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Abstract New free-surface flows past a semi-infinite ‘step’ in the bottom of a channel are considered. Surface
tension is neglected but gravity is included in the dynamic boundary condition. Fully nonlinear solutions are
computed by boundary integral equation methods. Additional weakly nonlinear solutions are derived analyti-
cally. A thorough analysis of the weakly nonlinear problem provides a systematic approach to identify all the
possible types of solutions and the number of independent parameters.
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1 Introduction

Free-surface flows past submerged or surface piercing obstacles have many practical applications in hydraulic
and coastal engineering, and in ship hydrodynamics. Those include free-surface flows generated by ships and
submarines, flows under sluice gates and flows past uneven topographies. The fluid is often assumed to be
inviscid and incompressible and the flow to be irrotational. Over the years many fully nonlinear computations
have been performed [1,3,5,6,8,9,14]. In addition linear and weakly nonlinear analytical approximations have
also been derived [4,7,11,12,16].

Recently Dias and Vanden-Broeck [4] have derived weakly nonlinear approximations for two-dimensional1

free-surface flows past obstacles with bounded support at the bottom of a horizontal channel. Their approxi-
mation is valid when the Froude number is close to criticality (transition from subcritical flow to supercritical
flow). Following Lee et al. [10], they showed that the problem can be formulated as a forced Korteweg–de Vries
(KdV) equation where each obstacle generates a forcing in the form of a Dirac delta function. Whether the
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forcing in the KdV equation appears as a delta function depends in fact on scaling; for instance in Grimshaw
and Smyth [7] this scaling was kept open and forcings other than delta functions were considered. With a
delta function forcing, the flows can then be constructed in a phase plane in which each obstacle appears as
a vertical jump (jump in the slope of the free surface). This asymptotic approach provides a systematic way
to identify all the possible solutions and the number of parameters necessary to specify them uniquely. In this
way Dias and Vanden-Broeck [4] discovered new types of solutions which were subsequently computed in the
fully nonlinear regime by boundary integral equation methods.

Binder and Vanden-Broeck [2] used a similar approach to analyse free-surface flows under an inclined
sluice gate. They showed that such solutions can also be constructed in a phase plane in which the gate gen-
erates a horizontal displacement (change in the elevation of the free surface with constant slope). Previous
results were recovered and extended. In particular it was confirmed that there is no steady potential flow which
satisfies the radiation condition.

All the obstacles considered by Dias and Vanden-Broeck [3–5] have bounded support. This means that the
depth of the channel bottom is the same far upstream and far downstream. In this paper we extend the approach
to the case where the depths far upstream and downstream are different. The canonical problem is then the
free-surface flow past a step. We show that the phase plane analysis can be extended to this configuration.
There are no vertical nor horizontal jumps but instead a superposition of two phase planes. The solutions are
then obtained by moving continuously along the orbits from one phase plane to the other. Alternatively, one
can consider that there is a jump in the second derivative (curvature) of the free surface [16]. The free-surface
flow over a step was studied previously by King and Bloor [8]. While some of our solutions coincide with
theirs, some solutions are new. A similar geometry was used by Yasuda et al. [15] to study the interaction
between an incoming solitary wave and a reef with a vertical face (submerged breakwater).

A typical flow configuration with a semi-infinite ‘step’ of height h∗ in the bottom of a channel is shown in
Fig. 1a. As in all flows considered in this paper, the fluid flows from right to left. The height h∗ can be either
positive (step up) or negative (step down as shown for example in Fig. 1a). Cartesian coordinates (x∗, y∗)with
the origin at the position of the ‘step’ in the channel bottom are defined.

As x∗ → ∞, the flow is assumed to approach a uniform stream with constant velocity −U and constant
depth H , see Fig. 1a. We define the upstream Froude number

F = U

(gH)1/2
, (1)

where g is the acceleration due to gravity. The flow as x∗ → −∞ can either approach a uniform stream with
constant velocity −V and constant depth D − h∗, or possess a train of waves. When the flow is uniform as
x∗ → −∞ we define the downstream Froude number

F∗ = V

[g(D − h∗)]1/2 . (2)

The following dimensionless numbers are introduced:

d = D

H
, h = h∗

H
. (3)

By performing a weakly nonlinear analysis, we will show that there are five basic types of steady solutions:
subcritical flows (F < 1) with a train of waves downstream, hydraulic falls (subcritical on one side of the
step and supercritical on the other side), supercritical flows (F > 1 and F∗ > 1), generalized hydraulic falls
(F > 1) with a train of waves, and critical flows characterized by F = 1. These basic types of solutions are
then computed numerically. The details of the formulation and of the numerical scheme are given in the next
section. Results are given in Sect. 3.

2 Formulation

The steady two-dimensional irrotational flow of an incompressible inviscid fluid shown in Fig. 1a is consid-
ered. It is bounded below by the bottom of the channel A′B′C′D′. The equation of the bottom of the channel is
denoted by y∗ = σ ∗(x∗). The flow is bounded above by the free surface AB. The equation of the free surface
AB can be written as y∗ = H + η∗(x∗). The function η∗(x∗) is assumed to vanish as x∗ → ∞.
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Fig. 1 a Sketch of a free-surface flow over a step in physical coordinates (x∗, y∗). b Sketch of the flow in the plane of the complex
potential ( f -plane). c Sketch of the flow in the lower half-plane (ζ -plane). Various points have been labelled along the bottom
and the free surface

The dynamic boundary condition on the free surface AB gives

1

2
(u∗2 + v∗2

)+ gy∗ = 1

2
U 2 + gH on y∗ = H + η∗(x∗), (4)

where u∗ and v∗ are the horizontal and vertical components of the velocity. Here, we have used the conditions
u∗ → −U , v∗ → 0, η∗(x∗) → 0 as x∗ → ∞, in order to evaluate the Bernoulli constant on the right hand
side of (4).

As mentioned in Introduction, the flow as x∗ → −∞ can be characterized either by a uniform stream
with constant velocity −V and constant depth D − h∗ or by a train of waves. When the flow as x∗ → −∞
is uniform, a relation between F , d and h can be derived in the following way. First the conservation of mass
implies

V (D − h∗) = U H or (d − h)
V

U
= 1. (5)

Next Eq. (4) evaluated in the limit x∗ → −∞ yields

1

2
V 2 + gD = 1

2
U 2 + gH or

(
V

U

)2

+ 2d

F2 = 1 + 2

F2 . (6)
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Combining (5) and (6) gives the relations

2d

F2 (d − h)2 −
(

1 + 2

F2

)
(d − h)2 + 1 = 0, (7)

F∗ = F

(
1

d − h

)3/2

. (8)

Equation (7) provides d (or d − h) once h and F are given. Plots of d − h and F∗ versus F are shown in
Fig. 2 for negative and positive values of h, as well as for h = 0. For h > 0, there is a gap in Froude numbers
around the critical Froude number F = 1. At the turning points, it can be shown that

h = 1

2

(
2 + F2 − 3F2/3) , d − h = F2/3, F∗ = 1. (9)

For h �= 0, there are no solutions with F = F∗ (d − h = 1). Therefore, there are no solutions for (waveless)
supercritical flow with F = F∗ > 1 nor waveless subcritical flow with F = F∗ < 1. It is easy to show that
solutions with d = 1 are also impossible. There exists an interesting property of Eq. (7):

if h = 1

2
(F − 1)2, then d − h = F, d − h = 1

4

(
1 + √

1 + 8F
)

(10)

are exact solutions. The solutions for a step of zero height are interesting to recall because they shed some
light on the transition from a step up to a step down. When h = 0, Eq. (7) reduces to

(d − 1)

(
2

F2 d2 − d − 1

)
= 0. (11)

Of course, one has the trivial solution d = 1 with F = F∗ but also the nontrivial solution

d = F2

4

(
1 +

√
1 + 8

F2

)
, (12)

sometimes called the Bélanger formula. These solutions have been plotted in Fig. 2c.

Fig. 2 Exact values of d − h and F∗ versus F for h = −0.1 (top), h = 0 (middle) and h = 0.1 (bottom). The dashed lines
correspond to the approximate results given by the weakly nonlinear theory. The arrows give an indication of the parameter range
of the flows computed in the present paper that are uniform as x∗ → −∞
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It is also interesting to plot d − h and F∗ as a function of h for a given Froude number. This is done in
Fig. 3. As shown by King and Bloor [8], it is clear that there is a maximum step size for h > 0 (step down),

hmax = 1

2

(
2 + F2 − 3F2/3) = 1

2

(
F2/3 − 1

)2 (
F2/3 + 2

)
. (13)

As we shall see the determination of the number of independent parameters needed to obtain a unique
solution is often delicate and counter intuitive. It can be found by careful numerical experimentation (fixing
too many or too few parameters fails to yield convergence). An alternative approach is to perform a weakly
nonlinear analysis in the phase space. This second approach has the advantage of allowing a systematic deter-
mination of all the possible solutions (within the range of validity of the weakly nonlinear analysis). Both
approaches are used in this paper.

The weakly nonlinear analysis will show that one possible type of solution is a (waveless) supercritical
flow with F > 1 and F∗ > 1, F �= F∗. If h > 0, then F > F∗ > 1. Such solutions lie along the bottom part
of the right branch shown in Fig. 2e and the upper part of the right branch shown in Fig. 2f. They are indicated
by an arrow in these two figures. If h < 0, then F∗ > F > 1. Such solutions lie along the right part of the
bottom branch shown in Fig. 2a and the right part of the upper branch shown in Fig. 2b.

Another possible type of solution with a uniform stream as x∗ → ±∞ is a waveless hydraulic fall with
F∗ < 1 and F > 1 when h < 0 (right part of the upper branch shown in Fig. 2a and right part of the lower
branch shown in Fig. 2b) or F∗ > 1 and F < 1 when h > 0 (bottom part of the left branch shown in Fig. 2e
and upper part of the left branch shown in Fig. 2f). These solutions are indicated by arrows in these figures.

There are in addition three other possible types of solutions, with a train of waves as x∗ → −∞. The first
one is a subcritical flow with F < 1. The second one is a generalised hydraulic fall with F > 1 (see [4] for a
detailed description of generalised hydraulic falls). The third one is a critical flow with F = 1.

Therefore there are five basic types of solutions considered in this paper. In the next subsection a weakly
nonlinear analysis is performed. Then we give details of the formulation of the boundary integral equation
method for the fully nonlinear problem.

2.1 Weakly nonlinear theory

Shen [11], Dias and Vanden-Broeck [4], Binder et al. [1] and others derived a forced Korteweg–de Vries equa-
tion to model the flow past a disturbance in a channel. Their derivation is based on long wavelength asymptotics.
Thus if L denotes a typical horizontal length scale and H is the constant depth as x∗ → ∞, we introduce

Fig. 3 Exact values of d − h and F∗ versus h for F = 0.5 (top), F = 1 (middle) and F = 1.5 (bottom). The dashed lines
correspond to the approximate results given by the weakly nonlinear theory. The big dots correspond to the trivial solution with
no step: h = 0, d = 1
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the small parameter ε = (H/L)2 � 1, the dimensionless spatial variables (x ′, y′) = (ε1/2x∗, y∗)/H and the
free-surface elevation εη′ = η∗/H . The dimensionless equation of the channel bottom is then y′ = σ ′(x ′) =
ε−2σ ∗(x∗)/H . The dimensionless step height is h = h∗/H . The Froude number F is written as F = 1 + εµ.

Substituting expansions in powers of ε into the exact potential equations (rewritten in terms of the new
scaled variables), the forced KdV equation is derived by equating coefficients of the powers of ε. The steady
forced KdV equation (rewritten in terms of the variables x = ε−1/2x ′, η = εη′ and σ = ε2σ ′ used in the
nonlinear computations) is

ηxx + 9

2
η2 − 6(F − 1)η = −3σ. (14)

For x > 0, σ = 0 and Eq. (14) then gives

ηxx + 9

2
η2 − 6(F − 1)η = 0. (15)

The fixed points (ηx = 0) are η = 0 and η = 4/3(F − 1). For F > 1 there is a saddle point at η = 0, ηx = 0
and a centre point at η = 4/3(F − 1), ηx = 0. For F < 1 there is a centre point at η = 0, ηx = 0 and a saddle
point at η = 4/3(F − 1), ηx = 0.

Integrating (15) with respect to x yields

η2
x = 6(F − 1)η2 − 3η3 + C. (16)

For F > 1, a solitary wave orbit is obtained when the constant of integration C is equal to 0. When C = −32/
9(F − 1)3, the bounded orbit reduces to the centre point. For F < 1, the solitary wave orbit is obtained for
C = −32/9(F − 1)3 and the bounded orbit reduces to the centre point when C = 0.

For x < 0, σ = h and (14) then gives

ηxx + 9

2
η2 − 6(F − 1)η = −3h. (17)

The situation is slightly more complicated. A discussion on the sign of h is needed.

2.1.1 Step down (h < 0)

The fixed points (ηx = 0) exist for all values of F and are characterized by

η1 = 2

3
(F − 1)+

√
4

9
(F − 1)2 − 2

3
h, η2 = 2

3
(F − 1)−

√
4

9
(F − 1)2 − 2

3
h. (18)

The fixed point labelled with subscript 2 is a saddle point. The fixed point labelled with subscript 1 is a centre.
They are nothing else than approximations to the exact values of d − h − 1 obtained with Eq. (7). They are
represented by the dashed lines in Figs. 2a and 3a, c, e.

Integrating (17) with respect to x yields

η2
x = 6(F − 1)η2 − 3η3 − 6hη + Cs. (19)

For the solitary wave orbit, the value of the constant of integration Cs can be obtained by substituting ηx = 0
and η = η2 into (19). The value of Cs at the centre point η1 can be obtained by substituting ηx = 0 and η = η1
into (19).

2.1.2 Step up (h > 0)

The fixed points do not exist for all values of F . They are characterized by ηx = 0 and

η1 = 2

3
(F − 1)+

√
4

9
(F − 1)2 − 2

3
h, η2 = 2

3
(F − 1)−

√
4

9
(F − 1)2 − 2

3
h. (20)

Their existence requires (F −1)2 > 3h/2. The fixed point labelled with subscript 2 is a saddle point. The fixed
point labelled with subscript 1 is a centre. They are represented by the dashed lines in Figs. 2e and 3a, e. In
(10), it was stated that if h = (F − 1)2/2, then d − h = F is an exact solution. It also holds in the framework
of the weakly nonlinear analysis: for h = (F − 1)2/2, η2 = F − 1 if F < 1 and η1 = F − 1 if F > 1.
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2.2 Boundary integral equation method

We define dimensionless variables by taking H as the reference length and U as the reference velocity. Thus we
define the dimensionless variables (x, y) = (x∗, y∗)/H . The equation for the bottom of the channel, A′B′C′D′,
is then y = σ(x), where σ = σ ∗/H . The dimensionless step height is h = h∗/H . The free surface AB is then
described by y = 1 + η(x), where η = η∗/H . The dimensionless horizontal and vertical components of the
velocity are u and v respectively.

The dynamic boundary condition (4) is now rewritten as

1

2
(u2 + v2)+ 1

F2 y = 1

2
+ 1

F2 , (21)

where F is the Froude number defined by (1). The relation (8) between the upstream and downstream Froude
numbers is rewritten as

F∗ = F

[y(−∞)− h]3/2 . (22)

The nonlinear problem can be reduced to a problem in complex analysis (see for example King and Bloor
[8]). Since from a mathematical point of view the computed flows are reversible, the direction of the flow does
not matter for the computations. This subsection and the next one have been written assuming that the flow
goes from left to right. We first introduce the velocity potential φ and the stream functionψ . Then the complex
potential, f = φ+ iψ , and the complex velocity, w = d f/dz = u − iv are defined. Without loss of generality
we chooseψ = 0 on the free-surface streamline AB. On the bottom of the channel we choose φ = 0 at the point
C′, which is also the origin of the coordinate system. The value of φ at the point B′ is denoted by φb. It follows
from the conservation of mass that ψ = −1 on the bottom of the channel A′B′C′D′. The fluid domain in the
complex f -plane is the strip −1 < ψ < 0, see Fig. 1b.

The strip −1 < ψ < 0 is mapped onto the lower half ζ -plane by the transformation

ζ = α + iβ = eπ f . (23)

The flow configuration in the ζ -plane is shown in Fig. 1c.
We define the function τ − iθ by

u − iv = eτ−iθ (24)

and we apply Cauchy’s integral formula to the function τ − iθ in the ζ -plane with a contour consisting of the
α-axis and a semicircle of arbitrary large radius in the lower half plane. Since τ − iθ → 0 as |ζ | → ∞, there
is no contribution from the half circle and we obtain (after taking the real part)

τ̃ (α) = 1

π

∞∫
−∞

θ̃ (α0)

α0 − α
dα0, (25)

where τ̃ (α) and θ̃ (α) are the values of τ and θ on the α-axis. The integral in (25) is to be interpreted in the
Cauchy principal value sense.

For a vertical fall in the height h of the horizontal bottom of the channel, the kinematic boundary conditions
imply

θ̃ (α) = π/2 for − 1 < α < αb (26)

and

θ̃ (α) = 0 for α < −1 and αb < α < 0. (27)

Here αb = −eπφb . Substituting (26) and (27) in (25) gives

τ̃ (α) = 1

2
ln

|αb − α|
|1 + α| + 1

π

∞∫
0

θ(α0)

α0 − α
dα0. (28)
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Note that for a vertical rise in the height h of the horizontal bottom of the channel, there is a change in sign in
front of the logarithmic term in (28).

We assume that α > 0 (i.e. that α corresponds to points on the free surface) and rewrite (28) in terms of φ
by using the change of variables

α = eπφ, α0 = eπφ0 . (29)

This gives

τ(φ) = 1

2
ln

eπφb + eπφ

1 + eπφ
+

∞∫
−∞

θ(φ0)eπφ0

eπφ0 − eπφ
dφ0. (30)

Here τ(φ) = τ̃ (eπφ) and θ(φ) = θ̃ (eπφ).
Integrating the identity

xφ + iyφ = 1

u − iv
= e−τ+iθ (31)

and equating real and imaginary parts we can obtain parametric relations for the shape of the free surface AB:

x(φ) = x(∞)+
φ∫

∞
e−τ(φ0) cos θ(φ0)dφ0 for − ∞ < φ < ∞ (32)

and

y(φ) = 1 +
φ∫

∞
e−τ(φ0) sin θ(φ0)dφ0 for − ∞ < φ < ∞. (33)

Another equation valid on the free surface is obtained by substituting (24) into (21). This yields

e2τ + 2

F2 y = 1 + 2

F2 . (34)

Equations (30), (33) and (34) define a nonlinear integral equation for the unknown function θ(φ) on the
free surface −∞ < φ < ∞. We note that the values of x(φ) and x(∞) in (32) are not needed to calculate
θ(φ). Therefore they can be evaluated after a converged solution has been obtained.

2.3 Numerical scheme

The integral equation defined by (30), (33) and (34) is solved numerically. The numerical procedure is similar
to the procedure used for example by King and Bloor [8] and later in [1,2,14]. We first introduce the equally
spaced mesh points in the potential function φ

φI = [−(N − 1)/2 + (I − 1)]�, I = 1, . . . , N . (35)

Here � > 0 is the mesh size. The corresponding unknowns are

θI = θ(φI ), I = 1, . . . , N . (36)

The function τ is evaluated at the midpoints

φI+1/2 = φI + φI+1

2
, I = 1, . . . , N − 1, (37)

by applying the trapezoidal rule to the integral in (30) with summation over the points φI . The symmetry of
the quadrature and of the distribution of the points enables us to evaluate the Cauchy principal value as if it
were an ordinary integral.
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The dynamic boundary condition (34) can be satisfied at the midpoints (37), using (33). This yields N − 1
nonlinear algebraic equations. In the remaining of the paper we shall refer to this system of N − 1 equations
as the system [A].

The values of θ are known on the bottom of the channel defined by ψ = −1. In order to calculate the size
of the step, we need to evaluate τ on ψ = −1. This is done by replacing the change of variables (29) by

α = −eπφ, α0 = eπφ0 . (38)

Proceeding as in the derivation of (30), we obtain

τB(φ) = 1

2
ln

| − eπφb + eπφ |
| − 1 + eπφ | +

∞∫
−∞

θ(φ0)eπφ0

eπφ0 + eπφ
dφ0. (39)

The step height, h, can then be obtained by integrating (31)

yB(φ) =
φ∫

0

e−τB(φ0)dφ0 for φb < φ < 0. (40)

We define equally spaced mesh points by

φB
I = (I − 1)

φb

(N B − 1)
, I = 1, . . . , N B, (41)

and τB is evaluated at the midpoints

φB
I+1/2 = φB

I + φB
I+1

2
, I = 1, . . . , N B − 1, (42)

by integrating (39) numerically. Substituting these values of τB into (40) and integrating numerically we obtain
yB(φ). The step height is then given by

h = yB(φb). (43)

The system of nonlinear algebraic equations obtained after discretization is solved by Newton’s method.
Fully nonlinear free-surface profiles and fully nonlinear phase trajectories are discussed and presented in
Sect. 3.

In the next section we present new weakly nonlinear and fully nonlinear free-surface profiles for the flow
past a step in the bottom of a channel. The range of validity of the weakly nonlinear theory is determined by
comparing weakly nonlinear and fully nonlinear profiles.

3 Results

In most of the figures providing numerical results (see for example Fig. 4), four plots are given: (a) fully
nonlinear free-surface profile y = 1 + η(x), (b) fully nonlinear phase plane (η, ηx ), (c) weakly nonlinear
free-surface profile, (d) weakly nonlinear phase plane (η, ηx ). In (d), the dashed (resp. solid) curves represent
various orbits for x > 0 (resp. x < 0). These orbits are the same for all configurations. They correspond to
orbits of the KdV equation: there is a solitary wave (homoclinic orbit) leaving the saddle point, going beyond
the centre and coming back to the saddle point, and there are cnoidal waves (periodic orbits) going around the
centre. The bold curve indicates the computed solution, obtained as the intersection between a dashed orbit
(flow upstream of the step, x > 0, h = 0) and a solid orbit (flow downstream of the step, x < 0, h �= 0). The
arrows along the bold curve indicate the trajectory as one goes from left to right along the free surface.
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Fig. 4 Supercritical flow for given values of F = 1.20 and h = 0.02. a Nonlinear free-surface profile. The constant elevation
as x → −∞ is η(−∞) = 0.08 or d = 1.08, which is in full agreement with the analytical value given by Eq. (7) (d = 1.08
or d = 1.22). The value of the downstream Froude number is F∗ = 1.08, which is in good agreement with the analytical value
given by Eq. (8) (F∗ = 1.09). b Values of dy/dx = tan θ versus y − 1 = η, showing the nonlinear phase trajectory for a. c
Weakly nonlinear free-surface profile. The constant elevation as x → −∞ is η(−∞) = 0.07. d Weakly nonlinear phase portrait
for c, dη/dx versus η. The solid, resp. dashed, curves correspond to orbits for x < 0, resp. x > 0. Along the bold curve, one
has first Cs = 0.004 [see Eq. (19)] and then C = 0 [see Eq. (16)]. Among the four fixed points, there are two centre points
(η = 0.20, 0.27) and two saddle points (η = 0, 0.07)

3.1 Supercritical flow

In this subsection, the step height h is assumed to be positive. Supercritical flows can also be computed for
h < 0 but they will be discussed in Sect. 3.3. A two-parameter family of supercritical solutions was obtained
for given values of h > 0 and F > 1. In the discretized system coming from the fully nonlinear theory there
are N unknowns: θI , I = 1, . . . , N . The N − 1 equations obtained from [A] combined with the condition
that forces the free surface to be flat as x → −∞ yield N nonlinear algebraic equations in terms of the N
unknowns. For given values of F > 1 and h > 0 (or φb) this system of equations is solved using an iterative
method of Newton’s type.

Fig. 4a provides a computed nonlinear free-surface profile with h = 0.02 and F = 1.20. The constant
downstream free-surface elevation η(−∞) = 0.08 and the downstream Froude number F∗ = 1.08 came as
part of the solution. Fig. 4b shows a plot of the nonlinear trajectory in the phase plane dy/dx = tan θ versus
y − 1 = η, for the solution shown in Fig. 4a.

Fig. 4c shows an analytically derived weakly nonlinear free-surface profile for the same given values
h = 0.02 and F = 1.20. The constant free-surface elevation η(−∞) = 0.07 far downstream and the down-
stream Froude number F∗ = 1.12 came as part of the solution. The agreement between the weakly nonlinear
profile in Fig. 4c and the fully nonlinear profile in Fig. 4a is good for these particular values of the Froude
number, F = 1.20, and step height, h = 0.02. With h = 0.02, the minimum Froude number corresponding to
the right turning point in Fig. 2e is F = 1.175. Solutions were computed down to that value. Recall that F∗
is then equal to one.

Fig. 4d provides the phase portrait (η, ηx ) for the weakly nonlinear solution of Fig. 4c. The dashed curves
in Fig. 4d correspond to the flow upstream of the step, x > 0, h = 0, while the solid curves correspond to the
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flow downstream of the step, x < 0, h > 0. The bold curve is the weakly nonlinear solution, that connects the
two phase portraits (η, ηx ).

The number of independent parameters was determined by performing the following analysis in the weakly
nonlinear phase plane (η, ηx ). For the given value F = 1.20, one can plot the dashed phase portrait of Fig. 4d.
Fixing h = 0.02 then enables us to plot the solid phase portrait of Fig. 4d. The trajectory of the supercritical
flow in the phase plane goes from the saddle point η = 0.07, ηx = 0 to the saddle point η = 0, ηx = 0, via the
intersection of the dashed and solid phase portraits. Figure 4b provides a check that our analysis in the weakly
nonlinear phase plane (η, ηx ) is correct for Fig. 4d.

We obtained qualitatively similar results to those shown in Fig. 4 for the same value of F = 1.20 and
different values of 0 < h < hmax. The maximum step height hmax can be quantified both with the fully
nonlinear theory and with the weakly nonlinear theory (see Fig. 3e). Recall that in the fully nonlinear case,
Eq. (13) shows that

hmax = 1

2

(
2 + F2 − 3F2/3) . (44)

In the weakly nonlinear case, considering the limit η1 → η2 in (20) yields

hmax = 2

3
(F − 1)2. (45)

With F = 1.2, Eq. (44) gives hmax = 0.0261 while Eq. (45) gives hmax = 0.0267.
Similar supercritical flows with h > 0 were computed by King and Bloor [8] (see their Fig. 2). In the next

subsection we consider subcritical flows (F < 1). Solutions are computed for positive steps as well as negative
steps (King and Bloor restricted their study to positive steps).

3.2 Subcritical flow

For subcritical flows, a two-parameter family of solutions was obtained for given values of h and F < 1. In
the discretized system obtained from the fully nonlinear theory there are N unknowns: θI , I = 1, . . . , N . The
N − 1 equations obtained from [A] and the condition that forces the free surface to be flat as x → ∞ yield N
nonlinear algebraic equations in terms of the N unknowns. For given values of F < 1 and h, this system of
equations is solved as in Sect. 3.1 using an iterative method of Newton’s type. We obtained solutions for both
h < 0 and h > 0, see Fig. 5 and 6.

We shall first discuss the solution type for F < 1 and h < 0. Figure 5a shows a computed nonlinear free-
surface profile with h = −0.01 and F = 0.90. The amplitude of the waves on the downstream free surface,
which came as part of the solution, is A = 0.06. The corresponding nonlinear phase trajectory is shown in
Fig. 5b. Figure 5c provides an analytically derived weakly nonlinear free-surface profile with h = −0.01 and
F = 0.90. The amplitude of the waves on the downstream free surface is A = 0.07. The weakly nonlinear
and fully nonlinear profiles of Fig. 5a, c are essentially the same for these particular values of the Froude
number, F = 0.90, and step height, h = −0.01. We found that for values of the Froude number F < 0.90, the
quantitative comparison was not as good. We also found the agreement to be good when |h| was of the order
(F − 1)2, for given values of F > 0.90. This is due to the scalings in the weakly nonlinear theory.

The weakly nonlinear phase plane (η, ηx ) is given in Fig. 5d. The dashed curves correspond to the flow
upstream of the step, x > 0, h = 0, and the solid curves correspond to the flow downstream of the step,
x < 0, h < 0. The solution trajectory in the phase plane is the bold periodic orbit intersecting the centre point
(η = 0, ηx = 0). We determined the number of independent parameters by performing the following analysis
in the weakly nonlinear phase plane (η, ηx ). For a given value F = 0.90, the dashed phase portrait in Fig. 5d
can be plotted. Fixing h = −0.01 then enables us to plot the solid phase portrait in Fig. 5d. The trajectory
of the solution in the phase plane connects the centre point (η = 0, ηx = 0) (dashed phase portrait) with the
inner periodic orbit of the solid phase portrait.

We now consider subcritical flows with h > 0. Figure 6a, c show fully nonlinear and weakly nonlinear
profiles with h = 0.01 and F = 0.85.

The agreement between the weakly and nonlinear profiles in Fig. 6a, c is good for the given values of
the Froude number, F = 0.85, and step height, h = 0.01. We found that for values of the Froude number
F closer to 1 and when h is of the order (F − 1)2, weakly nonlinear and fully nonlinear profiles are in very
good agreement. The analysis in the weakly nonlinear phase plane of Fig. 6d is similar to the analysis for
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Fig. 5 Subcritical flow with F = 0.90 and h = −0.01. a Nonlinear free-surface profile. The amplitude of the waves is A = 0.06.
The mean elevation as x → −∞ is η(−∞) = 0.03 or d = 1.03, which is in full agreement with the analytical value given by
Eq. (7) (d = 1.03 or d = 0.83), although it was assumed that the flow is uniform as x → −∞. b Phase plane dy/dx = tan θ
versus y − 1 = η for a. c Weakly nonlinear free-surface profile. The amplitude of the waves is A = 0.07. d Phase plane dη/dx
versus η for c. The solid, resp. dashed, curves correspond to orbits for x < 0, resp. x > 0. Along the bold curve, one has Cs = 0.
Among the four fixed points, there are two centre points (η = 0, 0.04) and two saddle points (η = −0.13,−0.17)

the solutions with h < 0. However, there is one difference: instead of looking for the intersection between
a periodic orbit and the origin, one can look for the intersection between the solid homoclinic orbit and the
origin. This will be done in Sect. 3.4. The resulting solution is a hydraulic fall, which is in fact a limiting
configuration. Indeed, for a given value F < 1, as h increases, the fixed points for the region x < 0 move
closer together and at some point, say h = hfront, the tip of the homoclinic orbit will be the origin. Beyond, no
bounded solid orbit will be able to reach the origin.

We have presented subcritical flows with negative and positive values of h < hfront. Note that for a given
Froude number F < 1, one can go continuously from a step down to a step up. When h = 0, the flow is simply
uniform (see Fig. 3a).

Outside the range of validity of the weakly nonlinear theory we computed two nonlinear solutions for a
value of the Froude number F = 0.50. Figure 7a is for a step height h = 0.14 and Fig. 7b is for a step height
h = −0.44. Note that the numerical scheme can handle steps that are not vertical. Similar solutions were
computed by King and Bloor [8], but only for a vertical step with h > 0 (see their Fig. 4).

In the next subsection we discuss generalised supercritical flows with F > 1 and h < 0. Such solutions
were first computed by Dias and Vanden-Broeck [4] in the context of channel flows over an obstacle. The flow
is supercritical on one side of the step and wavy on the other side.

3.3 Generalised supercritical flow

For generalised supercritical flows, we obtained a one-parameter family of solutions for given values of h < 0
and F > 1. The parameter can be chosen as the elevation of the free surface at the origin η(0). It is shown
below how this extra parameter appears naturally in the phase plane.
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The mean elevation as x → −∞ is η(−∞) = −0.03 or d = 0.97, which is in full agreement with the analytical value given by
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Fig. 7 Nonlinear free-surface profile corresponding to a subcritical flow with F = 0.50 and a 45◦rise/fall in the step in the bottom
of the channel: a h = 0.14, b h = −0.44

Figures 8, 9, 10, 11 and 12 show various computed solutions with the same Froude number F = 1.10 and
step height h = −0.01, but different elevations at the origin: η(0) = −0.01, 0, 0.01, 0.02. The amplitude of
the waves on the downstream free surface comes as part of the solution. The mean elevation as x → −∞ is
η(−∞) = 0.17 or d = 1.17, which is in agreement with the analytical value given by Eq. (7) (d = 1.17 or
d = 0.95), although it was assumed that the flow is uniform as x → −∞. In the weakly nonlinear approxima-
tion, the four fixed points split into two centre points (η = 0.13, 0.17) and two saddle points (η = 0,−0.04).

The weakly nonlinear and fully nonlinear profiles in Figs. 8a, 9a, 10a, 11a and 12a and 8c, 9c, 10c, 11c and
12c are in good agreement for these values of the Froude number, F = 1.10, and step height, h = −0.01. We
found that for values of the Froude number F > 1.15, the weakly nonlinear and fully nonlinear profiles did
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Fig. 8 Generalised supercritical flow with F = 1.10, h = −0.01 and η(0) = −0.01. a Nonlinear free-surface profile. The
amplitude of the waves is A = 0.31. b Values of dy/dx = tan θ versus y − 1 = η for a. c Weakly nonlinear free-surface profile.
The amplitude of the waves is A = 0.29. d Phase plane dη/dx versus η for c. Along the bold curve, one has first Cs = 0.0006
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0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0

0.05

0.1

0.15

0 5 10

0

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 9 Same as Fig. 8 with η(0) = 0.00. The amplitude of the waves is A = 0.29 (fully nonlinear) and A = 0.27 (weakly
nonlinear)
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Fig. 11 Same as Fig. 10. The only difference is in the way the transition to the dashed orbit is made
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Fig. 12 Same as Fig. 8 with η(0) = 0.20. The amplitude of the waves is A = 0.10 (fully nonlinear) and A = 0.06 (weakly
nonlinear). The value of C in Eq. (16) is 0 and Cs = −0.012 in Eq. (19)

not compare as well quantitatively. We also found that weakly nonlinear and fully nonlinear profiles compared
well quantitatively, when |h| was of the order (F − 1)2, for given values of F close to 1.

The number of independent parameters was determined by performing the following analysis in the weakly
nonlinear phase plane (η, ηx ). For the given value F = 1.10, the dashed phase portrait in Figs. 8d, 9d, 10d, 11d
and 12d can be plotted. Fixing h = −0.01 then enables us to plot the solid phase portrait. The trajectory in
the phase plane connects the saddle point (η = 0, ηx = 0) (dashed phase portrait) to an inner periodic orbit of
the solid phase portrait. By fixing an extra parameter, one can vary the amplitude A of the waves appearing on
the downstream free surface, for the same values of F = 1.10 and h = −0.01. We chose the extra parameter
to be the free-surface elevation at x = 0. In terms of the weakly nonlinear theory this extra parameter is related
to Cs, see Eq. (19). Changing the parameter Cs determines which inner periodic orbit the solution follows in
Fig. 8d, 9d, 10d, 11d and 12d.

In Fig. 12 with η(0) = 0.20, the fully nonlinear and weakly nonlinear amplitudes of the waves, A = 0.10
and A = 0.06, and the free-surface profiles do not compare as well as before, at least quantitatively.

In terms of the weakly nonlinear theory for the given values F = 1.10 and h = −0.01, the profiles shown
in Fig. 8c, 9c, 10c, 11c and 12c have a decreasing wave amplitude (from A = 0.29 in Fig. 8c to A = 0.06 in
Fig. 12c).

We note that there are no generalised supercritical flows (F > 1) for h > 0. This is illustrated in the weakly
nonlinear phase plane (η, ηx ) of Fig. 4d: it is impossible for the solitary wave solution (dashed curve, C = 0)
to intersect an inner periodic orbit (solid curves).

At the beginning of Sect. 3.1, we announced that supercritical flows with h < 0 would be discussed in the
present subsection. Indeed, it is clear from the weakly nonlinear phase planes shown in Fig. 8d, 9d, 10d, 11d
and 12d that trajectories leaving from the saddle point on the left, then following the solid homoclinic orbit
and finally bifurcating onto the dashed unbounded orbit towards the second saddle point are possible. They
correspond to waveless supercritical flows (F∗ > F > 1) and are qualitatively similar to the bold curve shown
in Fig. 4d.

In the next subsection we consider another type of waveless flow with F > 1 and h < 0 but F∗ < 1. Such
flows are called hydraulic falls.
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Fig. 13 Hydraulic fall with F = 1.10. a Nonlinear free-surface profile, with the following computed values: h = −0.03,
η(−∞) = 0.22 (or d = 1.22) and F∗ = 0.78. The analytical values for d given by Eq. (7) are d = 1.21 and d = 0.89. b Trajec-
tory in the phase plane dy/dx = tan θ versus y − 1 = η. c Weakly nonlinear free-surface profile with h = −2(F − 1)2 = −0.02
and η(−∞) = 2(F − 1) = 0.20. d Phase portrait dη/dx versus η for c. Along the bold curve, one has C = 0 and Cs = −0.024.
Among the four fixed points, there are two centre points (η = 0.13, 0.20) and two saddle points (η = 0,−0.07)

3.4 Hydraulic falls

Hydraulic falls are solutions that are subcritical on one side of the step and supercritical on the other side.
Moreover, the flow is uniform both upstream and downstream. Solutions with F < 1, F∗ > 1 and h > 0 or
with F > 1, F∗ < 1 and h < 0 were found. In each case, it is a one-parameter family of solutions. In other
words, the Froude number and the step height cannot be chosen independently.

In terms of the fully nonlinear theory, Eq. (7) has to be satisfied and the free surface is imposed to be flat
as x → −∞. This gives two extra equations:

F2[1 − (y(−∞)− h)2] = 2(1 − y(−∞))(y(−∞)− h)2 (46)

and

θ1 = 0. (47)

Next we describe how we obtained hydraulic falls. The description is performed for F > 1, but the same
applies to the case F < 1.

For a given value F > 1, there are N unknowns, θI , I = 2, . . . , N and h (or φb). The N − 1 equations
obtained from [A] and Eq. (46) yield N nonlinear algebraic equations in terms of the N unknowns. For a given
Froude number F , this system of equations is solved by using Newton’s method.

Figure 13a shows a computed fully nonlinear solution with F = 1.10. The downstream constant free-sur-
face elevation η(−∞) = 0.22, the downstream Froude number F∗ = 0.78 and the step height h = −0.03
came as part of the solution.

We analytically derived a weakly nonlinear profile for the same Froude number F = 1.10, which is shown
in Fig. 13c. The values η(−∞) = 0.20 and h = −0.02 came as part of the solution.
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Fig. 14 Hydraulic fall with F = 0.85. a Nonlinear free-surface profile. The computed elevation of the free surface as x → −∞
is η(−∞) = −0.13 (or d = 0.87) and h = 0.012. b Values of dy/dx = tan θ versus y − 1 = η, showing the nonlinear phase tra-
jectory for a. c Weakly nonlinear free-surface profile. The elevation of the free surface as x → −∞ is η(−∞) = F −1 = −0.15
and h = (F − 1)2/2 = 0.011. d Weakly nonlinear phase portrait dη/dx versus η for a. Along the bold curve, one has C = 0 and
Cs = 0. Among the four fixed points, there are two centre points (η = 0,−0.05) and two saddle points (η = −0.20,−0.15)

The analysis in the weakly nonlinear phase plane (η, ηx ) is shown in Fig. 13d. The dashed curves in
Fig. 13d correspond to the flow upstream of the step (x > 0, h = 0). The solid curves in Fig. 13d correspond
to the flow downstream of the step (x < 0, h < 0).

The determination of the number of independent parameters can be understood as follows. For the given
value F = 1.10, the dashed phase portrait in Fig. 13d can be plotted. The only values that η and ηx can take to
ensure that there is an intersection with the centre of the solid phase portrait correspond to the maximum eleva-
tion of the dashed solitary wave solution, η = 2(F −1) and ηx = 0. It is easy to show that the height of the step
must then be equal to −2(F − 1)2. The four fixed points are η = −(2/3)(F − 1), 0, (4/3)(F − 1), 2(F − 1).
The trajectory in the phase plane then goes from the centre point η = 2(F − 1) (solid phase portrait) to the
saddle point η = 0, along the solitary wave solution (dashed phase portrait). The constant C in (16) is equal
to 0 and the constant Cs in (19) is equal to −24(F − 1)3.

Hydraulic falls can also be obtained with F < 1. An example is shown in Fig. 14. In the weakly non-
linear approximation, the height of the step must be equal to (1/2)(F − 1)2. The four fixed points are η =
(4/3)(F − 1), F − 1, (1/3)(F − 1), 0. The trajectory in the phase plane then goes from the saddle point
η = F − 1 (solid phase portrait) to the centre point η = 0 (dashed phase portrait), along the solitary wave
solution (solid phase portrait). The constants C in (16) and Cs in (19) are equal to 0.

3.5 Flow with F = 1

When h < 0, the subcritical flows described in subsection Sect. 3.2 can be taken to the limit F = 1. Such a
solution is shown in Fig. 15 with a step height h = −0.01. This solution is a continuous prolongation of the
solution shown in Fig. 5. The only difference is in the weakly nonlinear phase plane. The two fixed points for
the region x > 0 have coalesced into a single fixed point at the origin. The analytical values for d given by
Eq. (7) are d = 1.08, 0.91. For free-surface flows over an obstacle of compact support, transcritical flows with
F = 1 are resonant in the longwave limit as energy cannot escape from the forcing. The flow which is observed
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showing the nonlinear phase trajectory for a. c Weakly nonlinear free-surface profile. d Weakly nonlinear phase portrait dη/dx
versus η for a. Along the bold curve, Cs = 0. The fixed points are the double point η = 0, the centre point η = 0.08 and the
saddle point η = −0.08

0 1 2 3

0

1

2

3

h

NO
SOLUTIONS

subcritical supercritical

Fig. 16 Solutions for the flow past a step in the plane (h, F − 1). The dashed lines correspond to the approximate results given
by the weakly nonlinear theory for hydraulic falls. The solid line corresponds to the approximate result given by the weakly
nonlinear theory for the maximum step height. For subcritical flows, there are no solutions between the dashed and the solid line

physically is then nonsteady for all time. Whether or not the same energy/group velocity argument leading
to resonance applies for a step forcing is an open question. However, Zhang and Zhu [16], who integrated
numerically the time-dependent forced KdV equation for the flow over a step, found steady transcritical flows
for a step down (negative forcing).

4 Conclusions

Free-surface flows past a semi-infinite step in the bottom of a channel have been investigated. Performing an
analysis in the weakly nonlinear phase plane (η, ηx ) enabled us to systematically identify all the possible types
of solutions and the number of independent parameters. The solution trajectory in the phase plane (η, ηx )
is the intersection of two orbits originating from two different phase portraits, one upstream of the step and
one downstream of the step. Solutions that do not satisfy the radiation condition can be made physical by
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introducing another disturbance (for example a pressure distribution on the free surface) into the channel in
order to eliminate the waves or by considering a step of finite length. This is ongoing research.

A summary of the solutions considered in this paper is shown in Fig. 16. Many new qualitatively different
types of solutions have been presented in this paper. Whether or not these solutions are physically observable is
a question of interest, which has not been addressed in this paper. Studies in the spirit of those by Grimshaw and
Smyth [7] and Smyth [13] are left for future work. The question of what happens when there is non-existence
of steady flows is also of interest.
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