximations used for the statistical partially averaged equations also prevail in the case
of large eddy numerical simulations. It is of interest to note that the present formalism is in fact the essence of
the partially integrated transport model (PITM), first developed by Schiestel and Dejoan [16] for the transport
Eq. (129) of the subgrid-scale turbulent energy k(s) = 1

2τ
(s)
mm and by Chaouat and Schiestel [17] for the transport

Eq. (127) of the subgrid-scale turbulent stress tensor τ (s)i j . In the subfilter models, the redistribution term�
(s),(2)
i j

which appears in Eq. (127) is also decomposed into a slow and a rapid part, �(s),(2,1)i j and �(s),(2,2)i j in the
subgrid-scale range. The slow term is modeled by a twofold hypothesis. It first assumes that usual statistical
Reynolds stress models must be recovered in the limit where the cutoff wave number κ1 goes to zero and also
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that the return to isotropy is increased at higher wave numbers [17], as adopted in multiple-scale models. So
that we obtain the modeled terms as

�
(s),(2,1)
i j = −c(s)1

ε(s)

k(s)

(
τ
(s)
i j − 1

3
τ (s)mmδi j

)
(130)

and

�
(s),(2,2)
i j = −c(s)2

(
P(s)i j − 2

3
P(s)mmδi j

)
(131)

and c(s)1 is now a continuous function of the cutoff wave number κ1 that defines the filter width. The value
of this coefficient has to be calibrated by reference to experiments (see for instance application of partially
integrated transport models in the remainder of the present paper). For LES or hybrid RANS/LES approaches,
the transport equation of the dissipation rate used in subfilter models is somewhat different from Eq. (81).
Considering the cutoff wave number κ1 = κc given by the filter width, the splitting wave number κ2 is then
determined by the dimensional relation

κ2 − κ1 = ζ1
ε〈

k(s)3/2
〉 , (132)

where ζ1 is a coefficient which may be depended on the spectrum shape and on the Reynolds number. Note
that this relation is simply an application of Eq. (76) for a particular splitting decomposition of the spectrum.
The dissipation rate equation is then an adaptation of Eq. (80). Taking into account Eq. (80) one can easily
obtain

∂ε(s)

∂t
= c(s)ε1

ε

k(s)
P(s) − c(s)ε2

(
ε(s)

)2

k(s)
, (133)

where c(s)ε1 = 3/2 and

c(s)ε2
= 3

2
−

〈
k(s)

〉

κ2 E(κ2)

(F(κ2)

ε
− 1

)
, (134)

setting κ2 	 κ1, and E(κ2) � E(κ1). Eqs. (82) and (134) show that the coefficients c(s)ε2 and cε2 are functions
of the spectrum shape. We emphasize that if the usual ε Eq. (81) and Eq. (133) derived from reasoning in
the subgrid range are formally different, it appears, however, that the statistical average of ε(s) is the usual
dissipation rate,

〈
ε(s)

〉 = ε. We remark also that we have used a reasoning based on statistical spectra, like
in multiple scale models, considering that the dissipation rate equation is largely intuitive in its derivation. In
practice, comparison of Eq. (82) and (134) provides a more convenient form of the coefficient c(s)ε2 such as
([16]):

c(s)ε2
= cε1 +

〈
k(s)

〉

k

(
cε2 − cε1

)
. (135)

The function k(s)/k, which appears in Eq. (135), is then calibrated in an equilibrium situation by referring to
a universal spectrum distribution compatible with the Kolmogorov law in the inertial wave number range in
nearly equilibrium flows. Practical formulations can be devised in the form

c(s)ε2
= c(s)ε2

(η), (136)

where η = κ1k3/2/ε with the limiting behavior
〈
k(s)

〉

k
= 3

2
CKη

− 2
3 (137)

at large wave numbers where CK is the Kolmogorov constant. This behavior is in agreement with the work of
Rubinstein and Zhou [52,53], who derived the ε equation from analytical models and exploring also the limits
of the standard ε equation when high unsteadiness is imposed [54]. For non-homogenous flows, the diffusion
term Jε is also embedded into Eqs. (81) and (133).

With the tangent homogeneous space in mind, let us remark finally that when very large filter widths are
used, the filter width has to be dissociated from the grid itself, because the grid must always be fine enough to
capture the mean flow non-homogeneities.
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7 Application of multiple-scale RANS models

7.1 Two and three-scale stress model Ri j − F

For usual applications, the two-scale models are developed considering two splitting wave numbers [5,45]. In
that case, the numerical system to be solved is composed of the transport equations of the partial Reynolds
stresses R(1)i j , R(2)i j , the partial turbulent kinetic energies k(1), k(2), and the spectral fluxes F (1), F (2) where

F (2) = ε. The coefficients c(m)1 and c(m)2 are calibrated on homogeneous flows using direct numerical simu-
lations [55] that determine the spectral behavior of the pressure-strain correlations. In practice, the numerical
constants retained are c(1)1 = 1.20, c(2)1 = 4.00, c(m)2 = 0.5 (m = 1, 2). Three scale-models are also considered

as an extension of two-scale models. The numerical system is then composed of the variable set R(1)i j , R(2)i j ,

R(3)i j , k(1), k(2), k(3), F (1), F (2), F (3) where F (3) = ε. In this case the numerical constants are c(1)1 = 1.05,

c(2)1 = 1.80, c(3)1 = 8.00, c(m)2 = 0.5 (m = 1, 2, 3). More advanced multiple-scale models are straightfor-
ward to settle following the mathematical formalism already developed. Note that the scope of applications of
multiple-scale models is mainly devoted to turbulent flows that are out of equilibrium.

7.2 Axisymmetric contraction

This is a typical example. The experiment on the axisymmetric contraction of grid turbulence worked out by
Uberoi and Wallis [56] has been considered for analyzing the two-scale model [5] in its capabilities to predict
flows which present non-equilibrium spectra. In this experiment, initial fluid particles that are convected into
a channel are subjected to a sudden contraction. Both experimental and numerical evolutions of the ratio〈
u′2

1

〉
/
〈
u′2

2

〉
in the axisymmetric contraction duct are described in Fig. 1. From the measurements, it can be

seen that the ratio
〈
u′2

1

〉
/
〈
u′2

2

〉
produced by the grid is of order 1.4 and returns to unity through the contraction.

Somewhat surprisingly, the ratio monotonically continues increasing in the downstream straight duct section to
its pre-contraction value. This is an interesting paradox, which can be explained if working in the spectral space.
In the initial flow located upstream the contraction, it can be assumed that the anisotropy is mainly concentrated
in the large scales of motions. As expected, the axisymmetric contraction reduces the flow anisotropy because of
the rapid deformation due to the mean flow and produces quasi identical normal stresses. But one should keep in
mind that the spectral sharing out between the small and large scale is different for each normal stress component
and anisotropy still remains at the spectral level (large scale and small scale anisotropies are just compensating).
When passing after the contraction to a straight section, the small scale motions return more rapidly to isotropy
than the large scales. So this phenomena reveals in fact the anisotropy of the large scale that was temporarily
hidden by the small scales before the contraction. As a result of interest, Schiestel’s computation [5] indicates
that the two-scale model succeeds in reproducing this paradoxical phenomenon, which consists of a “return
to anisotropy”, contrary to single-scale models which cannot reproduce this behavior. Even more advanced
single-scale models cannot reproduce this behavior because they always state that �i j goes to zero when the
anisotropy tensor vanishes ai j = 0. The simple reason being that an isotropic Reynolds stress tensor does not
mean isotropic turbulence, the anisotropy may be distributed among spectral wavenumbers. Indeed, one-scale
modeling using the Rotta’s hypothesis or higher order approximations cannot account for spectral information,
and consequently cannot spontaneously “return to anisotropy”, from an isotropy state of the Reynolds stresses.
This dual feature of relaxation of the large scales and the small scales was recognized by Lee and Reynolds
[57] in their numerical simulations of homogeneous turbulence from irrotational strains. They indeed found
overshoot phenomena that the authors explained qualitatively by the fact that in the initial period of relaxation,
the small scales relax rapidly, while the large scale anisotropy overshoots or relaxes at a slow rate, depending
on the strain history of the initial field.

7.3 Decay of isotropic turbulence with perturbed initial spectrum

The decay of isotropic turbulence is often studied for analyzing the performances of turbulence models or
calibrating numerical coefficients. Usually, nearly equilibrium distribution are considered. The measurements
of Comte-Bellot and Corrsin [58] are generally chosen as an experimental reference. In the initial region of
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Fig. 1 Evolution of the ratio
〈
u′2

1

〉
/
〈
u′2

2

〉
in the Uberoi and Wallis experiment [56] compared to numerical prediction [5]

decay, the turbulence energy is found to verify a power law k/k0 = t−n with n=1.28. In the present case, we
consider an initial spectrum which is artificially perturbed by modification of energy levels departing from
usual equilibrium spectra. The aim is to study the influence of initial spectral distribution on the decay law
as an illustration of out of spectral equilibrium situations. Figure 2 describes the evolutions of the the ratio〈
u′2

1

〉
/
〈
u′2

2

〉
versus time (the quantity U denotes the mean convective velocity and M is the mesh size in the

experiment) for an unperturbed initial spectrum denoted B and two perturbed initial spectra denoted A and C.
The spectra are modified, respectively, by decreasing the large scale energy (A) or increasing the large scale
energy (C). For the unperturbed spectrum, the decay law given by the standard k − ε model according the

relation k/k0 = t
1

1−cε2 that leads the slope of decay close to n=1.11 if considering the usual value cε2 = 1.90.
This value obtained from a consensus on several experiments is somewhat lower than Comte-Bellot’s value,
but has no consequence for the present purpose. The computation performed with the two-scale stress model
[59] indicates that a peak in large scale energy (resp. a defect in large scale energy) implies a decrease (resp. an
increase) of the decay rate of turbulence. These results are found to be in qualitative agreement with EDQNM
spectral models predictions by Cambon et al. [21]. As for the previous test case, this turbulence spectral effect
due to departure from equilibrium cannot be reproduced using single-scale turbulence models.

8 Application of partially integrated transport models (PITM) for LES and hybrid models

8.1 Pulsed turbulent channel flow

A partially integrated transport model based on Eq. (129) for the subfilter turbulent kinetic energy and Eq. (133)
for the dissipation rate has been developed by Schiestel and Dejoan [16] for LES simulations of unsteady flows
on coarse grids which present non-equilibrium turbulence spectrum. When coarse grids are used, the cutoff
wave number can be located before the inertial zone and the modeled part of the spectrum includes non-
universal energetic eddies. In this new formulation, the characteristic length scale of subfilter turbulence is not
given by the spatial mesh discretization step size but is computed by the dissipation rate equation. This method
enables one to bridge RANS models and LES methods in a continuous way without interface as in usual
zonal hybrid models. The formalism is compatible with the two extreme limits that are, on one hand, the DNS
and, on the other hand, the statistical k − ε model of Launder and Sharma [60]. The channel flow subjected
to a periodic forcing produced by a superimposed sinusoidal longitudinal mean pressure gradient like in the
experiment of Binder and Kunéy [61], Tardu and Binder [62] has been considered for illustrating the potentials
of the model. Depending of the imposed frequency of oscillations of the mean pressure gradient in the channel,
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Fig. 2 Isotropic decay of the turbulent kinetic energy in the Comte-Bellot and Corrsin experiment [58] compared to numerical
prediction [59]

the experimental results have exhibited strong lag effects between the modulation of the turbulent stress and
the forcing. LES simulation has been performed on relatively coarse grid (32 × 64 × 62) in the streamwise,
spanwise and normal directions to the wall, respectively. As shown in the original paper by Schiestel and
Dejoan [16], the main result of interest is that the time delay of the turbulent intensity relative to the forcing
was much better predicted by the two-equation PITM model than by the Smagorinsky model.

8.2 Injection induced turbulent channel flows

In the framework of PITM models, Chaouat and Schiestel [17,18] have developed a more advanced subgrid-
model based on transport Eq. (127) for the subfilter stresses and Eq. (133) for the dissipation rate. This model
embodies the same basic concepts as the two equation subfilter model [16] but takes into account all the transport
equations of the stress components R(s)i j . This allows a more realistic description of the flow anisotropy than
eddy viscosity models and takes into account more precisely the turbulent processes of production, transfer,
pressure redistribution effects and dissipation. Moreover, some backscatter effects can possibly arise. Like the
companion two equation model, the present model has been developed in order to remain consistent when the
cutoff is varied between the two extreme limits corresponding on one side of the spectrum to full statistical
RSM model of Launder and Shima [63] and on the other side to DNS (the model becomes useless in this case).
This modeling strategy is motivated by the idea that the recognized advantages of usual second order closures
(RSM) [7,8] are worth making transposition into subgrid-scale modeling when the SGS part is not small
compared to the resolved part. The application to the channel flow with wall mass injection which undergoes
the development of natural unsteadiness with a transition process from laminar to turbulent regime is considered
for illustrating the potentials of the model. This case is of central interest for engineering applications in solid
rocket motors (SRM) as mentioned by instance by Gany and Aharon [64] or Chaouat and Schiestel [65].
Figure 3 shows the schematic of channel flow with fluid injection. The dimensions of the length, height and
width channel are respectively 58.1, 2.06 and 1.03 cm. The present large eddy simulation has been performed on
a medium grid (400×44×80) in the streamwise, spanwise and normal directions to the wall. Note that a more
conventional approach using detached eddy simulation (DES) commonly applied in engineering applications
or the dynamic model [66] requires a more refined grid for computing accurately this type of flow [67]. In
particular, a strong decrease in the number of grid points has been obtained (64 %) in regard with the LES
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Fig. 3 Schematic of channel flow with fluid injection of Vecla setup
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Fig. 4 Mean velocity profiles normalized by the bulk velocity 〈u1〉 /um in different cross sections a x1 = 22 cm; b 57 cm; dotted
line RSM computations [69]; dashed line LES simulation [17]; circle experimental data [70]

simulation of Apte and Yang [68] for an almost similar computational domain, because of the present PITM
model that is well suited for simulating flows on coarse grids. In this study, the viscosity and turbulent stress
profiles produced by the present LES simulation [17] as well as the RANS computation using a variant RSM
model of Launder and Shima [63,69] have been compared with the experimental data worked out by Avalon
et al. [70] that describes injection induced flow in the specific setup at ONERA. Figure 4 shows the velocity
profiles 〈u1〉/um normalized by the bulk velocity um in two locations of the channel at x1 = 22 cm and 57
cm where the flow regimes are, respectively, laminar and then turbulent. It appears that the RMS computation
as well as the LES simulation produce velocity profiles that agree rather well with the experimental data.
Figure 5 describes the streamwise turbulent stresses

〈
u′

1u′
1

〉
/um in different stations of the channel at x1 =

40 cm, 45, 50 and 57 cm. As a result of interest, one can observe that both the RSM computation and the LES
simulation reasonably well predict the turbulence intensity of the flow in the downstream transition location
where the flow presents a turbulent regime, except, however, in the immediate vicinity of the wall region.
Differences between the RSM and LES stress results should probably due to the triggering of the transition
which not occurs in the same location of the channel. Therefore, it appears that the mean flow variables such
that the velocities and stresses can be accurately computed both by RANS and LES approaches although the
turbulence modeling is quite different. But contrary to full statistical modeling, only LES simulation is able
to provide the structural information of the flow. Figure 6 shows the isosurfaces of the instantaneous spanwise
filtered vorticity ω̄2 = ∂ ū3/∂x1 − ∂ ū1/∂x3 in the channel and reveals the detail of the flow structures subjected
to mass injection. In the first part of the channel where the flow is laminar, the isosurfaces form a parallel
plane up to the injection surface. Then, the isosurfaces show the presence of roll-up vortex structures in the
spanwise direction indicating the transitional and turbulent flow regime. Moreover, because of the injection,
the three-dimensional structures are squeezed upward in the normal direction to the axial flow. In spite of
the coarse grid computation, it is remarkable that the present LES calculation succeeded in obtaining a good
qualitative prediction of these structures that are quite similar to those simulated by Apte and Yang [68].
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Fig. 5 Streamwise turbulent stresses
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/um in different cross sections a x1 = 40 cm; b 45 cm; c 50 cm; d 57 cm. dotted

line RSM computations [69]; dashed line LES simulation [17]; circle experimental data [70]

Fig. 6 Isosurfaces of instantaneous filtered vorticity vector ω̄i = εi jk∂ ūk/∂x j in the spanwise direction |ω̄2| = 3000 (1/s). LES
simulation [17]. Experimental cold flow setup of Avalon [70]
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9 Conclusion

While many modeling approaches have been developed often independently up to now, a theoretical formalism
that allows transposition of turbulence modeling closures from RANS to LES has been presented. We show that
a full or partial integration over the wave numbers of the dynamic equation of the spectral velocity correlation
tensor allows one to recover respectively usual one-point statistical closures, statistical multiple-scale models
as well as subfilter transport models used for LES (using PITM). The proposed approach makes use of the
concept of tangent homogeneous field, considered as deriving from the first term in the Taylor development of
local mean velocity field. Higher order approximations bring much complexities and have not been considered
here. The use of the statistical filter leads to a three term decomposition of the turbulence field introducing
a mean value, a large scale fluctuation and a fine grained fluctuation. The equations obtained for statistical
multiple scale transport models are exact for homogeneous anisotropic turbulence and when the filter width
goes to infinity (� → ∞, κc → 0 and U → 〈U 〉), the filtered field goes to the statistical mean field.
This property is lost in non-homogeneous fields, but it can be preserved, at least formally, if the concept
of homogeneous tangent space is used. In the case of LES, the same statistical filter can be used to derive
transport equation that have the same form as in statistical multiscale. For LES of non-homogeneous flows, an
approximate approach consists of supplementing additional diffusion terms to the homogeneous model. In the
homogeneous case, the formalism for multiple scale statistical models and the PITM formalism will coincide.
Modeling of the pressure-strain correlation, transfer, dissipation and diffusion terms for each type of model
have been also presented and discussed by reference to physical behaviors. In particular, emphasis has been put
on the transfer and dissipative terms that can be indeed interpreted as spectral fluxes. Then, typical experiments
that describe flow situations with significant non-equilibrium spectrum have been considered for illustrating
some potentials of these models. The main insight of the present formalism developed in the spectral space is
therefore to bridge URANS models and LES simulations from a theoretical point of view showing a promising
route of new future developments in hybrid models with seamless coupling that can be done in this framework.

A Appendix: Analytical integration for spectral tensor terms

Integration of the different terms defined in paragraph 4.1 can be performed using the reciprocal change in va-
riables. Indeed, considering the vector difference ξm= xm B −xm A and the midway position Xm = 1

2 (xm A+xm B),
the reciprocal variables are then defined as xm A = Xm − 1

2ξm and xm B = Xm + 1
2ξm . Full integrations in the

spectral space of the quantities �i j , Ei j and Ji j that appear in Eq. (35) require the calculation of first and
second spatial derivatives, with respect to the distance ξm as well as the limiting condition when ξm goes to
zero. Using the above change of variables, we see that it is a straightforward matter to show that the first and
second derivatives are expressed in the following way

∂

∂ξm
= 1

2

(
∂

∂xm B
− ∂

∂xm A

)
, (138)

and

∂2

∂ξm∂ξm
= 1

4

(
∂2

∂xm A∂xm A
− 2

∂2

∂xm A∂xm B
+ ∂2

∂xm B∂xm B

)
. (139)

When applying relation (139) for the turbulent Reynolds stress τi j =
〈
u′

i Au′
j B

〉
(xm A, xm B), one has to keep

in mind that the fluctuation u′
j B is treated as a function of xm B only. This procedure allows the computation

of the first derivative ∂
〈
u′

i Au′
j B

〉
/∂ξ as well as the second derivative ∂2

〈
u′

i Au′
j B

〉
/∂ξ2. Thus, we obtain

⎡

⎣
∂

〈
u′

i Au′
j B

〉

∂ξm

⎤

⎦

ξm=0

= 1

2

[〈
u′

i

∂u′
j

∂xm

〉
−

〈
u′

j
∂u′

i

∂xm

〉]
, (140)

⎡

⎣
∂2

〈
u′

i Au′
j B

〉

∂ξm∂ξm

⎤

⎦

ξm=0

= 1

4

∂2
〈
u′

i u
′
j

〉

∂xm∂xm
−

〈
∂u′

i

∂xm

∂u′
j

∂xm

〉
(141)
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with xm = xm A = xm B and

∂u′
i A

∂xm A
= ∂u′

i B

∂xm B
= ∂u′

i

∂xm
. (142)

The first derivative ∂/∂Xm is computed by

∂

∂Xm
=

(
∂

∂xm A
+ ∂

∂xm B

)
, (143)

that implies in particular

⎡

⎣
∂

〈
u′

i Au′
j B

〉

∂Xm

⎤

⎦

ξ=0

=
∂

〈
u′

i u
′
j

〉

∂xm
(144)

and
⎡

⎣
∂2

〈
u′

i Au′
j B

〉

∂Xm∂Xm

⎤

⎦

ξ=0

=
∂2

〈
u′

i u
′
j

〉

∂xm∂xm
. (145)

A.1 Pressure–strain fluctuating correlations term

The pressure–strain correlation tensor is defined by

�i j =
∞∫

0

[
1

ρ

(
∂

∂ξi

〈
p′

Au′
j B

〉
− ∂

∂ξ j

〈
p′

Bu′
j A

〉)
+ 1

2ρ

(
∂

∂Xi

〈
p′

Au′
j B

〉
+ ∂

∂X j

〈
p′

Bu′
i A

〉)]�

ξm=0
dκ. (146)

Using relations (138) and (143), Eq. (146) can be developed and the resulting equation is

�i j =
〈

p′

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
. (147)

A.2 Dissipation rate

The dissipation tensor is defined by

εi j =
∞∫

0

[
ν

2

∂2ϕi j

∂Xl Xl
+ 2νκ2

mϕi j

]

ξm=0
dκ. (148)

So that

εi j = ν

2

(
∂2 Ri j

∂Xl Xl

)

ξm=0
− 2ν

[
∂2 Ri j

∂ξm∂ξm

]

ξm=0
. (149)

Using the derivative relations (141), (144) and (145), we can compute easily the terms of the right-hand side
of Eq. (149) leading the expected result obtained in one-point closure

εi j = 2ν

〈
∂u′

i

∂xm

∂u′
j

∂xm

〉
. (150)
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A.3 Diffusion term

The diffusion term Ji j is defined by the expression

Ji j =
∞∫

0

[
− 1

ρ

(
∂

∂Xi

〈
p′u′

j B

〉
+ ∂

∂X j

〈
p′u′

i A

〉)�
]

ξm=0

dκ

+
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0

[
−1

2

∂

∂Xk
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u′

kB
u′
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〉� +
〈
u′

i A
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u′

jB

〉�)
+ ν

∂2ϕi j

∂Xl Xl

]

ξm=0
dκ. (151)

As for the previous calculus, using (144) and (145) provides the well known result

Ji j = − 1

ρ

(
∂

∂xi

〈
p′u′

j

〉
+ ∂

∂x j

〈
p′u′

i

〉) − ∂

∂xk

〈
u′

i u
′
j u

′
k

〉
+ ν

∂2 Ri j

∂xl xl
. (152)

A.4 Transfer term

The total transfer term Ti j is defined by

Ti j = −
∞∫

0

[(
∂

∂ξk

[〈
u′

i A
u′

kB
u′

jB

〉
−

〈
u′

i A
u′

kA
u′

jB

〉])�
+

(
ξm
∂Ri j

∂ξk

)�
∂ 〈uk〉
∂Xm

]

ξm=0

dκ. (153)

Obviously, the transfer term Ti j is reduced to zero for ξm = 0 when points A and B go to the midway
position Xm .
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